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ABSTRACT
Algorithms for computing similarity joins in MapReduce
were offered in [2]. Similarity joins ask to find input pairs
that are within a certain distance d according to some dis-
tance measure. Here we explore the “anchor-points algo-
rithm” of [2]. We continue looking at Hamming distance,
and show that the method of that paper can be improved;
in particular, if we want to find strings within Hamming dis-
tance d, and anchor points are chosen so that every possible
input is within Hamming distance k of some anchor point,
then it is sufficient to send each input to all anchor points
within distance (d/2)+k, rather than d+k as was suggested
in the earlier paper. This improves on the communication
cost of the MapReduce algorithm, i.e., reduces the amount
of data transmitted among machines. Further, the same
holds for edit distance, provided inputs all have the same
length n and either the length of all anchor points is n − k
or the length of all anchor points is n+ k. We then explore
the problem of finding small sets of anchor points for edit
distance, which also provides an improvement on the com-
munication cost. We give a close-to-optimal technique to
extend anchor sets (called “covering codes”) from the k = 1
case to any k. We then give small covering codes that use
either a single deletion or a single insertion, or – in one al-
gorithm – two deletions. Discovering covering codes for edit
distance is important in its own right, since very little work
is known.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Distributed
databases, Parallel databases

General Terms
Theory
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1. INTRODUCTION
Fuzzy or similarity joins is the problem of finding pairs

of strings from a given corpus that are within a certain dis-
tance from each other according to some distance measure.
Computing fuzzy joins efficiently and at scale in distributed
systems is important for many applications, such as collab-
orative filtering for recommendation systems on large con-
sumer data [10], entity recognition among labeled records
in the web [13], clustering large-scale genetics data [9], and
many others. Reference [2] introduced the anchor-points
algorithm for computing fuzzy joins in the MapReduce sys-
tem [8] under Hamming distance. This algorithm is based
on finding a set of strings, called the anchor points, with
the property that all strings in the input corpus have small
distance to some anchor point. The problem of finding a
set of anchor points for Hamming distance has been stud-
ied under the term “covering codes.”1 In this paper we first
improve the anchor-points algorithm from [2] for Hamming
distance. We then describe anchor-points algorithms for edit
distance and show the existence and explicit construction of
nontrivial edit-distance covering codes.

The specific problem considered in [2] is the following:
Given a set of input strings of fixed length n over some alpha-
bet, find pairs of strings that are within Hamming distance
d, i.e., differ in at most d positions. The anchor-points al-
gorithm described there uses a set A of anchor-point strings
such that all strings of length n are within distance d of some
anchor point in A. The algorithm operates by creating one
reducer for each anchor point. The mappers send each string
w to the reducer for each anchor point at Hamming distance
at most 2d from w. Each reducer then searches for strings
at distance up to d from each other, among the strings it has
received. While not always the best algorithm, [2] showed
that for some inputs and parameters, anchor-points is the
best among known algorithms.

In this paper, we improve on this approach in three ways.

1. We generalize the algorithm and decouple the desired
Hamming distance d from the maximum distance k
between any string and its nearest anchor point.

2. We show that it is possible to reduce the radius 2d
used in the algorithm from [2] to 3d/2 and still find all
pairs of input strings at distance up to d.

3. We give a construction for finding near-optimal sets of

1We thank George Varghese for pointing out the term for
this concept.
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anchor points, rather than relying on the nonconstruc-
tive existence proof in [2].

In addition, we describe anchor-points algorithms for edit
distance. We focus on the case when all input strings are of
fixed length n and we want to find all pairs of strings u and
w that are at edit distance 2d, i.e., u can be turned into w
by a combination of d insertions and d deletions. It turns
out to be more difficult to construct sets of anchor points for
strings at a fixed edit distance than within a fixed Hamming
distance. However, we describe an explicit construction of
a set of anchor points for edit distance 2 that is within a
constant factor of the best possible. This construction can
be used to find sets of anchor points for any edit distance,
in a manner similar to the way we construct sets of anchor
points for arbitrary Hamming distance, as hinted at in item
(3) above.

1.1 Related Work
A number of recent works have explored MapReduce al-

gorithms for fuzzy joins– finding all pairs of elements from
some input set that are within a similarity threshold. Usu-
ally, the notion of similarity is that the two elements are
within distance d according to some distance measure. [12]
tries to identify similar records based on the Jaccard simi-
larity of sets, using the length/prefix-based methods of [5],
combined with the positional and suffix filtering techniques
of [14], and then parallelizes these techniques using MapRe-
duce. [4] shows improvements over [12] by using two MapRe-
duce jobs rather than one. [11] gives multiround algorithms
for fuzzy join.

There is a significant literature regarding sets of anchor
points for Hamming distance; these sets are called “covering
codes.” We mention some sources and related work in the
next section.

2. COVERING CODES
A covering code for length n and distance k is a set C

of strings of length n over an alphabet of size a such that
every string of length n is within Hamming distance k of
some member of C. The question of how small a covering
code for n and k can be is a hard combinatorial problem
that has been resolved only for small n, k, and a [1, 6].
A modification of the problem called “asymmetric” covering
codes has been considered for the binary alphabet [7, 3]. An
“asymmetric” binary covering code covers every bit string w
of length n by changing at most k 1’s of w to 0’s. As for
covering codes in the original formulation, lower and upper
bounds on the sizes of asymmetric covering codes are known
only for small values of n and k.

Example 2.1. In this example we assume the binary al-
phabet {0, 1} where a, the alphabet size, is 2. For k = 1, the
Hamming code itself provides a covering code of size 2n−m

if n = 2m−1. It is easy to show that this size is the best pos-
sible, since the Hamming code is perfect; that is, every bit
string of length n is covered by exactly one codeword. Ham-
ming codes exist only when the length n is one less than a
power of 2.

As another example, there is a covering code of size 2 for
n = 5 and k = 2: {00000, 11111}. That is, any bit string
of length 5 either has at most two 1’s, in which case it is
distance at most 2 from 00000, or it has at most two 0’s, in

which case it is at distance 2 or less from 11111. This code
also happens to be perfect; each string of length 5 is covered
by exactly one of the two strings.

Unfortunately, sometimes there is no perfect covering code.
For instance, for n = 6 and k = 3, the all-0’s and all-1’s
strings again form a covering code of size 2. It is easy to see
that there is no covering code of size 1, so two codewords is
the smallest possible size for a code. However, in this case,
the strings with three 0’s and three 1’s are covered by both
codewords.

2.1 Constructing Covering Codes for Larger
Distances by Cross Product

Although we cannot offer a general formula for the size of
the smallest covering code for n, k and alphabet of size a,
we can give a construction that is not too far from what is
possible. We start with the smallest possible covering code
for length n/k and distance 1 over the given alphabet and
extend it as follows.

Theorem 2.2. If C is any covering code for length n/k
and Hamming distance 1 over an alphabet of size a, then
C′ = Ck is a covering code for n and Hamming distance k
over the same alphabet.

Proof. Given a string w of length n, write w = w1w2 · · ·wk,
where each wi is of length n/k. We can change at most one
position of each wi to get a string xi in the covering code
C. The concatenation of x1x2 · · ·xk is a string in C′.

Example 2.3. Let n = 28, k = 4, and a = 2. Then
n/k = 7 = 23 − 1, so m = 3. There is a Hamming code

of length 23 − 1 = 7, with 2(n/k)−m = 16 members. Thus,
there is a covering code for n = 28 and k = 4 with 164 = 216

members. That is, fraction 2−km = 2−12, or 1/4096 of the
228 bit strings of length 28 is in the covering code constructed
by Theorem 2.2. In comparison, the lower bound, which is
not necessarily attainable, states that one in

∑4
i=0

(
28
i

)
, or

1 in 24,158 of the binary strings of length 28 must be in any
covering code for n = 28 and k = 4.

3. AN IMPROVED ANCHOR-POINTS AL-
GORITHM

Suppose w and x are two bit strings of length n, and the
Hamming distance between them is d. Assume for conve-
nience that d is even. Let y be any string at distance d/2
from both w and x. There is at least one such y, since we
can find it by starting with w, choosing any d/2 bits where
w and x disagree, and flipping those bits in w to agree with
x.

Example 3.1. Let w = 01010 and x = 11000. Then d =
2, since w and x differ in only their first and fourth bits.
There are two possible y’s. Each is obtainable by starting
with w and flipping either the first or fourth bits. That is,
one possible y is 11010 and another is 01000.

The observation above proves the following theorem.

Theorem 3.2. If C is a covering code for n and k, then
any two bit strings that are within distance d are within k+
d/2 distance from some member of C.
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Proof. Let w and x be the two strings at distance d. As
above, we may find y at distance d/2 from both w and x.
Since C is a covering code, there is a member of C, say z,
at distance at most k from y. By the triangle inequality, w
and x are each within k + d/2 distance from z.

Let C be a covering code for n and k. The improved
anchor-points algorithm using C to find pairs of bit strings
at distance d works as follows. As before, there is one reducer
for each member of the set C of anchor points. The mappers
operate as follows. For any input string w, find all the anchor
points at Hamming distance at most k+d/2 from w and send
w to the reducer for each such anchor point. The reducers
find all pairs of received bit strings that are at distance up
to d. As in [2], the reducers can avoid emitting a pair more
than once by checking, for each pair found, that there is
no lexicographically earlier anchor point that is distance at
most k + d/2 from both strings. The proof that all pairs of
distance d are found in this way follows from Theorem 3.2.

Recall from Section 1 that the algorithm from [2] picks
a covering code of distance d and sends every string w to
the anchor points that are at distance up to 2d from w. In
the new algorithm, if we pick the same covering code, i.e.
pick k = d, we improve over the algorithm in [2] by sending
each input string w to all anchor points within 3d/2 radius.
This reduces the overall communication of the algorithm
from O

(
IB(2d)/B(d)

)
to O

(
IB(3d/2)/B(d)

)
, where I is the

number of input strings (all of length n), and B(r) is the
“ball of radius r”: the number of strings that can be obtained
by flipping at most r bits from a given string and is equal
to
∑r

i=0

(
n
i

)
. With some algebra, it can be shown that the

ratio of the communication used by the two algorithms to
find pairs of strings within Hamming distantce d is at most
(2d/n)d/2, which is tiny when n is much larger than d, as it
normally is.

Another way to view the improvement of the new algo-
rithm is the following. By incurring the same communica-
tion that the algorithm from [2] incurs for finding strings
within Hamming distance d, the new algorithm can find
strings at distance up to 2d (i.e. by picking k = d and send-
ing every string to anchor points within distance k+2d/2 =
2d).

4. COVERING CODES FOR EDIT DISTANCE
We can use some of the Hamming-distance ideas to de-

velop an anchor-points algorithm for edit distance. However,
with edit distance, we can cover strings by using insertions,
deletions, or a combination of these. We shall focus on cov-
ering codes that cover strings of a fixed length, using only
insertions or only deletions, so the covering code itself has
strings of a fixed length.

Definition 4.1. (Insertion-k Covering Code): A set C
of strings of length n+ k is an insertion-k covering code for
length n, distance k, and alphabet Γ if for every string w
of length n over Γ we can insert k characters from Γ into
w and produce some string in C. Equivalently, for every w
of length n we can find some string x in C such that it is
possible to delete k positions from x and produce w. We say
that x covers w in this case.

Definition 4.2. (Deletion-k Covering Code): Similarly,
we say a set C of strings of length n − k is a deletion-k

covering code for length n, distance k, and alphabet Γ if for
every string w of length n over Γ we can delete k positions
from w and produce some string in C. Again, we say that x
covers w if so.

Throughout our analyses we assume that |Γ| = a and
w.l.o.g. the letters in Γ are the integers from 0 to (a − 1).
Finding covering codes for edit distance is harder than for
Hamming distance, since there is no convenient “perfect”
code like the Hamming codes to build from. One tricky
aspect of working with edit distance is that certain deletions
and insertions have the same effect. For instance, deleting
from any of the three middle positions of 01110 yields 0110.
When we want to develop a covering code, this phenomenon
actually works against us. For example, if we want a deletion
code for n = 5, k = 1, and the binary alphabet, then 00000
requires us to have 0000 in the code, since every deletion
of one position from 00000 yields 0000. Likewise, the code
must have 1111; there are no options.

4.1 Elementary Lower Bounds
There are simple arguments that say a covering code can-

not be too small; these are obtained by giving an upper
bound on the number of strings one codeword can cover.
For example, [2] shows that a string of length n− 1 over an
alphabet of size a yields exactly n(a − 1) + 1 strings by a
single insertion. That observation gives us a lower bound on
the size of a deletion-1 code for strings of length n. Such a
code must contain at least

an

n(a− 1) + 1

strings.
Different strings of length n+ 1 can cover different num-

bers of strings of length n by single deletions. The number
of strings covered is the number of runs in the string, where
a run is a maximal sequence of identical symbols. For ex-
ample, we observed above that the string 00000, which has
only one run, can cover only one string, 0000, by a single
deletion. Surely, a string of length n + 1 can have no more
than n + 1 runs. Thus, an insertion-1 code for strings of
length n must have at least an/(n+ 1) strings.

We can get a better bound by observing that strings with r
runs can only cover, by single deletions, strings with between
r−2 and r runs. Thus, an insertion-1 code must have strings
of almost all numbers of runs. However, the detailed bound
involves complex formulas and is not more than a factor of
two better than the simple an/(n+ 1) bound.

4.2 Summary of Results
Our results are summarized in Table 1. In the table and

the rest of the paper, we specify code sizes as fractions of the
number of strings of length n. For example, the a/(n+1)-size
insertion-1 code of the first row of Table 1 contains a/(n+1)
fraction of all strings of length n (or exactly aan/(n+ 1) =
an+1/(n+ 1) codewords).

Section 5 begins by summarizing our proof strategy for
explicitly constructing covering codes. In Section 5.1, we de-
scribe our explicit construction of insertion-1 covering codes.
In Section 5.2 and Section 5.3 we give explicit construc-
tions of deletion codes for distances 1 and 2, that are of
size O(1/a2) and O(1/a3), respectively.

Finally, in Section 6, we prove the existence of
O(log(n)/n)-size deletion-1 codes—a major improvement over
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Insertion/Deletion Size Explicit/Existence
insertion-1 a/(n+ 1) explicit
deletion-1 O(log(n)/n) for n

log(n)
≥ 48a existence

deletion-1 O(1/a2) for n ≥ 3a log(a) explicit
deletion-2 O(1/a3) for n ≥ a

2
+ log(a) explicit

Table 1: Summary of Edit Distance Covering Codes.

our result from Section 5.2 for long strings. However, note
that the existential upper bound we offer is greater by a
factor of O(a logn) than the lower bound from Section 4.1.

Just as we did for Hamming distance in Section 2.1, we
can take the cross product of a covering code C with itself
several times to get a covering code for longer strings with
a larger distance. This construction is not usually optimal,
but cannot be too far from optimal. This construction can
then be used in our anchor points algorithm from Section 3,
but now for finding strings of length n at edit distance d.

5. EXPLICIT CONSTRUCTION OF EDIT-
DISTANCE COVERING CODES

Let w = wnwn−1 · · ·w1 be a string of length n over an
alphabet Γ of size a, and let C be the edit-distance covering
code we are constructing. We first outline the general recipe
we use to construct C:

1. Sum value: Assign each string w a sum value sum(w),
the value of applying some function to w, treating each
of its positions wi as an integer (recall we assume the
symbols of the alphabet are integers 0, 1, . . . , a− 1).

2. Modulus value: Pick an appropriate integer c and
let score(w) = sum(w) mod c.

3. Residues: Pick one or more residues modulo c. Put
into C all strings of appropriate length (e.g n + 1 for
insertion-1 codes or n− 1 for deletion-1 codes), whose
score values are equal to one of the residues.

We then count the strings in C and prove that C covers
all strings of length n. In some cases, we do not cover all
strings with C. Rather, we show that the number of strings
not covered (called outliers) is small compared to the size of
C. We can then argue that by adding one codeword into C
for each outlier string, we can construct an extended code C′

that covers all strings and that has the same asymptotic size
as C. We can find the outliers by going through each code
word c ∈ C and finding all strings of length n that c covers.
This operation can be done in n ∗ |C| time for insertion
codes, and a ∗ n ∗ |C| for deletion codes. Afterwards we can
go through all strings of length n in an time to find the
outliers. Note that if we let N = an be the set of all strings
of length n, this entire construction takes O(aNlogN) time.
Notice that O(aN logN) is much less than the brute-force
way of finding a code, even though it is exponential in the
length of the strings. The obvious way to find a code would
be to look at all 2N subsets of strings of length n, smallest
first, and test each to see if the subset covers all strings.

5.1 Insertion-1 Covering Codes
We follow the recipe above to construct an insertion-1

covering code:

• Sum value: sum(w) = Σn
i=1wi × i

• Modulus value: c = (n+ 1)× (a− 1)

• Residues: Any a − 1 consecutive residues,
{(i mod c), (i+1 mod c), . . . ,

(
i+(a−2) mod c

)
}. For

example, if a = 4 and n = 5, then c = 18, we can pick
the three consecutive residues 2, 3, 4 or 17, 0, 1.

Before we prove that the code we constructed covers every
string of length n, we give an example:

Example 5.1. Let a = 4, n = 5, and assume we pick
8, 9, and 10 as our residues. Then our code consists of
all strings of length 6, whose score values equal 8, 9, or 10.
Consider the string 23010. Then we can insert 0 between the
fourth and fifth digits (3 and 2), and produce 203010, which
is a codeword since its sum value is 26 and score value is
8. Similarly consider the string of all zeros: 00000. We can
insert 3 between the second and third digits, and produce
000300, which also is a codeword as it has a score of 9.

It is not a coincidence that we were able to take a string w
of length five and generate a codeword by inserting a 0 or a 3
into w. As we prove momentarily, our code has the property
that every string w of length n is covered by inserting one
of the symbols 0 or a− 1 somewhere in w.

Consider a string w of length n. Let sumXj , and scoreXj ,
for j = n+1, . . . , 1 be the sum and score values, respectively,
of the string that is constructed by adding 0 to the left of
wj−1. If j = 1, we add 0 at the right end. Similarly, let
sumYj and scoreYj be the sum and score values, respec-
tively, of the string constructed by adding (a− 1) to the left
of wj−1, or at the right end if j = 1. For example, for the
string 23010, sumX3 is the sum value of the string 230010
(the second 0 is the one inserted) and is equal to 29. scoreX3

is then 29 mod 18 = 11. Similarly, sumY1 is the sum value
of the string 230103 and is equal to 33, and scoreY1 is 33
mod 18 = 15.

Lemma 5.2. (i) sumYn+1 − sumXn+1 = (n + 1)(a − 1)
(ii) sumY1 − sumX1 = (a− 1).

Proof. (i) Let u = (a− 1)wn · · ·w1 and v = 0wn · · ·w1.
u and v differ only in the (n + 1)st digit. Therefore the
difference between sum(u) and sum(v) is exactly (n+ 1)×
(a− 1).

(ii) Let z = wn · · ·w1(a − 1) and t = wn · · ·w10. z and t
differ only in the first digit. Therefore the difference between
sum(z) and sum(t) is exactly a− 1.

Consider the sequences sumXn+1, sumXn, . . . , sumX1 and
sumYn+1, sumYn, . . . , sumY1 of the sum values produced by
inserting a 0 and (a − 1) to the left of each digit in w, re-
spectively. We can visualize these sequences as two walk-
ers, an X walker and a Y walker, taking an n-step walk on
the number line. Figure 1 shows the walk for the string
23010. In the figure, the top labels of the lines are the
sum values and bottom labels are the score values. Note
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sum	   23	   24	   25	   26	   27	   28	   29	   30	   31	   32	   33	   34	   35	   36	   37	   38	   39	   40	   41	   42	   43	  

score	   5	   6	   7	   8	   9	   10	   11	   12	   13	   14	   15	   16	   17	   0	   1	   2	   3	   4	   5	   6	   7	  

X	   023010	   Y	  323010	  

X	  230100	   Y	   230103	  

sum	   23	   24	   25	   26	   27	   28	   29	   30	   31	   32	   33	   34	   35	   36	   37	   38	   39	   40	   41	   42	   43	  

score	   5	   6	   7	   8	   9	   10	   11	   12	   13	   14	   15	   16	   17	   0	   1	   2	   3	   4	   5	   6	   7	  

X	   203010	   Y	  233010	  

sum	   23	   24	   25	   26	   27	   28	   29	   30	   31	   32	   33	   34	   35	   36	   37	   38	   39	   40	   41	   42	   43	  

score	   5	   6	   7	   8	   9	   10	   11	   12	   13	   14	   15	   16	   17	   0	   1	   2	   3	   4	   5	   6	   7	  

X	   230010	   Y	  233010	  

sum	   23	   24	   25	   26	   27	   28	   29	   30	   31	   32	   33	   34	   35	   36	   37	   38	   39	   40	   41	   42	   43	  

score	   5	   6	   7	   8	   9	   10	   11	   12	   13	   14	   15	   16	   17	   0	   1	   2	   3	   4	   5	   6	   7	  

X	   230010	   Y	  230310	  

sum	   23	   24	   25	   26	   27	   28	   29	   30	   31	   32	   33	   34	   35	   36	   37	   38	   39	   40	   41	   42	   43	  

score	   5	   6	   7	   8	   9	   10	   11	   12	   13	   14	   15	   16	   17	   0	   1	   2	   3	   4	   5	   6	   7	  

X	   230100	   Y	  230130	  

sum	   23	   24	   25	   26	   27	   28	   29	   30	   31	   32	   33	   34	   35	   36	   37	   38	   39	   40	   41	   42	   43	  

score	   5	   6	   7	   8	   9	   10	   11	   12	   13	   14	   15	   16	   17	   0	   1	   2	   3	   4	   5	   6	   7	  

Figure 1: Simulation of insertions of symbols 0 and
(a− 1) into strings as two walkers.

that the X (Y) walker being on a position with a particular
sum value s and score value r corresponds to constructing
a string of length six from 23010 by a single insertion of 0(
(a-1)

)
with sum value s and score value r. We know from

Lemma 5.2 that sumYn+1− sumXn+1 = (n+ 1)(a− 1) and
sumY1 − sumX1 = (a− 1): the walkers start (n+ 1)(a− 1)
and finish exactly (a − 1) positions away from each other.
We will next prove that the walkers always walk in opposite
directions in steps of size at most a− 1.

Lemma 5.3. sumXj−sumXj+1 = i and sumYj−sumYj+1 =
−(a− 1− i), for some i ∈ 0, . . . , a− 1.

Proof. Let wj+1 be i. Then

sumXj = sum(wn . . . wj+2i0wj . . . w1)

sumXj+1 = sum(wn . . . wj+20iwj . . . w1)

Notice that the inputs to the sum functions differ only in the
(j+1)st and (j+2)nd digits. Subtracting one from another,
sumXj − sumXj+1 = i(j + 2)− i(j + 1) = i. Similarly

sumYj = score(wn . . . wj+2i(a− 1)wj . . . w1)

sumYj+1 = score(wn . . . wj+2(a− 1)iwj . . . w1)

Therefore,

sumYj − sumYj+1 =
i(j + 2) + (a− 1)(j + 1)− [(a− 1)(j + 2) + i(j + 1)] =
−(a− 1− i)

In other words, the sum values are always increasing for
walker X and decreasing for walker Y. Moreover, the sum
values differ by ≤ (a− 1) for each walker and cumulatively
they travel a distance of (a − 1). In Figure 1, this can be
visualized as two walkers at two ends of a line walking to-
wards each other synchronously, and at each step, if walker
X moves i amount to the right, walker Y moves (a− 1− i)
amount to the left.

Theorem 5.4. Fix any (a− 1) consecutive residues

R = {i mod c, i+ 1 mod c, . . . ,
(
i+ (a− 2)

)
mod c}

where c = (n+ 1)(a− 1). The code C constructed by taking
all strings of length n+1 whose score values are in R covers
all strings of length n by a single insertion.

Proof. Again consider any string w of length n and the
corresponding X and Y walkers for it. We know from Lem-
ma 5.2 that the walkers starts exactly (n+1)(a−1) sum val-
ues away. Therefore the score values of the numbers between
their initial posititions cover exactly a full residue cycle of
modulo c = (n+ 1)(a− 1). We also know that they walk in
opposite directions (Lemma 5.3) and finish the walk exactly
(a−1) sum values away (Lemma 5.2). Since the step sizes of
the walkers is ≤ (a− 1) (Lemma 5.3) neither of the walkers
can skip over all the (a − 1) consecutive residues in R in a
single step, which implies that at least one of the walkers
must step on one of the residues in R. In other words we
can insert 0 or (a−1) into some position j of w and generate
a codeword.

Corollary 5.5. We can construct an a/(n+ 1) size in-
sertion-1 covering code C for strings of length n.

Proof. Let Cj be the code we construct by selecting the
(a − 1) residues between j(a − 1) and (j + 1)(a − 1), for
j ∈ 0, . . . , n. Note that Cj ’s are disjoint, and every string of
length n+1 belongs to one Cj . We have n+1 disjoint codes
and their union has size an+1 (all strings of length n + 1).
Therefore one of the codes must contain at most an+1/n+1
strings and is an a/n+ 1-size code.

5.2 O(1/a2)-size Deletion-1 Covering Codes
We next use our recipe for explicitly constructing codes to

construct an O(1/a2) size deletion-1 code, for large enough
n.

• Sum value: sum(w) = Σn
i=1wi. That is, the sum value

of w is the sum of the integer values of its digits.

• Modulus value: c = a

• Residues: 0

This code covers nearly all strings of length n. Consider
a string w of length n. Let score(w) = i. If w has any
occurrence of the symbol i, delete it, and you get a codeword.
Thus, our code covers all strings that contain their modulus.
To make it a covering code, we take any string that is not
covered, remove its first digit, and add it to the code. Then
any string w of length n will either be covered by the original
code, or it will be covered by the codeword that we added
specifically for it.

To determine the size of our code, we first observe that
induction on n shows that there are an−1 strings of length
n with score r for each residue r ∈ {0, . . . , a− 1}. Thus, in
particular, there are an−2 strings of length n−1 with score 0,
making the original code a 1/a2-size code. We show that the
number of strings of length n that are missing their modulus
is O(1/a2). To do so, we exhibit a bound on the size of the
set S of strings that are missing at least one symbol, which
certainly contains every string that is missing its modulus.
Observe that S = ∪iSi, where Si is the set of strings of
length n that do not contain symbol i. By the union bound,
we have that |S| ≤

∑
i |Si|, and thus it suffices to show

that each |Si| represents an O(1/a3) fraction of the strings

8



of length n. The number of strings that do not contain the
symbol i is exactly (a − 1)n which is exactly (1 − 1/a)n

fraction of all strings. This quantity is at most e−n/a and
is bounded above by 1/a3 for n ≥ 3a log(a), proving the
following result:

Theorem 5.6. For n ≥ 3a log(a), there is an O(an−2)-
size deletion-1 code.

5.3 O(1/a3)-size Deletion-2 Covering Code For
Shorter Strings

For our deletion-2 code we use the following scheme.

• Sum value: sum(w) = Σn
i=1wi, as in Section 5.2

• Modulus value: c = a

• Residues: 0

Suppose we have a string x of length n and score(x) = i.
We need to find a pair of positions of x that sum to i modulo
a and delete them both. To start, we assume that a is even;
the situation for odd a is very similar and we will discuss
it in the end. We can group the integers from 0 to a − 1
into pairs that sum to i modulo a. There is a special case
where for some integer j, we have 2j = i mod a. In that
case, there are two such integers j, and we group those two
integers into one group.

Example 5.7. Let a = 6. Figure 2 shows the pairs that
sum to i modulo 6:

i
0: 0-0 1-5 2-4 3-3
1: 0-1 2-5 3-4
2: 0-2 1-1 3-5 4-4
3: 0-3 1-2 4-5
4: 0-4 1-3 2-2 5-5
5: 0-5 1-4 2-3

Figure 2: Pairs that sum to i modulo 6

So, for example, if i = 1, then the three groups are {0, 1}, {2, 5},
and {3, 4}. If i = 2, then the three groups are {0, 2}, {1, 4},
and {3, 5}. Note that 1+1 and 4+4 are both equal to 2
mod 6, so we put them into one group.

In general, if a is even, then the pairs that sum to 0 modulo
a are 0 + 0, a

2
+ a

2
, 1 + (a−1), 2 + (a−2), 3 + (a−3), and so

on, until (a
2
− 1) + (a

2
+ 1). If we want the pairs that sum to

i, where i is even, then we add i/2 to every integer in this
list of pairs. The integers i/2 and (a+ i)/2, when added to
themselves, make i modulo a, while the other a

2
− 1 pairs of

two different integers also sum to i modulo a.
If we want the pairs of integers that sum to 1 modulo a,

we note that these are 0 + 1, 2 + (a− 1), 3 + (a− 2), and so
on, until (a

2
) + (a

2
+ 1). That is, there are a

2
pairs of distinct

integers. If we want to find the pairs that sum to i, for odd
i, then we add (i − 1)/2 to each of the integers, and again
we get a

2
pairs of distinct integers.

The important point is that regardless of the desired sum
i, we can divide the integers modulo a into a

2
groups. Each

group either consists of two distinct integers that sum to i
modulo a or consist of the two integers that, when added to
themselves, yield i modulo a.

If there are k positions in the string holding members of
the same group, then the probability is at least 1− 2−(k−1)

that these positions hold two symbols that sum to i modulo
a. First, look at groups composed of two different values that
sum to i modulo a, such as {3, 5} for a = 6 and i = 2. All
positions belonging to the group are independent (assuming
we have chosen a string x randomly). So each position after
the first has probability 1/2 of disagreeing with the first.
That is, the probability that all k positions hold the same
symbol is 2−(k−1).

For a group that is composed of two symbols each of
which, added to itself makes i, such as the group {1, 4} for
a = 6 and i = 2, then the situation is even better. If k = 2,
the probability is 1/2 that the two positions for that group
are the same, but if k ≥ 3, then we are certain to find two
positions that sum to i modulo a.

If the length of x is n, then there are at least n − (a/2)
positions of x that are not the first in their group. Thus, the
probability that we are unable to find any pair of positions
of x that sum to i modulo a is at most 2n−(a/2). If n is bigger
than a/2+log(a), then the number of outliers is at most 1/a
of the total number of strings of length n− 2. Thus, we can
expand C to include one codeword for each outlier, proving
the following result:

Theorem 5.8. For n ≥ a
2

+ log(a), there is an O(an−3)-
size deletion-2 code.

6. EXISTENCE OF O(log(n)/n)-SIZE
DELETION-1 COVERING CODES

We next show that for sufficiently long strings there are
deletion-1 covering codes that are much smaller than the
O(1/a2)-size code from Section 5.2. The proof of the exis-
tence of such codes is much more involved than our previous
constructions. Instead of showing the existence of an edit-
distance-1 covering code directly, we convert the strings of
length n and alphabet size a into binary strings of lengths
≤ n. We then show the existence of a Hamming-distance-1
covering code H for the converted binary strings and convert
H into a deletion-1 covering code C for the original strings.

We begin with a roadmap and proof outline. All the ter-
minology we use in the outline, e.g. “run patterns”, “bits of
runs”, or “safe bits” will be defined in the specified sections.

1. Convert each string w of length n to its run pattern,
runs(w) (Section 6.1).

2. Convert run patterns of w to a binary string, which we
refer to as bits of runs of w (Section 6.2).

3. Partition the strings of length n into two groups based
on the number of safe bits their bits of runs have: LS
(low-safe-bit) and HS (high-safe-bit). The strings in LS
will be the first set of outlier strings for the final code
we construct and will be covered separately at the end
of our construction (Section 6.3).

4. Construct a deletion-1 code C that covers all but 1/n
fraction of the strings in HS. The remaining 1/n frac-
tion of the strings in HS will be the second set of
outlier strings. We will construct C from a Hamming-
Distance-1 code H for binary strings, which covers the
bits of runs of the strings in HS on their safe bits (Sec-
tion 6.4).
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5. For each outlier string s, put into C the string that we
get by removing the first symbol of s, and construct a
deletion-1 covering code (Section 6.6).

6. Count the number of outliers and the total number of
strings in C. (Section 6.6).

6.1 Step 1: Run Patterns
We view strings as sequences of runs – consecutive posi-

tions that hold the same character. The length of a run is
the number of consecutive positions that hold the same char-
acter. A run pattern (or just “pattern”) is a list of positive
integers. Every string w of length n corresponds to exactly
one pattern P , which is the list of positive integers, the ith
of which is the length of the ith run of w. We denote this
pattern P by runs(w). Note that the run pattern of a string
has the same length as the number of runs in that string.

Example 6.1. String w = 002111100 consists of four runs,
00, 2, 1111, 00, in that order. The lengths of these runs are
2, 1, 4, and 2, respectively, so runs(w) = [2, 1, 4, 2].

6.2 Step 2: Converting Run Patterns into Bi-
nary Strings

For the second step of our proof, we need to convert run
patterns into bit strings of the same length. Define bits(P )
to be the bit string whose ith position holds 0 if the ith
integer on the list P is even, and holds 1 if the ith integer is
odd.

Example 6.2. If w = 002111100, then

runs(w) = [2, 1, 4, 2]

and bits
(
runs(w)

)
= bits([2, 1, 4, 2]) = 0100.

6.3 Step 3: Partitioning Strings Based on Safe
Bit Counts

Deletion of a symbol from a string w in general can gener-
ate a string v with a shorter run pattern, and hence bits

(
runs(v)

)
can be shorter than bits

(
runs(w)

)
. For example, deletion of

the symbol 2 from 00211100, whose run pattern is [2, 1, 3, 2],
generates 00111100, whose run pattern is [2, 4, 2]. However,
if we delete a symbol from w that belongs to a run of length 2
or more, we will get a string v with the following properties:

• |bits
(
runs(v)

)
| = |bits

(
runs(w)

)
|; v has the same num-

ber of runs and hence bits of runs as w.

• bits
(
runs(v)

)
and bits

(
runs(w)

)
differ in exactly one

bit and hence have Hamming distance 1. The bit in
which they differ corresponds to the run from which we
removed the symbol.

Example 6.3. If we remove one of the 1’s in

w = 002111100

we get v = 00211100. bits
(
runs(v)

)
= 0110, which is at

Hamming distance one from bits
(
runs(w)

)
= 0100. Note

that because we removed a symbol from the third run of w,
the two bit strings differ in the third bit.

We call a bit in bits
(
runs(w)

)
a safe bit for w, if it cor-

responds to a run of length ≥ 2. Consider again the string
w = 002111100 as an example. Every 0 in bits

(
runs(w)

)
=

0100, is safe, and the bit 1, which corresponds to the second
run of w is unsafe because it corresponds to a run of length
1. Different strings have different numbers of safe bits. For
example, a string composed of an alternating sequence of
different symbols, such as 212121 has no safe bits, since it
has no runs of length ≥ 2.

We partition the set of strings we want to cover into two
groups based on the number of safe bits they have. Let LS
(for low safe-bit strings) be the set of strings of length n
that have fewer than n/6a safe bits. Similarly, let HS (for
high safe bit strings) be the set of strings with at least n/6a
safe bits. Furthermore, we partition HS into HS1, . . . , HSn,
where HSi is the set of high safe bit strings with i runs.

We finish this section with a key definition. Consider
a Hamming covering code H that covers all bit strings of
length i and a string w with i runs. We say that H covers
w on a safe bit, if there is a codeword h ∈ H, such that:

1. h and bits
(
runs(w)

)
are at Hamming distance 1, and

2. The bit on which h and bits
(
runs(w)

)
differ corre-

sponds to a safe bit of w.

We note that two strings w1 and w2 can have the same bits
of runs, yet a Hamming covering code can cover only one of
them on a safe bit.

Example 6.4. Let w1 = 22111300 and w2 = 33022211.
The bits-of-runs for both strings is 0110. Consider a Ham-
ming covering code H containing the string 0010, which is
at Hamming distance 1 from 0110. Then H covers both w1

and w2 on the second bit from left, which is a safe bit of w1

but not w2. However, if there is no other string in H that
covers 0110, then H covers w1 but not w2 on a safe bit.

In the next section, we will construct an edit covering
code C that covers all but 1/n fraction of all strings in HS,
using Hamming covering codes that cover the bits of runs of
strings in HS on safe bits.

6.4 Step 4: Constructing a Deletion-1 Code
Covering (1-1/n) Fraction of HS

We start this section by explaining how we can take a
Hamming covering code and turn it into a deletion-1 code
(not necessarily a covering code). Let HCCi be any covering
code for Hamming distance 1 and bit strings of length i. We
construct a particular deletion-1 code ECr=i from HCCi as
follows.

ECr=i = {x | bits
(
runs(x)

)
∈ HCCi}

That is, we put into ECr=i all strings of length n−1, whose
bits of runs is in HCCi.

In the rest of this section, we first state three key lemmas.
Lemmas 6.5 and 6.6 are proved in Section 6.5. Then we
prove, using the lemmas, that we can build an O

(
log(n)/n

)
-

size deletion-1 code C that covers all but 1/n fraction of
strings in HS. In Section 6.6, we will expand C by code-
words that cover the all the strings in HS not covered and
the strings in LS and construct a deletion-1 covering code.

Lemma 6.5. Let X be a subset of the strings in HSi.
Suppose there exists a Hamming covering code HCCi for bit
strings of length i, such that |HCCi| = m. Then there exists
a set ECr=i of strings of length n−1, such that the following
is true.
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1. |ECr=i| ≤ m/2i−1 fraction of the strings of length n−1
with i runs.

2. ECr=i covers at least nm/12a2i fraction of all stings
in X on their safe bits.

We defer the proof until Section 6.5. At a high level, this
lemma says that if we have a small Hamming covering code
HCCi for bit strings of length i and a subset X of strings
in HSi, we can construct a small size deletion-1 code ECr=i

that covers an important fraction of the strings in X. Our
next lemma says that such small size Hamming covering
codes indeed exist.

Lemma 6.6. There is an HCCi code with at most 2i+1/i
codewords. Put another way, there is a code HCCi with at
most fraction 2/i of the binary strings of length i.

Again, the proof is deferred to Section 6.5. We next state
an immediate corollary to Lemmas 6.5 and 6.6.

Corollary 6.7. For any i, with 1 ≤ i < n, there is a
deletion-1 code ECr=i of strings of length n− 1, such that

1. |ECr=i| ≤ 4/i fraction of the strings of length n − 1
with i runs, and

2. ECr=i covers at least

n2i+1

12ai2i+1
= n/12ai ≥ 1/12a

fraction of all strings in HSi.

Proof. The corollary follows from substituting 2i+1/i
from Lemma 6.6 for m in Lemma 6.5.

Finally, we need the following lemma to count the number
of strings in the deletion-1 code we construct in Theorem 6.9.

Lemma 6.8. The number of strings of length n − 1 over
an alphabet of size a, with i runs, is a(a− 1)i−1

(
n−2
i−1

)
.

Proof. Imagine a string of length n−1 with i−1 “fence-
posts” separating the runs. A string of length n−1 may thus
be viewed as n − 1 “regular” symbols and i − 1 fenceposts.
However, there are some constraints on where the fenceposts
appear. A fencepost cannot occupy the last position, and
each fencepost must be preceded by a regular symbol. Thus,
we can think of the string and fenceposts as i− 1 pairs con-
sisting of a regular symbol followed by a fencepost, n− i− 1
regular symbols that are not at the end and not followed by
a fencepost, and finally, a regular symbol at the end. The
number of arrangements of the i − 1 pairs and n − i − 1
regular symbols is

(
n−2
i−1

)
. The factor a(a− 1)i−1 is justified

by the fact that the first run can be any of the a symbols of
the alphabet, and each of the i− 1 succeeding runs may be
any of the a symbols except for the symbol that is used for
the previous run.

We can now prove that we can construct a O( log(n)
n

)-size

deletion-1 code that covers all but ≤ 1
n

fraction of the strings
in HS.

Theorem 6.9. There is an O( log(n)
n

)-size deletion-1 code

C that covers 1− 1
n

fraction of the strings in HS.

Proof. For each i, 1 ≤ i < n, we construct a deletion-1
code ECr=i as follows: We let X = HSi and using Corol-
lary 6.7, find a deletion-1 code EC(r=i),1 that covers at least
fraction 1/12a of Xi, and contains at most fraction 4/i of
the strings of length n − 1 with i runs. Then, we remove
the covered strings from X and find an EC(r=i),2 that cov-
ers at least fraction 1/12a of the remaining X, and is of
size at most fraction 4/i of the strings of length n− 1 with
i runs. We repeat this construction log 12a

12a−1
(n) times, to

construct EC(r=i),j for j = 3, 4, . . .. We then take the union
all EC(r=i),j ’s and construct ECr=i which

1. contains 4 log 12a
12a−1

(n) /i fraction of all strings of length

n− 1 with i runs, and

2. covers 1− 1
n

fraction of the strings in HSi.

Let C = ∪iECr=i. By construction, C covers 1 − 1
n

of all

strings in HS. That is, each ECr=i covers 1− 1
n

fraction of
all strings in HSi, and HS = ∪HSi. We only have to prove

that C is a O
( log(n)

n

)
-size code: i.e., it contains O

( log(n)
n

)
fraction of all strings of length n.

By Lemma 6.8, the number of strings of length n−1 with i
runs is a(a−1)i−1

(
n−2
i−1

)
. We know that each ECr=i contains

4 log 12a
12a−1

(n)/i fraction of those strings. When we sum over

i, we get an upper bound on the size of C:

4 log 12a
12a−1

(n)

n−1∑
i=1

a(a− 1)i−1

(
n− 2

i− 1

)
1

i

Now, expand the combinatorial function in factorials:

4 log 12a
12a−1

(n)

n−1∑
i=1

a(a− 1)i−1 (n− 2)!

(i− 1)!(n− 1− i)!
1

i

Multiply by (n − 1)/(n − 1), and group the factor i with
(i− 1)! to get:

4 log 12a
12a−1

(n)

n−1∑
i=1

a(a− 1)i−1

n− 1

(n− 1)!

i!(n− 1− i)!

Next, observe that the factorials give exactly
(
n−1
i

)
. Move

all the factors that do not involve i outside the summation
to get

4a log 12a
12a−1

(n)

(n− 1)(a− 1)

n−1∑
i=1

(a− 1)i
(
n− 1

i

)
(1)

The summation is all the terms in the expansion of

[1 + (a− 1)]n−1

with the exception of the first and last terms — those for
i = 0. Thus, a good upper bound on Equation 1 is

an−1
4a log 12a

12a−1
(n)

(n− 1)(a− 1)
(2)

The factor log 12a
12a−1

(n) is approximately (12a− 1) log(n):

log 12a
12a−1

(n) = log1+ 1
12a−1

(n) = log1+ 1
12a−1

(e) log(n)

log(1+ε) is approximately ε for small values of ε. Therefore,

log1+ 1
12a−1

(e) =
1

log(1 + 1
12a−1

)
≈ 1

1
12a−1

= 12a− 1
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Substituting (12a− 1) log(n) for log 12a
12a−1

(n) in Equation 2,

we get:

|C| = O(
an log(n)

n
)

We will next prove Lemmas 6.5 and 6.6. Finally, in Sec-
tion 6.6 we will show that for sufficiently large n, the number
of outliers that we have to add to C is less than fraction 1/n
fraction of all strings of length n , which will prove the ex-

istence of O( log(n)
n

)-size deletion-1 covering codes.

6.5 Proof of Lemmas
Recall Lemma 6.5 states that given a Hamming covering

code HCCi for bit strings of length i of size m and given a
set X of strings with enough safe bits (≥ n

6a
) that we want

to cover, we can find a deletion-1 code ECr=i that contains
m

2i−1 fraction of the strings of length n − 1 with i runs and
that covers a large fraction ( nm

6a2i
) of the strings in X. Our

strategy is to generate a large number of covering codes from
HCCi and calculate the average number of strings they cover
from X. We can then argue that at least one choice is aver-
age or above. We first introduce affine Hamming codes.

6.5.1 Affine Codes
Suppose we start with some fixed Hamming covering code

H = HCCi. For any bit string x of length i, the affine code
Hx = H ⊕ x is the set of strings that are formed by taking
the bitwise modulo-2 sum of x and any string w in H.

Example 6.10. Suppose i = 4 and

H = {0000, 0111, 1011, 1101, 1110}

We leave it to the reader to verify that every string of length
four is covered by H. There are sixteen ways we can con-
struct an affine code from H; some of these codes will be
the same, however. We can construct H itself by choosing
x = 0000. That is, H0000 = H. If we choose x = 0011, we
get H0011 = {0011, 0100, 1000, 1101}, and so on.

Some useful facts about the collection of affine codes is
the following.

Lemma 6.11. If H is a Hamming covering code for strings
of length i, then so is Hx for any string x of length i.

Proof. Let w and x be strings of length i. We need to
show that w is covered by some string in Hx. We know that
w⊕x is covered by some string y in H. That is, y and w⊕x
differ in at most one bit. Then y ⊕ x is in Hx. We claim
that w and y ⊕ x differ in at most one bit, and therefore w
is covered by Hx.

Consider any bit j in which y and w⊕ x agree; there will
be at least i − 1 such bits. Let wj , xj , and yj be the jth
bits of w, x, and y, respectively. Then we are given that
yj = wj ⊕ xj . If we add yj ⊕ wj to both sides modulo 2 we
get yj ⊕ yj ⊕wj = wj ⊕ xj ⊕ yi ⊕wj . Since ⊕ is associative
and commutative, and z ⊕ z = 0 for any z, it follows that
wj = yj ⊕ xj . Therefore, w and y ⊕ x differ in at most one
bit, and w is covered by Hx.

Lemma 6.12. Suppose H is a Hamming covering code with
m members, for strings of length i. Then among all the
affine codes Hx, each string of length i appears exactly m
times.

Proof. The string w appears in Hx if and only if w = y⊕
x for some y in H. But w = y⊕x if and only if x = w⊕y (the
argument is the same as that given for bits in Lemma 6.11).
Thus, w is in one affine code Hx for every member y of H.
Therefore, w is in exactly m affine codes.

We are now ready to prove Lemma 6.5.

6.5.2 Proof of Lemma 6.5
Let HCCi be a Hamming covering code for bit strings of

length n, and let Bi be the set of strings of length n − 1
with i runs. Consider a randomly picked affine code HCCx

of HCCi out of the 2i possible affine codes. By Lemma 6.12,
for each string w in Bi, there are exactly m affine codes
of HCCi for which w is in the code. By linearity of ex-
pectations, the expected number of strings of Bi in Hx is
m|Bi|/2i. By Markov’s inequality, the probability that the
number of strings from Bi in HCCx is greater than twice
the expectation is ≤ 1/2, which implies:

Pr(# of strings from Bi ∈ HCCx ≤ 2m|Bi|/2i) >
1

2
(3)

Now consider the set X and a string x ∈ X. Recall that
strings in X have more than n

6a
safe bits. Let

b = bits
(
runs(x)

)
= bi, . . . b1

Let bj be a safe bit for x. Then there are exactly m affine
codes HCCy of HCCi, such that HCCy covers b by flip-
ping bj . That is because by Lemma 6.12, there are ex-
actly m affine codes of HCCi that contain the string b′ =
bi, . . . , bj+1,¬bj , . . . , b1—the string b with bj flipped. Since
there are at least n

6a
safe bits in b for x, there are at least

mn
6a

affine codes, whose generated deletion-1 covering code
will cover x. Therefore, expected number of strings that a

randomly picked affine code Hx will cover from X is |X|mn
6a

.
Again by Markov’s inequality, the probability that a random

Hx covers fewer than |X|mn
12a

strings from X is ≤ 1
2
, which

implies:

Pr(HCCx covers >
|X|mn

12a
strings from X) >

1

2
(4)

By equation 3, the probability that a randomly picked
HCCx contains less that 2m|Bi|/2i fraction of the strings of
length n−1 with i runs is> 1

2
. By equation 4, the probability

that a random HCCx covers more than |X|mn/12a strings
from X is > 1

2
. Then, there must exist one HCCx for which

both conditions hold, completing the proof of the lemma.
We next prove Lemma 6.6.

6.5.3 Proof of Lemma 6.6
Let i be in the range 2r−1−1 < i ≤ 2r−1 for some integer

r. There is a Hamming code C for strings of length 2r−1−1,
and it is a perfect code, so it is also a Hamming covering code

for that length. Take the cross product of C×{0, 1}i−2r−1+1;
call the resulting code C′. That is, expand the code C by
appending all possible bit strings to each of the codeword,
to make strings of length i rather than length 2r−1 − 1.

We claim that C′ is a covering code for strings of length i.
In proof, let w be a string of length i. Since C is a covering
code, we know we can find a member x of C such that the
first 2r−1 − 1 bits of w differ from x in at most one bit.
Extend x with the last i− 2r−1 + 1 bits of w. We now have
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a codeword of C′, and that codeword differs from w in at
most one bit.

6.6 Steps 5 and 6: Existence of O(log(n)/n)-
size Deletion-1 Codes

We are now ready to complete our proof that O(log(n)/n)-
size deletion-1 codes exist. So far, we partitioned strings of
length n into LS, those < n

6a
safe bits, and HS, those with

> b
6a

. We then showed in Theorem 6.9 that we can cover all

but ≤ 1
n

fraction of the strings in HS with a O(log(n)/n)-
size code C. The two groups of outliers to C are: (1) the
≤ 1

n
fraction of strings in HS that c does not cover; and (2)

the strings in LS. Notice that the size of the strings in (1) is
≤ 1

n
fraction of all strings of length n, since HS is a subset

of all strings of length n. Our next lemma states that for
large enough n, the size of LS is also ≤ 1

n
of all strings of

length n.

Lemma 6.13. For n such that n/ log(n) ≥ 24a, |LS| ≤ 1
n

fraction of all strings of length n.

Proof. Instead of counting |LS| directly, we will count
another set LSP for low “special” letter strings which con-
tains LS. Divide a string w of length n into chunks of three:
w = w1w2w3|w4w5w6| . . . |wn−2wn−1wn. For simplicity, we
assume n is divisible by 3. Call w3j , last letter of a chunk, for
j ∈ 1, . . . , n

3
a special letter if the following two conditions

hold:

1. w3j equals w3j−1 (the symbol to its left)

2. w3j is different from w3j−2 (the symbol two positions
to its left)

In other words, the letter has to be in a position congruent
to 0 mod (3) and be the second letter in a run of length
≥ 2. For example, if w = 231|100|034, the 0 in position
six (bolded) is the only special letter. Notice that the 1
at position four is the second letter in a run of length 2.
However, it is not a special letter because it is not in position
congruent to 0 mod 3. Let LSP be the set of strings with
less than n

6a
special letters.

We first show that LSP contains LS. Consider a string
w ∈ LS. Then w has < n

6a
runs of length ≥ 2. Then it has

< n
6a

letters that satisfy conditions (1) and (2) above. There-
fore it must have < n

6a
letters that satisfy conditions (1)

and (2) and are also in a position congruent to 0 mod (3).
Therefore w must also be in LSP .

We complete the proof by showing that for large n, the
size of LSP is very small. Consider a procedure that gen-
erates strings of length n by generating n independent let-
ters. We look at the generated string in chunks of three.
Let Y1, . . . , Yn/3 be random variables, such that Yi = 1 if
the last letter of the ith chunk is special and 0 otherwise.
Pr(Yi = 1)= a−1

a
× 1

a
= a−1

a2 . This is because for Yi to as-
sume a value of 1: (1) the first letter can be anything; (2)
the second letter has to be different from the first letter: a
probability of a−1

a
; and (3) the third letter has to equal to

the second letter: a probability of 1
a

. And notice that Yi are
independent of each other because the value that Yi takes
only depends on the three bits produced for chunk i. By
linearity of expectation, number of special bits in a random

string is n(a−1)

3a2 ≥ n
6a

.
Let Z = ΣiYi. By Chernoff bounds, Pr(Z < n/12a) <

e−n/48a which is less than 1/n for n/ log(n) > 48a. Since

|SSL| > |SL|, for n/ log(n) > 48a |SL| < 1/n of all strings
of length n completing our proof.

We can now formally prove thatO(log(n)/n)-size deletion-
1 codes exist for long enough strings.

Theorem 6.14. There exists a O(log(n)/n)-size deletion-
1 code for strings of length n when n/ log(n) > 48a.

Proof. We start with the O(log(n)/n)-size code C from
Theorem 6.9. For each uncovered string w inHS and LS, we
put one codeword into C covering w, for example by deleting
the first symbol of w, and produce a deletion-1 covering code.
The number of uncovered strings in HS is ≤ 1

n
fraction of all

strings of length n. Similarly, by Lemma 6.13, the size of LS
is ≤ 1

n
fraction of all strings of length n for n/ log(n) > 48a.

Therefore expanding C does not affect its asymptotic size of
O(log(n)/n), for n/ log(n) > 48a.

7. CONCLUSIONS
We have explored the design of anchor-points algorithms

for solving fuzzy join problems using MapReduce. In addi-
tion to improving the efficiency of the approach when sim-
ilarity is based on Hamming distance, we tackled the prob-
lem of finding good anchor-point sets, or “covering codes,”
for edit distance. We showed that finding covering codes
for single insertions or deletions is sufficient to get good,
although not optimal, covering codes for larger numbers of
insertions or deletions. We use a number of constructions
to get concrete codes, using several strategies where a small
code covering almost all strings is constructed, and then
augmented to capture the remaining strings. We also gave
an existence proof for single-deletion covering codes that is
within a factor O(a logn) of optimal, for any string length
n and alphabet of size a. A number of challenging open
questions remain:

1. Can the existence of smaller codes for single insertions
or deletions be proved? Alternatively, can the lower
bounds suggested in Section 4.1 be improved?

2. Can we find better constructions than those given here
for explicit codes, even for special cases, such as small
alphabets or long strings?

3. Can we extend the covering-code idea to other inter-
esting distance measures, such as Jaccard distance for
sets?
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