
Leapfrog Triejoin: A Simple, Worst-Case Optimal Join
Algorithm

Todd L. Veldhuizen
LogicBlox Inc.

Two Midtown Plaza
1349 West Peachtree Street NW

Suite 1880, Atlanta GA 30309
tveldhui@{logicblox.com,acm.org}

ABSTRACT
Recent years have seen exciting developments in join al-
gorithms. In 2008, Atserias, Grohe and Marx (henceforth
AGM) proved a tight bound on the maximum result size of
a full conjunctive query, given constraints on the input rela-
tion sizes. In 2012, Ngo, Porat, Ré and Rudra (henceforth
NPRR) devised a join algorithm with worst-case running
time proportional to the AGM bound [8]. Our commercial
database system LogicBlox employs a novel join algorithm,
leapfrog triejoin, which compared conspicuously well to the
NPRR algorithm in preliminary benchmarks. This spurred
us to analyze the complexity of leapfrog triejoin. In this pa-
per we establish that leapfrog triejoin is also worst-case op-
timal, up to a log factor, in the sense of NPRR. We improve
on the results of NPRR by proving that leapfrog triejoin
achieves worst-case optimality for finer-grained classes of
database instances, such as those defined by constraints on
projection cardinalities. We show that NPRR is not worst-
case optimal for such classes, giving a counterexample where
leapfrog triejoin runs in O(n logn) time and NPRR runs in
Θ(n1.375) time. On a practical note, leapfrog triejoin can
be implemented using conventional data structures such as
B-trees, and extends naturally to ∃1 queries. We believe our
algorithm offers a useful addition to the existing toolbox of
join algorithms, being easy to absorb, simple to implement,
and having a concise optimality proof.

General Terms
Algorithms,Theory

1. INTRODUCTION
Join processing is a fundamental and comprehensively-

studied problem in database systems. Many useful queries
can be formulated as one or more full conjunctive queries.
A full conjunctive query is a conjunctive query with no pro-
jections, i.e., every variable in the body appears in the head
[3, 1]. As a running example we use the query defined by

c⃝2014 Copyright is with the authors. Published in Proc. 17th Interna-
tional Conference on Database Theory (ICDT), March 24-28, 2014, Athens,
Greece: ISBN 978-3-89318066-1, on OpenProceedings.org. Distribution
of this paper is permitted under the terms of the Creative Commons license
CC-by-nc-nd 4.0.

this Datalog rule:

Q(a, b, c)← R(a, b), S(b, c), T (a, c). (1)

where a, b, c are query variables (for intuition: if R = S = T ,
then Q finds triangles.)

Given constraints on the sizes of the input relations such
as |R| ≤ n, |S| ≤ n, |T | ≤ n, what is the maximum possible
query result size |Q|? This question has practical import,
since a tight bound |Q| ≤ f(n) implies an Ω(f(n)) worst-
case running time for algorithms answering such queries.

Atserias, Grohe and Marx (AGM [2]) established a tight
bound on the size of Q: the fractional edge cover bound Q∗

(Section 2.2). For the case where |R| = |S| = |T | = n, the

fractional cover bound yields |Q| ≤ Q∗ = n3/2. In earlier
work, Grohe and Marx [6] gave an algorithm with running
time O(|Q∗|2g(n)), where g(n) is a polynomial determined
by the fractional cover bound. In 2012, Ngo, Porat, Ré and
Rudra (NPRR [8]) devised a groundbreaking algorithm with
worst-case running time O(Q∗), matching the AGM bound.
The algorithm is non-trivial, and its implementation and
analysis depend on rather deep machinery developed in the
paper.

The NPRR algorithm was brought to our attention by
Dung Nguyen, who implemented it experimentally using our
framework. LogicBlox uses a novel and hitherto proprietary
join algorithm we call leapfrog triejoin. Preliminary bench-
marks suggested that leapfrog triejoin performed dramati-
cally better than NPRR on some test problems [9]. These
benchmark results motivated us to analyze our algorithm,
in light of the breakthroughs of NPRR.

Conventional join implementations employ a stable of join
operators (see e.g. [5]) which are composed in a tree to pro-
duce the query result; this tree is prescribed by a query
plan produced by the optimizer. The query plan often re-
lies on producing intermediate results. In contrast, leapfrog
triejoin joins all input relations simultaneously without pro-
ducing any intermediate results.1 Our algorithm is variable-
oriented: for a join Q(x1, . . . , xk), leapfrog triejoin performs
a backtracking search, binding each variable x1, x2, . . . in
turn to enumerate satisfying assignments of the formula
defining the query. This is in contrast to typical DBMS
algorithms which are join-oriented, using a composition of
algebraic joins in a specified order to produce the result.

1In some situations it is desirable to materialize intermediate
results. Such materializations are compatible with leapfrog
triejoin, but are not required to meet the worst-case perfor-
mance bound, and are beyond the scope of this paper.

96 10.5441/002/icdt.2014.13

Leapfrog triejoin is substantially different than typical join
algorithms, but natural in retrospect.
In this paper we show that leapfrog triejoin achieves run-

ning timeO(Q∗ logn), whereQ∗ is the fractional cover bound,
and n is the largest cardinality among relations of the join.
(A variant suggested by Ken Ross eliminates the log n factor,
achieving O(Q∗) time (Section 6.1).)
We believe that leapfrog triejoin offers a useful addition

to the existing toolbox of join algorithms. The algorithm
is easy to understand and simple to implement. The opti-
mality proof is concise, and could be taught in an advanced
undergraduate course. The optimality principle strengthens
and improves that of NPRR, and leapfrog triejoin is asymp-
totically faster than NPRR for useful classes of problems.
Finally, leapfrog triejoin is a well-tested, practical algorithm,
serving as the workhorse of our commercial database system.
The paper is organized as follows. In Section 2 we review

the fractional edge cover bound. Section 3 presents the leap-
frog triejoin algorithm. Section 4 develops the tools used in
the complexity analysis, culminating in the optimality proof
of Theorem 4.2. In Section 5 we consider finer-grained com-
plexity classes for which leapfrog triejoin is optimal; in one
such example we demonstrate that the NPRR algorithm has
running time Θ(n1.375), compared to O(n logn) for leapfrog
triejoin. In Section 6.2 we describe the extension of leapfrog
triejoin to ∃1 queries. In Section 6.1 we discuss a variant of
leapfrog triejoin which eliminates the log n factor.

2. PRELIMINARIES AND BACKGROUND

2.1 Notations and conventions
All logarithms are base 2, and [n] = {1, . . . , n}. Complex-

ity analyses assume the RAM machine model.
Database instances are finite structures defined over uni-

verses which are subsets of N. In algorithm descriptions we
use int as a synonym for N. (The restriction to N is merely to
simplify the presentation; our implementation requires only
that a type be totally ordered.)
For a binary relation R(a, b), we write R(a,) for the pro-

jection π1(R), i.e., the set {a : ∃b . (a, b) ∈ R}. For a
parameter a, we write Ra(b) for the curried version of R,
i.e., the relation {b : (a, b) ∈ R}. Similarly for relations of
arity > 2, e.g., for S(a, b, c) we write Sa(b, c) and Sa,b(c) for
curried versions. We assume set semantics: query results are
sets rather than multisets; our datalog system implements
set semantics, unlike commercial SQL systems, so this is not
merely a simplifying convenience.

2.2 The fractional cover bound
We begin with a review of the fractional edge cover bound

for worst-case result size of full conjunctive queries. The
fractional edge cover bound is not directly required by the
complexity analysis for leapfrog triejoin (Theorem 4.2), which
is formulated in terms of the maximum query result size Q∗.
However, for families of problem instances defined by cardi-
nality constraints on the relation sizes, Q∗ can be computed
using the fractional cover bound.
The fractional edge cover was proven to be an upper bound

on query result size by Grohe and Marx [6] in the context of
constraint solving. The bound was shown to be tight, and
adapted to relational joins, by Atserias, Grohe and Marx [2].
We continue the running example of a query Q(a, b, c) de-

fined by the join R(a, b), S(b, c), T (a, c). Suppose we know

the sizes |R|, |S|, and |T |, and we wish to know the largest
possible query result size |Q|. The AGM bound for |Q| is
obtained by constructing a hypergraph H = (V, E) whose
vertices are the variables V = {a, b, c}, and each atom such
as R(a, b) is interpreted as a (hyper)edge {a, b} on the vari-
ables appearing in its argument list:'&%$!"#a

T

??
??

??
??

??

R

��
��
��
��
�

'&%$!"#b
S

��������c
Recall that an edge cover is a subset C ⊆ E of edges such
that each vertex appears in at least one edge e ∈ C. Edge
cover can be formulated as an integer programming problem
by assigning to each edge ei ∈ E a weight λi, with λi = 1
when ei ∈ C and λi = 0 when ei ̸∈ C. The cover require-
ment is enacted by inequalities, one for each vertex. For the
query (1) we would use edge weights λR, λS , and λT , and
inequalities:

a : λR + λT ≥ 1
b : λR + λS ≥ 1
c : λS + λT ≥ 1

(2)

A fractional edge cover is obtained by relaxing to a linear
programming problem, permitting edge weights to range be-
tween 0 and 1. For example, choosing λR = λS = λT = 1

2
yields a valid fractional cover. Grohe and Marx [6] estab-
lished that:

|Q| ≤ |R|λR · |S|λS · |T |λT (3)

Or equivalently:

log |Q| ≤ λR log |R|+ λS log |S|+ λT log |T | (4)

Minimizing the right-hand side of (4) yields the AGM bound
on the size of |Q|. For example, with |R| = |S| = |T | = n,
the bound is minimized when λR = λS = λT = 1

2
, yielding

|Q| ≤ n3/2.

2.3 Dual formulation
The dual formulation, used by [2] to prove tightness of the

bound, is more intuitive and offers a construction of worst-
case instances that is instructive. We introduce the dual
through an example.

Consider a scenario where the sizes of R, S, T are fixed,
and Q(a, b, c) has a simple cross-product structure Q =
[2α]× [2β]× [2κ]. (The quantities α, β, κ can be interpreted
as the average number of bits to represent variables a, b, c;
for simplicity we assume 2α, 2β , 2κ to be integers.) From
the query definition (1), it is apparent that (a, b, c) ∈ Q
implies (a, b) ∈ R; therefore [2α] × [2β] ⊆ R. This implies
α + β ≤ log |R|. Similarly for S and T . The problem of
maximizing |Q| can be formulated as a linear program:

Maximize log |Q| = α+ β + κ

Subject to

 α + β ≤ log |R|
β + κ ≤ log |S|

α + κ ≤ log |T |

For example, setting log |R| = log |S| = log |T | = log n yields
log |Q| = 3

2
logn at optimality, achieved by α = β = κ =

1
2
logn and Q = [n1/2]× [n1/2]× [n1/2].

97

The above linear program is the dual of the fractional
edge cover linear program: using λ = [λA, λB , λC], η =
[log |R|, log |S|, log |T |], α = [α, β, κ], and 1 = [1, 1, 1], the
fractional edge cover program minimizes η⊤λ subject to
Aλ ≥ 1 (each row of A yielding an inequality of Eqn.
(2)) and λ ≥ 0; the dual form maximizes 1⊤α subject to
A⊤α ≤ η and α ≥ 0. It follows from the duality property
of linear programs that an optimal solution to the dual form
yields the same upper bound on |Q| as the optimal fractional
edge cover.
Moreover, the dual form is constructive: let na = ⌊2α⌋,

nb = ⌊2β⌋, and nc = ⌊2κ⌋, and choose

R ⊇ [na]× [nb]

S ⊇ [nb]× [nc]

T ⊇ [na]× [nc]

padding with rubbish as necessary to attain the desired sizes
|R|, |S|, and |T |. This yields a Q of maximal size.
This construction prompts the following observation: the

worst cases of the AGM bound are achievable by query
results which are cross-products. Since real-world queries
rarely have such a structure—practical database systems
avoid materializing such queries—this suggests that an al-
gorithm achieving the AGM bound is not necessarily opti-
mal for classes of database instances encountered in practice.
This motivates our development of finer-grained classes in
Section 5.

3. LEAPFROG TRIEJOIN
Leapfrog triejoin is a join algorithm for ∃1 queries, that

is, queries definable by first-order formulae without universal
quantifiers (and, needless to say, excluding negated existen-
tial quantifiers.) In this paper we focus on the full conjunc-
tive fragment of ∃1, to which our complexity bound applies.
(The additional machinery needed to go from full conjunc-
tive queries to ∃1 is described informally in Section 6.2, as
a guide to implementors.)
In our datalog implementation, rule bodies are restricted

to be ∃1 formulas. We use leapfrog triejoin to enumerate
satisfying assignments of rule bodies. We assume input re-
lations are always provided in sorted order, consistent with
the data structures used by our system. Leapfrog triejoin
uses iterator interfaces to unify the presentation of input
relations and views of (nonmaterialized) subexpressions of
a join. A relation A(x) is presented by a linear iterator,
with familiar methods such as next() and atEnd(), which
present the elements of A in order. A disjunction such as
A(x) ∨B(x) is likewise presented by a linear iterator whose
next() method manipulates iterators for A,B to present a
non-materialized view of the disjunction. Hence in a con-
junction C(x), D(x), it does not matter whether C is an
input relation, or a presentation of a non-materialized view
such as A(x) ∨ B(x). A similar approach is used for joins
with multiple variables, where relations and views are pre-
sented by trie iterators, whose interface is described below.
We first describe the leapfrog join for unary relations (Sec-

tion 3.1). This is then extended to the triejoin algorithm for
full conjunctive queries (Section 3.4). With minor embel-
lishments, leapfrog triejoin can tackle ∃1 queries; we sum-
marize these in Section 6.2, but the focus of this paper (and
particularly, the complexity analysis) is on full conjunctive
queries.

3.1 Leapfrog join for unary predicates
The basic building block of leapfrog triejoin is a unary

join which we call leapfrog join. The unary leapfrog join
is a variant of sort-merge join which simultaneously joins
unary relations A1(x), . . . , Ak(x). The unary join is of no
particular novelty (see e.g. [7, 4]), but serves as the basic
building block for leapfrog triejoin. Its performance bound
underpins the complexity analyses which follow.

For the purposes of leapfrog join, unary relations Ai ⊆ N
are presented in sorted order by linear iterators, one for each
relation, using this interface:

int key() Returns the key at the current
iterator position

next() Proceeds to the next key
seek(int seekKey) Position the iterator at a least

upper bound for seekKey,
i.e. the least key ≥ seekKey, or
move to end if no such key exists.
The sought key must be ≥ the
key at the current position.

bool atEnd() True when iterator is at the end.

The key() and atEnd() methods are required to take O(1)
time, and the next() and seek() methods are required to
take O(logN) time, where N is the cardinality of the rela-
tion. Moreover, if m keys are visited in ascending order, the
amortized complexity is required to be O(1 + log(N/m)),
which can be accomplished using standard data structures
(notably, balanced trees such as B-trees.2)

Leapfrog join is itself implemented as an instance of the
linear iterator interface: it provides an iterator for the inter-
sectionA1∩· · ·∩Ak. The algorithm uses an array Iter[0 . . . k−
1] of pointers to iterators, one for each relation. In opera-
tion, the join tracks the smallest and largest keys at which
iterators are positioned, and repeatedly moves an iterator at
the smallest key to a least upper bound for the largest key,
‘leapfrogging’ the iterators until they are all positioned at
the same key. Detailed descriptions of the algorithm follow;
some readers may choose to skip to the complexity analysis
(Section 3.2).

When the leapfrog join iterator is constructed, the leapfrog-
init method (Algorithm 1) is used to initialize state and find
the first result. The leapfrog-init method is provided an ar-
ray of iterators; it ensures the iterators are sorted according
to the key at which they are positioned, an invariant that is
maintained throughout.

The main workhorse is leapfrog-search (Algorithm 2), which
finds the next key in the intersection A1 ∩ · · · ∩Ak.

Immediately following leapfrog-init(), the leapfrog join it-
erator is positioned at the first result, if any; subsequent
results are obtained by calling leapfrog-next() (Algorithm 3).
To complete the linear iterator interface, we define a leapfrog-
seek() function which finds the first element of R1 ∩ · · ·∩Rk

which is ≥ seekKey (Algorithm 4).
Figure 1 illustrates a join of three relations.

3.2 Complexity of leapfrog join
In the analyses which follow, we focus on data complex-

2For example, if every key is visited in order then m = N
and the amortized complexity is O(1). Rather than return-
ing to the tree root for each seek() request, the iterator as-
cends just far enough to find an upper bound for the key
sought.

98

A 0

seek(2)

''
1 3

seek(8)

**4 5 6 7 8

seek(10)

((
9 11

B 0

seek(3)

++2 6

seek(8)

$$
7 8

seek(11)

**
9 +∞

C 2

seek(6)

++4 5 8
next() // 10

A ∩B ∩ C 8

Figure 1: Example of a leapfrog join of three relations A,B,C, with A = {0, 1, 3, 4, 5, 6, 7, 8, 9, 11} and B, C as shown in

the second and third rows. Initially the iterators for A,B,C are positioned (respectively) at 0, 0, and 2. The iterator

for A performs a seek(2) which lands it at 3; the iterator for B then performs a seek(3) which lands at 6; the iterator

for C does seek(6) which lands at 8, etc.

Algorithm 1: leapfrog-init()

if any iterator has atEnd() true then
atEnd := true ;

else
atEnd := false ;
sort the array Iter[0..k− 1] by keys at which the
iterators are positioned ;
p := 0 ;
leapfrog-search()

Algorithm 2: leapfrog-search()

x′ := Iter[(p− 1) mod k].key() ; // Max key of any

iter

while true do
x := Iter[p].key() ; // Least key of any iter

if x = x′ then
key := x ; // All iters at same key

return;

else
Iter[p].seek(x′);
if Iter[p].atEnd() then

atEnd := true ;
return;

else
x′ := Iter[p].key();
p := p+ 1 mod k;

Algorithm 3: leapfrog-next()

Iter[p].next();
if Iter[p].atEnd() then

atEnd := true;
else

p := p+ 1 mod k;
leapfrog-search();

Algorithm 4: leapfrog-seek(int seekKey)

Iter[p].seek(seekKey);
if Iter[p].atEnd() then

atEnd := true;
else

p := p+ 1 mod k;
leapfrog-search();

ity [11], i.e., we assume the query definition to be fixed, and
omit constant factors which depend only on the structure of
the query (e.g. number of atoms and variables).

Let Nmin = min{|A1|, . . . , |Ak|} be the cardinality of the
smallest relation in the join, andNmax = max{|A1|, . . . , |Ak|}
the largest.

Proposition 3.1. The running time of leapfrog join is
O (Nmin log (Nmax/Nmin)).

Proof. The leapfrog algorithm advances the iterators in
a fixed pattern: each iterator is advanced every k steps of
the algorithm. An iterator for a relation with cardinality
N can be advanced at most N times before reaching the
end; therefore the number of steps is at most k ·Nmin. An
iterator which visits m of N values in order is stipulated
to have amortized cost O(1 + log(N/m)); the iterator for a
largest relation will have N = Nmax and m = Nmin, for
total cost Nmin ·O(1 + log(Nmax/Nmin)).

The leapfrog join is able to do substantially better than
pairwise joins in some scenarios. Suppose we have relations
A,B,C where A = {0, · · · , 2n − 1}, B = {n, · · · , 3n − 1},
and C = {0, · · · , n − 1, 2n, . . . , 3n − 1}. Any pairwise join
will produce n results, but the intersection A ∩ B ∩ C is
empty; the leapfrog join determines this in O(1) steps.

3.3 Trie iterators
We extend the linear iterator interface to handle relations

of arity > 1. Relations such as A(x, y, z) are presented as
tries with each tuple (x, y, z) ∈ A corresponding to a unique
path through the trie from the root to a leaf (Figure 2).
(Note however that relations need not be stored as tries; in
practice we use B-tree-like data structures, and present their
contents via a trie iterator interface.)

99

Relation
A(x, y, z)

(1, 3, 4)

(1, 3, 5)

(1, 4, 6)

(1, 4, 8)

(1, 4, 9)

(1, 5, 2)

(3, 5, 2)

Trie presentation
A

3

5

2

1

5

2

4

986

3

54

Figure 2: Example: Trie presentation of a relation
A(x, y, z). After open() is invoked at some node n, the
linear iterator methods next(), seek() and atEnd()
present the children of n. In the above example,
invoking open() thrice on an iterator positioned at
A would move to the leaf node [1, 3, 4]; next() would
then move to leaf node [1, 3, 5]; another next() would
result in the iterator being atEnd(). The sequence
up(), next(), open() would then advance the iterator
to the leaf node [1, 4, 6].

Upon initialization, trie iterators are positioned at the
root. The linear iterator API is augmented with two meth-
ods for trie-navigation:

void open(); Proceed to the first key at the
next depth

void up(); Return to the parent key at the
previous depth

A trie iterator for a materialized relation is required to
have O(logN) time for the open() and up() methods.
With a bit of bookkeeping, it is straightforward to present

Btree-like data structures as TrieIterators, with each opera-
tion taking O(logN) time.3

3.4 Leapfrog Triejoin
We now describe the Leapfrog Triejoin algorithm for full

conjunctive joins.
The triejoin algorithm requires the optimizer to choose a

variable ordering, i.e., some permutation of the variables ap-
pearing in the join. For example, in the joinR(a, b), S(b, c), T (a, c)
we might choose the variable ordering [a, b, c]. Choosing a
good variable ordering is crucial for performance, in prac-
tice, but immaterial for the worst-case complexity analysis
presented here. Techniques for choosing an advantageous
variable ordering are the subject of a forthcoming paper; for
the complexity analysis we fix an arbitrary ordering.
Leapfrog triejoin requires a restricted form of conjunctive

joins, attained via some simple rewrites:

1. Each variable can appear at most once in each argu-
ment list. For example, R(x, x) would be rewritten to
R(x, y), x = y to satisfy this requirement. The x = y
term may be presented as a nonmaterialized view of a
predicate Id(x, y) ⇔ (x = y), implemented by a vari-
ant of the TrieIterator interface.

3For example, to perform a next() operation when posi-
tioned at the node x = 1 of Figure 2, one would seek the least
upper bound of (1,+∞,+∞) in the B-tree representation;
this would reach the record (3, 5, 2).

2. Each argument list must be a subsequence of the vari-
able ordering. For example, if the chosen variable
ordering were [a, b, c] and the join contained a term
U(c, a), we would rewrite this to U ′(a, c) and define
a materialized view U ′(a, c) ≡ U(c, a). (In practice
we install indices automatically when required by such
rewrites, and maintain them for use in future queries.)

3. To simplify the complexity analysis, each relation sym-
bol may appear at most once in the query. For a query
such as E(x, y), E(y, z) we introduce a copy E′ ≡ E
and rewrite to E(x, y), E′(y, z). This avoids awkward-
ness in the complexity analysis, but is not required for
implementation purposes.

4. Constants may not appear in argument lists. A subfor-
mula such as A(x, 2) is rewritten to A(x, y), Const2(y),
where Const2 = {2}. In practice Constα is presented as
a nonmaterialized view, using a variant of the TrieIt-
erator interface.

Leapfrog triejoin employs one leapfrog join for each vari-
able. Consider the example R(a, b), S(b, c), T (a, c) with the
variable ordering [a, b, c]. The leapfrog joins employed for
the variables a, b, c in the example are:4

Variable Leapfrog join Remarks
a R(a,), T (a,) Finds a present in R, T

projections
b Ra(b), S(b,) For specific a, finds

b values
c Sb(c), Ta(c) For specific a, b, finds

c values

The topmost leapfrog join iterates values for a which are in
both the projections R(a,) and T (a,). When this leapfrog
join emits a binding for a, we can proceed to the next level
join and seek bindings for b from Ra(b), S(b,). For each
such b, we can proceed to the next level and seek a binding
for c in Sb(c), Ta(c). When a leapfrog join exhausts its bind-
ings, we can retreat to the previous level and seek another
binding for the previous variable. Conceptually, we can re-
gard triejoin as a backtracking search through a ‘binding
trie.’

3.5 Triejoin implementation
At initialization, the triejoin is provided with a trie itera-

tor for each relation (or more generally, subformula) of the
join.

The triejoin initialization constructs an array of leapfrog
join instances, one for each variable. The leapfrog join for
a variable x is given an array of pointers to trie-iterators,
one for each atom in which x appears. For example, in the
join R(a, b), S(b, c), T (a, c), the leapfrog join for b is given
pointers to the trie-iterators for R and S. There is only one
instance of the trie-iterator for R, which is shared by the
leapfrog joins for a and b.

The leapfrog joins use the linear-iterator portion of the
trie iterator interfaces; the open/up trie navigation methods
are used only by the triejoin algorithm. The triejoin uses
a variable depth to track the current variable for which a
binding is being sought; initially depth = −1 to indicate
the triejoin is positioned at the root of the binding trie (i.e.,

4Recall that R(a,) is the projection {a : ∃b . (a, b) ∈ R},
and Ra(b) is the ’curried’ form {b : (a, b) ∈ R}.

100

before the first variable.) Depths 0, 1, . . . refer to the first,
second, etc. variables of the variable ordering.
Leapfrog triejoin presents a nonmaterialized view of the

query result, presented via a trie-iterator interface. The lin-
ear iterator portions of the trie-iterator interface (namely
key(), atEnd(), next(), and seek()) are delegated to the leap-
frog join for the current variable. (At depth -1, i.e., the root,
only the operation open() is permitted, which moves to the
first variable.) It remains to define the open() and up()
methods, which are trivial (Algorithms 5 and 6).

Algorithm 5: triejoin-open()

// Advance to next var

depth := depth + 1 ;
for each iter in leapfrog join at current depth do

iter.open() ;
end
call leapfrog-init() for leapfrog join at current depth

Algorithm 6: triejoin-up()

for each iter in leapfrog join at current depth do
iter.up() ;

end
// Backtrack to previous var

depth := depth - 1 ;

This completes the trie iterator interface. To obtain the
satisfying assignments of the query formula, we simply walk
the trie presented by leapfrog triejoin, a simple exercise we
omit here.

4. COMPLEXITY ANALYSIS
We consider now the complexity of leapfrog triejoin for

full conjunctive joins of materialized relations.

4.1 The proof strategy
We introduce the proof strategy informally, before pro-

ceeding to the formal proof of Theorem 4.2. Consider the
example join:

Q(a, b, c) ≡ R(a, b), S(b, c), T (a, c)

with variable ordering [a, b, c]. Suppose that |R| ≤ n, |S| ≤
n, and |T | ≤ n. The fractional cover bound yields |Q| ≤
n3/2.
We wish to show that the triejoin runs in O(n3/2 logn)

time for this example. Recall that a leapfrog join of two
unary relations U, V requires at most 2 ·min{|U |, |V |} iter-
ator operations. It is readily seen that the cost at the first
two trie levels [a, b] cannot exceed O(n) linear iterator op-
erations: at the first trie level the leapfrog join is limited by
min(|R(a,)|, |T (a,)|) ≤ |R(a,)| ≤ |R| ≤ n, and at the sec-
ond trie level the number of iterator operations is controlled
by: ∑

a∈R(a,),T (a,)

min{|Ra(b)|, |S(b,)|}

≤
∑

a∈R(a,),T (a,)

|Ra(b)|

≤ |R|

Therefore the total number of linear iterator operations at
the first two trie levels is O(n). At the third trie level, the
number of linear iterator operations is controlled by:∑

(a,b)∈R(a,b),S(b,),T (a,)

min{|Sb(c)|, |Ta(c)|} (5)

We now wish to show that the quantity (5) is ≤ n3/2. We
do this by renumbering the c values of the relations such that
the join produces a number of results equal to (5), without
increasing the amount of work. Since the join can produce
at most n3/2 results (from the fractional cover bound), this

will establish that (5) is ≤ n3/2.
For a concrete example, suppose we had these trie presen-

tations of R,S, T :

R(a, b) S(b, c) T (a, c)

a 7 7

77
77

77
7

EE
EE

EE
EE

E

b 4 4

III
II

RRR
RRR

RR

UUUU
UUUU

UUU

c 1 4 5 9 2 3 5

This would produce only the result tuple (7, 4, 5). To ob-
tain a result size equal to (5) we renumber the c values,
resulting in a new problem instance which produces one re-
sult for every leaf of T (the smaller relation):

R(a, b) S(b, c) T (a, c)

a 7 7

77
77

77
7

EE
EE

EE
EE

E

b 4 4

III
II

RRR
RRR

RR

UUUU
UUUU

UUU

c 0 1 2 3 0 1 2

This results in exactly three results (7, 4, 0), (7, 4, 1), and
(7, 4, 2), equalling (5).

In general, the renumbering produces modified relations
S′, T ′ which each have cardinality ≤ n. Since n3/2 is an
upper bound on the result size, it follows that (5) is at most

n3/2.
The renumbering is accomplished as follows:

(i) Construct S′(b, c) by renumbering the c values of each
Sb-subtree to be 0, 1, . . ., i.e.:

S′(b,) = S(b,) (Keep b values the same)

S′
b = {0, 1, . . . , |Sb| − 1} (Renumber c values)

(ii) Similarly, renumber the c values of each Ta subtree:

T ′(a,) = T (a,) (Keep a values the same)

T ′
a = {0, 1, . . . , |Ta| − 1} (Renumber c values)

When we compute the leapfrog join of S′
b = {0, 1, . . . , |Sb|−

1} with T ′
a = {0, 1, . . . , |Ta| − 1}, we get exactly min{|Sb|,

|Ta|} results. This holds for every join at the third trie
level; therefore the query result size is exactly the quantity
(5). Since the fractional cover bound gives an upper bound

of n3/2 on the query result size, we have:∑
(a,b)∈R(a,b),S(b,),T (a,)

min{|Sb(c)|, |Ta(c)|} ≤ n3/2

Hence the running time of leapfrog triejoin for the example
is O(n3/2 logn).

101

The above example illustrates the proof technique we em-
ploy for the leapfrog triejoin complexity analysis. The fol-
lowing sections generalize the renumbering transform (Sec-
tion 4.2), develop the sum-min cost bound (Section 4.3),
and formalize classes of databases to which the complexity
bound applies (Section 4.4). These lead up to the proof,
in Section 4.5, of the complexity bound for leapfrog triejoin
(Theorem 4.2).

4.2 The renumbering transform
We generalize the renumbering transformation introduced

in the previous section. For an atom R(x, y, z), a renumber-
ing at variable v ∈ {x, y, z} is obtained by traversing the trie
representation of R, and:

• If the variable v appears in the argument list at depth
d, then for each node at depth d − 1 renumber its
children to be 0, 1, . . .; otherwise, do nothing.

• Replace all values for variables appearing after v in the
key-ordering with 0.

• Eliminate any duplicate tuples.

The resulting relation R′ is called a renumbering of R. Fig-
ure 3 illustrates renumberings of a relation R(x, y, z) at var-
ious depths.5

4.3 Triejoin costs
Let R1, . . . , Rm be the relations in the join, and V =

[v0, . . . , vk−1] be the chosen variable ordering. Each atom
(relation) in the join takes as arguments some subset of the
variables V , in order. For a relation R(v0, v1, v2, v3), we use
this notation for currying:

Rv0,v1(v2, v3) = {(v2, v3) : (v0, v1, v2, v3) ∈ R}

We write R<i(vi, . . .) for the curried version of all vari-
ables strictly before vi in the ordering; e.g. R<3(v3) =
Rv0,v1,v2(v3).
Write Qi(v0, v1, . . . , vi) for the join ‘up to and including’

variable vi; this is obtained by replacing variables vi+1, . . . , vk−1

with the projection symbol in the query, and omitting any
atoms which contain only projection symbols.6 For exam-
ple, with Q = R(a, b), S(b, c), T (a, c), and key order [a, b, c],
we would have:

Q0 = R(a,), T (a,)

Q1 = R(a, b), S(b,), T (a,)

Q2 = R(a, b), S(b, c), T (a, c)

Let Rα
<i(vi, . . .), R

β
<i(vi, . . .), · · · be the relations in the

leapfrog join at depth i. Let Ci be the sum-min of the leap-
frog triejoin at tree depth i:

Ci =
∑

(v0,...,vi−1)∈Qi−1

min {|Rα
<i(vi, , . . . ,)|,
|Rβ

<i(vi, , . . . ,)|, · · · }

To compute the join result, one uses the trie iterator pre-
sented by leapfrog triejoin to completely traverse the trie.

5It is worth noting that alternate renumbering schemes
might be useful for certain classes of problems. But for the
purposes of this paper, we stick to 0, 1, 2,
6Note that Qi is generally a strict superset of the projection
of the query result Q(v0, v1, . . . , vi, , , . . . ,).

Proposition 4.1. The running time of leapfrog triejoin
is O((

∑k−1
i=0 Ci) logNmax).

Proof. Let Nmax be the cardinality of the largest input
relation. At levels 0, . . . , k − 2, each result of a leapfrog
join incurs the cost of an open() and up() operation, to-

talling O((
∑k−2

i=0 Ci) logNmax) time by the O(logN) perfor-
mance requirement for open() and up(). At levels 0, . . . , k−1
the time cost of the leapfrog joins is O((

∑k−1
i=0 Ci) logNmax)

from Prop. 3.1.

4.4 Families of problem instances
We now formalize some concepts in preparation for asymp-

totic arguments. Chief among these is a family of problem
instances; this concept encompasses familiar examples such
as graphs with at most n edges, and binary relations R,S,T
with each relation of size ≤ n.

We write Str[σ] for finite structures with signature (vo-
cabulary) σ. A family of problem instances is a countable
set (Kn)n∈N indexed by a parameter n ∈ N, where each
Kn ⊆ Str[σ] is a class of finite relational structures, and
(i ≤ j) =⇒ (Ki ⊆ Kj). (Example: graphs with at most n
edges is a family of problem instances.)

More generally, we can choose a tuple of parameters n =
[n1, . . . , nk] ∈ Nk, with the usual partial ordering on tuples,
such that if n′ = [n′

1, . . . , n
′
k] and n1 ≤ n′

1, . . . , nk ≤ n′
k, then

K[n1,...,nk] ⊆ K[n′
1,...,n

′
k
]. (Example: let σ contain the binary

relation symbols R,S, T , and define Kr,s,t to be structures
with |R| ≤ r, |S| ≤ s, and |T | ≤ t.)

A query Q is defined by some first-order formula φ(x).
For a structure A ∈ Kn we write QA to mean the satisfying
assignments of φ(x) in A. For simplicity, we take x to be
the variable ordering for the triejoin.

4.5 Proof of the complexity bound
Fix a variable ordering V. Given structures A,A′, we say
A′ is a renumbering of A if it is obtained by selecting some
relation of A and renumbering it at some depth, as per
Section 4.2. A family of problem instances is closed under
renumbering when for every A ∈ Kn, if A′ is a renumbering
of A, then A′ ∈ Kn also.

Theorem 4.2. Let Q(v0, . . . , vk−1) be a full conjunctive
query satisfying the syntactic restrictions of Section 3.4, and

1. (Kn)n∈N be a family of problem instances closed under
renumbering,

2. q(n) = maxA∈Kn |QA| be the largest query result size
for any structure in Kn, and

3. M(n) be the cardinality of the largest relation in any
structure of Kn.

Then, Leapfrog Triejoin computes Q in O(q(n) logM(n))
time over (Kn)n∈N using variable ordering [v0, . . . , vk−1].

Proof. (By contradiction). Suppose the running time is
not O(q(n) logM(n)). From Prop. 4.1, the running time of
leapfrog triejoin is O((C0 + · · · + Ck−1) logM(n)), where
Ci is the sum-min for the leapfrog join of variable vi. For
this to not be O(q(n) logM(n)), some variable vi must have
Ci ∈ ω(q(n)) for infinitely many instances A. For each
such A, renumber all relations for variable vi, and revise
Q(v0, . . . , vk−1) appropriately. This results in structures A′

102

r

3

5

2

1

5

2

4

986

3

54

(a) A relation R(x, y, z)

r

3

5

0

1

5

0

4

210

3

10

(b) Renumbered at depth 2, for variable z

r

3

0

0

1

2

0

1

0

0

0

(c) Renumbered at depth 1, for variable y

r

1

0

0

0

0

0

(d) Renumbered at depth 0, for variable x

Figure 3: Example of the renumbering transform applied to a relation R(x, y, z).

with |QA′
| = Ci. Since the family is closed under renum-

bering, A′ ∈ Kn; but |QA′
| ∈ ω(q(n)), contradicting the

definition of q(n).

Note that Theorem 4.2 does not depend on the fractional
edge cover bound (Section 2.2). The fractional edge cover
bound provides a means to bound q(n) for families of prob-
lem instances defined by constraints on the size of input
relations. Since renumbering does not increase the sizes of
relations, such families are closed under renumbering. The
worst-case optimality in the sense of NPRR [8] is immediate:

Corollary 4.3 (Theorem 4.2). The run time of Leap-
frog Triejoin is bounded by the fractional edge cover bound,
up to a log factor.

Example: for the R,S, T example we could define the fam-
ily of instances by |R| ≤ n, |S| ≤ n, |T | ≤ n; the fractional

edge cover bound provides q(n) = n3/2, and therefore the

running time of leapfrog triejoin is O(n3/2 logn).

5. IMPROVING ON THE NPRR BOUND
In this section we show that leapfrog triejoin achieves op-

timal worst-case running time (up to a log factor) over finer-
grained families of problem instances than those defined by
the AGM (fractional edge cover) bound, and that NPRR is
not worst-case optimal for such families.

5.1 Instances defined by projection bounds
Corollary 4.3 established that the leapfrog triejoin com-

plexity bound of O(q(n) logM(n)) from Theorem 4.2 applies
to families of problem instances defined by constraints on the
sizes of input relations. We demonstrate that Theorem 4.2

applies to finer-grained families defined by constraints on
the size of projections of input relations. This establishes
that leapfrog triejoin is worst-case optimal for such families.
The NPRR algorithm is not; we exhibit a family of problem
instances for which leapfrog triejoin is optimal, and NPRR is
asymptotically slower. This may partially explain the faster
performance of LFTJ observed in practice [9].

By way of example, we return to Q(a, b, c) = R(a, b),
S(b, c), T (a, c). Consider a family of problem instances
(Kn)n∈ω defined by the following constraints on projection
sizes of R,S, T (recall that R(a,) = π1(R)):

|R(a,)| ≤ n3/8 |R(, b)| ≤ n5/8

|S(b,)| ≤ n5/8 |S(, c)| ≤ n3/8

|T (a,)| ≤ n |T (, c)| ≤ 1

From the definition of the renumbering transform (Sec-
tion 4.2), the following is evident:

Proposition 5.1. Applying a renumbering transform to
a relation R does not increase the cardinality of any projec-
tions of R.

Therefore families defined by constraints on projection
cardinalities are closed under renumbering, and the follow-
ing is immediate from Theorem 4.2:

Theorem 5.2. Leapfrog triejoin is worst-case optimal for
families of problem instances defined by cardinality constraints
on projections of input relations.

Continuing our example, from the above constraints on
projections of R,S, T it is easily inferred that |Q(a, ,)|
≤ n3/8, |Q(, b,)| ≤ n5/8, and |Q(, , c)| ≤ 1. Hence
|Q| ≤ n. By Theorem 5.2, leapfrog triejoin runs in time

103

O(n logn) over this family. In the next section we establish
that NPRR has running time Θ(n1.375) for this family. This
counterexample establishes:

Proposition 5.3. NPRR is not worst-case optimal for
families of problem instances defined by cardinality constraints
on projections of input relations.

5.1.1 Counterexample for Prop. 5.3
Consider the behaviour of the NPRR algorithm for an

instance with:

R = [n3/8] × [n5/8]

S = [n5/8] × [n3/8]
T = [n] × [1]

Q = [n3/8] × [n5/8] × [1]

We follow the exposition of Example 2 of [8]. Let τ ≥ 0 be
a parameter, which is used to define a threshold for heavy
join keys. A join key b ∈ R(, b) is heavy if it appears in
more than τ tuples of R; let D be the set of heavy join keys.
The algorithm handles tuples (a, b) ∈ R for heavy join keys
b ∈ D separately from those with b ̸∈ D. Let G ⊆ R be those
tuples containing no b ∈ D. The algorithm (1) constructs
D × T and filters using hash tables on S and R; and (2)
constructs G ▷◁ S and filters using a hash table on T . The
union of these two results yields Q.
We now consider the running time. There are two cases,

which depend on the choice of τ (which is taken to be n1/2

in Example 2 of [8], but we consider arbitrary choice of τ
here.)

Case 1: τ ≥ n3/8. Then D will be empty, and G = R; the
result will be constructed using only step (2): constructing
G ▷◁ S = R ▷◁ S and filtering using T . Since |R ▷◁ S| =
n1+3/8, the running time will be Θ(n1.375).

Case 2: τ < n3/8. Then D = [n5/8], and the result will

be constructed using only step (1): since |D × T | = n1+5/8,
the running time will be Θ(n1.625).
With the best choice of τ the running time is Θ(n1.375).

Since leapfrog triejoin has running time O(n logn) for the
family of problem instances containing this example, we have
demonstrated that leapfrog triejoin can be asymptotically
faster than the NPRR algorithm.

6. DISCUSSION AND FUTURE WORK

6.1 Removing the log factor
Ken Ross suggested the following variant of leapfrog trie-

join which eliminates the logM(n) factor of the complexity
bound [10]. For a relation R(a, b), maintain a hash table for
R(a,) i.e. for the projection π1(R). For each a ∈ R(a,)
maintain a hash table for Ra(b). Each entry in the hash ta-
ble for R(a,) contains a pointer to the hash table for Ra(b).
(Similarly for k-ary relations with k > 2). Replace each leap-
frog join with a scan of the smallest relation, with lookups
into hash tables for the other relations. This eliminates the
log factor, giving a running time of O(q(n)).
It will be interesting to investigate when the asymptotic

improvement offered by hash tables translates into practi-
cal advantage, and whether query optimizers can be trained
to efficiently select trie versus hash table representations.
There are countervailing factors to be weighed against the
asymptotic improvement:

• The leapfrog join of unary relations A1, . . . , Ak can re-
quire substantially fewer than min{|A1|, . . . , |Ak|} it-
erator operations in practice, due to differences in data
distribution amongst the relations. Using leapfrog join
ensures that you do not pay for the relation sizes per
se, but rather for the interleavings where one relation
interposes itself into another. One example of this is
given in Section 3.2, where a join of three relations of
size n is performed with O(1) iterator operations. This
advantage is not obviously achievable by the hash table
variant.

• The logM(n) factor in the leapfrog triejoin complexity
bound is a tax not always applied; the log factor re-
flects the potential cost of sparse access patterns into
relations, when leaping between distant keys. When
access patterns are dense, the log factor vanishes. For
example, taking R = S = T = [n1/2]× [n1/2], and rep-

resenting R,S, T as tries, the running time is O(n3/2).

• Hash tables imply random memory access patterns,
which are notoriously costly in steep memory hierar-
chies; leapfrog triejoin frequently exhibits sequential
access patterns, which are better exploited by current
architectures.

6.2 Extension to ∃1 queries
The implementation of leapfrog triejoin in our commer-

cial database system LogicBlox extends the basic algorithm
described here in several useful ways. We sketch these ex-
tensions here, as they provide basic functionality essential
for implementors.

The LogicBlox runtime evaluates rules defined using the
following fragment of first-order logic:

conj ::= [∃x .] dform (∧ dform)∗

dform ::= atom | disj | negation
atom ::= R(y) | F [y] = z

disj ::= conj (∨ conj)+

negation ::= ¬conj
rule ::= ∀x . conj→ head

head ::= atom (∧ atom)∗

Each conjunction bears an optional existential quantifier
block. Atoms can be either relations or functions, which
may represent either concrete data structures (representing
edb functions/relations, or materialized views), or primitives
such as addition and multiplication. The use of negation
comes with some further restrictions not captured by the
above grammar. We extend leapfrog triejoin to tackle such
rules as follows.

1. Disjunctions. A simple variant of the leapfrog algo-
rithm computes a disjunction of unary relationsA1(x)∨
· · · ∨Ak(x), using the standard algorithm for merging
sorted sequences presented by iterators. We handle a
disjunction of k-ary formulas φ1(x)∨· · ·∨φk(x) in the
following manner. Each subformula φi(x) is required
to have the same free variables. The extension from
disjunction of unary subformulas to k-ary subformulas
mostly follows the triejoin algorithm of Section 3.5,
with the exception that the triejoin-open() method se-
lects only those iterators positioned at the current key

104

for opening at the next level. The implementation of
disjunction presents φ1(x) ∨ · · · ∨ φk(x) as a nonma-
terialized view using the trie iterator interface; since
leapfrog triejoin likewise presents conjunctions as non-
materialized views, we can permit arbitrary nesting
of conjunctions and disjunctions without materializing
intermediate results or DNF-conversion, in most cases.

2. Functions. We distinguish between relations R(x, y)
and functions F [x] = y. For the function F [x] = y,
where F is represented by a concrete data structure,
the variable x is said to occur in key position, and
the variable y in value position. A free variable of a
conjunction is a key if it is a key of any subformula;
every free variable of a disjunction is deemed to be
a key. Only variables occurring in key position are
considered for the variable ordering. To handle a query
such as F [x] = y,G[y] = z with a variable ordering
[x, y], we treat it as F [x] = α, Iα(y), G[y] = z, where
Iα(y) presents a nonmaterialized view of the relation
{α}.

3. Primitives. Primitives are scalar operations such as
addition and multiplication. In a subformula such as
z = y+1, we deem all variable occurrences to be value-
position. In a query such as A(x, y), z = y+1, we han-
dle primitives such as z = y + 1 by attaching actions
to the triejoin which are triggered whenever a speci-
fied variable is bound. With the key ordering [x, y],
the primitive z = y + 1 would be triggered whenever
y is bound. We order actions attached to the same
variable so as to respect order-of-operation dependen-
cies. For a query such as A(x, y), z = y + 1, B(z) with
variable ordering [x, y, z], we use the same technique
as above, treating it as A(x, y), α = y+ 1, Iα(z), B(z).
Actions can either succeed or fail; if they fail, the leap-
frog triejoin algorithm searches for the next binding of
the trigger variable.

4. Negation. We distinguish two cases of negation: com-
plementation, and scalar negation. Complementation
occurs when we have a formula of the form φ1(x, y),¬φ2(x),
where each variable in x occurs in key-position of φ1.
In this case we handle ¬φ2(x) by an action attached
to the last variable of x, which performs a lookup into
φ2(x), succeeding just when φ2(x) fails. Scalar nega-
tion occurs when we have a subformula ¬φ2(x), where
each variable in x occurs in value-position in φ2; this
implies φ2 contains only primitive operations. In such
cases we permit existential quantifiers to occur in φ2,
to handle subexpressions such as ¬∃t . x+y = t, t > 0,
which depart from ∃1 in a trivial way. We handle these
by an action attached to the last variable of x which
computes φ2(x) and succeeds just when φ2 fails.

5. Projections. Projections are currently handled by us-
ing data structures which support reference counts. we
anticipate introducing an optimization to handle a pro-
jection ∃z . φ(x, z) by a special nonmaterialized view
which produces only the first z for given x. We antic-
ipate this will be more efficient when z occurs after x
in the variable ordering.

6. Ranges. We handle inequalities such as x ≥ c by in-
cluding a nonmaterialized view of a predicate repre-

senting an interval [c,+∞); similarly for ≤, <,>. It
is a simple exercise to implement a trie-iterator for an
interval such as [c,+∞).

The complexity analysis presented for leapfrog triejoin
(Theorem 4.2) does not immediately encompass the above
extensions, but can be applied in some cases by considering
nested subformulas to be materialized, even though in ac-
tual evaluation they are not. For example, in the formula
A(x, y), (B(y, z) ∨ C(y, z)), we can consider a hypothetical
materialization of T (y, z) ≡ B(y, z) ∨ C(y, z), and analyze
A(x, y), T (y, z) using whatever properties for T we can es-
tablish. For instance, if we know |A| ≤ n1, |B| ≤ n2 and
|C| ≤ n3, it follows that |T | ≤ (n2 + n3), and we can in-
voke Corollary 4.3 using the fractional cover bound. This
technique yields a valid bound for the nonmaterialized pre-
sentation of T if trie iterator operations on the presentation
of B(y, z)∨C(y, z) take O(logn) time, which is the case for
disjunctions. However, this is not the case for projections.
Laurent Oget made the promising suggestion of lazily ma-
terializing subformulas as they are evaluated, which would
limit the cost to that of materializing all subexpressions.

Conclusions
Leapfrog triejoin is a variable-oriented join algorithm which
achieves worst-case optimality (up to a log factor) over large
and useful families of problem instances. It provides the core
evaluation algorithms of the LogicBlox Datalog system. It
improves on the NPRR algorithm in its simplicity, and its
optimality for finer-grained families of problem instances.
The algorithm is easily understood and straightforward to
implement.

Acknowledgements
Our thanks to Dan Olteanu, Todd J. Green, Kenneth Ross,
Daniel Zinn and Molham Aref for feedback on drafts of this
paper. Our gratitude to Dung Nguyen, whose benchmarks
comparing leapfrog triejoin to the NPRR algorithm moti-
vated this work.

7. REFERENCES
[1] Serge Abiteboul, Richard Hull, and Victor Vianu.

Foundations of Databases. Addison-Wesley, 1995.

[2] Albert Atserias, Martin Grohe, and Dániel Marx. Size
bounds and query plans for relational joins. In FOCS,
pages 739–748. IEEE Computer Society, 2008.

[3] Ashok K. Chandra and Philip M. Merlin. Optimal
implementation of conjunctive queries in relational
data bases. In STOC, pages 77–90, 1977.

[4] Erik D. Demaine, Alejandro López-Ortiz, and J. Ian
Munro. Adaptive set intersections, unions, and
differences. In SODA, pages 743–752. ACM/SIAM,
2000.

[5] Goetz Graefe. Query evaluation techniques for large
databases. ACM Comput. Surv., 25(2):73–169, June
1993.

[6] Martin Grohe and Dániel Marx. Constraint solving via
fractional edge covers. In SODA, pages 289–298. ACM
Press, 2006.

[7] Frank K. Hwang and Shen Lin. A simple algorithm for
merging two disjoint linearly-ordered sets. SIAM J.
Comput., 1(1):31–39, 1972.

105

[8] Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri
Rudra. Worst-case optimal join algorithms: [extended
abstract]. In PODS, pages 37–48. ACM, 2012.

[9] Dung Nguyen. Personal communication, 2012.

[10] Kenneth A. Ross. Personal communcation, 2012.

[11] Moshe Y. Vardi. The complexity of relational query
languages (extended abstract). In Proceedings of the
fourteenth annual ACM symposium on Theory of
computing, STOC ’82, pages 137–146. ACM, 1982.

106

