
Projected Clustering for Huge Data Sets in MapReduce

Sergej Fries
Department Computer

Science 9
RWTH Aachen University

D-52056 Aachen, Germany
fries@cs.rwth-aachen.de

Stephan Wels
Department Computer

Science 9
RWTH Aachen University

D-52056 Aachen, Germany
stephan.wels@rwth-

aachen.de

Thomas Seidl
Department Computer

Science 9
RWTH Aachen University

D-52056 Aachen, Germany
seidl@cs.rwth-aachen.de

ABSTRACT
Fast growing data sets with a very high number of attributes be-
come a common situation in social, industry and scientific areas. A
meaningful analysis of these data sets requires sophisticated data
mining techniques as projected clustering that are able to deal with
such complex data.
In this work, we investigate solutions for extending the state-of-the-
art projected clustering algorithm P3C for large data sets in high-
dimensional spaces. We show that the original model of the P3C
algorithm is not suitable to deal with huge data sets. Therefore, we
propose the necessary changes of the underlying clustering model
and then present an efficient MapReduce-based implementation -
our novel P3C+-MR algorithm. The effectiveness of the proposed
changes on large data sets and the efficiency of the P3C+-MR al-
gorithm are comprehensively evaluated on synthetic and real-world
data sets. Additionally, we propose the P3C+-MR-Light algorithm,
a simplified version of P3C+-MR that shows extraordinary good
results in terms of runtime and result quality on large data sets. In
the end, we compare our solutions to existing approaches.

Categories and Subject Descriptors
D.1.3 [Concurrent Programming]: MapReduce; H.2.8 [Database
Application]: Data Mining; I.5.3 [Clustering]: Projected Cluster-
ing

Keywords
MapReduce, Projected Clustering, Huge data

1. INTRODUCTION
Unsupervised techniques, also called clustering techniques, are an
important part in the area of data mining. The task of clustering is
the grouping of objects by their similarity to each other, such that
similar objects are located in the same group (cluster) and dissim-
ilar objects are located in different clusters. Clustering techniques
are used in several areas of science, industry and society and play
an important role for data preprocessing, exploration and hypothe-
ses generation. In the last decades a large number of clustering
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approaches were developed. Expectation Maximization (EM) al-
gorithm, DBSCAN and k-means algorithms are only a very small
subset of existing approaches that are used in different applications.
Most of the traditional approaches consider all attributes of the data
for determining an appropriate grouping of objects. However, as re-
cent developments show, clustering becomes less and less meaning-
ful with a growing number of dimensions due to the so called curse
of dimensionality. The curse of dimensionality states that with a
growing number of dimensions the distances between objects be-
come more and more alike, such that no meaningful grouping is
possible anymore. Additionally, in data sets with a large number of
dimensions the problem of irrelevant or noise dimensions occurs.
Noise dimensions lead to an unwanted scatter of the data points and
hide the real cluster patterns of the data. Different approaches for
this problem have been investigated among other things projected
and subspace clustering algorithms. There, one assumes that only
a subset of dimensions is relevant for a cluster and the remaining
dimensions are noise. The subspace clustering approaches further
allow points to be in multiple clusters at the same time, while pro-
jected clustering approaches require a unique assignment of points
to clusters. The task of subspace and projected clustering algo-
rithms is to identify the clusters and their subspaces. The interested
reader will find a survey in [1].

Both, projected and subspace clustering are sophisticated data anal-
ysis techniques for high dimensional spaces but they are often con-
nected with high computational and I/O costs, since the search in
all subspaces has an exponential time complexity in the number
of dimensions and often requires large number of iterations over
all data. This reason hinders the development of efficient algo-
rithms for large data sets. A broad analysis of the existing algo-
rithms, however, showed that the P3C algorithm [2] possesses a
parallelization-friendly structure and is well suitable for processing
large data volumes. Therefore, in this work we present P3C+-MR,
the first exact solution for MapReduce-based projected clustering.
To the best of our knowledge, at this point of time, there are no
other exact scalable implementations for projected clustering tech-
niques and our approach is the first solution of this kind. We will
also point out different problems, which occur when trying to per-
form P3C on huge data sets and present our solution - the P3C+-
MR-Light algorithm.

The main contributions of our work are:

1. Adaptation of the P3C clustering model for large data sets
that results in our novel P3C+ algorithm

2. Two efficient MapReduce-based implementations P3C+-MR
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and P3C+-MR-Light of P3C+

3. Evaluation of proposed solution and comparison to an exist-
ing approximate sampling-based solution [3]

Following sections are organized as follows: in Section 2 we give
a short review of some well-known projected clustering algorithms,
explain our decision to choose P3C and briefly introduce the MapRe-
duce framework. In the following Sections 3 and 4 we describe the
P3C algorithm in details, explain the statistical and algorithmic is-
sues that make P3C not effective for large data sets and propose the
necessary changes of the clustering model to deal with this problem
that results in our P3C+ algorithm. In Sections 5 and 6, we present
P3C+-MR and P3C+-MR-Light, the MapReduce implementations
of the P3C+ and provide experimental evaluation in Section 7. Fi-
nally, Section 8 concludes this work.

2. RELATED WORK
In the past decade, a large number of projected clustering algo-
rithms were proposed. Similar to full space clustering approaches
these techniques are based on different assumption about the data
that lead to different clustering models.
PROCLUS[4] algorithm is a k-medoid-like approach that searches
for such subspaces of clusters, which minimize the dimension-wise
standard deviations of distances of points in the neighborhood of
the medoids. Similar to k-medoid, the algorithm starts with a set of
k medoids and iteratively improves the result by exchanging low-
quality medoids by better ones as long as the quality of the cluster-
ing is improving.
DOC[5] is a density based approach that defines a cluster as a set
of dense points in a hyperrectangle. Intuitively, an optimal pro-
jected cluster in DOC is a cluster with as many objects as pos-
sible and as large dimensionality as possible. With this goal in
mind, DOC performs Monte Carlo simulations for calculating an
approximate solution that is shown to be a 2-approximate solution.
While k-means-based approaches are relatively easily expressible
as a MapReduce program, density based techniques that consider
the object neighborhood are in general much more complicated.
They require similarity join techniques as MR-SimJoin [6] or MR-
DSJ [7] with high data replication ratios and high communication
overhead.
Approaches including STATPC[8] or P3C[2] are a further class of
clustering techniques that rely on statistical interpretation of the
clusters. As well in P3C as in STATPC a cluster is a set of points
and dimensions in a hyperrectangle that have a significantly larger
support (number of objects) than a comparable hyperrectangle where
the points follow the uniform distribution. Both approaches employ
algorithms that provide an approximate solution of the desired clus-
tering.
An own class of approaches are generative models. Those, usu-
ally parametric methods, consider a clustering to be generated by
a stochastic process and the main task is to learn the parameters of
the underlying distributions. The learning procedure for non-trivial
models by means of variational Bayes or other optimization tech-
niques often requires a large number of iterations over all data and
therefore produce a high I/O workload.

An important practical issue for clustering algorithms is the num-
ber of parameters and how intuitive those are. The PROCLUS al-
gorithm requires two parameters k - the number of clusters and l -
the average number of dimensions. The DOC algorithm relies on
two user-defined parameters α and β that describe the relative pro-
portions of objects in a cluster C in order to define C as optimal.

Both P3C and STATPC rely on statistical tests and require one or
three confidence levels - a Poisson threshold or α0, αK , αH , re-
spectively. In DOC, P3C and STATPC the number of clusters is
determined automatically based on the provided parameter values.

Despite the significant growth of data volume and data dimension-
ality, there are almost no projected or subspace clustering algo-
rithms that are able to deal with large amounts of data.
pMAFIA[9] is a parallel version of the MAFIA subspace cluster-
ing algorithm, which however is not applicable for projected clus-
tering. To our best knowledge BoW [3] is the only work that ad-
dresses the problem of efficient projected clustering for large data
sets in MapReduce. BoW is a general framework for parallelizing
clustering algorithms, whose result sets are defined by means of hy-
perrectangles. The idea of the algorithm is to distribute the calcu-
lations to multiple machines by splitting the data into small subsets
and executing the desired algorithm on these data blocks. In the end
phase the partial results of all subsets are combined by merging in-
tersecting hyperrectangles to larger hyperrectangles. The authors
propose different strategies as well for sampling as also for the cal-
culation part, which can either reduce the number of computations
or reduce the I/O overhead. However, in both cases BoW remains
an approximate algorithm and as we will show in the experimental
section the quality of the algorithm may become very low.

MapReduce: MapReduce is an established, error-tolerant frame-
work for parallel computing and a programming paradigm devel-
oped by Google Corp. in 2004. Its open-source implementation
Hadoop found a wide spread in the industry and is successfully
used at many internet based world player companies including Face-
book, Twitter and Yahoo. Inspired by functional programming, a
MapReduce program is composed of two functions ’map’ and ’re-
duce’ that are executed consecutively. Usually, the map function is
responsible for reading the data in form of (key,value)-pairs from a
storage system (in Hadoop this is the HDFS) and their preprocess-
ing. The input pairs are in general arbitrarily distributed on differ-
ent computing nodes such that each record is processed separately,
independent from the other data records. The output of the map-
phase are intermediate (key,value) pairs that are sorted according
to their keys and pairs with equal keys are sent to the same comput-
ing node, a ’Reducer’. Each reducer executes a ’reduce’ function
on incoming data and usually aggregates the results and that way
combines the information of different records with equal keys. The
generated records of the reduce phase are then stored on the storage
system. An introduction to MapReduce is given in [10].

The reason for our choice of P3C algorithm is the sound statistical
model, algorithm structure that allows for an efficient MapReduce-
based solution, good quality shown in the evaluation of different
projected and subspace clustering algorithms [11], and as stated in
the original work [2] simple and stable parameter setting.

3. ORIGINAL P3C ALGORITHM
In this section, we provide necessary definitions and describe the
original P3C algorithm. Then, in the following Section 4, we will
identify the problems of this solution in the large data scenario and
present our novel P3C+ algorithm.

3.1 Definitions and notation
For the sake of self-containment, we introduce notation and defini-
tions, which are based on the original P3C definitions. Let D =
{xij |i ∈ [1, n], j ∈ [1, d]} be a d-dimensional set of points of
cardinality n and A = {a1, . . . , ad} be a set of attributes of the
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data set D. Similar to original work, we assume without loss of
generality each attribute to be normalized on the [0,1] range.

DEFINITION 1 (INTERVAL, SUPPORT, SUPPORT SET). An in-
terval on the attribute aj in the range il ≤ x ≤ iu is denoted by
Iaj = [il, iu] and the width of this interval by width(I) = iu− il.
The support set of I , denoted by SuppSet(Iaj ), represents the
set of objects xij located in the interval Iaj in dimension aj , i.e.,
{xij ∈ D|il ≤ xij ≤ iu ∧ j = aj}. The support Supp(Iaj ) of
Iaj is the cardinality of its support set SuppSet(Iaj ).

DEFINITION 2 (P-SIGNATURE). A p-signature S is a set of
p intervals S = {Iai1 , . . . , Iaip } with disjunct attributes aij ∈
[1, d]. The support set of S is the intersection of the support sets
of the containing intervals, i.e., SuppSet(S) = {x ∈ D|x ∈⋂
I∈S I}. The support of S is the cardinality of SuppSet(S). The

set of attributes of a p-signature S is denoted by Attr(S).

DEFINITION 3 (PROJECTED CLUSTER). A projected cluster is
a tuple C = (Xi, Yi) consisting of a set of points Xi and a set of
relevant attributes Yi. An attribute is called relevant if it follows a
non-uniform distribution.

DEFINITION 4 (TRUE P-SIGNATURE). A true p-signature U
of a projected cluster C = (Xi, Yi) is a p-signature S that con-
sists of smallest intervals Iajk , jk ∈ Yi which contain all points
Xi in the attributes Yi.

With these definitions we proceed with description of the P3C al-
gorithm.

3.2 P3C algorithm description
In this section, we briefly introduce the clustering model and the
basic algorithmic design of the P3C algorithm.

3.2.1 Clustering model
Let Ĉ = {C1, . . . , Ck} be the set of hidden projected clusters in the
data setD. The desired clustering result is the set of true signatures
Û with:

∀C∈Ĉ∃!U∈Û : U is the true signature of C
∧∀U∈Û∃!C∈Ĉ : U is the true signature of C

where ∃! stands for ’exists exactly one’.
The P3C algorithm approximates Û by generating and refining a
set of so-called cluster cores (Definition 5).

We summarize all used symbols of this work in Table 1.

3.2.2 Algorithmic design
Given the clustering model, we proceed with the algorithmic de-
sign of the P3C algorithm and describe how the desired solution is
computed.
In order to determine the set of true signatures Û , the P3C algo-
rithm employs a filter and refinement strategy. It first computes
a set of cluster cores K̂ and refines them in the second cluster-
ing step. To determine K̂, each attribute is discretized (histogram
building step) and on each non-uniformly distributed attribute all
relevant intervals (Î) are extracted. An interval is relevant, if it

D data base a an attribute
d data dimensionality n database size
I interval Î set of intervals
S p-signature Ŝ set of p-signatures
K cluster core K̂ set of cluster cores
U true p-signature Û set of true p-signatures
C hidden cluster Ĉ set of hidden clusters
Cl found cluster Ĉl set of found clusters

Table 1: Used notation in this work

has a significantly high support. To select the relevant attributes,
the P3C algorithm first applies the standard χ2 test and determines
the non-uniform attributes. Then, the bin with highest support is
marked as relevant and removed from the histogram. The proce-
dure is repeated as long as the remaining not marked bins are not
uniformly distributed. That way, the set Î of all potentially inter-
esting intervals is computed.

After merging adjacent marked bins, the generation of cluster cores
begins. For that, the intervals of all attributes are iteratively com-
bined to high dimensional p-signatures. In each iteration every
created p-signature Si is extended by an interval of an additional
attribute such that its dimensionality grows by one. In order to de-
cide whether the resulting (p+1)-signature Si+1 is a projection of a
hidden cluster, it is checked whether the support of Si+1 is signifi-
cantly larger than the expected support, formally

∀I∈Si+1={I1,..,Ii+1}Suppexp(Si+1 \ {I}, I) <p Supp(Si+1)
(1)

where x <p y means that y is significantly larger than x according
to the Poisson test. For this task, P3C employs the standard Poisson
statistics. Only p-signatures that satisfy this test are extended by
further attributes in the following iterations.
The expected support of a Signature S ∪ {Ia} is calculated under
the assumption that the support set of S is uniformly distributed on
the attribute a as

Suppexp(S, Ia) = Supp(S) · width(Ia). (2)

DEFINITION 5 (CLUSTER CORE). LetK be a p-signature. K
is a cluster core iff it contains (1.) only and (2.) all relevant inter-
vals out of Î that represent a hidden cluster, s.t.:

1. For any q-signature Q ⊂ K, q in {1, .., p − 1} and any
interval I ∈ K \ Q, it holds that:

Supp(Q ∪ {I}) >p Suppexp(Q, I)

2. For any interval I ∈ Î \K, it holds that

Supp(K ∪ {I}) ≯p Suppexp(K, I)

The computed cluster cores K̂ (i.e. the subset of generated p-
signatures that apply to Definition 5) are considered to be approx-
imations of projections of the real clusters Ĉ. To refine the cluster
cores the expectation maximization (EM) algorithm is employed.
The initial mean and covariance matrix parameters of the Gaussian
components are determined from the calculated cluster cores. For
each cluster core Ki, a Gaussian Gi is added to the initialization
of the EM. By considering only dimensions that are relevant to at
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least one cluster core, the EM algorithm is executed in the lower
dimensional sub space Arel:

Arel = {a ∈ A|∃K∈K̂ : a is relevant for K} (3)

Given a set of k cluster cores, the resulting Gaussian components
G̃i of the EM algorithm are converted into a set of k projected
clusters Ĉl = {Cl1, ..,Clk}:

Cli = (Xi, Yi), with

x ∈ Xi ⇐⇒ i = argmaxi∈{1..k}(p(x|G̃i))
a ∈ Yi ⇐⇒ a relevant for Ki

Since the EM algorithm assigns all points, both true members and
outliers, to the clusters, outlier detection has to be applied to re-
move the outliers. The P3C algorithm applies standard multivariate
outlier detection techniques [12] (outlier detection step). The em-
ployed technique first computes for each member x of cluster Cli
the Mahalanobis distance dMah in Arel based on the mean and co-
variance matrix ofGi. The points for which dMah is larger than the
critical value of the χ2 distribution with |Arel| degrees of freedom
at a confidence level of α = 0.001 are then considered as outliers.
An additional attribute inspection step is executed to find relevant
attributes of clusters Cli, which were missed in the cluster core
generation step. Similar to the relevant interval detection step in
the beginning, the additional relevant attributes for cluster Cli are
determined by building a histogram for the members of Cli and
finding attributes Ai that are not uniformly distributed. The correct
intervals of the output signatures are determined in the last interval
tightening step. For each projected cluster Cli, a signature Soutputi

is provided with:

Soutputi ={Ia = (il,aiu,a)|a ∈ Ai}
∧ il,a = minx∈Cli(xa) ∧ iu,a = maxx∈Cli(xa)

The final result of the P3C algorithm is the set of output signatures
Ŝ
output

= {Soutputi |Ki ∈ K̂}.

4. BOOSTING P3C MODEL FOR BIG DATA
In this section, we discuss the reason why the original P3C algo-
rithm is not applicable in the large scale scenario. We will rea-
son why the employed statistical significance test is not sufficient
when dealing with huge data sets and propose a statistically well-
founded extension. We will also introduce several algorithmic im-
provements that considerably increase the quality of the clustering
results. We start with a discussion of statistical issues in Section
4.1 and continue with algorithmic improvements in Section 4.2.

4.1 Statistical issues when dealing with Big Data
The P3C algorithm makes use of different statistical techniques for
determining the overall clustering result. In this section we discuss
the statistical issues of Sturge’s rule and the Poisson test in the clus-
ter generation step for large data sets and introduce our solutions.

4.1.1 Sturge’s Rule
To determine the optimal number of bins in every dimension the
P3C algorithm uses the Sturge’s rule

number bins = d1 + log2 ne .

However, as was shown [13], Sturge’s rule tends to oversmooth
the histograms, i.e., it proposes a too small number of bins for a
good approximation of the underlying distribution. Too smooth
histograms may on one hand make the identification of relevant
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Figure 1: Probability to observe 101% · µ objects in a hyper-
rectangle for growing average size. For sufficiently large data
sets each the probability is almost 100%.

bins more difficult in the histogram building processing and at the
same time make the overall clustering result more imprecise. Addi-
tionally, as stated in [14] Sturge’s rule is not well-founded and pro-
duces similar results to well-founded approaches for small sample
sizes only. Alternative heuristics including the Freedman-Diaconis
rule provides much more reliable results and should be used in-
stead. According to the Freedman-Diaconis rule, the bin size is
determined by:

bin size = 2IQR(x)n−
1
3 ,

where n is the sample size and IQR(x) is the interquartile range
of the data x. Since the determination of the precise IQR value is a
data and computationally intensive task, we assume in our work
that every dimension follows the uniform data distribution such
that IQR(x) = 1

2
. Despite this simplification, the utilization of

Freedman-Diaconis rule leads to much more accurate approxima-
tions of the given data distributions for large data sets and therefore
to more exact clustering results.

4.1.2 Poisson test in cluster core generation step
The second issue that may lead to much more problematic cases is
the employed hypothesis test for the determination of significantly
large supports of constructed p-signatures in the cluster core gener-
ation step. By means of a Poisson distribution the actual supports
of p-signatures are tested against the respective expected supports.
The result of the computation is a p-value - a probability to observe
the support as extreme as or more extreme than the actually ob-
served support, if the test statistic really were distributed as it would
be under the null hypothesis. However, this probability strongly de-
pends on the database size under consideration. The p-values will
monotonously decrease as the data set size grows with constant rel-
ative deviation in bin supports. To see this, remember that the Pois-
son distribution can be approximated by a Gaussian with µ = λ
and σ =

√
λ. I.e., the standard deviation of the normal distribution

grows with a square root of the average number of elements per
bin. For a linearly growing average number of elements per bin,
this means that the standard deviation grows much slower than the
constant relative deviation and the Poisson test will consider even
relatively small deviations from the average as significant as long
as the data size is large enough. The simulations in Figure 1 support
this theoretical result. For growing average number of elements µ
the probability to observe at least 101% · µ elements is depicted.
As one can see, for sufficiently large data sets the probability be-
comes almost 100%. From the statistical hypothesis point of view,
this result is expectable and desired. A growing number of points
in the sample increases the power of the test, i.e, it increases the
probability of the test to reject the null hypothesis, if the alternative
hypothesis is true.
The problematic part in our context is that the Poisson test only
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determines the significance of a deviation but not the strength of
the effect (A relative deviation of one percent might be significant,
but not relevant for our cause). Therefore, the P3C algorithm will
consider p-signatures with a relatively small support as relevant for
further computation. And this on its hand results in a very large
number of identified candidate clusters and in the end in a low
quality of the clustering. We will show the described effects in
the experimental section 7.

To tackle this problem we extend the cluster core generation step
and employ a complementing class of test, called effect size test
[15]. An effect size is a measure of the strength of a phenomenon
that complements significance tests by providing the information
how large an effect is. In the considered problem we define the
strength of a phenomenon as the relative deviation of the actual
support Supp(S ∪ {Ia} = S∪I) of the p-signature S and interval
Ia under consideration of the expected support (cf. Equation 2).
The definition of the desired effect size corresponds to the Cohen’s
d statistics:

Cohen’s dcc =
Supp(S∪I)− Suppexp(S∪I)

σ
, (4)

where σ is the variance of expected number of objects such that the
Cohen’s dcc calculates the ’amount of variation’ from Supp(S∪I)
to Suppexp(S∪I) (’cc’ stands for cluster core). By defining the
variance parameter σ = Suppexp(S∪I), the resulting value is the
desired relative deviation.
We introduce a new parameter θcc > 0 that controls the desired
strength of the effect. Consequently, a p-signature is only interest-
ing, if Supp(S∪I) is significantly larger than Suppexp(S∪I) and
the effect size is larger than or equal to the specified threshold:
θcc ≤ Cohen’s dcc.

In fact, the χ2 possess similar properties as the Poisson test. For
larger data sets the power of the test grows and the bins with a
relative small deviation from the average bin support (small effect)
will nevertheless be considered as relevant. Assuming a uniform
distributed noise (as the P3C clustering model does), this, however,
should not influence the clustering result in a negative way. For data
sets, in which the above assumption does not hold and the noise
shows a non-uniform distribution, a possible solution to tackle the
problem is the employment of the complementary effect size tests.

4.2 Improvement of the algorithmic design
In this section, we introduce the algorithmic changes of the origi-
nal P3C algorithm that result in our novel P3C+ algorithm. These
algorithmic changes aim at improving the overall clustering quality
and are motivated by problems that we discovered during our ex-
perimental evaluation of the original P3C algorithm on large data
sets.

4.2.1 Cluster Core Redundancy
We extend Definition 5 of cluster cores by a redundancy constraint.
A signature is redundant, if it describes only an intersection of hid-
den clusters Ĉsub ⊆ Ĉ in a subspace of the united relevant intervals
of Ĉsub. Such a redundant signature provides misleading informa-
tion (presence of a cluster that doesn’t exist) and should thus be
removed from the set of cluster cores.

Figure 2 illustrates an example of a redundant signature. C1 and
C2 consist of 50 data points each, where C1 is clustered in the
{a1, a3} subspace and C2 in {a1, a2}. Given Î = {I1, .., I4} and
width(Ii) = 0.1, i ∈ {1..4}, the cluster core generation step finds

Figure 2: A data set, where the intersecting region of two hid-
den clusters C1 and C2 causes an additional (redundant) signa-
ture in the {a2, a3} subspace.

the 3 depicted 2-signatures. Obviously, S1 and S2 show enough
support to pass the Poisson test with

Supp(Si) = 50 >p 1 = 100·0.1·0.1 = Suppexp(Si), i ∈ {1, 2},

Assuming that both clusters are uniformly distributed in their re-
spective irrelevant dimension, the support of S3 becomes 50∗0.1+
50 ∗ 0.1 = 10. On a confidence level α = 10−6, it holds that
1 <p 10, such that S3 also passes the Poisson test.
Obviously, signature S3 is redundant to S1 and S2 and should thus
be removed from the set of cluster cores.

In order to identify redundant signatures, we exploit the lower ratio
of Supp

Suppexp
of a redundant signature, compared to the intersecting

signatures it originates from. We define redundancy of a signature
S, given a set of signatures Ŝ as follows:

S redundant in Ŝ ⇐⇒ S ⊆ ∪Si∈Ŝ∧Si>rSSi, (5)

where the intuitive meaning of S1 >r S2 is that observing S1 is
more interesting than S2:

S1 >r S2 ⇐⇒
Supp(S1)

Suppexp(S1)
>

Supp(S2)

Suppexp(S2)
. (6)

The expected support of a p-signature is calculated based on the
assumption that the data is distributed uniformly on each attribute
as:

Suppexp(S = {I1, .., Ip}) = n
∏
Ii∈S

width(Ii). (7)

When we sort the 3 signatures found depicted in Figure 2, we get
S3 <r S1 and S3 <r S2. With S3 ⊆ (S1∪S2), the redundancy cri-
terion 5 is met, such that the redundant signature S3 is successfully
identified and deleted from the set of cluster cores.

4.2.2 Outlier Detection
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The outlier detection step of the P3C algorithm removes objects
from obtained clusters after the EM clustering step. Outlier de-
tection is essential for determining tight borders of the computed
clusters since every outlier objects extends the borders.
Similar to the original P3C algorithms, we employ standard mul-
tivariate outlier detection techniques [12] with some modifications
described later on. In order to determine if a point x of a cluster
Cl is an outlier or not, the Mahalanobis distance of x to the cluster
mean µCl is compared to a critical value dcrit of the χ2 distribution
(for α = 0.001) with |Arel| degrees of freedom. All objects with
distances above dcrit are marked as outliers.

The Mahalanobis distance is based on two parameters µ (mean) and
Σ (covariance matrix) that are estimated from the cluster members.
The naive approach computes both parameters from all points of a
cluster Cl, but as stated in [12] it suffers from the masking effect,
i.e., the outlier objects itself influence the covariance and means
and that way get masked. More robust minimum volume ellipsoid
estimator (MVE) considers only points in a minimum volume ellip-
soid covering half of the points of a cluster and that way improve
the detection quality.
In this work we investigate both approaches, the naive and the MVE
based outlier detectors, on huge data sets. However, due to compu-
tational complexity of calculating the exact MVE parameter esti-
mators, we employ an approximate MVB (minimum volume ball)
solution, i.e., instead of considering half of the points of a cluster in
a minimum volume ellipsoid, we compute a minimal volume ball
containing half of the points. The mean µMVB of the MVB then
equals to dimension-wise medians of points of a cluster and the
radius rMVB equals to the median of the distances of all cluster
points to µMVB .

4.2.3 Attribute Inspection
The attribute inspection is responsible for selecting relevant cluster
attributes after the outlier detection step. This step corresponds to
interval detection step in the original P3C with the difference that
it is executed on points of a found cluster Cl without outlier ob-
jects and not on all points of the data set. I.e., for the members of
a cluster the histograms are generated and relevant intervals iden-
tified. The original algorithms stops at this point and accepts all
found relevant intervals. This is inconsistent with the cluster core
generation approach, where relevant intervals are tested using the
Poisson test. Our experiments showed that the additional interval
proving step improves the overall clustering result. For each ad-
ditional suggested interval Inew we perform the test described in
Equation 1 Therefore, our P3C+ is extended by an additional clus-
ter support test in the cluster core detection step to which we refer
as to AI proving.

5. P3C+-MR IN MAPREDUCE
In this section, we provide a description of MapReduce jobs needed
to implement the P3C+-MR algorithm. Most parts of the algorithm
are equal to a summation of statistics, which are calculated for each
data object independently. This property of P3C+-MR makes it fit
naturally into the data parallel MapReduce framework. The desired
statistic s is calculated for each object in the mapper phase and
summarized in the reduce phase. We use the following shortcut
notation:

s =
∑
xi

s(xi) =
Reduce∑
S∈Splits

Map∑
xi∈S

s(xi)

Since the calculations take about the same time for each object,
perfect load balancing is achieved naturally.

Due to simplicity of some steps, we will include the implementa-
tion of non-trivial MapReduce jobs and only give a short textual de-
scription including the respective summation formula for remain-
ing jobs.

5.1 Histogram building
In this work, we assume normalized data space in the range [0, 1].
Then the computing of histograms with known number of bins m
is trivial. In the mapper phase the histograms for given data subset
Split are calculated and a single reducer combines the partial re-
sults to the overall histogram. The summation form for the support
of bin i on dimension d is given by:

Supp(bind,i) =
∑
xi

{
1, max(1, dm · xi,de) = i

0, else
(8)

5.2 Relevant intervals
The determination of relevant intervals is a computationally cheap
process. For a histogram with k bins and d dimensions, a simple χ2

statistic is calculated at most d · k times. Even for relatively large k
and d values this step is cheap in comparison to other steps, there-
fore its parallelization will not result in a considerable speedup.

5.3 Cluster core generation
The cluster core generation, as depicted in Algorithm 1, involves
two computationally costly steps, namely candidate generation (line
6) and candidate proving (lines 3,7). In the candidate generation
step, a set of p-signatures out of given intervals and already proved
candidates is determined. A candidate is proved if its support sig-
nificantly exceeds the expected support. The counting of the sup-
port and testing for significance is called candidate proving.

Algorithm 1 Cluster Core Generation
1: Input: Intervals I1, .., In
2: Cand1 = {{Ii}|i ∈ {1..n}}
3: Proven1 = Prove Candidates(Cand1)
4: k = 2
5: while Provenk−1 is not empty do
6: Candk = A Priori Candidate Generation(Provenk−1)
7: Provenk = Prove Candidates(Candk)
8: k++
9: end while

10: Proven =
⋃k
i=1 Proveni

11: Proven = Filter maximal Cluster Cores(Proven)
12: Output:Cluster Cores

⋃k
i=1 Proveni

Generating a candidate set Candp+1 of (p + 1)-signatures out of
a set of p-signatures is achieved by joining each two p-signatures,
that have p−1 intervals in common. Having a set of k p-signatures,
there are c = k·(k−1)

2
candidate pairs for merging. Due to the

quadratic complexity, the signature candidate generation consumes
an unfeasible amount of time for large k, if run on a single pro-
cessor. Therefore MapReduce is employed for the parallelization
of large candidate set generation using m = b c

Tgen
c mappers and

zero reducers, for c > 2Tgen. Since each MR job adds some over-
head, small candidate sets are generated in a serial manner. The
threshold Tgen should be chosen, such that the parallel version is
equally fast to the serial version if c = Tgen and depends on the
available cluster. On our cluster Tgen = 4 · 107 performed best.
The set of p-signatures is send to each mapper via the distributed
cache. A set of c

m
indices is provided to each mapper, which indi-

cates the candidate pairs to be processed. The indices range from
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1 to c, each representing a pair of p-signatures. If a pair can be
merged to a (p+ 1)-signature, the mapper writes the resulting sig-
nature to the result file. The main program collects the generated
(p + 1)-signature candidates while ignoring duplicates (two pairs
of p-signatures might result in the same (p+ 1)-signature).

In order to reduce I/O overhead of MR jobs, candidates are not
proven at each level. If the number of generated candidates on a
level j is small, the candidates on level j + 1 are generated based
on Candj instead of Provenj (cf. line 6). When the set of col-
lected candidates csum of several levels exceeds a threshold Tc, all
candidates are proven with a single MR job. We use the follow-
ing heuristic to decide where to stop the collection of candidates on
level j:

|Candj | = 0 ∨ (csum > Tc ∧ |Candj | > |Candj−1|)⇒ Stop.

Again, the optimal setting of Tc depends on the available cluster.
On our cluster Tc = 3 · 104 performed best. Continuing the candi-
date collection as the candidate set shrinks, has proven to be most
efficient throughout all of our experiments.
The multi-level candidate generation increases the total number of
candidates that have to be proven as a priori pruning becomes less
effective. On the other hand, it saves I/O overhead of otherwise
necessary additional MR jobs. Our heuristic aims for a good trade-
off of these effects.

Proving a candidate p-signature involves the determination of its
actual support. Therefore the support of each generated candidate
must be calculated. This corresponds to a single MR job, where
each mapper is provided all candidates Ŝall and determines the
set of signatures Ŝin(xi) for each data point xi of its split, with
Ŝin(xi) = {S ∈ Ŝall|xi ∈ SuppSet(S)}. The reducers sums up
the support counts of each cluster reported by the mappers.

To determine Ŝin(xi), each signature in Ŝall is queried for contain-
ment of xi. Since a total of 105 and more candidates is common,
counting the support needs to be more efficient. To this end, we
introduce the Rapid Signature Support Counter (RSSC).

The RSSC uses a bitmap representation of the problem, which is
defined as follows. Each signature Sj is given a temporary idj ∈
{0, .., |Ŝall|− 1}. A bit vector b of length |Ŝall| represents a subset
Ŝsub ⊆ Ŝall with:

Sj ∈ Ŝsub ⇐⇒ bidj = 1

For each attribute a ∈ Arel (cf. Equation 3), we define a binning
Ba. We select the bins, such that for each bin ba,i a bit vector va,b

can be given, such that for a given data point xi the following holds

∀Sj={..,Ij,a,..}∈Ŝall
va,biidj

= 0 ⇐⇒ xi /∈ SuppSet(Ij,a),

where bi denotes the bin in which xi belongs on attribute a. Such a
binning can be derived for attribute a by taking all upper and lower
bounds of provided intervals on a as separators. Figure 3 depicts
an example for such a binning with |Ŝall| = 4.
The desired set Ŝin(xi) is then given by the bit vector bini with:

bini =
∧

a∈Arel

va,bi

Having the RSSC bit masks calculated, mappers only have to bin
each point in each a ∈ Arel according to Ba and aggregate the
selected bit masks with the logical AND operator, both of which
are very fast calculations. This way, Ŝin(xi) is calculated far more

Figure 3: A binning Ba with bit vectors va,b for each bin on
attribute a with four signatures. Since a is not relevant for S2,
the corresponding bit vector entries are set to 1

efficiently compared to the simple approach.
The bit masks are calculated by the main program beforehand and
then passed to the mappers via distributed cache. Since the RSSC
bit masks can be calculated with only two scans of Ŝall, the over-
head is negligible.

Filtering cluster cores out of Proven (cf. line 11 in Algorithm 1)
is fast even for large Proven sets, such that it’s not necessary to
parallize this task.

5.4 EM
In order to initialize the EM algorithm sample means µC and co-
variances ΣC of cluster cores have to be calculated twice. In the
first iteration, µC and ΣC are calculated using only the support
sets of the cluster cores in order to assign outliers using the Maha-
lanobis distance. In the second iteration, µC and ΣC are calculated
using the support sets of cluster cores plus the assigned outliers.
Sample means and covariances can be calculated by two MR jobs.
The first MR job calculates the linear sum lC of the members and
linear and squared sum wC and wC2 of the member weights for
each cluster C:

lC =
∑
xi

wC,ixi, wC =
∑
xi

wC,i, wC2 =
∑
xi

w2
C,i,

with wC,i being the weight of object i in cluster C. The results of
the first MR job are used to calculate the sample mean µc = lC

wC
for

each cluster C and passed to the second MR job, which calculates
the sample covariances σC of cluster C as:

ΣC =
wC

w2
C − wC2

∑
xi

wC,i(xi − µC)(xi − µC)T

The statistics ΣC and µC which include the outliers serve as the ini-
tial Gaussian mixture model for EM. Each EM step needs another
two MR jobs [16], where the first job calculates new estimates µ̃C
and w̃C , while the second job provides new covariance estimates
Σ̃C .

5.5 Outlier detection
For a cluster C and a member x of C, the Mahalanobis distance
between x and C is compared to the critical value of a χ2

n distri-
bution (cf. Section 4.2.2). The naive version uses the means and
covariances of the clusters as provided by the EM algorithm. Thus,
a single MR job with map phase only is necessary, which is called
the OD job. Each mapper of the OD job computes for each point x
the clusterC it belongs to according to the Gaussian mixture distri-
bution provided by the EM algorithm and the Mahalanobis distance
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between x and C. Finally, x is written back to the result file aug-
mented with an additional membership attribute, which is set to the
id of C or −1, if it is considered an outlier.

The MVB version requires mean µ̂C and covariance Σ̂C of the min-
imum volume ball MVBC for each cluster C as explained in Sec-
tion 4.2.2. These statistics can be extracted within three MR jobs.
The first of which calculates mean and radius of eachMVBC . The
following two jobs compute µ̂C and Σ̂C for each clusterC as in the
EM initialization step, but take only the points in MVBC into ac-
count.
Mean mC and radius rC for each MVBC are approximated with
a single MR job, where each mapper j calculates mj

C and rjC
for its split and the reducer aggregates the statistics by taking the
dimension-wise median of the means and radii provided by the
mappers.
We define the dimension-wise median Mdd(X) of a set of d-di-
mensional vectors X as

Mddj(X = {x1, ...xn}) = Md(x1,j , .., xn,j),∀j ∈ {1, .., d},

where Md is the sample median.

In order to compute mj
C and rjC , mapper j caches the set of all

data points Xsplit of the current split. In the clean up phase of the
mapper, Xsplit is sorted once w.r.t. to each dimension to calculate
mj
C = Mdd(Xsplit). Next, the Euclidean distance between each

point in Xsplit and mj
C is calculated and stored in an array G. The

radius of MVBjC is then given by rjC = Md(G). In the end, the
mapper writes mj

C and rjC for each cluster C to the output.
After calculatingMVB′ means and covariances, the OD job is run
using µ̂C and Σ̂C instead of µC and ΣC .

5.6 Attribute Inspection
In this step, one MR job is needed to calculate a histogram for each
cluster core. To this end, Equation 8 is slightly adjusted for this
task to

binC,d,i =
∑
xi∈C

{
1, max(1, dmxi,de) = i

0, else

with binC,d,i being the ith bin on dimension d on the histogram of
cluster C.
When AI proving is used (cf. Section 4.2.3), another job has to be
run, in order to compute the support for the augmented signatures.
This is done exactly as in the cluster core generation step.

5.7 Interval Tightening
At this point, for each cluster, the support set and the set of rele-
vant dimensions are determined. The interval bounds for the out-
put signatures are calculated in a single MR job, where each map-
per calculates the minimum (maximum) value within its split for
the relevant dimensions of each cluster. The reducer aggregates the
provided values by repeated extracting the minimum (maximum)
for each dimension and cluster.

6. P3C+-MR-Light ALGORITHM
During our experimental evaluation, we made an interesting obser-
vation that resulted in the P3C+-MR-Light algorithm. Due to the
proposed changes in our P3C+ the generated cluster cores already
provided an extremely good approximation of the hidden clusters.
Moreover, the quality of the results even dropped if the following
EM and outlier detection steps were executed. The main reason for

this phenomenon is the fact that the outlier detection step is often
not able to identify all outlier objects correctly such that the bounds
of the resulting found clusters are ’blurred’ in the interval tighten-
ing step.

Given the subsets of all relevant attributes Arel (cf. Equation 3)
and a cluster core K that approximates a hidden cluster C, two
outlier data points x− and x+ that are likely to cause the blurring
effect, have the following properties. Let AC be the set of rele-
vant attributes of C and ablur ∈ AC . The data points x− and x+

have to be assigned to C in EM phase, and should be close to the
center µC of C in all attributes a ∈ Abrel = Arel \ {ablur}, e.g.
xa = µC ,∀a ∈ Abrel. In order to blur the bounds of the interval
Iablur of K extremely, we assume a−ablur

= 0 and a+ablur
= 1.

Since x− and x+ perfectly match cluster C in all relevant dimen-
sions but one, EM will output C as the most probable cluster for
both points. The outlier detection algorithm will not be able to iden-
tify the outliers for the same reason. Finally, the interval tightening
step will calculate the interval Iablur = [0, 1] for K, resulting in a
very poor approximation of C in attribute Iablur .
Obviously, the risk of having blurring data points, rises with grow-
ing data set size. We observed that the decreasing quality of clus-
tering quality of P3C+ with increasing data set size (cf. Section 7)
is directly correlated to the blurring effect.
For that reason, we also propose the P3C+-MR-Light algorithm
that circumvents the blurring effect by avoiding a partitioning of
the data set, as it is performed during the EM phase. P3C+-MR-
Light consists of all but the EM- and outlier detection steps of the
P3C+ algorithm.
The histogram building in the attribute inspection step (cf. Sec-
tion 4.2.3) requires a mapping m(x) : D → K̂ ∪ {O}, that maps
each data point to either a single cluster or to the set of outliers O.
Since P3C+-MR-Light doesn’t have such a partition, a mapping
m′(x) : D → 2K̂ is defined as:

K ∈ m′(x) ⇐⇒ x ∈ SuppSet(K).

The histogram for a cluster core K is calculated as:

binK,d,i =
∑

xi∈SuppSet(K)∧|m′(xi)|=1

{
1, max(1, dmxi,de) = i

0, else

In order to avoid finding attributes mistakenly relevant due to the
redundancy problem discussed in Section 4.2.1, we exclude those
data points from the histograms, that contribute to the support sets
of more than a single cluster core.

In the following section we proceed with evaluation of the P3C+-
MR, P3C+-MR-Light and the BoW algorithms.

7. EXPERIMENTS
In this section, we evaluate our novel P3C+ approach and com-
pare it with the original P3C algorithm in Section 7.4. Then, we
proceed with evaluation of the MapReduce based solutions P3C+-
MR, P3C+-MR-Light and BoW on large data sets in Section 7.5.

7.1 Data set description
For evaluation of P3C+-MR and BoW algorithm we use several
synthetic and real world data sets that are described in this section.

Synthetic data. To generate the synthetic data we vary three pa-
rameters: (1) number of clusters with different dimensionalities,
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(2) data set size and (3) percentage of noise objects. The number
of clusters is equal to 3, 5 or 7. The databases consists of 104, 105,
106, 5 · 106, 107, 5 · 107 and as extreme setting 109 (one billion!)
objects. The percentage of noise is set to 0%, 5%, 10% and 20%
of the database size. All data sets have 50 dimensions. The one
billion data set is ≈ 0.2 TByte large.

Clusters are generated in a hyperrectangular shape. The interval
width of a hidden cluster on a relevant attribute varies between 0.1
and 0.3. A cluster is distributed on each relevant interval following
a Gaussian distribution with σ = 1. Data points are uniformly dis-
tributed on irrelevant attributes. The clusters have 2 to 10 dimen-
sions and may overlap with others clusters on relevant attributes.
In fact, each generated data set contains at least two clusters that
overlap.

Real world data. For evaluation of P3C+ algorithm we make
use of the available data set ’Colon cancer’ from the standard ma-
chine learning repository UCI1. It consists of 62 objects with 2000
dimensions and is annotated by information whether a person has
cancer or not. This data set is used for comparison of our P3C+

and the original P3C algorithms only.

7.2 Used measures
To evaluate our solution we employed E4SC, F1, RNIA and CE
[11] evaluation measures. However, in this work we only report
the results of the E4SC since it is able to detect the most impor-
tant differences of a subspace/projected clustering results from the
ground truth including cluster merges, wrong subspaces, wrong ob-
ject assignment and many more.
A further reason for this restriction is that the remaining measures
showed different drawbacks. F1, as a full space clustering measure,
is not able to punish clusters in wrong subspaces and often reported
too good quality for in reality bad clustering results. The CE mea-
sure showed itself as too sensitive in the case of cluster splits that
often punished our competitors too much. Therefore we provide
only the E4SC quality measure in this work and refer the interested
reader to our web page2 with remaining results.

7.3 Parameter settings
In all experiments the parameters were set to: αχ2 = 0.001, αpoi =
0.01 and the number of samples per reducer in the BoW variant was
set to 100.000.

To determine an optimal value for the θcc parameter, we executed
the P3C+-MR algorithm on all data sets and varied θcc in the range
[0.05, 0.5]. In the end, the θcc was calculated as the median of all
optimal values over all databases and is equal to 0.35.

7.4 Evaluation of the P3C+ model
In this section we evaluate our P3C+ model and show how single
steps improve the overall quality of the algorithm.

7.4.1 Outlier detection
In order to evaluate the quality of outlier detection techniques we
evaluated the E4SC of clustering results on databases with 10k,
100k and 1Mio objects for all noise levels (0%, 5%, 10%, 20%)
and 3, 5 and 7 number of clusters. The results of the evaluation
1http://archive.ics.uci.edu/ml/
2http://dme.rwth-aachen.de/en/P3CMR

are depicted in Figure 4. To keep the plots large enough we omit
the plot for noise level 0%. But it shows the same behavior as
the remaining plots. The dotted lines represent the ’naive’ outlier
detection technique based on mean and covariance computed from
all points of a cluster and the solid lines depict the results of our
MVB based outlier detector. We observe that except for a single
case, (noise level 10%, 5 clusters) the MVB outlier detector leads
to a considerable better clustering quality, i.e., the resulting clusters
much better approximate the hidden clusters. This confirms our
expectation that the MVB provides a more stable estimate for the
real mean and covariance of a cluster and that way leads to a better
outlier detection.

However, for the largest data set (1 million objects) we observe that
the quality of all approaches decreases. The probable explanation
is that a larger number of objects in a cluster lead to a worse es-
timate by the MVB and that way less outliers are identified. The
exact MVE estimator will probably results in a better clustering
quality but as was stated earlier the calculation of MVE is a com-
putationally expensive step. Due to our focus on large data sets we
therefore leave this point not evaluated. However, as last remark
we observe that a sophisticated outlier detection step is crucial for
good quality of the P3C and also P3C+ algorithms.

7.4.2 Redundancy filter and effect size enhancement
Figure 5 depicts the exemplary results obtained by redundancy filter
described in the Section 5 for the synthetic data sets with 10k and
100k objects, 5 clusters and noise level of 20% percent. Each plot
consists of three curves: ’Optimal’ that provides the number of hid-
den clusters (5), ’Poisson’ that shows the behavior of the original
Poisson test of the original P3C algorithm and ’Combined’, that is
a combination of ’Poisson’ and effect size test described in Section
4.1.2. The Figures 5(a) and 5(c) depict the number of generated
cluster cores without redundancy filtering, while Figures 5(b) and
5(d) show the effect of redundancy filter.

The first observation from Figures Figures 5(a) and 5(c) is that the
original ’Poisson’ filter always significantly overestimate the num-
ber of cluster cores in the data set for large threshold values. This
effect is expectable since a larger threshold means that a smaller
deviation of the cluster core support from the expected support is
sufficient to consider the deviation as significant. Moreover, we ob-
serve that for the larger data sets (Figure 5(c)) the overestimation
begins at a smaller threshold value (≈ 10−60) while in the 10k data
set this effect occurs at ≈ 10−10. As explained in Section 4.1.2
this effect stems from the growing power of the hypothesis test.
Our proposed solution to use effect size (the ’Combined’ curves)
considerably improves the overall result. For investigated thresh-
old values the effect size test leads to a stagnation of the clusters
core number at 40 (42) cluster for 10k (100k) data sets that is much
closer to the exact number of hidden clusters (5).

The largest improvement of the results shows the redundancy fil-
tering technique from Section 5 depicted in Figures 5(b) and 5(d).
Already for thresholds ≥ 10−40 even the ’Poisson’ test almost sta-
bilizes at the exact number of hidden clusters and shows a deviation
in two cases 10−4 for 10k data set, and 10−2 for a 100k data set
only. The ’Combined’ test shows its superiority over ’Poisson’ test
also in this case, as it delivers constantly correct number of cluster
for all thresholds ≥ 10−40 in the 10k data set and all investigated
threshold values in the 100k data set.

As side remark, we want to point out that computation of cumu-
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Figure 4: Comparison of naive and MVB outlier detection steps.
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(a) 10k objects, 20% noise, no re-
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(b) 10k objects, 20% noise, with
redundancy filtering.
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(c) 100k objects, 20% noise, no
redundancy filtering.
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(d) 100k objects, 20% noise, with
redundancy filtering.

Figure 5: Effect of redundancy filtering and effect size statistics.

lative probabilities with values ≥ 10−10 become infeasible due to
inaccuracy of floating point arithmetic. To overcome this problem,
we transform the Poisson distribution in a Gaussian distribution
with appropriate parameters and determine the amount of standard
deviations of the threshold. Then, we can easily determine if an
observed value should be considered as significant by comparison
of the amount of standard deviations of the observed and expected
supports.

7.5 Evaluation on large synthetic data sets
7.5.1 Quality results

Figure 6 depicts the E4SC quality results of both BoW variants
(Light and MVB), P3C+-MR and P3C+-MR-Light on synthetic
datasets with up to 5 · 107 data points of dimensionality 50 and all
examined noise levels.

In general, we observe that the P3C+-MR-Light and BoW (Light)
perform better than their full equivalents with the MVB based out-
lier detectors. This superiority shows itself as well for data sets with
growing noise levels as also for large data sets. Furthermore, the
clustering quality of the P3C+-MR-Light approach even increases
in most cases with growing database size, while the quality of all
other approaches decreases.
These results have several reasons. As we already mentioned ear-
lier, the employed outlier detection techniques plays a significant
role for the overall clustering result quality. Although MVB based
outlier detector showed a substantial improvement in comparison
to the naive outlier detector, it still not able to sufficiently good
remove outlier objects. This on its hand enlarges the regions of
the clusters and leads to worse quality. Due to sampling approach,
both BoW variants additionally suffer from errors based on not suf-
ficiently precisely approximated data distribution. Since the over-
all clustering results is computed from all subresults, even a small
shift of a cluster in a single subresult will decrease the quality of
the solution. With a growing data set size, the probability that one

of the samples follows another distribution than the whole data set
increases such that the above described case occurs.

Although due to the redundancy filtering all approaches are always
able to identify the right number of clusters, they show a decreas-
ing quality with a growing number of hidden clusters in the data.
This behavior arises from a combination of effects. First, as the
number of clusters grows, the number of points decreases such that
the identification of correct borders of the clusters become harder.
Second, for a larger number of clusters the number of overlaps be-
tween clusters grows, again resulting in more ’blurred’ cluster bor-
ders. Third, with growing number of clusters, the probability that
a point will be associated to a wrong cluster mean during the EM
clustering step or the outlier detector is not able to detect a point as
outlier also grow, such that the overall clustering quality decreases.

7.5.2 Runtime results
In this section we evaluate the runtimes of BoW (Light and MVB
variants), P3C+-MR (MR (MVB) and MR (naive)) and P3C+-MR-
Light (MR (Light)) algorithms on the data sets with 104 up to 5·107

objects. In all experiments, the number of reducers is set to 112.
First, we compare the runtimes of P3C+-MR with the naive and
MVB based outlier detectors. A more complex computation of
MVB estimator results in a 10% − 20% runtime overhead for all
data set sizes. Considering higher clustering quality achieved by
the MVB-based solution (cf. Section 7.4.1) this overhead seems to
be acceptable for real applications.

Next, we examine the BoW algorithm. The obtained results are
consistent with our expectations. The BoW algorithms scale lin-
early with the database size and with the number of used reduc-
ers. Since each reducer processes the same amount of data and
the runtime of every single job is almost constant, the overall run-
time equals the time needed by the map step and a time needed
by reducers to process all sampled data sets. The main computa-
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(c) 7 clusters, 0% noise.
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(d) 3 clusters, 5% noise.
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(e) 5 clusters, 5% noise.
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(f) 7 clusters, 5% noise.
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(g) 3 clusters, 10% noise.
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(i) 7 clusters, 10% noise.
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(j) 3 clusters, 20% noise.
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Figure 6: Quality results of BoW (Light and MVB variants), P3C+-MR (MR (MVB)) and P3C+-MR-Light (MR (Light)) for different
cluster sizes, noise ratios and database sizes.

tional bottleneck of the BoW algorithm is therefore the number of
sampled data sets. If this number is smaller than the number of
available reducers, BoW will not be able to make use of the com-
plete performance of a cluster. On the other hand, for large data
sets, every reducer will have to process several data blocks. How-
ever, in general, for clusters with sufficiently many reducers, BoW
provides an ideal workload distribution.

At the same time, P3C+-MR and P3C+-MR-Light algorithms also
possess very good workload properties and in the case of P3C+-
MR-Light do not have reducer-dependent bottlenecks. As described

in previous sections, all MapReduce jobs mainly consists of a map
step and a final reduce step, performed by a single reducer. There-
fore, the runtime equals the runtime of a single map step multi-
plied by the number of MapReduce jobs needed for clustering de-
termination. The time of a single map step grows linearly with the
database size and is not limited by the number of reducers. The
main limitation is therefore the performance of the storage and net-
work systems. In our case, the P3C+-MR-Light algorithm outper-
forms BoW (MVB) even for small data sets and is comparably fast
with BoW (Light) variant.
In comparison to other approaches P3C+-MR shows the worst run-
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Figure 7: Runtime results.

times. Those arise from a larger number of MapReduce jobs that
have to be performed and especially from the multiple iterations of
the EM algorithm.

The sub-linear runtime of P3C+-MR and P3C+-MR-Light stems
from the fact that larger inputs are processed by a larger number
of mappers. And since we do not artificially split the input files
in smaller chunks, the higher number of mappers resulted in an
overall better runtime. For sufficiently large databases the runtime
will become lineary proportional to the size of the database.

We also executed the BoW (Light) and P3C+-MR-Light on the 1
billion data set with 100 dimensions. On this huge data set the
P3C+-MR-Light algorithm clearly showed its superiority. While
BoW (Light) needed over 9500 sec., the P3C+-MR-Light produced
the result in ≈ 4300 seconds.

7.6 Real world data
In the last experiment we compared the quality of our P3C+ algo-
rithm to the original P3C algorithm by comparing the accuracies
of the clustering results on the ’colon cancer’ data set used in [2].
With 71% accuracy the P3C+ outperformed the original P3C algo-
rithm that achieved 67%. However, we report this result only for
the sake of completeness since the presented results on synthetic
data sets better show the properties and the quality of our P3C+

algorithm.

8. CONCLUSION
In this work we presented an extended version of the P3C algorithm
that is capable to process huge data sets. This novel P3C+ algo-
rithm was implemented in the MapReduce framework and two ver-
sions P3C+-MR and P3C+-MR-Light algorithms were proposed.
We compared our solution with existing approach BoW, and showed
the superior accuracy of P3C+-MR at costs of higher runtimes and
I/O costs. In the end, we showed that an adjusted P3C+-MR-Light
algorithm performs best for large data sets at lower runtime and I/O
costs as P3C+-MR and BoW while producing highest accuracy re-
sults.
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