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ABSTRACT
We consider the problem of producing item recommenda-
tions that are personalized based on a user’s social network,
while simultaneously preventing the disclosure of sensitive
user-item preferences (e.g., product purchases, ad clicks, web
browsing history, etc.). Our main contribution is a privacy-
preserving framework for a class of social recommendation
algorithms that provides strong, formal privacy guarantees
under the model of differential privacy. Existing mechanisms
for achieving differential privacy lead to an unacceptable loss
of utility when applied to the social recommendation prob-
lem. To address this, the proposed framework incorporates
a clustering procedure that groups users according to the
natural community structure of the social network and sig-
nificantly reduces the amount of noise required to satisfy
differential privacy. Although this reduction in noise comes
at the cost of some approximation error, we show that the
benefits of the former significantly outweigh the latter. We
explore the privacy-utility trade-off for several different in-
stantiations of the proposed framework on two real-world
data sets and show that useful social recommendations can
be produced without sacrificing privacy. We also experimen-
tally compare the proposed framework with several existing
differential privacy mechanisms and show that the proposed
framework significantly outperforms all of them in this set-
ting.

1. INTRODUCTION
In an age where Internet users are constantly overloaded

with information, recommendation systems have become an
essential tool for separating relevant and interesting con-
tent from the mounds of chaff. Recent years have witnessed
the astounding growth and penetration of online social net-
works, spurring interest in the idea of leveraging social re-
lations to generate more useful recommendations. A wide
variety of social recommendation approaches have appeared
in the literature, some of which augment traditional collab-
orative filtering approaches with social similarity measures
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(e.g. [13, 21, 35]) while others are based on random walks
(e.g. [18]), probabilistic matrix factorization (e.g. [7]) and
collaborative topic regression (e.g. [28]). In many cases,
these social recommendation approaches have been shown
to outperform traditional, socially agnostic approaches.

Although the benefits of using social information in the
recommendation process can be significant, it also poses
a significant threat to personal privacy. In particular, so-
cial recommendations may allow one user to easily make
valid inferences about another user’s preferences for sensitive
items. Although this threat is also to some extent present
in traditional, socially-agnostic recommenders, social recom-
menders are more vulnerable to privacy attacks for several
reasons: (1) the recommendations are, by nature, derived
from smaller, more targeted sets of users, (2) the recommen-
dations sources are typically people known by the receiver,
and (3) the users of a social network have considerable power
to affect the structure of the social network (and therefore
the input to the social recommender). These facts enable
simple but powerful privacy attacks (Section 2.3). In ad-
dition to protecting individual privacy and reducing liabil-
ity for recommendation service providers, privacy-preserving
approaches for social recommendation will likely encour-
age broader participation by providing users with “peace of
mind”; this is clearly a win-win for all parties.

It is well known that syntactic privacy approaches, like k-
anonymity [30], do not guarantee privacy in the presence
of colluding adversaries or those with auxiliary informa-
tion [23]. Thus, in this work we aim for provable privacy
guarantees, enabled by a mathematically rigorous privacy
model known as differential privacy [8]. Informally, differ-
ential privacy guarantees that almost nothing can be learned
about individual input records based on the output of the
algorithm; thus a user loses nothing by participating. Differ-
ential privacy is usually achieved by injecting random noise
that is carefully calibrated according to the algorithm’s sen-
sitivity—the maximum change in the output resulting from
the addition or removal of a single input record. The main
challenge in applying differential privacy is how to balance
privacy with utility. Social recommendation presents an es-
pecially difficult challenge due to its inherent high sensitiv-
ity. The high sensitivity comes from the fact that a single
user may have many neighbors in the social graph, and hence
may affect the recommendations received by many users.

Machanavajjhala et al. recently presented somewhat neg-
ative theoretical results suggesting the unfeasibility of pro-
ducing social recommendations that are both accurate and
private [24]. However, the social graph model used in their
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analysis made no distinction between item preferences and
social relations—both were considered to be equally sensi-
tive. We observe that this is often not the case in practice.
For instance, in many popular online social networks, includ-
ing (but not limited to) Orkut, Twitter, MySpace, RenRen
and Weibo, the user-to-user edges are visible to everyone,
and there is no option to change that setting. On the other
hand, item preferences are typically considered to be sensi-
tive in practice; for example, the content that a user“likes” is
usually only shared with the user’s friends. Item preferences
could also represent behavior such as ad clicks, product pur-
chases, photo views, or website visits—these are all things
that might be useful in a social recommendation system, but
they are also things that most people would not want dis-
played to the public, or even to their friends in some cases.
Motivated by the observations above, we explore differen-
tially private social recommendation in the setting where so-
cial relations are public knowledge, while user-to-item edges
are private and must be protected. Within this context, our
task is to generate top-n ranked lists of item recommenda-
tions, personalized for each individual user based on his/her
social relations, while simultaneously preventing the leakage
of information about the presence (or absence) of individual
item preferences through the output (i.e., the recommenda-
tions themselves).

Our contributions are summarized as follows. First, we
present a formalization of the social recommendation prob-
lem that explicitly differentiates user nodes from item nodes
and social relations from item preferences; this distinction
enables us to decouple the computations on the typically in-
sensitive social graph from those on the often sensitive item
preferences.

Second, we develop a privacy-preserving framework for
a natural class of social recommendation algorithms based
on structural similarity measures, that provides differential
privacy guarantees for user-item preferences. Our approach
achieves strong privacy and high utility by incorporating a
novel user clustering phase that groups users according to
the social graph structure, significantly reducing sensitivity,
and hence the amount of noise required to satisfy differen-
tial privacy. Although the clustering phase introduces some
approximation error, we show that its impact is small com-
pared to that of the noise it replaces. To the best of our
knowledge, this is the first work to propose an effective ap-
proach for achieving differential privacy in social recommen-
dation systems, without significantly degrading accuracy.

Finally, we present empirical results for several concrete
instantiations of the proposed framework on two real-world
data sets, demonstrating that it is possible to make accu-
rate social recommendations while simultaneously providing
a high degree of privacy for item preferences. Additionally,
we experimentally compare our approach against two tra-
ditional methods for achieving differential privacy, as well
as to two recently proposed differential privacy mechanisms
( [17,34]) that have proven successful in similar settings. Our
results show our approach to significantly outperform these
other approaches under both high and low privacy settings.

The rest of the paper is organized as follows. Section 2 for-
malizes our model and setting, while Section 3 reviews differ-
ential privacy. In Section 4 we review relevant related work
and then in Section 5 we present our framework for privacy-
preserving social recommendation. Section 6 presents our
experimental results and Section 7 concludes the paper.

2. MODEL
In this section we formalize our setting and specify the

basic class of non-private social recommenders that will be
targeted by our privacy-preserving framework.

2.1 Setting
Our setting assumes the existence of two distinct graphs,

a social graph and a preference graph, that comprise the
input to a social recommendation system. They are defined
as follows:

Definition 1 (Social Graph). A social graph, Gs =
(U,Es), consists of a set of user nodes, U , and a set of
edges, Es, where a social edge (u, v) ∈ Es represents a social
connection (e.g. friendship) between two users u, v ∈ U .

Definition 2 (Preference Graph). A preference
graph, Gp = (U, I, Ep), is a bipartite graph consisting of the
same set of users U , a set of items, I, and a set of directed
edges, Ep. A preference edge (u, i) ∈ Ep expresses a positive
preference of user u ∈ U for item i ∈ I.

For simplicity, we assume that the preference graph is un-
weighted, or equivalently that every edge (u, i) has weight
w(u, i) = 1. (For notational convenience, we assume that
w(u, i) = 0, ∀(u, i) /∈ Ep). Many real-world recommen-
dation settings can be modeled with unweighted preference
graphs; for example, an edge (u, i) might indicate that u has
purchased product i, that u has listened to a song by artist
i, that u ‘Likes’ content i, or that u has visited web page i,
to name a few. Our approach could be easily extended to
support weighted edges (e.g., ratings).

2.2 Personalized, Social Recommenders
We consider a family of personalized, social, top-n recom-

mendation systems (henceforth referred to simply as social
recommenders, or just recommenders where the context is
clear) that are based on a utility function that takes only
Gs and Gp as input and computes for all user-item pairs
v, i a utility value µiu indicating the utility of recommending
item i to user u. The social recommender outputs, for each
target user u ∈ U , a personalized recommendation list, Ru,
consisting of the top-n items, ranked by utility.

Our model assumes that the utility function depends on an
underlying structural similarity measure, denoted sim(u, v),
that operates solely on the structure of Gs and returns a pos-
itive numeric value indicating the similarity of users u, v ∈ U
(or 0 if not similar). Since these similarity measures operate
solely on the social graph, we refer to them henceforth as
social similarity measures. Abusing this notation slightly,
we will frequently use sim(u) to denote the set of users with
non-zero similarity to u, i.e. {v ∈ U |sim(u, v) > 0}. We call
sim(u) the similarity set of u.

Many existing structural similarity measures that can be
plugged into this model (see [22] for a good survey). Prior
work in the link analysis literature has demonstrated the
usefulness of structural similarity measures for predicting
missing edges in social networks [20], and other graphs [22];
moreover, several measures have been shown to outperform
collaborative filtering approaches for recommendation on
certain data sets [13], making them appealing candidates
for the social recommendation task. For concreteness, we
will consider four well-known social similarity measures in
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this paper. Let Γ(u) denote the set containing u’s immedi-
ate neighbors in Gs. In the context of two arbitrary users
u, v ∈ U , the four measures are defined briefly below (see
[20,22] for more details):

• Common Neighbors (CN): sim(u, v) = |Γ(u) ∩ Γ(v)|.

• Graph Distance (GD): sim(u, v) = 1
d
, where d is

the length of the shortest path between u and v.

• Adamic/Adar (AA): sim(u, v) =
∑
x∈Γ(u)∩Γ(v)

1
log|Γ(x)| .

• Katz (KZ): sim(u, v) =
∑k
l=1 α

l · |pathsluv|, where

pathsluv is the set of all length-l paths between u and
v, and α is a small damping factor (e.g. 0.05 or 0.005).

For GD and KZ it is common to limit d and k (e.g. to 2 or 3)
respectively, since in social graphs, the number of reachable
users explodes after 2 hops due to the small-world prop-
erty [27] of social graphs.

The utility of recommending an item i to a user u is com-
puted by a utility query :

Definition 3 (Utility Query). Given a similarity
measure, sim, the utility of recommending an item i to user
u is given by:

µiu =
∑

v∈sim(u)

sim(u, v)× w(v, i) (1)

We now formally define top-N social recommender as fol-
lows:

Definition 4 (Top-N Social Recommender). Given
a social graph Gs = (U,Es), a preference graph Gp = (U, I, Ep)
and a social similarity measure sim, a top-N social recom-
mender identifies, for all users u ∈ U , a size N ranked list
of items Ru ⊂ I with the highest utility for user u.

We remark that although it can be beneficial to use both
social and non-social data in the recommendation process,
our focus is on purely social recommenders in this paper. We
plan to study such hybrid recommenders in a future work.

2.3 Assumptions and Attacker Model
The social recommender, as well as the underlying data, is

assumed to reside with a trusted and secured central party
and that the recommender has full, unfettered access to the
data. In practice, the recommender would typically (though
not always) reside with the owner of the preference data,
while the social graph data would be obtained from a third-
party social network though an API (e.g. Facebook’s Open
Graph, Twitter API, etc.). We remark that the trusted
server model is not uncommon in previous works on differ-
ential privacy; in particular, the work of [26] that studies
differential privacy for non-social recommenders makes the
same assumption.

Second, we assume that Gs and Gp are static at the time
that recommendations are computed. That is, we take a
snapshot of the graphs at time ti and generate recommen-
dations for all users from that snapshot. In this paper, we
focus on the problem of making private social recommen-
dations only for a single snapshot. Enforcing differential
privacy over dynamic graphs is a non-trivial extension and
we leave it as a subject for future work. We remark that
most of the related works discussed in this paper are also
subject to the same limitation (e.g., [17,26,34]).

Adversary Model. We consider a powerful, informed
adversary, A, whose goal is to deduce the existence (or ab-
sence) of a specific preference edge, the target edge. A is
assumed to have complete knowledge of the social graph
and of the inner-workings of the recommendation algorithm.
Also, consistent with the definition of differential privacy, A
could potentially have knowledge of all preference edges in
Gp, except for the target edge. Finally, A may observe all
recommendations output by the social recommender. The
latter two assumptions account for collusion and arbitrary
background knowledge.

The adversary modeled above may, at first glance, seem
unrealistically powerful; however, we argue, by way of the
following example, that this is in fact the appropriate model.
For concreteness, consider the CN (or AA) similarity mea-
sure defined in Section 2.2. One possible attack proceeds
as follows: (1) A identifies an immediate neighbor a of the
victim in the social graph that has no other neighbors; (2)
A then creates a fake user account b and establishes a new
social edge (b, a), either through collusion or a simple profile-
cloning attack1; (3) A observes the recommendations re-
ceived by b. Since b’s only friend is a, and only the vic-
tim and b are friends with a, all recommendations received
by b reveal the existence of one of the victim’s preference
edges. In the case where the victim has no neighbors with
a single friendship edge, the attacker could link two Sybil
nodes together and then trick the victim into accepting a
friendship request from one of them using a profile cloning
attack. This attack could also be extended to the GD and
KZ similarity measures by chaining d − 1 or k − 1 Sybils
together, respectively, depending on the maximum distance
cutoff being used.

The thing to note from the example above is that, from
the defender’s point of view, any node in the graph could be
the attacker, any node could be the victim, and there is no
way to know which nodes are colluding; moreover, there is no
way to know which edge is the target edge and which edges
the attacker has knowledge of due to auxiliary information.
Thus, to ensure privacy, we must provide privacy guarantees
for every preference edge as though it were the target edge.

2.4 Measuring Recommendation Accuracy
The primary challenge to incorporating differential pri-

vacy into social recommenders (and indeed any system) is
how to do so without significantly harming the utility, or
accuracy, of the system. Common accuracy metrics, such as
precision and recall, are inappropriate here because they fail
to take into account the rank and utility of the items. For
example, failing to recommend the top ranked item would
incur the same penalty as failing to recommend the N th

item, even though higher ranked items have higher utility
for the user; similarly, if an item i with utility µ appears
in the true ranking but is replaced by a different item j,
also with utility µ, in the private ranking, it will incur an
unnecessary penalty.

Based on these considerations, we use normalized dis-
counted cumulative gain (NDCG) [15] as our accuracy met-

ric in this paper. Formally, let Â denote a top-N , private

social recommender and let R̂Nu denote the list of ranked

1A profile cloning attack involves setting up a fake node to
impersonate an existing friend of a victim and then issuing a
friend request to the victim. [3] showed a success rate > 60%
for this attack in a recent study of real Facebook users.
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recommendations output by Â for user u. Likewise, let A

denote the non-private counterpart to Â and let RNu denote
the ranked recommendations output by A. We will use µiu
to denote the ideal utility for item i with respect to user
u—that is, the utility computed by A. Then, the NDCG for
the top N recommendations, for a given data set, is defined
as:

NDCG@N =
∑
u∈U

DCG(R̂Nu , u)

DCG(RNu , u)
× 1

|U | (2)

where DCG(X,u) =
∑
i∈X µ

i
u/max(1, log2 p(i)+1) and p(i)

is the index of item i in X. An NDCG@N of one indicates
that the top N items recommended by the private recom-
mender are perfectly ranked by their true utilities, while an
NDCG@N of zero has the opposite meaning.

3. PRIVACY MODEL
To meet the challenges of our adversary, we adopt the

mathematically rigorous differential privacy model [8], which
offers provable privacy guarantees against such adversaries.
The guarantee provided by differential privacy bounds the
ratio of the adversary’s prior and posterior belief that any
one element was present in the input, given an output. Dif-
ferential privacy is traditionally defined as follows:

Definition 5 (ε-Differential Privacy [8,9]). A ran-
domized algorithm A satisfies ε-differential privacy if for all
inputs D1 and D2, differing in one element (i.e. |D1| =
|D2|+ 1 and D1 ⊂ D2, or vice-versa), and for any subset S
of the possible outputs Range(A),

Pr[A(D1) ∈ S] ≤ exp(ε)× Pr[A(D2) ∈ S]

The intuition is that, privacy is preserved when the output of
an algorithm is insensitive to the presence or absence of any
single element in the input data set. The privacy parameter
ε determines the strength of the privacy guarantee and is
typically chosen to be in the range [0.01, 1.0]. Extending
definition 5 to our setting, we have

Definition 6 (Private Social Recommender). For
a fixed social graph, Gs, a social recommender R is ε-different-
ially private if for all preference graphs Gp1 = (U,Ep1) and
Gp2 = (U,Ep2) that differ by at most one edge (i.e. Ep1 ⊆
Ep2 and |Ep2|−|Ep1| ≤ 1, or vice versa), and for any subset
S of the possible recommendation lists in Range(R),

Pr[R(Gp1, Gs) ∈ S] ≤ exp(ε)× Pr[R(Gp2, Gs) ∈ S]

Thus, a social recommender preserves the privacy of pref-
erence edges if the probability of outputting any list of rec-
ommendations is (almost) the same, with or without any
one preference edge.

3.1 Achieving Differential Privacy
Differential privacy can be achieved by injecting carefully

chosen random noise. The magnitude of the noise is cali-
brated according to the global sensitivity of the algorithm,
or the maximum extent to which its output can be affected
by any individual input element. Formally,

Definition 7 (Global Sensitivity [9]). The global
sensitivity of an algorithm A : D → Rd, is

∆A = max
D1,D2

‖A(D1)−A(D2)‖1

for all D1, D2 differing on one element.

The Laplace mechanism is commonly used for achieving
differential privacy [9]. In general, an algorithm with sensi-
tivity ∆ can be made ε-differentially private by adding ran-
dom noise drawn from the Laplace distribution with mean
0 and scale ∆

ε
to its output. We will subsequently use the

notation Lap( ∆
ε

) to denote such noise.

Theorem 1 (Laplace Mechanism). An algorithm A :
D → Rd with sensitivity ∆A, that adds independent noise
from Lap( ∆A

ε
) to each of the d output terms satisfies ε-

differential privacy [9].

The noise depends only on ∆A and ε and is therefore inde-
pendent of the underlying data. ε can be adjusted to provide
the desired level of privacy protection; a smaller ε leads to
a stronger privacy guarantee, while a larger ε weakens the
guarantee. The variance of Lap(λ) is 2λ2, and thus the ex-

pected error is
√
var(Lap(λ)) =

√
2∆
ε

.
The next two theorems state important properties of dif-

ferentially private algorithms that we will refer to in later
discussions.

Theorem 2 (Sequential Composition [25]). For a
set of computations A1, . . . , Ai, . . . , An, each of which satis-
fies εi-differential privacy, the sequential execution of those
computations on non-disjoint inputs satisfies (

∑
i εi)-differ-

ential privacy.

In other words, the privacy guarantee degrades when mul-
tiple differentially private computations operate on the same
input. When the inputs are disjoint, on the other hand, the
resulting sequence of computations is (maxεi)-differentially
private. This is captured in the following theorem:

Theorem 3 (Parallel Composition [25]). For a set
of computations, each of which satisfies εi-differential pri-
vacy, the sequential execution of those computations on dis-
joint inputs also satisfies maxεi -differential privacy.

In the next section, we briefly discuss related work. We then
present our proposed framework in Section 5.

4. RELATED WORK
Aside from the previously mentioned theoretical work of

Machanavajjhala et al. [24], there have been few works to
study privacy in social recommendation. Danezis et al. [6]
proposed a k-anonymity like approach for private social rec-
ommendations; however, this approach, like k-anonymity in
general, is not resistant to collusion or auxiliary informa-
tion attacks. It is these limitations that motivate our use of
differential privacy, which provides strong guarantees in the
presence of such attacks.

McSherry and Mirinov [26] integrated differential privacy
into traditional, non-social recommendation systems, such
as those used in the NetFlix Prize competition. Specifically,
they considered item-based collaborative filtering algorithms
that make recommendations to users based on a sanitized,
global, item-item covariance matrix that is constructed us-
ing item ratings contributed by all users. This is different
from our setting, in which the recommenders are necessarily
user-based and where recommendations are personalized ac-
cording to each user’s social network. In the social setting,
the sensitivity–and hence the amount of noise required to
satisfy differential privacy–grows with the size of the social
graph, which can be very large in practice.
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Private approaches for computing social recommendations
in distributed settings have recently been proposed [12, 16].
However, these approaches use cryptographic techniques to
eliminate the need for a central aggregator with access to
all of the raw preference data; these approaches do not pre-
vent privacy leaks through the output of the recommenda-
tion system (i.e., the recommendations themselves), which
is our goal in the present work.

Since differential privacy was first formalized, a significant
body of work has emerged leading to more advanced mech-
anisms for achieving differential privacy. We now briefly
review a selection of recent works that we feel are most rel-
evant to the present work.

A number of recent works ( [1,11,31–33]) focus on private
histogram publishing, where the goal is to release a noisy
version of a histogram that can be used to answer arbitrary
range queries. Histogram counts have a sensitivity of one,
since each tuple of the underlying data is used in a single
count. In contrast, the utility queries that are computed in
the social recommendation problem are highly correlated,
since a single preference edge can be used in many different
utility queries. Thus these approaches are unsuitable for our
problem.

Differentially private frequent itemset mining (FIM) for
transaction data is studied by [2] and [36]. The goal of
FIM, in general, is to identify top K sets of items that ap-
pear together most frequently in the transactions, which is
similar to the recommendation problem in some respects.
The critical difference is that in FIM, a single global rank-
ing is produced, while in social recommendation a person-
alized ranking is produced for every user from overlapping
sets of preference edges. Personalization implies significantly
higher sensitivity, and hence more noise.

The Matrix Mechanism (MM) [19], and the closely related
Low-rank Mechanism (LRM) [34] consider how to optimize
utility for a workload of correlated, linear queries under dif-
ferential privacy. The idea is to find a different, smaller set
of queries, called a strategy that can be answered more accu-
rately than the original workload, and to use noisy answers
to the strategy queries to derive approximate answers for the
original workload. [19] formalizes this idea but does not pro-
vide an efficient method for deriving suitable strategies for
arbitrary workloads. The low-rank mechanism (LRM) [34]
uses low-rank approximation to derive strategies. In Sec-
tion 6, we show that LRM can be adapted naturally to our
setting, but with negative results.

Very recently, [17] considered a similar problem to ours
(although in an entirely different context), in which the goal
was to privately publish a set of counts (e.g., user ‘check-
ins’ at different locations) where a single user’s data can
affect multiple counts. The proposed group and smooth (GS)
approach involves grouping similar counts, which could be
approximated by their noisy mean. In Section 6.4, we show
that the ideas used in GS can be adapted to our task, but
that the resulting approach is unable to effectively cope with
the high sensitivity of our task.

5. PROPOSED FRAMEWORK
Our goal in this paper is to create a framework that can

be used to easily transform non-private, top-n social recom-
menders (as defined in Section 2.2), into differentially pri-
vate social recommenders that are able to provide non-trivial
privacy guarantees while also maintaining good recommen-

dation accuracy for most users.
At a high level, our approach involves clustering the pref-

erence edges of Gp into disjoint clusters such that the edges
in each cluster frequently co-occur in many different utility
queries. This process minimizes the sensitivity of the utility
queries and greatly reduces the amount of noise required to
satisfy differential privacy. However, the clustering process
essentially trades perturbation error for approximation er-
ror and the challenge is to find a clustering such that the
approximation error is outweighed by the reduction in per-
turbation error. The problem is further complicated by the
fact that if the preference graph is used to guide the cluster-
ing process in any way, then additional noise (and hence ad-
ditional perturbation error) must be injected to ensure that
no privacy is leaked through the clustering process. The sur-
prising finding of this paper is that the insensitive structure
of the social graph alone can be used to guide the creation
of an effective clustering, without incurring any additional
perturbation error.

5.1 Rationale
To better explain the rationale behind our approach, we

begin with a high-level discussion of two strawman approaches
that satisfy differential privacy, but that fail to provide use-
ful recommendation accuracy. We then use the short-comings
identified in the strawman approaches to motivate our pro-
posed user clustering approach, which achieves the same
level of privacy, but with a significantly higher utility. We
start by making some simplifying observations and introduc-
ing additional notation to simplify the discussion.

Our goal is to design a differentially private algorithm
that takes a social graph Gs = (U,Es) and a preference
graph Gp = (U, I, Ep) and returns, for every user in U , a
personalized list of the top N items ranked by utility. Re-
call that in our model, generating a list of recommendations
for an arbitrary user u involves first computing the set of
utility queries µu = {µiu|i ∈ I}, then sorting the items in
I according to their utilities µu, and finally returning the
top N items. Our challenge, then, is to design an algorithm
that can compute perturbed answers to the utility queries
in a differentially private manner; if we can answer the util-
ity queries privately, then the act of sorting and outputting
the top N items also preserves privacy, since post-processing
over sanitized data does not pose any additional privacy risk.

A second simplifying observation is that answering utility
queries for an arbitrary item i, i.e., µiu =

∑
v∈sim(u) sim(u, v)·

w(v, i), requires only the social graph (to compute the sim-
ilarity scores) and the subset Gip ⊂ Gp of preference edges

to item i, i.e., Gip = (U, i, Eip = {(v, i) ∈ Ep|v ∈ U}). Let A
denote the algorithm that takes as input Gs = (U,Es), an
item i ∈ I and the subgraph Gip, and outputs the utilities for

all users with respect to i, i.e., A(Gs, i, G
i
p) = {µiu|u ∈ U}.

If we can devise an ε-differentially private version of A, de-
noted Â, then it follows from parallel composition (Theorem

3), that calling Â(Gs, i, G
i
p) for all i ∈ I, in sequence, also

satisfies ε-differential privacy. Thus, our focus in the follow-
ing discussion will be on devising algorithm Â. At the end
of our discussion, we will present pseudocode for the end-to-
end algorithm, as well as a proof of its privacy guarantees.

5.1.1 Strawman Approaches
One näıve approach, which we will refer to as Noise on

Utility (NOU), to satisfying ε-differential privacy for A in-
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volves a direct application of the Laplace mechanism (Theo-

rem 1) to the utility values output byA. That is, Â(Gs, i, G
i
p) =

{µiu + Lap( ∆A
ε

)|u ∈ U}. The sensitivity ∆A is determined
by considering the greatest possible impact that adding or
removing any arbitrary preference edge could have on the
output of A, i.e., ∆A = maxu∈U

∑
v∈U sim(v, u). Thus, al-

though this approach satisfies ε-differential privacy, the sen-
sitivity may be arbitrarily large in practice. For most social
similarity measures, the sensitivity will be determined by the
user with the highest degree in the social graph and, con-
sequently, the magnitude of the noise introduced into each
utility value will greatly exceed the actual value, leading to
very poor results. Our experimental results (Section 6) con-
firm that NOU leads to nearly a complete loss of utility, even
for very lenient privacy settings.

A second näıve approach, which we refer to as Noise on
Edges (NOE), involves injecting independent Laplace noise
directly into the weight of each preference edge (i.e., ŵ(u, i) =
w(u, i) +Lap( 1

ε
)) and using the resulting sanitized edges as

input to the original algorithm A. Note that non-existent
edges are represented as edges with zero weight. The ex-
pected error for an arbitrary utility query µiu would be√

2
ε

∑
v∈sim(u) sim(u, v). Meanwhile, the true value of µiu is

at most
∑
v∈sim(u) sim(u, v) (but often much less, due to the

sparsity of real-world preference graphs). Thus for any non-
trivial ε the error is expected to drown out the true signal,
leading to poor recommendation accuracy. We demonstrate
the poor accuracy of this approach via empirical results in
Section 6.

5.1.2 Proposed Approach
The approach that we propose in this paper is essentially

an extension of NOE. The general idea is to group multi-
ple preference edges together, forming disjoint clusters, and
then to add noise to the average edge weight of each clus-
ter. We then use the noisy averages in place of the true
weights to derive privacy-preserving estimates for the util-
ity values, which are then used to determine what items to
recommend. As we will explain, this allows us to spread
a small quantity of noise over multiple edges. More for-
mally, let Eip denote the set of preference edges in Gip with

the addition of zero-weight edges for all (v, i) /∈ Gip. Let

S(Eip) = ΦS = {c1, . . . , cn} denote a clustering of Eip into
disjoint clusters ci, produced using a clustering strategy S
2. For now, let us assume that S simply clusters the edges
randomly, without regard to their weights. Equation (3) for-
malizes the process of computing the noisy averages, while
equation (4) uses them to derive a perturbed estimate µ̂iu
for utility query µiu (i.e., the utility of recommending i to
u). Note that since we are only considering the preference
edges for a single arbitrary item i at the moment, one may
think of a cluster as containing users or preference edges,
interchangeably—each user is associated with a single pref-
erence edge, which in-turn belongs to a single cluster. We
will use this fact to simplify the equations and discussions
that follow.

c̄ = Lap

(
1

|c|ε

)
+
∑
v∈c

w(v, i)

|c| (3)

2We assume, in the worst case, that the adversary knows S;
that is, he knows which edges map to which clusters.

µ̂iu =
∑
c∈ΦS

∑
v∈sim(u)∩c

sim(u, v) · c̄ (4)

Note that the sensitivity of the Laplace noise in equation
(3) is 1

|c| , because adding/removing a single edge e to/from

Eip could change c̄ by at most ± 1
|c| , where c is the cluster to

which e was assigned by S. To clarify, since S randomly as-
signs edges to clusters without regard to their edge weights,
adding or removing edge e (which, is equivalent to changing
its weight to one or zero, respectively) does not change e’s
cluster assignment; thus, the average edge weight for only
one cluster is affected by the addition/deletion. Moreover,
since S does not use the sensitive edge weights to determine
the clustering, it does not violate privacy.

Computing the utility estimates with equations (3) and
(4) introduces two sources of error into each estimate: per-
turbation error, due to the Laplace noise, and approximation
error, due to averaging. Equation (5) quantifies the total er-
ror introduced into an arbitrary utility estimate.

Err[µ̂iu] = AEiu +
∑
c∈ΦS

∑
v∈sim(u)∩c

sim(u, v) · Err
[
Lap

(
1

|c|ε

)]

= AEiu +
∑
c∈ΦS

√
2

ε|c|
∑

v∈sim(u)∩c

sim(u, v)

(5)
The AEiu term refers to the approximation error and will be
discussed shortly. The right-hand side of (5) characterizes
the perturbation error due to the Laplace noise. Observe
that as the cluster size increases, the expected perturbation
error quickly disappears. Intuitively, the bigger a cluster
gets, the less sensitive its average weight is to any one pref-
erence edge, allowing a smaller amount of noise to provide
the same level of privacy.

The reduction in noise does not come for free, however.
As equation (6) shows, the price that we pay comes in the
form of approximation error, AEiu, due to averaging:

AEiu = µiu −
∑
c∈ΦS

∑
v∈sim(u)∩c

sim(u, v)× c̄

=
∑

v∈sim(u)

sim(u, v)× w(v, i)−

∑
c∈ΦS

∑
v∈sim(u)∩c

sim(u, v)× c̄

=
∑
c∈ΦS

∑
v∈sim(u)∩c

sim(u, v)× (w(v, i)− c̄)

(6)

From the equation above, it is obvious that simply assigning
edges to clusters at random will lead to a significant amount
of approximation error; however, by using a more intelli-
gent clustering strategy, we can exchange a large amount of
perturbation error for a relatively small amount of approxi-
mation error.

Devising a Clustering Strategy. An immediate obser-
vation from equation (6) is that approximation error occurs
when the weight of a preference edge differs significantly
from the average weight of its cluster. Based on this ob-
servation, we could attempt to design a clustering strategy
that minimizes approximation error by clustering the edges
such that those in the same cluster have the same weight.
However, unlike the random clustering strategy that we have
considered up to now, this strategy requires looking at the
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private edge weights to determine the proper cluster assign-
ment for each edge; consequently, additional noise would
have to be introduced to ensure that the clustering strat-
egy itself satisfies differential privacy. Intuitively speaking,
for such a strategy to work, the noisy average of a cluster
would need to be close in value to the individual weights of
the edges in the cluster, and at the same time, an adversary
(who knows the clustering strategy) should not be able to
deduce, with high probability, the true weight of an edge by
looking at the noisy average for its cluster, or by knowing the
true weights of other edges in the same cluster (i.e., back-
ground knowledge). The inherent incompatibility of these
goals led us to take a different approach to clustering.

Instead of clustering based on the edge weights, we pro-
pose a clustering strategy that uses only the public social
graph as input, and importantly, does not require the in-
troduction of additional noise. The key observation, based
on equation (6), is that low approximation error can be ob-
tained for an arbitrary utility estimate µ̂iu, without the need
to look at the sensitive edge weights, by clustering such
that the edges belonging to the users that are most simi-
lar to u are assigned to the same cluster and constitute a
large fraction of the edges in that cluster3. The following
simple example illustrates. Suppose that there is a clus-
ter c = {(v, i)|v ∈ sim(u)} and assume for simplicity that
sim(u, v) = x,∀v ∈ sim(u); then, rewriting equation (6), we
can see that the approximation error cancels out:

AEiu =
∑
c∈ΦS

∑
v∈sim(u)∩c

sim(u, v)× (w(v, i)− c̄)

=
∑

v∈sim(u)

x× (w(v, i)− c̄)

= x×

 ∑
v∈sim(u)

w(v, i)−
∑

v∈sim(u)

c̄


= 0.

(7)

Of course, in real social graphs, any given user will usually
belong to many different similarity sets, so it will not be
possible to produce clusters that are both disjoint and that
perfectly correspond to the similarity sets of all users, as the
example above assumes. However, the observation above
suggests that approximation error can be significantly re-
duced by building clusters around groups of edges belonging
to users that have high mutual similarity to many of the
same users.

Remark. Before proceeding with our discussion, we point
out that since we are now talking about clustering based only
on the similarity sets—without any regard to the preference
edge weights—we can view this conceptually as producing
a single clustering of the users, from which the cluster as-
signments for the preference edges, with respect to any item
j, can be derived. That is, regardless of which item we are
computing utility estimates for, the cluster structure is the
same. To clarify further, this implies that two preference
edges (u, i) and (v, i) are in the same cluster if and only
if edges (u, j) and (v, j) are in the same cluster (for any
u, v ∈ U and i, j ∈ I).

Clustering via Community Structure. For the social

3Recall that computing the similarity of two users, sim(u, v)
uses only the public social graph; thus, no privacy is leaked
by this clustering strategy.

similarity measures discussed in Section 2.2 (and other nat-
ural choices), we make the intuitive observation that groups
of users with high mutual similarity tend to be highly in-
terconnected via many short paths in the social graph. In
the graph analysis literature, such regions of highly intercon-
nected nodes are called communities, and they are an inher-
ent and well-studied characteristic of real social graphs [10].
In light of this connection, we investigated community de-
tection as a clustering strategy for reducing approximation
error.

For this work, we adopted the popular Louvain method
[4], due to its demonstrated ability to quickly and accurately
detect communities in very large graphs [10]. Louvain is a
fast, heuristic approach that involves the greedy maximiza-
tion of modularity to detect communities. Modularity is a
measure of the density of edges within clusters relative to
that of the same clusters in a hypothetical null model—a
graph with the same nodes and degree distribution but with
the edges randomly re-wired. The modularity of a clustering
Φ, denoted Q(Φ), is defined as

Q(Φ) =
∑
c∈Φ

|Ec|
2|Es|

−
(∑

u∈c deg(u)

2|Es|

)2

(8)

where Ec denotes the set of edges in cluster c, and deg(u)
is the degree of user u. Louvain begins by placing each user
node in its own cluster. It then considers each node of the
graph in sequence, moving it into one of its neighbors’ clus-
ters, if doing so would lead to a gain in modularity. This
process is repeated until convergence, at which time the al-
gorithm contracts each cluster into a single super-node and
repeats the process on the new graph. These two steps are
repeated until the modularity is maximized. We addition-
ally incorporate a multi-level refinement step (see [29]) that
helps to make the clustering output more stable under dif-
ferent initial node orderings. Louvain has a running time
that is linear in the number of edges, allowing it to scale to
graphs with billions of edges [10].

Remark. One may question why we did not choose to
cluster the users by applying a matrix clustering algorithm,
such as K-Means, directly to the user similarity matrix. We
point out that, unlike community detection, matrix cluster-
ing algorithms typically require the number of clusters to
be specified a priori, which can be difficult to determine in
practice4. Moreover, scalability would likely be an issue for
such approaches, given the enormous size of modern social
graphs.

5.2 Algorithm and Analysis
Algorithm 1 presents the end-to-end algorithm for our

framework. The algorithm takes as input the two graphs,
the number of recommendations N , and the privacy param-
eter, ε. It returns the set R containing, for each user u ∈ U ,
a personalized list Ru of the top N item recommendations.
In lines 1–7, the set of users is clustered into disjoint clus-
ters and noisy averages of the edge weights are computed
for each cluster, item pair, i.e., equation (3). Lines 8–17
compute the noisy utility values for every user-item pair,
following equation (4). Finally, in lines 18–20, a personal-

4Note that we cannot simply try different values of k and
pick the one that yields the most accurate utility estimates
with equation (4), as comparing the estimates against the
true utilities would violate differential privacy.
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Algorithm 1 Privacy-Preserving Social Recommender

Input: Gs, Gp, N, ε
Output: The set R containing a recommendation lists Ru for

each user with the top N items ranked by utility.

1: Φ← createClusters(Gs)
2: for item i in I do
3: for cluster c in Φ do
4: wic ← 0
5: for user u in cluster c do
6: wic ← wic + w(u, i)

7: ŵic ←
wi

c
size(c)

+ Lap
(

1
size(c)ε

)
8: for user u in U do
9: Initialize Ru ← �

10: for item i in I do
11: µ̂iu ← 0
12: for cluster c in Φ do
13: Initialize sim sum← 0
14: for user v in c ∩ sim(u) do
15: sim sum← sim sum+ sim(u, v)

16: µ̂iu ← µ̂iu + sim sum× ŵic
17: Append the tuple (i, µ̂iu) to the list Ru

18: Sort Ru in descending order of utility
19: Truncate Ru to the top N items
20: Add Ru to R
21: return R

ized recommendation list is produced for each user from the
noisy item utilities. We reiterate that createClusters(Gs)
technically clusters the users (not the preference edges) into
disjoint clusters; thus, size(c) in the algorithm refers to the
number of users in cluster c. The same clustering of the
users is used for computing the noisy utility estimates for
all items (i.e., for every iteration of the loop beginning on
line 2).

The framework can be easily customized by plugging in
different social similarity measures for sim(u, v) in line 15 or
alternate different clustering algorithms on line 1. As long
as both the similarity measure and the clustering algorithm
operate solely on the social graph, Gs, then ε-differential
privacy is satisfied, as we will prove next.

5.2.1 Privacy Analysis

Theorem 4. Algorithm 1 satisfies ε-differential privacy
for preference edges.

Proof. Consider a social graph Gs = (U,Es) and two ar-
bitrary preference graphs, Gp = (U, I, Ep) andG′

p = (U, I, E′
p),

such that E′
p is obtained from Ep by adding or removing a

single preference edge. We can view Algorithm 1 as consist-
ing of three modules:

1. createClusters(Gs), on line 1, clusters the user nodes
into a set of disjoint clusters, Φ, based on the social
graph.

2. Aw(Φ, ε, Gp) is the module consisting of lines 2–7, which
takes the clustering Φ and the preference graph Gp,
and outputs ŵ = {ŵic|i ∈ I; c ∈ Φ}, containing the
noisy averages for each cluster-item pair.

3. AR(Gs,Φ, N, ŵ), consisting of lines 8–21, uses the noisy
averages ŵ output by Aw to compute the utility esti-
mates for every user-item pair and outputs R contain-
ing the top N items Ru for every user u ∈ U .

Observe that only module Aw makes use of the private
preference data. The clusters output by createClusters are
derived solely from the public social graph, and module AR
uses only public data and the sanitized output, ŵ, from Aw.
Therefore, to show that Algorithm 1 is ε-differentially pri-
vate, it suffices to show that module Aw satisfies definition 5;
that is, we need to show that for any set of possible outputs
O ⊆ Range(Aw),

Pr[Aw(Φ, ε, Gp) ∈ O)] ≤ exp(ε)Pr[Aw(Φ, ε, G′
p) ∈ O)].

Observe that the outer loop of module Aw (beginning on
line 2) is run one time for every item. Let us consider an ar-
bitrary iteration j (that is, the iteration for item j). Ignoring
the Laplace noise added on line 7, for the moment, we can
view the output of iteration j as the vector wj =

〈
wjc |c ∈ Φ

〉
.

Observe that adding or removing a single arbitrary prefer-
ence edge (v, j) to/from Gp could change wjc by at most
±1/|c|, where c is the cluster containing user v.5 We can
view the process of computing the noisy averages wj as per-
forming a sequence of disjoint computations, since each aver-
age uses a different subset of the preference edges (e.g., wjc is
computed only from the subset of edges {(v, j)|v ∈ c} ⊂ Gp).
In line 7, we add independent Laplace noise from Lap( 1

ε|c| )

to each of the averages, which satisfies ε-differential privacy
for each, by Theorem 1. By Theorem 3, computing the se-
quence of averages in wj satisfies ε-differential privacy, and
therefore iteration j as a whole satisfies ε-differential privacy.
Finally, since each iteration of Aw operates on a disjoint
set of the preference edges (i.e., those attached to a single
item), the parallel composition property (Theorem 3) ap-
plies again, and module Aw as a whole satisfies ε-differential
privacy. Therefore, we have

Pr[Aw(Φ, ε, Gp) = ŵ)] ≤ exp(ε)Pr[Aw(Φ, ε, G′
p) = ŵ)].

which holds for every ŵ ∈ Range(Aw); thus, we have

Pr[Aw(Φ, ε, Gp) ∈ O] =
∑
ŵ∈O

Pr[Aw(Φ, ε, Gp) = ŵ)]

≤
∑
ŵ∈O

exp(ε)Pr[Aw(Φ, ε, G′
p) = ŵ)]

= exp(ε)Pr[Aw(Φ, ε, Gp) ∈ O],

as desired. This completes the proof.

6. EXPERIMENTAL ANALYSIS
Due to the data-dependent nature of our proposed ap-

proach, we conducted a series of experiments designed to
evaluate the trade-off between privacy and accuracy for dif-
ferent instantiations of our framework on two real-world data
sets. In particular, we sought to validate our hypothesis that
clustering according to the community structure of the so-
cial graph would produce clusters that effectively balance ap-
proximation error and perturbation error. We also sought to
determine how the number of recommendations, N , and the
privacy setting, ε, impacts the accuracy of the recommen-
dations. Additionally, we compared our approach against
the two näıve baseline approaches, NOU and NOE (Section
5.1.1), and against adaptations of two recent differential pri-
vacy approaches (GS [17] and LRM [34]) (Section 4).

5Recall that the clusters contain users, so adding or remov-
ing a preference edge does not change |c|.
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Figure 1: (Last.fm) Comparison of average NDCG@N of each private social recommender for different settings
of ε and N on Last.fm.
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Figure 2: (Flixster) Comparison of average NDCG@N of each private social recommender for different settings
of ε and N on Flixster. (Note the different y-axis values used in this figure compared to Fig. 1.)

6.1 Datasets
We used two publicly available6 data sets that were crawled

from two online, entertainment-oriented communities: (1)
Last.fm, a social music service, and (2) Flixster.com, a so-
cial movie rating web site.
Last.fm data set [5]. This relatively small data set con-
tains undirected social edges between user nodes that indi-
cate mutual friendship, and directed edges from user nodes
to artist nodes expressing listened-to relations where each
edge is weighted by the number of times the user listened to
a song by the artist. The social graph consists of one main
connected component containing 97.4% of the user nodes
and 19 small connected components with 2 to 7 nodes each.
We constructed a preference graph Gp by discarding 636
listened-to edges (< 0.07% of the edges in Gp) with weight
< 2, and assigning a weight of 1 to the remaining edges.7

Table 1 summarizes the pre-processed data set.
Flixster data set [14]. This much larger data set con-
tained more than 700K users and almost 49K movies. We
chose to use the main connected component of the social
graph induced by the set of users with at least one prefer-
ence edge (movie rating). The resulting data set contained
around 137K users and almost 49K items (movies). Each
preference edge (u, i) had a weight in the range [0.5, 5], in-
dicating the rating given to movie i by user u. To get rid
of ratings that were likely to indicate dislike, we discarded
edges having weight < 2 (6.6% of |Ep|) and assigned a weight
of 1 to the remaining edges.

6Last.fm: http://ir.ii.uam.es/hetrec2011/datasets.
html; Flixster : http://www.sfu.ca/~sja25/datasets
7Listening to an artist only once is unlikely to indicate a
positive preference.

Table 1: Summary of data sets.
Last.fm Flixster

|U | 1,892 137,372
|Es| 12,717 1,269,076

avg. user degree 13.4 (std. 17.3) 18.5 (std. 31.1)
|I| 17,632 48,756
|Ep| 92,198 7,527,931

avg. item degree 48.7 (std. 6.9) 54.8 (std. 218.2)
sparsity(Gp) 0.997 0.999

6.2 Experimental Setup
We instantiated our framework with each of the four social

similarity measures introduced in Section 2.2, yielding four
private social recommenders, denoted AA, CN, GD8 and
KZ9, respectively. We used NDCG (Section 2.4) as our ac-
curacy metric. The NDCG values reported for a given data
set are averages over the users in the data set. Experiments
were repeated 10 times. For the Flixster data set, we gener-
ated recommendations for a random subset of 10,000 users;
however, we emphasize that we used all 137,372 users in the
clustering phase and for computing the recommendations of
the randomly selected users. To cluster the social graphs, we
ran the Louvain algorithm 10 times (with different random
node orderings each time) and selected the clustering with
the highest modularity. For Last.fm, 35 clusters were pro-
duced. The main connected component of the graph was di-
vided into 16 clusters containing an average of 115 (std. 164)

8For GD, we limited the maximum distance d = 2.
9For KZ, we limited the maximum path length k = 3 and
fixed the damping factor α = 0.05.
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Figure 3: Relationship between user degree (log
scale) and NDCG@50 due to approximation error
(i.e., ε =∞), observed for CN similarity measure on
Last.fm (a) and Flixster (b). A similar relationship
was seen for the other similarity measures (omitted).

users each, while the remaining 19 clusters corresponded di-
rectly to the 19 small components of the social graph. The
largest cluster contained 28.5% of the users. For Flixster, 46
clusters were produced with an average size of 2,986 users
(std. 6,399 users). The largest cluster contained 18.3% of the
users. We used the Louvain implementation with multi-level
refinement from Pajek v3.0710. All experiments were per-
formed on a single machine with an Intel Core i7 (2.8Ghz)
and 12G of RAM.

6.3 Analysis of Privacy-Accuracy Trade-off
We evaluated our framework using a variety of privacy

settings (ε ∈ {∞, 1.0, 0.6, 0.1, 0.05, 0.01}) and numbers of
recommendations (N ∈ {10, 50, 100}) to investigate their
effect on the recommendation accuracy (NDCG@N ). The
results for Last.fm and Flixster are shown in Figs. 1 and 2,
respectively. Recall that a smaller ε leads to more noise but
stronger privacy. We included ε = ∞ (i.e., no noise) to see
how much of the accuracy loss was due to the approximation
error alone. For perspective we also include results for the
two näıve baseline approaches, NOU and NOE (from Section
5.1.1), on Last.fm with ε ∈ {0.1, 1.0} and N = 50 (Figs. 4(a)
and 4(b)). The baseline results for Flixster were comparable
and thus omitted for space.

Effect of Approximation Error. We start by analyz-
ing the impact of the approximation error alone (i.e., ε =
∞). We will focus our discussion on NDCG@50 (Figs. 1(b)
and 2(b)), as similar observations can be made for the other
values of N . Looking at the left-most points (ε =∞) of each
line in Fig. 1(b), we can see that for Last.fm, the approxi-
mation error accounted for a loss of between 0.13 and 0.19
in average accuracy, depending on the recommender. On
Flixster (Fig. 2(b)), the accuracy loss due to approximation
error was < 0.1 for all four recommenders. A closer look at
the results from the user-level also revealed a strong relation-
ship between user degree (in the social graph) and accuracy.
On average, users with more neighbors in the social graph
were less affected by approximation error than those with
few neighbors. For example, Figs. 3(a) and 3(b) illustrate
this effect, as observed for the CN similarity measure on
Last.fm and Flixster, respectively. Each point on the scatter
plots represents the NDCG@50 for one user (averaged over
the 10 runs) as a function of the user’s degree (log scale).
For users with degree > 10 in the Last.fm social graph, the

10http://pajek.imfm.si
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Figure 4: (a) and (b) show NDCG@50 of the näıve
NOU and NOE baselines, as well as adaptations of
the recent LRM [34] and GS [17] approaches, on
Last.fm with ε ∈ {1.0, 0.1}.

average NDCG@50 was 0.969, while for users with degree
≤ 10 the average was considerably lower at 0.809. For the
Flixster social graph, users with degree > 10 had an average
NDCG@50 of 0.975, while for users with degree ≤ 10 the av-
erage was 0.871. The explanation for this effect is that low
degree users tend to have much smaller similarity sets that
make up only a small fraction of the clusters that contain
them; as a result, their utility estimates are heavily affected
by the other non-similar users in the clusters. However, not
all low-degree users experienced excessive amounts of ap-
proximation error; we observed several common exceptions.
Some low-degree users with high-degree neighbors were able
to accumulate large enough similarity sets. Other low degree
users happened to have similarity sets that, despite being
small, were attached to universally popular items, which are
inherently more resistant to approximation error.

Effect of Privacy Parameter (ε). Let us now look
at the results when noise is added into the mix to satisfy
differential privacy. We will again focus our discussion on
NDCG@50 (Figs. 1(b) and 2(b)). For Last.fm, the noise
introduced by privacy settings ε = 1 and ε = 0.6 had very
little effect on the average NDCG@50 compared to ε = ∞.
As ε became closer to 0.1, the Laplace noise had a more sig-
nificant impact, reducing accuracy to between 0.7 and 0.73,
depending on the recommender. Privacy settings below 0.1
led to poor accuracy in general. Comparing these results
to that of the baseline approaches in Fig. 4, the benefits of
our user clustering approach are substantial. Both baselines
performed very poorly, even under weak privacy settings
(Fig. 4(a)). For NOU in particular, the recommendations
were essentially no better than random guessing. NOE per-
formed much better than NOU under low noise (ε = 1.0),
but its accuracy was equally as poor as NOE with ε = 0.1.
Note that the results for LRM and GS, which are also in-
cluded in Fig. 4, will be discussed below, in Section 6.4.

On the Flixster data set (Fig. 2), all four instantiations
of our framework were remarkably resistant to the Laplace
noise, even under the strongest privacy settings. For ε ≥
0.05, the noise had little to no impact on average accuracy.
With ε < 0.05, the accuracy began to fall sharply; how-
ever, even with ε as low as 0.01 (which is considered to be
a very strong privacy guarantee), the accuracy was ≥ 0.79
on average, for all four recommenders. The higher accuracy
observed for the Flixster data set, compared with Last.fm,
appears to be due primarily to the larger average user de-
gree in the Flixster social graph (see Table 1), which led to
much larger sets of mutually similar users on average, and
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in-turn much larger clusters. This enabled a more signif-
icant reduction in perturbation error without significantly
increasing approximation error.

Effect of the Number of Recommendations (N).
For Last.fm, we observed that the average NDCG gener-
ally decreased as N increased from 10 to 100 (comparing
Figs. 1(a) to 1(c)), though the effect was most evident for
small values of ε. This effect can be explained by the fact
that the items that are farther down in the ranking have a
lower utility and are thus more affected by noise; as N gets
larger, there is a greater opportunity for such items to be dis-
placed by the many zero-utility items. On Flixster, increas-
ing N up to 100 only had a negative effect for the strongest
privacy setting ε = 0.01. For larger values of ε, increasing
the number of recommendations actually had a positive im-
pact. This appears to be a product of the higher user degree
and the higher average item degree in the Flixster data set,
which led to a greater number of high-utility items.

6.4 Comparison with Other Approaches
In this set of experiments, we compared our approach with

two recently proposed differential privacy approaches: the
low-rank mechanism (LRM) of [34], and an adaptation of the
group and smooth (GS) approach of [17]. Although neither
of these approaches was designed specifically for the private
social recommendation task, they appear to be the closest
competitors to our approach in the current literature. We
first briefly explain how we adapted these approaches to our
setting, and then present the results.

Low-rank Mechanism. LRM can be applied quite nat-
urally to our task, as follows. Let W denote a |U | × |U |
workload matrix of utility queries, where Wu,v = sim(u, v).
Let Di be a length |U | column vector containing a 1 at po-
sition v when (v, i) ∈ Gp, or a zero otherwise. LRM de-
composes W into matrices B, of size |U | × r, and L of size
r × |U |, such that r < |U | and W ≈ BL. It then adds

Laplace noise to LDi, yielding L̂Di. Noisy answers to the
utility queries for item i are then obtained via the product

BL̂Di. The key is that LDi has lower sensitivity than WDi,
requiring less noise. We used the Matlab LRM implementa-
tion published with [34]. LRM takes two parameters: (1) r
determines the rank of BL and it suggested in [34] to choose
r between rank(W ) and 1.2· rank(W ); we used rank(W ) in
our experiments. (2) γ determines the error tolerance for the
decomposition of W ; we used γ = 10 (γ = 1 for KZ, since
it produces significantly smaller utility values), as suggested
in [34].

Group and Smooth. Although the setting and task
in [17] is different from ours, the idea behind the approach
can be extended to our problem. GS can be thought of as
extending NOU similarly to the way our approach extends
NOE; however, GS relies on uniformity to reduce approxi-
mation error. The idea is to compute answers to all of the
utility queries (non-privately), and then to arrange them in
groups of size m, such that the values in each group are ap-
proximately uniform (using a separate, differentially private
procedure discussed below); the values in each group can
then be approximated by the noisy group average. The noise
added to each group average is Lap( ∆

ε/2
) = Lap( 2∆

ε
), where

∆ = 1
m
× maxu∈U

∑
v∈U sim(v, u). The challenge is how

to group the query answers so that they are approximately
uniform, without leaking privacy. [17] proposes a sampling
approach that amounts to computing rough estimates µ̂iu

for the query answers by ensuring that each preference edge
(v, i) is used in at most one query estimate, selected at ran-
dom from {µ̂iu|u ∈ sim(v)}; then noise is added to to each
utility estimate µ̂iu with ε

2
and ∆ = maxv∈sim(u) sim(u, v).

Finally, the true answers to the utility queries are sorted,
using the rough estimates as the sorting keys, and then
grouped consecutively in groups of size m. In [17], the m
that gave the lowest error relative to the rough utility es-
timates (not the true utilities) was selected; however, for
simplicity we used the m that gave the best NDCG rela-
tive to the true utilities.11 The reader is referred to [17] for
more details on GS and proof that it satisfies ε-differential
privacy.

Results. Fig. 4 shows the NDCG@50 of LRM and GS on
Last.fm, along side the results for NOE and NOU. Although
both significantly outperformed the NOU baseline, both ap-
proaches were outperformed by the NOE baseline. The poor
performance of GS appeared to be due to the ineffectiveness
of the sampling procedure on the highly sparse preference
data, which led to a poor groupings with non-uniform val-
ues. For LRM, we observed that all of the workload ma-
trices had high rank—the average rank was 1808, which is
close to the maximum rank of 1892 for workloads of this
size—and LRM is known to perform poorly on workloads
with high rank [34]. We also note that the number of util-
ity queries, even for this small data set, was larger than the
largest workload considered in [34] (1892 queries vs. 1024).
Our results are consistent with the findings in [34], where
LRM was shown to perform worse as the number of queries
increases. Given that the number of queries in our task is
proportional to the number of users, we would expect the
results to be even worse in practice, where the number of
users is often in the millions. The poor results of LRM and
GS illustrate the futility of NOU-based approaches for the
social recommendation task.

7. CONCLUSIONS AND FUTURE WORK
Our results on the Last.fm and Flixster data sets demon-

strate the ability of the proposed framework to achieve strong
differential privacy guarantees without significantly degrad-
ing the utility of the recommendations produced. These
findings confirm our hypothesis that clustering according to
the natural community structure of the social graph leads
to clusters that strike an effective balance between approx-
imation error and perturbation error for several natural so-
cial similarity measures. There are a number of avenues
for extending this work. A main focus for future work will
be extending our framework to provide differential privacy
guarantees when recommendations are made over dynamic
graphs. We also plan to explore improvements to the clus-
tering strategy, including (1) optimizing it more for the
specific similarity measure being used, and (2) investigat-
ing post-processing heuristics to clean up the clustering by,
for example, pruning low-quality clusters. We also plan to
extend our framework to handle weighted preference edges
(e.g., ratings) and evaluate the impact of different weighting
schemes. Finally, we would like to evaluate the framework
for a larger variety of social similarity measures and on ad-
ditional data sets as they become available.

11This technically violates DP and gives GS an unfair advan-
tage that it would not have in practice.
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