
Toward Hardware-Sensitive Database Operations

David Broneske
University of Magdeburg

Germany
dbronesk@ovgu.de

Sebastian Breß
University of Magdeburg

Germany
sebastian.bress@ovgu.de

Max Heimel
Technische Universität Berlin

Germany
max.heimel@tu-berlin.de

Gunter Saake
University of Magdeburg

Germany
saake@ovgu.de

ABSTRACT
Satisfying the performance needs of tomorrow typically im-
plies using modern processor capabilities (such as single in-
struction, multiple data) and co-processors (such as graphics
processing units) to accelerate database operations. Algo-
rithms are typically hand-tuned to the underlying (co-)pro-
cessors. This solution is error-prone, introduces high imple-
mentation and maintenance cost and one implementations
is not portable to other (co-)processors. To this end, we
argue for a combination of database research with modern
software-engineering approaches. We emphasize our vision
of generating optimized database algorithms tailored to used
(co-)processors from a common code base. With this, we
maximize performance while minimizing implementation and
maintenance effort of hardware-tailored database operations.

1. INTRODUCTION
The growing amount of data is forcing modern database

systems to cope with an increasing demand to deliver im-
proved query performance. Historically, Moore’s Law allowed
us to improve the performance of a database server by simply
upgrading its hardware from time to time – a process also
called vertical scaling [20]. However, the last few years have
shown that frequency scaling is significantly slowing down
due to limitations arising from, e.g., the power wall1 and the
memory wall2. Instead, hardware vendors increasingly rely
on specialization and diversification to improve performance;
a process that will likely lead to a significantly more het-
erogeneous hardware landscape in the future [20]. Already
today, highly specialized co-processors (e.g., graphics cards
or field-programmable gate arrays) are frequently found in

1To achieve better clock rates, more power would be needed
resulting in higher heat dissipation that cannot be handled.
2Access times of main memory have not evolved as good as
processor capabilities of CPUs, which leads to an underuti-
lization of CPUs.

(c) 2014, Copyright is with the authors. Published in Proc. 17th Inter-
national Conference on Extending Database Technology (EDBT), March
24-28, 2014, Athens, Greece: ISBN 978-3-89318065-3, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

database servers and have been successfully used to improve
query performance [11, 14, 21].

Unfortunately, in order to provide optimal performance,
these specialized architectures usually require algorithms
that are specifically tailored to the processing device. Since
the behavior and performance of algorithms – especially
when parallelized – is non-trivial to predict, devising such
a system is a very challenging task. Thus, more and more
researchers demand a proper understanding of algorithm’s
performance on modern hardware [1, 4], leading us to the
following problem statement.

1.1 Problem Statement
The use of heterogeneous processing devices requires hand-

tuned algorithms to exploit hardware capabilities and develop
database management systems with the best performance.
To achieve maximized performance, hand-tuned algorithms
have to be developed without implying high development
and maintenance cost.

1.2 Our Vision
Our vision is to combine the advantages of hand-tuned

database algorithms with the expressiveness of high-level
programming languages to maximize the performance of
database operations on arbitrary hardware from a single code
base. Our goal is to transfer recent research results from
the software-engineering domain to the database domain.
To this end, we propose an interdisciplinary solution for
the problem of mapping impact factors of new hardware to
database operations [9].

The remainder of this paper is structured as follows. In
Section 2, we introduce prominent processing devices and
review important processor capabilities of each device in
Section 3. Arising from the heterogeneity of processing de-
vices, we contribute our vision of hardware-tailored database
operations in Section 4 and conclude in Section 5.

2. CURRENT PROCESSING DEVICES
In the literature, there is a steady improvement of algo-

rithms for different database operations. Every time a new
processing device is introduced, algorithms are tuned to new
hardware features such as AVX [22] or SSE extensions [24].
In this section, we review common processing devices used
for database operations and outline important capabilities
of the devices. Current processing devices include multi-core
CPUs, GPUs, MICs, APUs, and FPGAs.

229 10.5441/002/edbt.2014.22

Multi-Core Central Processing Unit.
The central processing unit (CPU) is the main processor

of the computer. Since a multi-core CPU consists of several
cores per chip supporting several threads per core, a high
parallelism is achievable to execute computation-intensive
tasks [17]. However, parallelism is only helpful if the code is
parallelizable. Otherwise, the CPU pipelines sequential code
to decrease idle time [6]. For this, the CPU supports branch
prediction to evaluate if-statements and insert the proba-
bly right instructions in the pipeline. Another important
capability is to execute SIMD instructions (single instruc-
tion, multiple data), which enables data parallelism. Here,
one instruction is executed on multiple data items in one
cycle, which decreases cache misses and improves instruction
throughput.

Graphics Processing Unit.
With the introduction of general-purpose computing on

graphics processing units (GPUs), a growing attention focuses
on GPUs as processing devices for database operations [10,
12]. GPUs typically have dedicated high-bandwidth memory.
Nevertheless, input data have to be transferred to the GPU
RAM and result data have to be copied back to CPU RAM.
Once data is accessible, GPUs offer highly-efficient SIMD
capabilities executed on a large number of cores. However,
since several GPU cores share the same instruction decoder,
threads executing different branches have to be serialized.

Many Integrated Core.
Arising from the benefits of GPUs, the idea to pack a

number of cores on one separate processing device became
attractive. Hence, Intel proposed their many integrated core
(MIC) architecture [20]. Their MIC, the Xeon Phi, con-
tains around 60 Xeon processors packed in one dedicated
device [20]. Each core supports up to four hardware threads
and a similar memory hierarchy as traditional CPUs. How-
ever, L1- and L2-caches are shared between cores allowing
fast access to data of neighboring cores. Since a MIC con-
sists of several autonomous CPUs, it offers massive thread
parallelism. Furthermore, each processor contains 512-bit
vector processing units to provide high data parallelism in
the execution. Similar to the GPU, a MIC can process only
data dormant in its device memory.

Accelerated Processing Unit.
The so-called accelerated processing unit (APU; also cou-

pled CPU-GPU architecture) consists of a CPU with an
integrated GPU. Consequently, an APU unites properties of
both devices. Furthermore, the CPU and GPU in an APU
use the same main memory as well as consolidated caches,
which is a high benefit in contrast to autonomous CPU and
GPU, because of reduced data transfer cost [13]. However,
since chip space is limited, the GPU part in the APU has less
cores and runs on a lower frequency than their autonomous
counterparts.

Field-Programmable Gate Array.
The field-programmable gate array (FPGA) represents a

novel processing device for database operations. An FPGA
consists of a number of look-up tables and interconnects
between them. A look-up table can take an arbitrary boolean
function and can be re-programmed at any time (with some
re-programming delay). With this, logic units such as those

used in CPUs can be emulated and tailored to the application.
FPGAs are well suited for pipeline parallelization, because
logic units can be pipelined to execute several functions in
one clock cycle. Furthermore, FPGAs can be programmed to
offer data parallelism, because the logic units of one function
can be replicated on the chip. However, the chip space is
limited and, hence, data parallelism is limited as well [21].

3. CAPABILITIES OF MODERN PROCESS-
ING DEVICES

In this section, we emphasize important properties of pro-
cessing devices that influence the performance of database
operations. Here, we consider properties concerning paral-
lelization and memory scaling.

3.1 Parallelization Aspects
Considering the parallelization in modern processing de-

vices, we distinguish between pipeline parallelism and data
parallelism. In the following, we characterize each property
briefly and show which processing device offers the best
support for each property.

Pipeline Parallelism.
Pipeline parallelism from the software point of view means

that if for a number of data items, several instructions have
to be executed one after another, the instructions can be
pipelined. With this, instructions are prefetched to reduce
instruction cache miss latency. Essentially, when an if-clause
occurs, the device has to be able to guess the correct code
branch. To this end, especially the CPU features branch
prediction to estimate the correct branch based on previous
executions of this particular branch. However, if a branch
is executed as often as it is not executed (e.g., in selections
with selectivity factor 0.5), branch mispredictions are bound
to occur, which causes delays for processing [24].

Depending on the given code and problem, the CPU of-
fers good to excellent pipelining capabilities, when branch
prediction offers reliable results. Since the APU is a CPU
with integrated GPU and since the MIC consists of several
CPUs, they also provide good to excellent pipeline paral-
lelism. In contrast, the GPU supports pipeline parallelism
poorly, because little chip space is spent on control logic. In
case of diverging branches, thread execution on GPU cores
are serialized. Excellent pipelining capabilities are offered by
an FPGA, because when including pipeline registers between
each logic unit, data items can be shifted through pipelined
instructions at each clock cycle [21]. Furthermore, pipelines
are programmed into the FPGA, which eliminates pipeline
flushes due to branch misprediction.

Data Parallelism.
With data parallelism, one instruction can be applied to

multiple data items simultaneously. Although this reduces
data cache misses, an important requirement for data par-
allelism is that data items can be processed independently
from each other, because data has to be partitioned for
parallelization.

Considering CPUs, the introduction of AVX- or SSE-reg-
isters enables them to offer a good capability to process
several data items in parallel. However, their ability is still
less powerful compared to GPUs and MICs. Furthermore,
APUs support data parallelism well, although they cannot
compete with dedicated GPUs, because of the limited chip

230

Parallelization Properties Memory Scaling
Processing Device Pipeline

Parallelism
Data
Parallelism

Memory
Capacity

Memory
Bandwidth

Central Processing Unit + / + + + + + +
Accelerated Processing Unit + / + + + + + +
Many Integrated Core + / + + + / + + + + +
Graphics Processing Unit – + / + + + + +
Field-Programmable Gate Array + + – / + – / + + +

Legend: + + = excellent, + = good, – = poor

Table 1: Processing devices and their processor capabilities.

space on an APU limits the number of cores. MICs and
GPUs have good to excellent data-parallelism capabilities,
because they offer several cores for several partitions of data.
They are only limited to the independence of operations on
processed data items. In FPGAs, there is a trade-off between
data and pipeline parallelism and may be configured by the
user as needed. In fact, pipeline parallelism is more beneficial
on an FPGA than data parallelism [21]. Thus, an FPGA
offers poor to good data-parallelism capabilities depending
on the configuration.

3.2 Memory Scaling
We identify two important properties influencing memory

scaling capabilities which are memory capacity and memory
bandwidth.

Memory Capacity.
The memory capacity is important for data intensive ap-

plications. Dedicated devices tend to have less memory than
those that are able to use the main memory for processing.
Furthermore, data has to be present at the accessible memory
of the device to allow processing. Hence, if data does not fit
in local memory, data processing is slowed down.

Considering our processing devices, CPU and APU are
able to use the main memory. Furthermore, when using
non-uniform memory access (NUMA) capabilities of these
processing devices, the installable RAM can be extended
further allowing them an excellent memory capacity of several
hundreds to thousands of gigabytes of available memory. In
contrast, since the GPU and MIC are dedicated devices,
they use their own memory which is only several tens of
gigabytes. Thus, we still account them a good memory
capacity. The FPGA represents a special case, because it is
usually processing streams of data. Thus, depending on the
installed FPGA, it offers poor to good memory capacity.

Memory Bandwidth.
With memory bandwidth, we describe the speed of access

on data which is already located on the working memory
of the device. This property has gained importance, be-
cause memory bandwidth is the new bottleneck for query
processing [5]. Here, especially NUMA capabilities have to
be considered, because access to the memory of neighboring
CPU-sockets is slower and should be avoided [16].

The bandwidth inside an FPGA, MIC and GPU is ex-
cellent, because the memory is hard-wired to its processing
units. In contrast, CPUs and APUs still offer a good mem-
ory bandwidth although extending memory capacity using
NUMA poses new challenges for database systems [16].

Conclusion.
Parallelization and memory capabilities differ strongly be-

tween processing devices as we summarize in Table 1. Since
these properties influence the performance of database opera-
tions, their impact has to be considered in the implementation
process of database operations.

4. TOWARDS TAILOR-MADE DATABASE
OPERATIONS

Database algorithms have to be tailored to the capabilities
of modern processing devices to exploit their full potential.
To this end, first, we identify implementation stages in which
programmers have to take care of the processor capabilities.
Second, we motivate our vision how to produce hardware-
sensitive database operations in a maintainable way. Third,
we reinforce our vision by a possible solution.

Operation tuning

Hardware tuning

Compiler tuning

Algorithm selection &
processor allocation

H
W

-tailoring

Hash join, sort-merge join, ...

SIMD acceleration,
 NUMA awareness, ...

Loop unrolling, ...

Figure 1: Tailoring database operations.

4.1 Implementation Phases
The implementation of hardware-sensitive database oper-

ations has to be done in different phases. We identify four
phases of tailoring, which we visualize in Figure 1.

As an initial step, different algorithms for a database op-
eration are implemented. Here, several authors have already
proposed different algorithms for database operations [2, 4,
12]. After that, each algorithm has to be tailored to available
processing devices. Thus, for each combination of algorithm
and processing device, one flavor (a slightly modified al-
gorithm [19]) is created. The third step includes compiler
tuning, because Rǎducanu et al. identify that the choice
of the compiler also influences algorithm performance [19].
As the last step, the database system has to be aware of
available flavors of algorithms for different processing devices.
Thus, rules for algorithm selection and processor allocation
have to be adapted to conform to available algorithms and
hardware [8, 7].

Each step has already been covered more or less by other
researchers. However, a comprehensive solution considering
each phase is missing. More severely, there is a huge number

231

Flavor generationCustomization

Domain
knowledge

Feature
selection

Hardware
capabilities

Mapping

Features
Common

implementation
artifacts

Domain analysis
Scan

operation

SSE
instructions

AVX
instructions

AltiVec
instructions

<Name> Feature

Optional

Legend:

Alternative SIMD
acceleration

NUMA
awareness

NUMA-aware
scan operator

using AVX
instructions

SIMD acceleration

Scan operation

NUMA awareness

SSE instructions

AVX instructions

AltiVec instructions

Flavor

New
requirements

Domain implementation

Abstract
scan code

OpenCL
transformerSIMD

transformer

NUMA
transformer

NUMA-aware
scan code

Abstract
scan code NUMA

transformer
AVX

transformer

Figure 2: Feature-oriented software-product-line generation.

of different flavors depending on the amount of available pro-
cessing devices, used compilers, and amount of optimizations.
Consequently, the effort to produce optimized code by hand
for the given execution environment is immense, which leads
to the following challenges.

4.2 Challenges
A simple solution for hardware-tailored database oper-

ations is to implement one specialized algorithm for each
processing device. To this end, current research focuses on
hand-tuned algorithms to one processing device. However,
this introduces high implementation and maintenance cost
because of the high variability. Consequently, we need an
implementation technique fulfilling the following points:

Maximized performance: Produced algorithms should
exploit available processor capabilities to achieve the
best performance for database operations.

Reduced implementation and maintenance effort:
Producing one flavor for each algorithm and processing
device per hand incurs much implementation effort,
which has to be reduced [14]. Furthermore, flavors of
one algorithm tend to have similar code parts, because
they produce a similar behavior. Instead of editing
each flavor on its own, similar code snippets should be
handled together when errors have to be corrected.

Current solutions rely on the usage of OpenCL to produce
optimized code for different processing devices [14]. Never-
theless, because of the used abstraction, OpenCL algorithms
typically cannot compete with hand-tuned algorithms re-
garding performance [14]. A promising alternative is used
in OmniDB [23], where adapters are used to adapt the code
to the underlying hardware. On the one hand, they provide
optimized performance on different processing device. How-
ever, on the other hand, they have to write an adapter for a
new device and have to perform code optimization manually
implying high implementation and maintenance effort.

4.3 Possible Solution
To substantiate our vision, we discuss feature-oriented

software development as one approach to create database
operation algorithms with maximized performance on the
specific hardware from a common code base implying reduced
implementation and maintenance effort. For this, we propose
a reasonable workflow, which generalizes necessary steps for
generating hardware-tailored algorithms.

4.3.1 Feature-Oriented Software Development
We propose to use a programming paradigm arising from

the software-engineering community to generate tailored code
from a common code base. This programming paradigm has
been introduced as feature-oriented software development
(FOSD) and has already been used in a variety of scenarios
to construct software product lines (SPLs) [3]. SPLs are ini-
tially proposed to satisfy requirements of different customers
for one product family in order to manage high variability
requirements. For this, features (which represent an incre-
ment in program functionality – e.g., SIMD acceleration)
are derived that can be combined to form an end product.
As a consequence, different products can be created from a
common code base under consideration of different features
(e.g., creating a NUMA-aware SIMD-accelerated scan, or a
loop-unrolled, parallelized scan). FOSD implies several steps
to implement software product lines, as we depict in Figure 2.
These steps are domain analysis, domain implementation,
customization, and flavor generation.

Domain Analysis.
As an initial step, the domain is analyzed to identify pos-

sible variability in the product line. As a result, a feature
model is constructed which reveals variable implementation
parts [3]. In Figure 2, we show an exemplary segment of
a feature model for hardware-tailored database operations,
which contains instruction sets of different CPUs to enable
data parallelism and NUMA awareness. Since we assume
that one machine uses only one CPU model, we visualize
different instruction sets as alternatives. Furthermore, SIMD

232

1 void scan_less(int∗ array, size_t array_size, int comp_val)
2 {...
3 for(int i=0; i < array_size; ++i){
4 int value = array[i];
5 if(value < comp_val){
6 ...
7 }
8 }
9 ...

10 }

Listing 1: Simple scan implementation.

1 void scan_less(int∗ array, size_t array_size, int comp_val)
2 {...
3 //bind thread to the processor holding the data
4 bind_to_proc(getLocalProcessor(array));
5 for(int i=0; i < array_size; ++i){
6 int value = array[i];
7 if(value < comp_val){
8 ...
9 }

10 }
11 ...
12 }

Listing 2: NUMA-aware scan implementation.

1 void scan_less(int∗ array, size_t array_size, int comp_val)
2 {...
3 m128i simd_comp = SIMD_VALUE(comp_val);
4 for(int i=0; i < array_size; i+=sizeof(m128i)){
5 m128i value = SIMD_READ(array[i]);
6 m128 bitmask = SIMD_COMP(value,<,simd_comp);
7 ...
8 }
9 ...

10 }

Listing 3: SIMD-accelerated scan implementation.

1 void scan_less(int∗ array, size_t array_size, int comp_val)
2 {...
3 //bind thread to the processor holding the data
4 bind_to_proc(getLocalProcessor(array));
5 m128i simd_comp = SIMD_VALUE(comp_val);
6 for(int i=0; i < array_size; i+=sizeof(m128i)){
7 m128i value = SIMD_READ(array[i]);
8 m128 bitmask = SIMD_COMP(value,<,simd_comp);
9 ...

10 }
11 ...
12 }

Listing 4: NUMA-aware SIMD-accelerated scan.

acceleration is optional, because in some scenarios, loop un-
rolling performs better than SIMD [19]. This step is necessary
to structure the variability space of our hardware-tailored
database operations and to identify common code of differ-
ent flavors that has to be implemented in one programming
entity.

Domain Implementation.
After the domain analysis, code artifacts are derived that

can be combined to fulfill application requirements. Here,
because of the tree structure of the feature model, common
code of all features is implemented in the parent feature
to reduce code overlaps. Notably, the domain implementa-
tion is not restricted to a specific implementation technique.
Prominent techniques for database systems are, for exam-
ple, preprocessor annotations and FeatureC++ [18]. For our
example in the next section, we motivate the usage of code
transformations to implement necessary variability into code
as another possibility to produce different flavors.

Customization.
The third step includes the customization of the resulting

flavors, in our case to the given hardware. Here, available
features from the feature model are selected for the flavor
generation.

Flavor Generation.
In the flavor-generation step, resulting flavors of the al-

gorithms are created by using the features selected in the
customization step and the programming artifacts of the
domain-implementation step. In Figure 2, a scan operator is
constructed that is NUMA aware and uses AVX instructions.

4.3.2 Example: A Software Product Line for Scans
For a better understanding of software product lines, we

present an example of implementing the scan operator. Our
scan product line includes features for NUMA awareness and
SIMD acceleration as optional features as visualized in the

domain analysis of Figure 2. As an exemplary domain im-
plementation technique, we use code transformations similar
to those that are already established in MonetDB [15] for
transforming and optimizing query plans. We, in contrast,
use this mechanism for tailoring our database operations to
the underlying hardware.

To implement a scan product line, we implement an ab-
stract code artifact for a scan in a domain-specific language
(DSL). For each feature, we define transformers that translate
DSL statements into executable code including additional
functionality. For instance, directly generating the code from
the DSL, we will produce a simple scan as listed in Listing 1.
Instead, when including the NUMA transformer, our scan
supports NUMA, as shown in Listing 2. However, if the ma-
chine does not use NUMA capabilities, but has to use SIMD
instructions, using the SIMD transformer creates the code in
Listing 3. So far, we have implemented one transformer per
feature. The benefit w.r.t. maintainability is visible when
combining both optional optimizations – namely NUMA
awareness and SIMD acceleration. Then, both transformers
are applied on the abstract scan code producing an opti-
mized scan (cf. Listing 4) without further implementation
effort. Considering a high number of n independent code
optimizations (e.g., hand unrolling of loops, code with or
without branching), instead of implementing each of the 2n

code artifacts by hand, FOSD allows to implement only n
code artifacts – in our case transformers – to generate all
different flavors. More severely, if the order of the applied
optimizations matters, the number of flavors to be tailored
by hand is n!.

5. CONCLUSION AND FUTURE WORK
In this work, we argue for tailoring database operations

to the underlying hardware. We show that there is a vari-
ety of different (co-)processors that have to be taken into
account for accelerating database operations. More severely,
processing devices differ in their processor capabilities, be-
cause they were intended to fulfill different tasks. When

233

using different processing devices to get the best perfor-
mance out of the used machine, database algorithms have
to be tailored to available processor capabilities to exploit
their full potential. As a consequence, our vision is to cre-
ate hardware-tailored database algorithms that take into
account the underlying hardware. To this end, we propose
feature-oriented software development as a technique to gen-
erate optimized algorithms from a common code base. Our
vision is that database algorithms are implemented using
feature-oriented-software-development techniques to combine
the maximal performance of hand-tuned algorithms with low
implementation and maintenance cost.

We identify the following steps to realize our vision:

1. Feature modeling: Arising from heterogeneous proces-
sor capabilities, promising capabilities have to be identi-
fied and structured to develop a comprehensive feature
model. This includes fine-grained features that exploit
the processor capabilities in Section 3.

2. Implementation technique: Although, we present a
code-transformation-based approach, there are still fur-
ther techniques that could be used to implement fea-
tures in an SPL. Whether the transformator-based
approach is the best one to go still needs further re-
search.

3. Mapping features to code: Arising from the feature
model, suitable code snippets to implement a feature
have to be identified.

4. Feedback loop: Because of the high amount of possible
optimizations, we cannot create one flavor for each
combination of optimizations, because of the storage
consumption. Rather, we have to identify flavors that
do not perform optimal and replace them during run-
time in a micro-adaptivity way [19].

Finally, we emphasize that this is a continuous process that
has to be refined with the upcoming of new processing devices,
instruction sets, or further hardware capabilities.

6. REFERENCES
[1] A. Ailamaki, D. J. Dewitt, M. D. Hill, and D. A. Wood.

DBMSs on a modern processor: Where does time go?
In VLDB, pages 266–277, 1999.

[2] M.-C. Albutiu, A. Kemper, and T. Neumann. Massively
parallel sort-merge joins in main memory multi-core
database systems. PVLDB, 5(10):1064–1075, 2012.

[3] S. Apel, D. Batory, C. Kästner, and G. Saake.
Feature-oriented software product lines - Concepts and
implementation. Springer, 2013.

[4] C. Balkesen, G. Alonso, J. Teubner, and M. T. Özsu.
Multi-core, main-memory joins: Sort vs. hash revisited.
PVLDB, 7(1):85–96, 2013.

[5] P. A. Boncz, S. Manegold, and M. L. Kersten.
Optimizing database architecture for the new
bottleneck: Memory access. VLDB, 9(3):231–246, 1999.

[6] P. A. Boncz, M. Zukowski, and N. Nes.
MonetDB/X100: Hyper-pipelining query execution. In
CIDR, pages 225–237, 2005.

[7] S. Breß. Why it is time for a HyPE: A hybrid query
processing engine for efficient GPU coprocessing in
DBMSs. The VLDB PhD Workshop, PVLDB,
6(12):1398–1403, 2013.

[8] S. Breß, F. Beier, H. Rauhe, K.-U. Sattler,
E. Schallehn, and G. Saake. Efficient co-processor
utilization in database query processing. Inf. Sys.,
38(8):1084–1096, 2013.

[9] D. Broneske. On the impact of hardware on relational
join processing. Master’s thesis, University of
Magdeburg, 2013.

[10] R. Fang, B. He, M. Lu, K. Yang, N. K. Govindaraju,
Q. Luo, and P. V. Sander. GPUQP: Query
co-processing using graphics processors. In SIGMOD,
pages 1061–1063, 2007.

[11] B. He, M. Lu, K. Yang, R. Fang, N. K. Govindaraju,
Q. Luo, and P. V. Sander. Relational query
co-processing on graphics processors. In ACM Trans.
Database Syst., volume 34. pp. 21:1–21:39. ACM, 2009.

[12] B. He, K. Yang, R. Fang, M. Lu, N. Govindaraju,
Q. Luo, and P. Sander. Relational joins on graphics
processors. In SIGMOD, pages 511–524, 2008.

[13] J. He, M. Lu, and B. He. Revisiting co-processing for
hash joins on the coupled CPU-GPU architecture. In
CoRR, pages 1–14, 2013.

[14] M. Heimel, M. Saecker, H. Pirk, S. Manegold, and
V. Markl. Hardware-oblivious parallelism for
in-memory column-stores. PVLDB, 6(9):709–720, 2013.

[15] S. Idreos, F. Groffen, N. Nes, S. Manegold, K. S.
Mullender, and M. L. Kersten. MonetDB: Two decades
of research in column-oriented database architectures.
IEEE Data Eng. Bull., 35(1):40–45, 2012.

[16] T. Kiefer, B. Schlegel, and W. Lehner. Experimental
evaluation of NUMA effects on database management
systems. In BTW, pages 185–204, 2013.

[17] C. Kim, E. Sedlar, J. Chhugani, T. Kaldewey, A. D.
Nguyen, A. D. Blas, V. W. Lee, N. Satish, and
P. Dubey. Sort vs. hash revisited: Fast join
implementation on modern multi-core CPUs. PVLDB,
2(2):1378–1389, 2009.

[18] M. Rosenmüller, N. Siegmund, H. Schirmeier,
J. Sincero, S. Apel, T. Leich, O. Spinczyk, and
G. Saake. FAME-DBMS: Tailor-made data
management solutions for embedded systems. In
SETMDM, pages 1–6, 2008.

[19] B. Rǎducanu, P. Boncz, and M. Zukowski. Micro
adaptivity in vectorwise. In SIGMOD, pages 1231–1242,
2013.

[20] M. Saecker and V. Markl. Big data analytics on
modern hardware architectures: A technology survey.
In LNBIP, volume 138, pages 125 – 149, 2013.

[21] J. Teubner and L. Woods. Data processing on FPGAs.
Number 35 in Synthesis Lectures on Data Management.
Morgan and Claypool Publishers, 2013.

[22] T. Willhalm, I. Oukid, I. Müller, and F. Faerber.
Vectorizing database column scans with complex
predicates. In ADMS, pages 1–12, 2013.

[23] S. Zhang, J. He, B. He, and M. Lu. OmniDB: Towards
portable and efficient query processing on parallel
CPU/GPU architectures. In VLDB, pages 1374–1377,
2013.

[24] J. Zhou and K. A. Ross. Implementing database
operations using SIMD instructions. In SIGMOD,
pages 145–156, 2002.

234

