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ABSTRACT
With the increasing amount of available data and transformations
manipulating the data, it has become essential to analyze and de-
bug data transformations. A sub-problem of data transformation
analysis is to understand why some data are not part of the result of
a relational query. One possibility to explain the lack of data in a
query result is to identify where in the query we lost data pertinent
to the expected outcome. A first approach to this so called why-not
provenance has been recently proposed, but we show that this first
approach has some shortcomings.

To overcome these shortcomings, we propose NedExplain, an
algorithm to explain data missing from a query result. NedExplain
computes the why-not provenance for monotone relational queries
with aggregation. After providing necessary definitions, this paper
contributes a detailed description of the algorithm. A comparative
evaluation shows that it is both more efficient and effective than the
state-of-the-art approach.

Categories and Subject Descriptors
[Data Curation, Annotation and Provenance]; [Data Quality]

Keywords
data provenance, lineage, query analysis, data quality

1. INTRODUCTION
In designing data transformations, e.g., for data cleaning tasks,

developers often face the problem that they cannot properly inspect
or debug the individual steps of their transformation, commonly
specified declaratively. All they see is the result data and, in case it
does not correspond to their intent, developers have no choice but
to manually analyze, fix, and test the data transformation again. For
instance, a developer may wonder why some products are missing
from the result. Possible reasons for such missing-answers abound,
e.g., were product tuples filtered by a particular selection or are join
partners missing? Usually, a developer tests several manually mod-
ified versions of the original data transformation that are targeted
towards identifying the reason for the missing tuples, for example
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SELECT A.name, AVG(B.price) AS ap
FROM A, AB, B
WHERE A.dob > 800BC

AND A.aid = AB.aid
AND B.bid = AB.bid

(a) SQL query

B
bid title price
b1 Odyssey 15 t1
b2 Illiad 45 t2
b3 Antigone 49 t3

A
aid name dob
a1 Homer 800BC t4
a2 Sophocles 400BC t5
a3 Euripides 400BC t6

AB
aid bid
a1 b2 t7
a1 b1 t8
a2 b3 t9

(b) Sample instance

α{A.name},{AVG(B.price)→ap}
(mQ)

σA.dob>800BC

(mQ3)

1bid
(mQ2)

1aid
(mQ1)

A AB

B

(c) Query tree representation

Figure 1: SQL query (a), instance (b), and query tree (c) of
running example

by removing a selection predicate and observing if the products
then appear in the result.

To improve on this manual analysis of query behavior and to
ultimately help a developer in fixing the transformation, the Nau-
tilus project [13] aims at providing semi-automatic algorithms and
tools for query analysis [12], modification, and testing. This pa-
per focuses on the analysis phase, and more specifically, proposes
a novel algorithm tackling the sub-problem of explaining missing-
answers. Note that explaining missing-answers is not only perti-
nent for query analysis and debugging, but it also applies to other
domains, e.g., to what-if analysis focusing on the behavior of a
query.

Explaining missing answers: running example. Very recently,
approaches to explain missing-answers of relational and SQL
queries have been proposed. This paper focuses on algorithms pro-
ducing query-based explanations, as illustrated below.

EXAMPLE 1.1. Consider the SQL query shown in Fig. 1, both
in its SQL and query tree form. Ignore the operator labels mQi in
the query tree for now. Let us further assume the database instance
shown in Fig. 1(b). Based on these data and query, the query result
includes only one tuple, i.e., (Sophocles, 49).

Assume that we now wonder why we do not find in the result a
tuple with author name Homer and average price greater than 25
(assuming some knowledge on the source data), or more gener-
ally, why we do not find any other tuple with a name different from
Homer or Sophocles. For this why-not question, two query-based
explanations, in the form of picky subqueries, exist: (1) the selec-
tion on attribute dob is too strict to let any author named Homer
pass (indeed, the compatible source tuple t=(a1, Homer, 800BC),
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which is a candidate for contributing value Homer to the result,
has dob = 800BC, so the output of the selection contains no suc-
cessor of t) and (2) the join between A and AB prunes the only
author with name different than Homer or Sophocles.

Related Work. Our work on query-based why-not provenance
falls into the wider research area of data provenance and query
debugging. We briefly review relevant works in this context.

Recently, the problem of relational query and more generally
data transformation verification has been addressed by several tech-
niques, including data lineage [5] and data provenance [3], sub-
query result inspection [9], or visualization [6], or query specifica-
tion simplification [12, 17, 18]. More generally, methods for de-
bugging declarative programming languages [19] may also apply.

The algorithms computing can be categorized w.r.t. the out-
put they generate. We distinguish between instance-based, query-
based, and modification-based why-not provenance.

Instance-based why-not provenance describes a set of source
data modifications that lead to the appearance of the missing-
answer in the result of a query. In our running example, a possible
instance-based result includes the insertion of a tuple (a1, Homer,
801BC) into A implying the deletion of (a1, Homer, 800BC) (due
to key constraints). Algorithms computing instance-based why-not
provenance include Missing-Answers [15] and Artemis [14].

As opposed to that and as illustrated in our running Exam-
ple 1.1, query-based why-not provenance focuses on finding sub-
queries responsible for pruning the missing-answer from a query
result. The state-of-the-art algorithm computing query-based why-
not provenance, called Why-Not algorithm [2], is designed to com-
pute query-based why-not provenance on workflows and also ap-
plies to relational queries when considering relational operators as
the individual manipulations of the workflow, as presented in [2].
Considering such a workflow and the result it produces w.r.t. a
given input, a user may specify a set of tuples missing from the re-
sult (so called missing-answers). However, as we will see through-
out this paper, the Why-Not algorithm has several shortcomings
that may yield incomplete or even incorrect results.

In order to compute modification-based why-not provenance, al-
gorithms [10, 20] rewrite the given SQL query so that the missing-
answer appears in the query result of the rewritten query. For in-
stance, in our introductory example, changing the selection con-
dition A.dob > 800BC to A.dob >= 800BC would result in
the inclusion of the answer (Odyssey, 800BC) in the query result,
which satisfies the user question.

Very recently, [11] has proposed an algorithm to compute hybrid
why-not provenance, a combination of instance-based and query-
based why-not provenance. This work is orthogonal to the work
presented here, and builds on previous work [14]. The algorithm in
[11] may however benefit from any query-based why-not prove-
nance method improving the state of the art and thus from our
method NedExplain.

Shortcomings of the Why-Not Algorithm. Overall, the shortcom-
ings of [2] are linked to processing queries with self-join, empty
intermediate results, the formulation of insufficiently detailed an-
swers, and an inappropriate selection of compatible source data and
their successors. We postpone a detailed discussion on these points
to Sec.4, as it requires further technical details. However, let us
stress two issues based on our running example.

Consider the subquery Q2 (Fig. 1(c)) of our running example.
The output of Q2 consists of three tuples, e.g., one based on the
join between tuples t4, t7, and t2, denoted t4t7t2 for short. Hence,
the output of Q2 is {t4t7t2, t4t8t1, t5t9t3}. Let us consider the
question: Why does the output not contain a tuple with the author

Homer and with a price 49? Intuitively, we see that the responsi-
ble operator is the second join between B and AB, as Homer is not
associated to a book with price 49. However, in this case, the Why-
Not algorithm [2] does not return any answer. The reason for this
is that there are some result tuples with the name Homer (t4t7t2,
t4t8t1), and another one containing a price 49 (t5t9t3). So, ignor-
ing that the expected values are not part of the same result tuple,
the algorithm comes to the conclusion that the missing result is in
fact not missing! From a technical point of view, this is due to the
notion of compatible tuples adopted by the Why-Not algorithm (ac-
tually called unpicked data items in the original publication), which
are input tuples that contain pieces of data of the missing answer.

Why-Not [2] may also return inaccurate results, because of the
way it traces compatible tuples in the query tree. To illustrate
this, let us change the subquery Q3 of our running example to
σA.name=1800 and consider the previous Why-Not question on the
output of Q3, which is now empty. To answer the Why-Not ques-
tion, the Why-Not algorithm [2] identifies as compatible the tuples
t4 from the Authors relation and the tuple t3 from the Books re-
lation. As we saw before, the output of Q2 contains the tuples
t4t7t2, t4t8t1, and t5t9t3. The two first tuples allow to trace t4
and the third one to trace t3. So, the Why-Not algorithm [2] identi-
fies them as successors of the compatible tuples and will continue
tracing them until it fails at Q3 because of the selection. The an-
swer returned by [2] is Q3. However, as shown before, Homer is
not associated to a book with price 49 and so the uppermost join in
Q2 is also responsible for not outputting the desired result although
Q2 is not returned by Why-Not [2]. From a technical point of view,
this is due to a too permissive notion of successor tuple.

Contribution. The previous observations w.r.t Why-Not [2] have
motivated us to investigate a novel algorithm, named NedExplain1.
Our contribution is:
• Formalization of query-based why-not provenance. The current

paper provides a formalization of query-based explanations for
Why-Not questions that was missing in [2]. It relies on new no-
tions of compatible tuples and of their valid successors. This def-
inition subsumes the concepts informally introduced previously.
It covers cases that were not properly captured in [2]. Moreover
it takes into account queries involving aggregation (i.e., select-
project-join-aggregate queries, or SPJA queries for short) and
unions thereof.
• The NedExplain Algorithm. Based on the previous formaliza-

tion, the NedExplain algorithm is designed to correctly com-
pute query-based explanations given a union of SPJA queries,
a source instance, and a specification of a missing-answer within
the framework our definitions provide.
• Comparative evaluation. The NedExplain algorithm has been

implemented for experimental validation. Our study shows that
NedExplain overall outperforms Why-Not, both in terms of effi-
ciency and in terms of explanation quality.
• Detailed analysis of Why-Not. We review in detail Why-Not [2]

in the context of relational queries and show that it has several
shortcomings leading it to return no, partial, or misleading ex-
planations.

Organization. In Sec. 2, we set the theoretical foundation of our
algorithm. In Sec. 3, we introduce and discuss NedExplain in de-
tail. The experiments and comparative evaluation are presented in
Sec. 4. Finally, we conclude in Sec. 5.

1The name is inspired by the name of one of the Nautilus’ passen-
gers in Jules Verne’s novel 20,000 Leagues under the sea, and also
stands for non-existing-data-explain.
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2. QUERY-BASED EXPLANATION
We assume that the reader is familiar with the relational

model [1], and we only briefly revisit relevant notions in our con-
text, in Sec. 2.1. We then formalize the Why-Not question to de-
scribe the data missing from a query result, in Sec. 2.2. In Sec. 2.3,
we introduce the basic notions necessary to trace data throughout
queries, before we more precisely define how we determine the cul-
prit operators. Finally, a formal definition of the why-not answer,
i.e., the definition of our query-based why-not provenance, is given
in Sec. 2.5.

2.1 Relational Preliminaries
Data model. A tuple t is a list of attribute-value pairs of the form
(A1:v1, . . . , An:vn). The type of a tuple t, denoted as type(t), is
the set of attributes occurring in t. For conciseness, we may omit
attribute names when they are clear from the context, i.e., write
(v1, . . . , vn).

A relation schema of a relation R is specified by
type(R)={R.A1, . . . , R.An}. Note that each attribute name Ai
in type(R) is qualified by the relation name R.

A database instance I over a database schema S={R1, . . . Rn}
is a mapping assigning to each Ri in S, an instance I|Ri over Ri.
For the sake of presentation, we sometimes consider a database
instance I as a set of tuples (of possibly different types).
Queries. As relation schema attributes are qualified, two rela-
tion schemas always have disjoint types. To define natural join and
union, we thus introduce renaming.

DEFINITION 2.1 (RENAMING ν). Let T1 and T2 be two dis-
joint types. A renaming ν w.r.t. T1 and T2 is a set of triples
(A1, A2, Anew) where A1∈T1, A2∈T2 and Anew /∈T1 ∪ T2 is a
new unqualified attribute. The co-domain of a renaming ν, denoted
cod(ν) is the set {Anew | (A1, A2, Anew)∈ν}.

T being a type, the mapping ν(T ) associates any Ai ∈ T
to Anew if (A1, A2, Anew) ∈ ν and (A1=Ai) ∨ (A2=Ai), or
otherwise to Ai itself.

With renaming in place, we now define the queries we consider.
Essentially, we cover unions of select-project-join (SPJ) or select-
project-join-aggregate (SPJA) queries.

DEFINITION 2.2 (QUERY Q). Let S={R1, . . . , Rn} be a
database schema. Then

1. [Ri] is a query Q with input schema Ri and target type
type(Ri), i∈[1, n]. [Ri] has no proper subquery.

2. LetQ1, Q2 be queries with input schemas S1, S2, and target
types type(Q1), type(Q2). Assuming S1∩S2=∅:
• [Q1] 1ν [Q2] is a query Q where ν is a renaming

w.r.t. type(Q1) and type(Q2). The input schema of Q
is S1∪S2. Its target type ν(type(Q1))∪ν(type(Q2)).

• πW [Q1] where W ⊆ type(Q1), is a query Q with input
schema S1 and target type W .

• σC [Q1] where C is a condition over type(Q1), is a query
Q with input schema S1 and target type type(Q1).

3. Let Q1 be a query according to (1) and (2) and G ⊆
type(Q1). Let also F={fi(A1) → A′1, . . . , fn(An) →
A′n} be a list of aggregation function calls with fi ∈
{sum, count, avg,min,max} and Ai ∈ type(Q1) that
are associated with the new attribute names A′i, and let
Agg={A′1, . . . , A′n}. Then, αG,F [Q1] is a query Q with
input schema S1 and target type G ∪Agg.

4. [Q1] ∪ν [Q2] is a query Q where ν is a renaming w.r.t.
type(Q1) and type(Q2) if ν(type(Q1))=ν(type(Q2)),
and Q1 and Q2 are queries according to (1), (2), and (3).
The input schema of Q is S1∪ S2 and its target type is
ν(type(Q1)).

For instance, in our example the join 1aid (see mQ1 in
Fig. 1(c)) stands for 1ν . The renaming ν in this case is the triple
(A.aid,BA.aid, aid) which maps the qualified attributes A.aid
and BA.aid to the new attribute aid.

To simplify our discussion, we assume that subqueries are named
and that two subqueries Q1 and Q2 have distinct target attributes.
Of course, users can write their queries in a less restrictive way us-
ing traditional SQL syntax, which are then automatically translated
to our query form.

Given a unary (binary) query Q built from queries Q1 (and Q2),
we consider as Q’s subqueries Q1 (and Q2) as well as their re-
spective subqueries. That is, using a standard tree representation of
queries, one node corresponds to a subquery.

We further define an input instance for a query Q whose input
schema is SQ, as an instance over SQ. This definition, given below,
introduces ηQ to correctly deal with self-joins.

DEFINITION 2.3 (QUERY OVER A DATABASE). A query
over a database schema S is a pair (Q, ηQ) where Q is a query
with input schema SQ and ηQ is a mapping from SQ to S such that
for any R∈S, R.A ∈ type(R) iff ηQ(R).A ∈ type(ηQ(R)).

Given an instance I over S, the evaluation of (Q, ηQ) over I is
defined as the evaluation of Q over the input instance IQ over SQ
defined by: for any S∈SQ, IQ|S=I|R if ηQ(S)=R.

Given the data and query as formalized above, we now formalize
how Why-Not questions are expressed.

2.2 The Why-Not Question
Intuitively, we specify the why-not question by means of a pred-

icate characterizing the data which is missing from a query result.
Such a predicate is a disjunction of conditional tuples, which are es-
sentially attribute-value/variable pairs possibly constrained by con-
junctive predicates. We start by introducing tuples with variables
and then conditional tuples.

DEFINITION 2.4 (v-TUPLE). Let V be an enumerable set of
variables. A v-tuple tv of type {A1, . . . , An} is of the form
(A1:e1, . . . , An:en) where ei ∈ V ∪ dom(Ai) for i ∈ [1, n] and
dom(Ai) denoting the active domain of Ai.

The variables of a v-tuple are similar in spirit to labeled nulls,
used for instance in the context of data exchange [7]. Intuitively,
the semantics associated to such variables is that we do not care
about the value of the corresponding attribute.

In general, we want to be able to express that, although the ac-
tual value is unknown, it yet should satisfy some constraints. For
this reason, we resort to conditional tuples (or c-tuples for short),
previously introduced for incomplete databases [16].

DEFINITION 2.5 (CONDITIONAL TUPLE (c-TUPLE)). Let tv
be a v-tuple and let X be the set of variables in tv . A c-tuple

tc is a pair (tv, cond) where cond=
n∧
i=1

predi and for 1 ≤ i ≤ n

predi :: true | x1 cop x2| x1 cop a
where xi is a variable in X , a∈dom(type(x1)), and cop is a com-
parison operator (6=,=, <,>,≥,≤).
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The type of a c-tuple (tv, cond) is the type of tv . We now are ready
to define what is a Why-Not question.

DEFINITION 2.6 (WHY-NOT QUESTION). A Why-Not ques-
tion w.r.t. a query Q is a predicate P over Q’s target type TQ,

where P =
n∨
i=1

tic, with tic being a c-tuple s.t. type(tic) ⊆ TQ .

EXAMPLE 2.1. The Why-Not question expressed in Ex. 1.1
corresponds to the predicate P=((A.name:Homer, ap:x1), x1 >
25) ∨ ((A.name:x2), x2 6= Homer∧ x2 6= Sophocles) .

In the sequel, we will omit the condition when it is true, i.e., we
may rewrite the c-tuple (t, true) as t. Also, we consider only con-
ditions that compare variables with constants or with variables that
are local to the same relation.

As a reminder, given a query Q whose input schema is SQ, new
attributes may have been introduced through join or union specifi-
cations. These new attributes are well identified and linked to the
input attributes through the renamings used by joins and unions in
Q. Answering a Why-Not question requires to trace back tuples
belonging to the query input instance, which is an instance over
SQ. This further entails that the c-tuples of the (predicate specify-
ing the) Why-Not question need to be rewritten using attributes in
SQ only. This translation is done by inversing the query renamings
as follows.

DEFINITION 2.7 (UNRENAMED PREDICATE W.R.T. A QUERY Q).
Let tc be a c-tuple and a ν be a renaming. Given any
(A1, A2, Anew) ∈ ν , if Anew ∈ type(tc), we replace each
Anew in tc by A1, denoted as ν−1

|1 (tc). We proceed analogously
for A2, yielding ν−1

|2 (tc).
Now, let Q be a query. The mapping UnRQ associates to tc a
predicate defined by:

1. if Q = [Ri] then UnRQ(tc) = tc,

2. Let Q1, Q2 be queries

• if Q = [Q1] 1ν [Q2], then
UnRQ(tc) = UnRQ1(ν

−1
|1 (tc)) ./ UnRQ2(ν

−1
|2 (tc))

• if Q = [Q1] ∪ν [Q2], then
UnRQ(tc) = UnRQ1(ν

−1
|1 (tc)) ∨ UnRQ2(ν

−1
|2 (tc))

• if Q = πW [Q1], Q = αG,F (Q1), or Q = σC [Q1] then
UnRQ(tc) = UnRQ1(tc).

If P is the predicate
n∨
i=1

tic, then the unrenamed predicate asso-

ciated with P given the query Q is
n∨
i=1

UnRQ(t
i
c).

EXAMPLE 2.2. Assume that our sample query Q includes
one more output attribute, i.e., TQ={A.name, aid, ap}, and as-
sume the renaming ν={(AB.aid,A.aid, aid)}. For the predicate
P=(A.name:Homer, aid:a1, ap:x1), the attribute aid can be un-
renamed to A.aid and to AB.aid, two qualified attributes that
cannot be further unrenamed. So, the unrenamed predicate P is
(A.name:Homer, A.aid:a1, ap: x1) ./ (A.name:Homer, AB.aid:a1,
ap:x1)=(A.name:Homer, A.aid:a1, AB.aid:a1, ap:x1).

2.3 Compatibility
Given a Why-Not question about the query Q in the form of a

predicate P , we compute the Why-Not answer by tracing source
data relevant to the satisfaction of P through all subqueries of the
query Q. We identify such relevant data based on their compatibil-
ity with P .

DEFINITION 2.8 (c-TUPLE COMPATIBILITY). Let I be an
instance over a schema S. Let also tc be a c-tuple with type(tc) ⊆⋃
R∈S

type(R) ∪Agg, where Agg is defined as in Def. 2.2-3.

The tuple t=(R.A1:v1, . . . , R.An:vn)∈ I|R, where R∈S, is
compatible with tc if, for the unrenamed form of tc, (1) type(t) ∩
type(tc) 6= ∅ and (2) there exists a valuation ν for tc s.t. (a)
∀A∈type(tc) ∩ type(t):ν(tc.A)=t.A, and (b) ν(tc) |= tc.cond.

The tuple t is compatible with a predicate P if it is compatible
with at least one c-tuple tc of P .

EXAMPLE 2.3. The compatible tuple w.r.t. the c-tuple tc1 =
((Homer,x1), x1 > 25) of our Why-Not question of Ex. 2.1 is t4 ∈
I|A (see Fig. 1(b)). Indeed, both tc1 and t4 have equal values
for their shared attribute A.name, and there exists a value for x1
satisfying x1 > 25.

The set of tuples compatible with tc, called direct compatible
set w.r.t. tc is denoted by Dirtc . Let Stc be the set of relation
schemas typing the tuples of Dirtc . The indirect compatible set
w.r.t. tc, denoted InDirtc , is the restriction of I over the schema
SQ − Stc , thus Dirtc ∩ InDirtc=∅.

EXAMPLE 2.4. Pursuing Ex. 2.3, Dirtc1={t4} whereas
InDirtc1=I|AB ∪ I|B .

2.4 Pickyness
Intuitively, given a query Q and the set of compatible tuples

(both direct and indirect) in IQ, our goal is to trace compatible tu-
ples in the data flow of the query tree; that is, identify subqueries of
Q that destroy successors (formally defined below) of these tuples.

To trace compatible tuples through subqueries, we potentially
need to process each subquery in Q one after the other. To for-
malize this procedure, we associate to each subquery Qi a manip-
ulation mQi that serves as a type signature of Qi. For instance in
Fig. 1, the subqueryQ1 is associated tomQ1, a manipulation of the
form A 1 AB. The input instance Ii of a manipulation mQi in-
cludes solely the output of its direct children in the tree (or, in case
of leaf nodes, the instance of the corresponding table), e.g. mQ1

and B in Fig. 1 for mQ2 . The output of a manipulation m over its
input instance I is denoted by m(I).

Data lineage, or lineage for short as defined in [4], is at the ba-
sis of tuples tracing. Because of space limitation, we cannot re-
produce the formal definition of lineage of [4]. The purpose of
the next example is to give the intuition of how lineage is defined
for operators and also to explain our notation. Next we consider
two relation schemas R(A,B) and S(A,B) and the database in-
stance I=IR ∪ IS where IR={(a1, b1), (a1, b2), (a2, b1)} and
IS={(a1, b1), (a2, b2)}. Let us consider the union operator within
the manipulation m=[R] ∪ [S] whose evaluation on I produces
m(I)={(a1, b1), (a1, b2), (a2, b1), (a2, b2)}. First note that the
lineage of t is only defined when t ∈ m(I). So, the lineage of
the tuple t=(a1, b1) w.r.t. m and I, is defined in [4] as a tu-
ple of instances lineage(t)=<JR,JS>, where JR={(a1, b1)}
is an instance over R and JS={(a1, b1)} an instance over S.
In our setting, the lineage of the tuple t is exactly the same al-
though lineage(t) is presented as a set of tuples (typed tuples) i.e.
lineage(t)={(R.A : a1, R.B : b1), (S.A : a1, S.B : b1)}.

Given a manipulation m and an input instance I, we define that
t∈m(I) is a successor of some tI∈I by tI is in the lineage of t
w.r.t. m. Conversely, we say that tI is a predecessor of t. Fig. 2(a)
illustrates the successor relationship between t and tI belonging to
m(I) and I, respectively.
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(a) w.r.t. a manipulation (b) w.r.t. a query (c) valid successor

Figure 2: Successor t of a tuple tI
We now define the notion of tuple successor w.r.t. to a composed

query. Note that in the following definition, UOp is a unary opera-
tor among σ, π, α, and BOp is a binary operator among ∪, 1. The
definition is illustrated in Fig. 2(b) for the case of unary operators.

DEFINITION 2.9 (TUPLE SUCCESSOR W.R.T. A QUERY).
Let Q be a query over SQ and I be an instance over SQ. A tuple
t∈Q(I) is a successor of some tI∈I w.r.t. Q if, forQ = UOp[Q1]
(resp. Q=[Q1]BOp[Q2]), there exists some t′∈Q1(I1) (resp.
t′∈Q1(I1) ∪ Q2(I2)) such that t is a successor of t′ w.r.t. mQ

and Q1(I1) (resp. Q1(I1) ∪ Q2(I2)) and either t′=tI or t′ is a
successor of tI w.r.t. Q1 (resp. Q1 or Q2). Here, Ii is the instance
over SQi defined by Ii=I |Si for i=1, 2.

We now restrict the notion of successors to valid successors w.r.t.
some tuple set D. This restriction demands that the lineage of a
tuple successor is fully contained in D. In practice, D corresponds
to all compatible tuples (direct and indirect) and is used to ensure
the correctness of our Why-Not answers.

NOTATION 2.1 (VALID SUCCESSOR). LetQ be a query, I be
a well typed input instance for Q and D ⊆ I . A tuple t∈Q(I) is
a valid successor of some tI∈D ⊆ I w.r.t. Q if t is a successor of
tI w.r.t. Q and lineage(t)⊆D.
Next, V S(Q, I, D, t) denotes, for a given instance I, the set of
valid successors of t∈D ⊆ I w.r.t. Q.

In our running example, consider the subquery Q2 on the
input instance I shown in Fig.1(b). Then let D={t4, t2} ∪
I|AB and consider the tuple t4∈D. The output of Q2 is
Q2(I)={t4t7t2, t4t8t1, t5t9t3} (each output tuple is represented
by the identifiers of the tuples in its lineage). We say that the out-
put tuple t4t7t2 is a valid successor of t4 because it is a successor
of t4 w.r.t. Q2 and I and its lineage is included in D (i.e., t4, t7, t2
are all inD). On the contrary, the output tuple t4t8t1 is not a valid
successor of t4 even though it is a successor of t4, because the tuple
t1 which is in the lineage of t4t8t1, is not in D.
Fig. 2 illustrates the notion of valid successor. From now on, we
will generally refer to valid successors when writing successor, un-
less mentioned otherwise.

When tracing tuples - more specifically, compatible tuples -
throughout the query, our goal is to identify which subqueries are
responsible for “losing” compatible tuples. These are declared as
picky, a property at the heart of our definition of Why-Not answers.
More specifically, we define picky manipulations and subqueries
w.r.t. a tuple setD and a tuple tI∈D. The definitions, given below,
are illustrated in Fig. 3.

DEFINITION 2.10 (PICKY MANIPULATION). Letm be a ma-
nipulation, I be a well typed input instance for m and D ⊆ I .
Then m is a picky manipulation w.r.t. D and tI∈D, if there is no
valid successor t of tI in m(I).

DEFINITION 2.11 (PICKY QUERY). Let Q be a query over
SQ, I an input instance for Q and D ⊆ I a set of tuples. Let
tI be a tuple in D.
Assuming that Q=[Q1]BOp[Q2] and that tI ∈ I1 (the case of
tI ∈ I2 is dual), Q is picky w.r.t. D and tI if

(a) Picky manipulation (b) Picky query (c) Secondary Why-Not answer

Figure 3: Pickyness ((a)&(b)) and secondary Why-Not an-
swer (c)

1. V S(Q1, I, D, tI) 6= ∅
2. for each t1 ∈ V S(Q1, I, D, tI), mQ is picky w.r.t. the tu-

ple t1 and the set
⋃

i=1,2

⋃
t∈D

V S(Qi, I, D, t) considering the

input instance
⋃

i=1,2

Qi(Ii).

Now, assuming that Q=UOp[Q1] and that tI ∈ I1, Q is picky
w.r.t. D and tI if

1. V S(Q1, I, D, tI) 6= ∅
2. for each t1 ∈ V S(Q1, I, D, tI), mQ is picky w.r.t. the tu-

ple t1 and the set
⋃
t∈D

V S(Q1, I, D, t) considering the input

instance Q1(I1).

Note that in the definition of a picky query, item 1 enforces that,
just before the top level operator of Q, the tuple tI could still be
traced and item 2 determines that it is no more the case for the top
level operator of Q.

It is easy to prove that the following property holds.

PROPERTY 2.1. Let Q be a query over SQ and let I be an in-
stance over SQ. Let also D ⊆I be a set of tuples and tI ∈ D.
Then, there exists at most one subquery Q′ of Q, s.t. Q′ is picky
w.r.t. D and tI .

EXAMPLE 2.5. For tc1=((Homer, x1), x1>25), assume
D={t4} ∪ IAB ∪ IB . Q1 has two valid successors of t4, i.e.,
those joining t4 with t7 ∈ IAB ⊆ D and t8 ∈ IAB ⊆ D,
respectively. Similarly, Q2 has two valid successors of t4, their
respective lineage {t4, t7, t2} and {t4, t8, t1} being in D. Finally,
we observe that t4 has no (valid) successor w.r.t. Q3 because
t4 does not satisfy the selection condition A.dob > 800BC.
Therefore, Q3 is picky w.r.t. t4 and D.

2.5 Why-Not Answers
In this section, we provide three kinds of answers for a Why-Not

question specified wrt a query Q by a single unrenamed c-tuple
tc. These answers differ in terms of their level of detail or of their
point of view. They are based on the notion of picky subqueries
and consider the direct compatible set Dirtc and the indirect com-
patible set InDirtc . When a Why-Not question is expressed in the
form of a Predicate P , i.e., a disjunction of compatible tuples, the
Why-Not answer of P is the union of the answers of each tc in P .

For the purpose of the following definitions and of covering
aggregation, we assume a subquery (a view) V of Q such that
type(V ) ⊇ {G} ∪ {A1, . . . , An} (see Def. 2.2). We defer the
discussion of determining V to Sec. 3.1. Intuitively, the output
schema of V is such that we can apply the aggregation operator (if
present in Q) directly on the view V (as well as on all its ancestors
in the query tree), enabling us to verify if the conditions defined by
tc on aggregated values, denoted tc.condα, are satisfied.

149



In the next definitions, we assume that Q is a query over SQ
and I is an input instance for Q. We also assume that tc is an
unrenamed conditional tuple, as stated before.

Let us start by defining the detailed answer of a Why-Not ques-
tion, which records: (1) the picky query per compatible tuple (if
any) and (2) in the case of aggregation, the subquery violating the
conditions on the aggregated values.

DEFINITION 2.12 (DETAILED WHY-NOT ANSWER). The
detailed Why-Not answer of tc w.r.t. Q and I, denoted dW IQ(tc),
is defined as follows given that Q′ below is a unary query of the
form UOp[Q1] (resp. a binary query of the form [Q1]BOp[Q2]):⋃
tI∈Dirtc

{(tI , Q′) | Q
′ subquery of Q and

Q′ picky w.r.t. Dirtc ∪ InDirtc and tI}

∪ {(⊥, Q′) | V proper subquery of Q′ and
Q′1(I)(resp. Q′1(I) ∪Q′2(I)) |= tc.condα and
Q′(I) 6|= tc.condα}

The second part of this definition ensures that the conditions on
aggregated values are verified on the input of Q′, but not on its
output.

EXAMPLE 2.6. In our running example V=Q2. The detailed
Why-Not answer for the first part of our Why-Not question (i.e.,
tc1 = ((Homer,x1), x1 > 25)) is {(t4, Q3)} as Q3 is picky w.r.t.
t4 and {t4} ∪ I|AB ∪ I|B and the data provided by V may satisfy
the aggregation condition (e.g., applying the aggregation on the
tuples present in V yields an average price of 30, which is above
25), whereas the empty output ofQ3 does not satisfy this condition.

In general, this detailed answer may be too overwhelming for
a user (due to the potentially large number of picked compatible
tuples). Thus, we also define a condensed Why-Not answer that
only provides the set of picky subqueries to the user, e.g., {Q3} in
the previous example.

DEFINITION 2.13 (CONDENSED WHY-NOT ANSWER). The
condensed Why-Not answer for tc w.r.t. Q and I is defined as
dcW IQ(tc) = {Q′|(dI , Q′) ∈ dWQ(tc)}.

Finally, we also define a secondary Why-Not answer that con-
siders the indirect compatible set InDirtc . Recall that InDirtc
includes data necessary to produce tc, but that is not constrained by
tc (i.e., its necessity is only imposed by Q). Consequently, missing
tc may also be caused by the “disappearance” of InDirtc , a case
we capture with the secondary Why-Not answer.

EXAMPLE 2.7. Assume we replace the right child of Q2, i.e.,
B, with the subquery Q′1=B 1bid TOC and ITOC=∅. Clearly,
Q′1(I)=∅. Now, we find (t4, Q2) as detailed Why-Not answer w.r.t.
tc and D={t4} ∪ IAB ∪ IB ∪ ITOC . However, the fact that Q2

picks t4 may result from the empty result of Q′1, so we return {Q′1}
as secondary Why-Not answer.

As a reminder, Stc is the set of relation schemas typing the tuples
in Dirtc and thus SQ − Stc is the set of relation schemas typing
the tuples in InDirtc .

DEFINITION 2.14 (SECONDARY WHY-NOT ANSWER). Let
S ∈ SQ − Stc . We denote by QS the subquery of Q s.t. QS is
picky w.r.t. I and some d ∈ I|S , and for any d′ ∈ I|S , there is no
successor of d′ w.r.t. QS . Then, the secondary Why-Not answer of
tc w.r.t. Q and I is sW IQ(tc) = {QS | S ∈ SQ − Stc}.

Fig. 3(c) illustrates the secondary Why-Not answer.

3. THE NEDEXPLAIN ALGORITHM
Based on the framework our definitions provide, we now present

NedExplain, an algorithm that takes as input a predicate P over the
output type type(Q) of a query Q over a database schema SQ and
the query input database instance IQ. We limit Q to a union of
SPJA queries, deferring the addition of further operators to future
work. NedExplain supports the computation of any type of Why-
Not answer (see Sec. 2.5). However, due to the limited space, we
focus our discussion on outputting detailed Why-Not answers.

3.1 Preprocessing
NedExplain starts with a preprocessing phase, consisting of the

steps described below:

1) Unrenaming. First, we unrename P as defined in Def. 2.7.
Thereby, we obtain unR(P)=∨n

i=1 t
i
c, where every tic contains

only qualified attributes w.r.t. IQ or aggregated attributes. This
step is performed only once.

We continue by performing the following procedures regarding
one tc of unR(P) at a time, as indicated by the first two lines of
Alg. 1. The union of the results produced for each tic corresponds
to the final Why-Not answer w.r.t. P .

2a) CompatibleFinder. From tc, we can easily compute the di-
rect compatible set of tuples Dirtc⊆IQ w.r.t. tc, by performing
appropriate SELECT statements that retrieve ids2 of the relations
referenced by the qualified attributes of tc (as illustrated in Exam-
ple 3.1). Note that, we demand that all (attribute:value) pairs in tc
that reference the same relation must co-occur in the same source
tuple, also illustrated below. In parallel, InDirtc is determined, as
defined in the context of Def. 2.8.

2b) Canonicalize Q. A relational query Q may result in various
equivalent query plans (trees) and similarly to [2, 5], we choose a
canonical query tree representation that limits the equivalent query
trees to consider. The following two rationales guide our choice of
canonical query tree representation that differs from the canonical
tree representation of [2].

First, we favor finding selections as Why-Not answers over find-
ing joins, as selections are easier to inspect and change by a devel-
oper. Furthermore, this choice allows us to potentially reduce the
runtime of NedExplain, since it allows us to push down selections
(and as we shall see, we traverse and evaluate operators of the query
tree in a bottom-up order).

Second, as described by Def. 2.12, we need to determine if a
subquery (tree node) is picky and whether the condition tc.condα
is satisfied by the subquery’s input and not in its output. In or-
der to maximize the number of subqueries for which we can verify
these conditions, we organize joins such that we obtain a view V
of minimal query size where type(V )⊇G ∪ {A1, . . . , An} and
no cross product is necessary. Intuitively, V corresponds to the
subquery closest to the leaf level in the query tree joining all
grouped and aggregated attributes. We refer to V as breakpoint
subquery. Obviously, for queries without aggregation, the condi-
tion type(V ) ⊇ G ∪ {A1, . . . , An} is trivially satisfied for any
leaf node, i.e., for any V ∈ InstQ (as G ∪ {A1, . . . , An} = ∅),
which results in all leaf nodes being breakpoint queries. Similarly,
all leaf nodes representing relations in IQ \ IV can be considered
as breakpoint queries. We refer to the set of all breakpoint queries,
i.e., V ∪ (IQ \ IV ) as visibility-frontier. Given the query tree with

2These queries assume that each table has a key attribute to
uniquely identify a tuple. The queries can however be trivially
modified to SELECT * queries if no such key exists, processing
will however take more space.

150



minimized breakpoint queries, we place the selections above and
closest to the visibility-frontier to satisfy our first rationale.

Ex. 3.1 clarifies how we obtained the canonical query tree il-
lustrated in Fig. 1 (c). Based on the appropriate selection of the
visibility frontier at Q2, the selection on A.dob has been placed as
close to this frontier as possible.

In the sequel, we denote our canonical query tree satisfying the
above rationales as T .
2c) Primary global structure TabQ. NedExplain relies heavily
on one main global structure, denoted TabQ. TabQ stores inter-
mediate computations as well, as discussed later. More specifically,
TabQ contains the following labeled entries for each subquery m
of Q.
• Input: the input tuple set of subquery m
• Output: the output tuple set of subquery m
• Compatibles: the set of tuples defined by

{ti | ti∈m.Input ∧ (ti ∈ Dirtc
∨ti successor of some t ∈ Dirtc w.r.t. m)}

• Level: the depth of m in T (the root having level 0)
• Parent: the parent node (subquery) of m in T
• Op: the root operation of m
To refer to the entry labeled l of a subquery m, we write m.l, e.g.,
m.level refers to the level of subquery m.

Initialization is trivial for m.Op, m.Parent and
m.Level based on T . For m.Input, initialization is
possible for any m that is a base relation, based on
m.Input={IQ|Ri} where m=[Ri], Ri∈SQ. Then, we ini-
tialize m.Compatibles for any m that is a base relation by
m.Compatibles={Dirtc |Ri} where m = [Ri], Ri ∈ SQ.
The rest of the entries get updated during the execution of the
algorithm. In order to efficiently access the information in TabQ
that is necessary during processing, subqueries are stored in order
of decreasing depth (m.Level) in the query tree. We access
subquery m at position i using the notation m = TabQ[i].
2d) Secondary global structures. Apart from TabQ, we make use
of some other global structures, which are:
• EmptyOutputMan: the set of subqueries producing the empty

set, used to determine the secondary Why-Not answer.
• Non-PickyMan: the set subqueries, producing successors of

compatible tuples.
• PickyMan: the set of pairs (m, blocked), where

m is a subquery and blocked={t|t∈m.Input ∧
m is picky w.r.t. t and Dirtc∪InDirtc for t}.
This structure allows us to determine both the detailed and the
condensed Why-Not answer.

EXAMPLE 3.1. Given our running example and the c-
tuple tc=((A.name:Homer, ap:x1), x1>25), CompatibleF inder
executes the SQL query SELECT A.aid FROM A WHERE
A.name = ‘Homer’ to obtain Dirtc = {t4}. Canonicaliza-
tion of the query in Fig. 1(a) results in the query tree of Fig. 1(c),
where the minimum subquery containing both A.name and
B.price is the subquery Q2, i.e., V = (A 1{A.aid,AB.aid,aid}
AB) 1{AB.bid,B.bid,bid} B. Here, IV = IA ∪ IAB ∪ IB and
IQ \ IV = ∅, so our visibility-frontier consists of V only. The
selection operator σA.dob>800BC is then placed just above V (i.e.,
Q2). Tab. 1 shows the initialization of TabQ given the canonical
query tree of Fig. 1(c).

Entry label A AB mQ1
B mQ2

mQ3
mQ

Input I|A I|AB IB
Compatibles {t4} ∅ ∅

Output
Level 4 4 3 3 2 1 0
Parent mQ1

mQ1
mQ2

mQ2
mQ3

mQ4
Op relation schema relation schema 1 relation schema 1 σ α

Table 1: Primary global structure TabQ

Algorithm 1: NedExplain
Input: SQ,Q, IQ, tc
Output: Detailed, the detailed Why-Not answer

1 CompatibleFinder;
2 Canonicalize(Q);
3 Initialization of global structures: TabQ, Non-PickyMan, EmptyOutputMan,

PickyMan;
4 for (int i=0,. . . , TabQ.size()-1) do
5 m=TabQ[i];
6 if (checkEarlyTermination(m)) then
7 return DetailedAnswer();

8 m.Output← m(m.Input);
9 p←m.Parent;

10 p.Input←p.Input ∪ m.Output ;
11 if (m.Ouput=∅) then
12 EmptyOutputMan← EmptyOutputMan ∪{m};
13 if (m.Compatibles6= ∅) then
14 PickyMan← PickyMan ∪{m,m.Compatibles} ;

15 if (m.Op 6= ‘relation schema’) then
16 p.Compatibles← p.Compatibles ∪ FindSuccessors(m);

17 else
18 if (m.Compatibles6= ∅) then
19 p.Compatibles← p.Compatibles ∪m.Compatibles;
20 Non-PickyMan←Non-PickyMan∪{m};

21 return null;

3.2 Computing Why-Not Answers
After initialization, we visit the subqueries of Q in the order

given by TabQ, which corresponds to the decreasing depth of sub-
queries in the query tree. At each step, we identify the successors
of the compatible tuples and keep track of the picky and non-picky
subqueries along the way. In the end, we return the Why-Not an-
swer (due to the lack of space, we focus only on the detailed Why-
Not answer here).

Alg. 1 is the main algorithm of NedExplain. It takes as input
one unrenamed c-tuple tc, so it will be executed once for each tc in
UnR(P). The overall answer w.r.t. P , will then be the union of all
answers for each tc.

Alg. 1 initializes the compatible tuple sets as well as the global
structures w.r.t. tc in lines 1–3. Next, it iterates through all the sub-
queries stored in TabQ until checkEarlyTermination (Alg. 2)
called at line 6 returns true or the last entry in TabQ has been
reached. If checkEarlyTermination returns true, we compute
and return the detailed Why-Not answer. Otherwise, we continue
with the evaluation of the current subquery m on its input (line 8)
and maintain the entries of m’s parent p in TabQ. We also maintain
the secondary global structures EmpytOutputMan and PickyMan
(lines 11–14). For all subqueries except for those that correspond
to relation schemas (as identified by m.Op), FindSuccessors
(Alg. 3) finds possible successors of compatible tuples in the out-
put of the current subquery and maintains the secondary global
structures PickyMan and Non-PickyMan (line 16). Otherwise,
p.Compatibles and the global structures update as described in lines
17–20. We now further discuss the sub-algorithms that Alg. 1 calls.

Check for early termination (Alg. 2). This step decides whether
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Algorithm 2: checkEarlyTermination
Input: m, a subquery
Output: a boolean value

1 i←poisition of m in TabQ;
2 if (i 6=0 ∧ m.Level6=TabQ[i-1].Level) then
3 int j=i-1;
4 while (j≥0∧TabQ[j].Level=TabQ[i-1].Level)) do
5 if (TabQ[j] ∈Non-PickyMan) then
6 return FALSE;

7 j←j-1;

8 while (i < TabQ.size()) do
9 if (TabQ[i].Op=‘relation schema’) then

10 return FALSE;

11 i← i+ 1;

12 else
13 return FALSE;

14 return TRUE;

or not we have all information in hand to compute our Why-Not
answer. To realise this, checkEarlyTermination evaluates the po-
sition of the node representing the input subquery m in the query
tree, in relation with the position of compatible tuples and their suc-
cessors at other subqueries. More specifically, if m is the leftmost
node at some level in the query tree T , we perform two checks: 1)
we check if in the former level we have any NonPicky subqueries
(lines 4–7) and if not, 2) we also check if among the rest of the sub-
queries there exists one with type ‘relation schema’ (lines 8–11).
Intuitively, we stop Alg. 1 if, according to checkEarlyTermination,
there are no more compatible tuples to trace from m on.

Algorithm 3: FindSuccessors
Input: m, a subquery
Output: the successors of tuples inm.Compatibles, in the output ofm

1 compOrigins← {m′|(m′.Output ∩m.Compatibles 6=
∅) ∧ (m′.parent = m)};

2 successors← ∅;
3 foreach o ∈ m.Output do
4 if lineage(o) ⊆ Dirtc ∪ InDirtc then
5 successors← successors ∪(lineage(o) ∩Dirtc );

6 Blocked← m.Compatibles \ successors;
7 if (successors 6= ∅) then
8 Non-PickyMan← Non-PickyMan ∪{m};
9 if (Blocked 6= ∅ ∧ v not subquery ofm) ∨

10 (V subquery ofm ∧ αG,F (m.Input) |= tc.condα
11 ∧αG,F (m.Output) 6|= tc.condα ) then
12 PickyMan←PickyMan ∪ {(m,Blocked)};

13 return successors;

Finding and managing successors (Alg. 3). For every subquerym
we know the compatible tuples in its input, i.e., m.Compatibles,
and the set of output tuples m.Output. Using this informa-
tion, Alg. 3 finds the valid successors in m.Output of tuples in
m.Compatibles by checking for each o∈m.Output if its lineage
is in Dirtc ∪ InDirtc (line 4).

Any valid successor is returned to Alg. 1 to be added in the par-
ent’s compatible input and in this case, we further add m to the set
of Non-PickyMan subqueries (line 8). Lines 9 through 12 main-
tain the global structure PickyMan, adding the pair of subquery m
and the set of compatible tuples in the input of m without a suc-
cessor in the output of m, namely Blocked (possibly empty), to
PickyMan. The condition for adding this pair to PickyMan imple-
ments the conditions for our detailed missing answer as defined in
Def. 2.12. This detailed answer can thus be trivially derived from
PickyMan (details omitted due to space constraints).

m m.Input m.Output m.Compatibles m.Blocked
A I|A I|A t4 ∅

AB I|AB I|AB ∅ ∅
mQ1

I|A, I|AB t4 1 t7, t4 1 t8, t4 ∅
t5 1 t9

B I|B IB ∅ ∅
mQ2

t4 1 t7, t4 1 t8 t4 1 t7 1 t2, t4 1 t7, ∅
t5 1 t9, IB t4 1 t8 1 t1, t4 1 t8

t5 1 t9 1 t3
mQ3

t4 1 t7 1 t2, ∅ t4 1 t7 1 t2, t4 1 t7 1 t2,
t4 1 t8 1 t1, t4 1 t8 1 t1 t4 1 t8 1 t1
t5 1 t9 1 t3

mQ ∅ ∅

Table 2: TabQ after running NedExplain on our example

EXAMPLE 3.2. Fig. 2 summarizes the results generated while
executing NedExplain and is actually an abstraction of TabQ. For
each new iteration of Alg. 1, i.e., for each subquery in TabQ, a new
row is added to this table until the algorithm exits. For a clarifi-
cation on the generated results, consider the following indicative
cases:

• row 1(m=A): This row concerns the database instance A.
Alg. 2 does not signal an early termination, since m
is the first node in TabQ. Continuing in Alg. 1, we
set m.Output=m.Input. The parent subquery is mQ1 ;
so, mQ1 .Input and mQ1 .Compatibles get initialized with
m.Output and m.Compatibles, respectively. Moreover, since
m contains compatible tuples it is classified as Non-PickyMan.

• row 6(m=mQ3 ): Alg. 1 filled the previous rows of the table in
previous iterations, as well as the current row’s m.Input and
m.Compatibles. The latter has been filled with the succes-
sors of t4 (we show their how-provenance [8] to show their
lineage, and leave it to the reader to verify that they are in-
deed valid successors). Alg. 2 does not signal an early ter-
mination, since mQ2 (the only former level subquery) is not
picky. So, Alg. 1 continues with the evaluation ofm onm.Input
and fills the entries m.Output, and the parent’s mQ.Input
accordingly. Continuing with the call to Alg. 3, we conclude
that m is a picky subquery and that it has blocked all the tu-
ples in m.Compatibles (m.Blocked=m.Compatibles), which
means that no successors have survived this subquery. At this
stage, we also have Non-PickyMan={A,AB,mQ1 , B,mQ2}
and PickyMan={(mQ3 , {t4})}.
• row 7(m=mQ): In this row, m.Input and m.Compatibles got

their values from the previous step. The call to Alg. 2 marks
the early termination of the algorithm; mQ is the first subquery
having m.Level=0 and mQ3 , which is the only subquery in the
previous level, is a picky subquery. Moreover, there are no up-
per subqueries that could contain some compatible tuples. So,
Alg. 1 terminates by computing the detailed Why-Not answer
{t4,mQ3}.

Algorithm discussion. The worst case time complexity of Ned-
Explain is in O(|Q|(L + Out)), |Q| denotes the number sub-
queries of query Q, Out is the worst case size (in terms of num-
ber of tuples) of a subquery’s output, and L is the height of the
query tree. The number of detailed answers returned is bound by
|Dirtc |+ |Q| − |V |, where |V | is the number of subqueries in the
breakpoint query V . We can also prove that NedExplain is correct
and complete w.r.t. to the framework provided by our definitions,
in the sense that it will return a pair (tI , Q′) for every compatible
tuple tI and a maximal set of pairs (⊥, Q′) due to our canonical
tree representation. However, the subqueries returned as Q′’s may
vary for varying equivalent canonical query tree representations.
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In the future, we will investigate algorithms to be invariant w.r.t.
equivalent query tree rewritings.

4. EXPERIMENTS
In this section we display a comparative evaluation of our al-

gorithm with respect to the Why-Not algorithm [2]. Briefly, the
Why-Not algorithm [2] identifies a set of frontier picky manipula-
tions that are responsible for the exclusion of missing-answers from
the result by tracing unpicked data items (tuples) through the work-
flow. Two alternatives are proposed for traversing the workflow:
a bottom-up approach and a top-down approach. The main differ-
ence between the two approaches lies in the efficiency of the algo-
rithms (depending on the query and the Why-Not question). In [2],
it is stated that both approaches are equivalent as they produce the
same set of answers. We have implemented NedExplain and Why-
Not (actually, its bottom-up version as it most resembles the ap-
proach of NedExplain) using Java, based on source code kindly
provided by the authors of Why-Not. The original Why-Not im-
plementation, as well as ours, relies on the lineage tracing provided
by Trio (http://infolab.stanford.edu/trio/). We ran the experiments
on an Oracle Virtual Machine running Windows 7 and using 2GB
of main memory of a Mac Book Air with 1.8 GHz Intel Core i5,
running MAC OS X 10.8.3. We used PostegreSQL 9.2 as database.

4.1 Use Cases
Our datasets originate from three databases named crime, imdb,

and gov. The crime database corresponds to the sample crime
database of Trio and was previously used to evaluate Why-Not.
The data describes crimes and involved persons (suspects and
witnesses). The imdb database is built on real-world movie
data extracted from IMDB (http://www.imdb.com) and MovieLens
(http://www.movielens.org). Finally, the gov database contains
information about US congressmen and financial activities (col-
lected at http://bioguide.congress.gov, http://usaspending.gov, and
http://earmarks.omb.gov). The size of the relations in the databases
ranges from 89 to 9341 records, with crime being the smallest and
gov the largest database. For abbreviation, in the following discus-
sion each relation instance is referred to by its initials, for example
M refers to the Movies instance and L to the Locations instance.
Moreover, when multiple instances of some relation are needed,
we distinguish them by numbers, e.g., M1 and M2.

For each database, we have created a series of use cases (see
Tab. 4). Each use case consists of a query further defined in Tab. 33

and a Why-Not question in form of a predicate P as defined by
Def. 2.6. The queries have been designed to include simple (Q4,
Q6) and more complicated (Q1, Q3, Q5, Q7) queries, queries con-
taining self-joins (Q3, Q4), queries having empty intermediate re-
sults (Q2), SPJA queries (Q8, Q9) and SPJU queries (Q12). To pin-
point the differences between the two algorithms, some use cases
consider the same query with a different predicate.

Based on these use cases, we evaluate NedExplain and Why-Not,
both in terms of answer quality and efficiency.

4.2 Answer Quality
Tab. 5 summarizes the why-not answers obtained by running

our scenarios on Why-Not and NedExplain . For NedExplain, we
distinguish among the detailed, the condensed and the secondary
Why-Not answer, as defined by Defs. 2.12–2.14.

At first sight, the answers provided by Why-Not are simpler and
clearer; they generally consist of a small number of subqueries.

3For easy of presentation, in presence of renaming, we display only
the new attributes introduced by renaming.

Query Expression
Q1 πP.name,C.type(C 1sector W 1witnessName S 1hair,clothes P )
Q2 πP.name,C.type((σC.sector>99(C)) 1sector1 W 1witnessName

(S) 1hair,clothes P )
Q3 πW.name,C2.type(W 1sector2 C2 1sector1 σC.type=Aiding(C))
Q4 πP2.name(σP1.name 6=P2.name(P2 1hair (σP1.name<B(P1)))
Q5 πname,L.locationid(L 1movieId ((σM.year>2009(M)) 1name

(σR.rating≥8(R))))
Q6 πCo.firstname,Co.lastname(

(σAA.party=Republican(AA)) 1id (σCo.Byear>1970(Co)))
Q7 πSPO.sponsorId,SPO.sponsorln,E.camount(E 1earmarkId

(σES.substage=Senate Committee(ES) 1id
(σSPO.party=Republican(SPO)))

Q8 α{P.name},{count(C.type)→ct}(σsector>80

(C 1sector W 1witnessName S 1hair,clothes P ))
Q9 α{SPO.sponsorln},{sum(E.camount)→am}(

σsubstage=Senate Committee(
σparty=Republican(E 1earmarkid ES 1id SPO)))

Q10 πCo.lastname(Co 1id ((σAA.state=NY
(σAA.party=Democrat(AA)))))

Q11 πSPO.sponsorln(σSPO.state=NY
(σSPO.party=Democrat(SPO)))

Q12 Q10 ∪Q11

Table 3: Use cases relational queries

Use case Query Predicate
Crime1 Q1 (P.Name:Hank,C.Type:Car theft)
Crime2 Q1 (P.Name:Roger,C.Type:Car theft)

Crime3 Q2 (P.Name:Roger,C.Type:Car theft)
Crime4 Q2 (P.Name:Hank,C.Type:Car theft)
Crime5 Q2 (P.Name:Hank)

Crime6 Q3 ( C2.Type:kidnapping)
Crime7 Q3 (W.Name:Susan,C2.Type:kidnapping)

Crime8 Q4 (P2.Name:Audrey)

Crime9 Q8 ((P.Name:Betsy,ct:x),x>8)
Crime10 Q8 (P.Name:Roger)

Imdb1 Q5 (name:Avatar)
Imdb2 Q5 (name:Christmas Story,L.locationId:USANew York)

Gov1 Q6 (Co.firstname:Christopher)
Gov2 Q6 (Co.firstname:Christopher,Co.lastname:MURPHY)
Gov3 Q6 (Co.firstname:Christopher,Co.lastname:GIBSON)

Gov4 Q7 (sponsorId:467)
Gov5 Q7 ((SPO.sponsorln:Lugar,E.camount:x),x>=1000)

GOV6 Q9 ((name:Bennett,am:x),x=18700)
Gov7 Q12 (name:JOHN)

Table 4: Use cases

On the other hand, NedExplain provides an answer more complex
in structure, but more informative. Notice that the condensed an-
swer resembles the answer returned by Why-Not and provides an
“easily-consumable” answer as well. Still, they are not the same,
as we will describe later in this section. The subsequent discussion
first highlights the differences of the various kinds of NedExplain
answers before we compare the results of NedExplain with those
that Why-Not produces. Due to the lack of space, we limit the
discussion to representative use cases.

Detailed vs. condensed and secondary Why-Not answers. Con-
sider the Crime6 use case associated to the query tree for Q3
depicted in Fig. 4(b). The condensed answer (but not the Why-
Not algorithm answer, as described later) indicates that m8 is a
picky subquery. The detailed answer consists of pairs of the form
(cdi,m8), i = 1, . . . , 11. For this case, the detailed answer does
not provide substantial new insights compared to the condensed an-
swer, asm8 is responsible for pruning all compatible tuples. In this
situation, the condensed answer is the most appropriate to return to
the user.

However, in other cases, the simplicity of the condensed answer
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NedExplainAnswers
Use case Why-Not Detailed Condensed Sec.

Crime1 (P.Id:2,m2),(C.Id:2,m2) m2

Crime2 m0 (P.Id:604,m0),(C.Id:2,m2) m0,m2

Crime3 m0,m4 (P.Id:604,m0),(C.Id:2,m4) m4,m0

Crime4 m4 (P.Id:2,m5),(C.Id:2,m4) m4,m5

Crime5 m4 (P.Id:2,m5) m5 m4

Crime6 m7 (C2.Id:396,m8), (C2.Id:85,m8), m8

. . . , (C2.Id:112,m8)
Crime7 m7 (C2.Id:396,m8), (C2.Id:85,m8), m8,m9

. . . , (C2.Id:112,m8), (W.Id:2,m9)

Crime8 (P2.Id:51,m12) m12

Crime9 n.a. (null,m3) m3

Crime10 n.a. (P.Id:604,m0) m0

Imdb1 m1 (R.Id:124,m2), (M.Id:18,m1) m1,m2

Imdb2 (L.Id:1,m3), (M.Id:4,m3), m3

(R.Id:245,m3)

Gov1 m2 (Co.Id:569,m0), (Co.Id:1495,m0), m0,m2

(Co.Id:1072,m2), (Co.Id:772,m0)
Gov2 m1 (Co.Id:1072,m2) m2

Gov3 m0 (Co.Id:569,m0) m0

Gov4 m4 (SPO.Id:9,m4), (ES.Id:80,m8), m4,m8

(ES.Id:78,m8), (ES.Id:79,m8)
Gov5 m6 (E.Id:15,m6), (E.Id:324,m6), . . . , m6

(E.Id:533,m6), (SPO.Id:199,m6)

Gov6 n.a. (null,m7) m7

Gov6 n.a. {(Co.Id:772,m11)}, {} {m11},{}

Table 5: Why-Not and NedExplain answers, per use case

may hide from the user more specific, but essential information,
e.g., in cases where the answer is not a single subquery. For in-
stance, in Crime7, the condensed answer (again not the same as in
Why-Not as explained later) identifies m8 and m9 as picky sub-
queries (refer to Q3 in Fig. 4(b)). From the detailed answer, we
moreover obtain the knowledge that there were eleven tuples (orig-
inating from Co) for which m8 is picky, but also one tuple (orig-
inating from W ) for which m9 is picky. This information can be
useful, as it indicates that no valid successors of compatible crime
tuples reached m9 to join with valid witness tuples. So, the ex-
istence of a more detailed answer can be of major help towards
understanding the “background” of the result.

NedExplain vs. Why-Not. Our first comparison between NedEx-
plain and Why-Not focuses on the Crime5 use case, with the as-
sociated query Q2 (its query tree is given in Fig. 4(a)) having an
intermediate empty result on m4 (σsector>99(C)). The Why-Not
algorithm identifiesm4 as a picky subquery, which is correct in the
sense of responsibility for the missing result tuple. Yet, it cannot
be considered as picky in the strict form, since it is not blocking di-
rectly any compatible tuple. In this use case, NedExplain provides
a more complete and descriptive answer. It identifiesm5 as a picky
subquery, and in addition it includes m4 in the secondary answer.
Knowing thatm4 produced an empty set right before the join inm5

can possibly be another reason for m5 being identified as picky.
Let us now focus on the cases where the answers of Why-Not

and NedExplain differ, i.e., Crime6 and Crime7. Both use cases
relate to Q3, which contains a self join on relation Crime. The
Why-Not algorithm falsely identifies m7 (σC1.type=Aiding(C1))
as a picky subquery, because it locates the compatible tuples in
both C1 and C2. As a result the compatible tuples from C1 with
type:Kidnapping are naturally picked at m7. This problem is
solved by our algorithm, by introducing the notion of qualified at-
tributes. In this way, we locate the compatible tuples only in the
correct instance of the relation Crime, i.e., C2, according to the
type of the output of the query Q3.

Another problem having its origin in the identification of com-

patible tuples can be spotted at use case Crime8. Even though it
is based on a very simple query (refer toQ4 in Fig. 4(c)), the Why-
Not algorithm finds no answers at all. Q4 searches for persons
that have the same hair as persons whose names start with a letter
smaller than B (while not being the same person). The Why-Not
algorithm places its compatible source tuples both in P1 and P2.
The one coming from P2 does not find any join partners in m12

from P1 as the only candidate ones have names starting with C or
D, namely Davemonet, Chiardola, and Debye. So m12 is picky
for the compatible tuple coming from P2. The one coming from
P1 survives the selection of m11 and joins with the three persons
with equal hair color coming from P2, namely Davemonet, Chiar-
dola, and Debye. Hence, m12 is not picky for three successors of
the compatible tuple originating from P1, and it is easy to verify
that the same is true for the remaining subqueries to be processed.
Hence, Why-Not believes that Audrey is actually not missing from
the result.

NedExplain on the other hand will correctly locate the compat-
ible tuple only in P2. As mentioned previously, all candidate join
partners coming from P1 for Audrey (that comes from P2), will be
discarded in m11, making m12 a picky subquery for the associated
compatible tuple (P2.Id:51).

Next, we review the Imdb2 use case where the associ-
ated predicate P is not in its unrenamed form. This means
that it contains attributes that are not in SQ, but instead
were introduced through renamings associated to the subqueries.
This use case is based on query Q5 (see Fig. 4(d)), with
the following renaming associated to its subquery m2 (join):
ν= (R.moviename,M.moviename, name). The considered
predicate P=(name:Christmas Story,L.locationId:USANew York)
refers to the new attribute name associated with the subquery
m0 1 m1 in Q5. Thus, before running NedExplain, we transform
P to its unrenamed form: (R.name: Christmas Story, L.locationId:
USANew York) ./ (M.name: Christmas Story, L.locationId: US-
ANew York) = (R.name: Christmas Story, M.name: Christmas Story,
L.locationId: USANew York). As we said, for the compatible tu-
ples we calculate valid successors to trace in the query tree. This
method leads us to the identification of m3 as a picky subquery,
i.e. the subquery after which we find no more valid successors.
Why-Not on the contrary relies on tracing successors (not neces-
sarily valid) of the compatible tuples, which in this case still can be
found in the result set. So, no picky subqueries are identified and
no answers are returned.

Let us now focus on Crime9, based on the SPJA query Q8 (see
Fig. 4(e)). As explained in Sec. 3, NedExplain identifies as break-
point - marked as a bullet on the tree representation - the subquery
m2 and the operators of the query are executed in a predefined
order (putting selections as near as possible to the breakpoint sub-
query). In this way, we are able to identifym3 as a why-not answer;
the condition of the predicate of this scenario, ct > 8 is satisfied
in the input pf m3 (am=13) but not in its output (ct=7). Thus,
the detailed answer is m3 associated with a null value, since m3 is
not picky in a strict sense (valid successors of P.id:604 still exist
in the output of m3). A variation of this use case is the use case
Crime10, where we obtain the detailed answerP.id:604,m0, now
bound to a specific tuple id, as m0 completely erases the trace of
P.id:604. Note that Why-Not results are not available (n.a.) as
the implementation provided by the authors does not support ag-
gregation and from [2], it is unclear how compatible tuples or the
Why-Not question are defined in this case.

Overall, in this first study on answer quality, we observe that
NedExplain produces a correct answer for all use cases, as opposed
to Why-Not that showcases no, imprecise, or incomplete results in

154



⇡P.name,C.type

(m6)

1sector

(m5)

1witnessName

(m1)

1hair,clothes

(m0)

S P

W

�C.sector>99

(m4)

C

⇡W.name,C2.type

(m10)

1sector2

(m9)

1sector1

(m8)

�C1.type=Aiding

(m7)

C1

C2

W

⇡P2.name

(m14)

�P1.name 6=P2.name

(m13)

1hair

(m12)

�P1.name<B

(m11)

P1

P2

⇡name,L.locationid

(m4)

1movienameid

(m3)

1name

(m2)

�R.rating�8

(m0)

R

�M.year>2009

(m1)

M

L

(a) Query Q2 (Crime3, Crime4, Crime5) (b) Query Q3 (Crime6, Crime7) (c) Query Q4 (Crime8) (d) Query Q5 (Imdb1, Imdb2)
↵{P.name},{count(C.type)}

(m4)

�C.sector>60

(m3)

• 1sector

(m2)

1witnessName

(m1)

1hair,clothes

(m0)

S P

W

C

(e) Query Q8 (Crime9, Crime10) (f) Query Q9 (Gov6)

Fig. 4. Query trees for queries Q2, Q3, Q4, Q5, Q8, Q9

the associated query Q2 (its query tree is given in Figure 4(a))
having an intermediate empty result on m4 (�sector>99(C)).
The Why-Not algorithm identifies m4 as a picky subquery,
which is correct in the sense of responsibility for the missing
result tuple. It cannot yet be considered as picky in the
strict form, for not blocking directly any compatible tuple.
In this use case, NedExplain provides a more complete and
descriptive answer. It identifies m5 as a picky subquery, and
in addition it includes m4 in the Secondary answer. Knowing
that m4 produced an empty set right before the join in m5 can
possibly be another reason for m5 being identified as picky.

Let us now focus on the cases where the answers of
Why-Not and NedExplain differ that we already mentioned
previously, i.e., Crime6 and Crime7. Both use cases relate
to Q3, which contains a self join on relation Crime. The Why-
Not algorithm falsely identifies m7 (�C1.type=Aiding(C1)) as
a picky subquery, because it locates the compatible tuples
(unpicked data items in Why-Not algorithm) in both C1 and
C2. So, as a result the compatible tuples from C1 with
type:Kidnapping are naturally picked at m7. This problem is
solved by our algorithm, by introducing the notion of qualified
attributes. In this way, we locate the compatible tuples only
in the correct instance of the relation Crime, C2, according to

the type of the output of the query Q3.
Another problem having its origin in the identification of

compatible tuples can be spotted at use case Crime8. Even
though it is based on a very simple query (refer to Q4 in
Figure 4(c)), the Why-Not algorithm finds no answers at all.
Q4 searches for persons that have the same hair as persons
whose names start with a letter smaller than B (while not
being the same person). The Why-Not algorithm places its
compatible source tuples both in P1 and P2. The one coming
from P2 does not find any join partners in m12 from P1 as the
only candidate ones have names starting with C or D, namely
Davemonet, Chiardola, and Debye. So m12 is picky for the
compatible tuple coming from P2. The one coming from P1
survives the selection of m11 and joins with the three persons
with equal hair color coming from P2, namely Davemonet,
Chiardola, and Debye. Hence, m12 is not picky for three
successors of the compatible tuple originating from P1, and
it is easy to verify that the same is true for the remaining
subqueries to be processed. Hence, Why-Not believes that
Audrey is actually not missing from the result.

NedExplain on the other hand will correctly locate the
compatible tuple only in P2. As mentioned previously, all
candidate join partners coming from P1 for Audrey (that
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the associated query Q2 (its query tree is given in Figure 4(a))
having an intermediate empty result on m4 (�sector>99(C)).
The Why-Not algorithm identifies m4 as a picky subquery,
which is correct in the sense of responsibility for the missing
result tuple. It cannot yet be considered as picky in the
strict form, for not blocking directly any compatible tuple.
In this use case, NedExplain provides a more complete and
descriptive answer. It identifies m5 as a picky subquery, and
in addition it includes m4 in the Secondary answer. Knowing
that m4 produced an empty set right before the join in m5 can
possibly be another reason for m5 being identified as picky.

Let us now focus on the cases where the answers of
Why-Not and NedExplain differ that we already mentioned
previously, i.e., Crime6 and Crime7. Both use cases relate
to Q3, which contains a self join on relation Crime. The Why-
Not algorithm falsely identifies m7 (�C1.type=Aiding(C1)) as
a picky subquery, because it locates the compatible tuples
(unpicked data items in Why-Not algorithm) in both C1 and
C2. So, as a result the compatible tuples from C1 with
type:Kidnapping are naturally picked at m7. This problem is
solved by our algorithm, by introducing the notion of qualified
attributes. In this way, we locate the compatible tuples only
in the correct instance of the relation Crime, C2, according to

the type of the output of the query Q3.
Another problem having its origin in the identification of

compatible tuples can be spotted at use case Crime8. Even
though it is based on a very simple query (refer to Q4 in
Figure 4(c)), the Why-Not algorithm finds no answers at all.
Q4 searches for persons that have the same hair as persons
whose names start with a letter smaller than B (while not
being the same person). The Why-Not algorithm places its
compatible source tuples both in P1 and P2. The one coming
from P2 does not find any join partners in m12 from P1 as the
only candidate ones have names starting with C or D, namely
Davemonet, Chiardola, and Debye. So m12 is picky for the
compatible tuple coming from P2. The one coming from P1
survives the selection of m11 and joins with the three persons
with equal hair color coming from P2, namely Davemonet,
Chiardola, and Debye. Hence, m12 is not picky for three
successors of the compatible tuple originating from P1, and
it is easy to verify that the same is true for the remaining
subqueries to be processed. Hence, Why-Not believes that
Audrey is actually not missing from the result.

NedExplain on the other hand will correctly locate the
compatible tuple only in P2. As mentioned previously, all
candidate join partners coming from P1 for Audrey (that
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the associated query Q2 (its query tree is given in Figure 4(a))
having an intermediate empty result on m4 (�sector>99(C)).
The Why-Not algorithm identifies m4 as a picky subquery,
which is correct in the sense of responsibility for the missing
result tuple. It cannot yet be considered as picky in the
strict form, for not blocking directly any compatible tuple.
In this use case, NedExplain provides a more complete and
descriptive answer. It identifies m5 as a picky subquery, and
in addition it includes m4 in the Secondary answer. Knowing
that m4 produced an empty set right before the join in m5 can
possibly be another reason for m5 being identified as picky.

Let us now focus on the cases where the answers of
Why-Not and NedExplain differ that we already mentioned
previously, i.e., Crime6 and Crime7. Both use cases relate
to Q3, which contains a self join on relation Crime. The Why-
Not algorithm falsely identifies m7 (�C1.type=Aiding(C1)) as
a picky subquery, because it locates the compatible tuples
(unpicked data items in Why-Not algorithm) in both C1 and
C2. So, as a result the compatible tuples from C1 with
type:Kidnapping are naturally picked at m7. This problem is
solved by our algorithm, by introducing the notion of qualified
attributes. In this way, we locate the compatible tuples only
in the correct instance of the relation Crime, C2, according to

the type of the output of the query Q3.
Another problem having its origin in the identification of

compatible tuples can be spotted at use case Crime8. Even
though it is based on a very simple query (refer to Q4 in
Figure 4(c)), the Why-Not algorithm finds no answers at all.
Q4 searches for persons that have the same hair as persons
whose names start with a letter smaller than B (while not
being the same person). The Why-Not algorithm places its
compatible source tuples both in P1 and P2. The one coming
from P2 does not find any join partners in m12 from P1 as the
only candidate ones have names starting with C or D, namely
Davemonet, Chiardola, and Debye. So m12 is picky for the
compatible tuple coming from P2. The one coming from P1
survives the selection of m11 and joins with the three persons
with equal hair color coming from P2, namely Davemonet,
Chiardola, and Debye. Hence, m12 is not picky for three
successors of the compatible tuple originating from P1, and
it is easy to verify that the same is true for the remaining
subqueries to be processed. Hence, Why-Not believes that
Audrey is actually not missing from the result.

NedExplain on the other hand will correctly locate the
compatible tuple only in P2. As mentioned previously, all
candidate join partners coming from P1 for Audrey (that
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Fig. 4. Query trees for queries Q2, Q3, Q4, Q5, Q8, Q9

the associated query Q2 (its query tree is given in Figure 4(a))
having an intermediate empty result on m4 (�sector>99(C)).
The Why-Not algorithm identifies m4 as a picky subquery,
which is correct in the sense of responsibility for the missing
result tuple. It cannot yet be considered as picky in the
strict form, for not blocking directly any compatible tuple.
In this use case, NedExplain provides a more complete and
descriptive answer. It identifies m5 as a picky subquery, and
in addition it includes m4 in the Secondary answer. Knowing
that m4 produced an empty set right before the join in m5 can
possibly be another reason for m5 being identified as picky.

Let us now focus on the cases where the answers of
Why-Not and NedExplain differ that we already mentioned
previously, i.e., Crime6 and Crime7. Both use cases relate
to Q3, which contains a self join on relation Crime. The Why-
Not algorithm falsely identifies m7 (�C1.type=Aiding(C1)) as
a picky subquery, because it locates the compatible tuples
(unpicked data items in Why-Not algorithm) in both C1 and
C2. So, as a result the compatible tuples from C1 with
type:Kidnapping are naturally picked at m7. This problem is
solved by our algorithm, by introducing the notion of qualified
attributes. In this way, we locate the compatible tuples only
in the correct instance of the relation Crime, C2, according to

the type of the output of the query Q3.
Another problem having its origin in the identification of

compatible tuples can be spotted at use case Crime8. Even
though it is based on a very simple query (refer to Q4 in
Figure 4(c)), the Why-Not algorithm finds no answers at all.
Q4 searches for persons that have the same hair as persons
whose names start with a letter smaller than B (while not
being the same person). The Why-Not algorithm places its
compatible source tuples both in P1 and P2. The one coming
from P2 does not find any join partners in m12 from P1 as the
only candidate ones have names starting with C or D, namely
Davemonet, Chiardola, and Debye. So m12 is picky for the
compatible tuple coming from P2. The one coming from P1
survives the selection of m11 and joins with the three persons
with equal hair color coming from P2, namely Davemonet,
Chiardola, and Debye. Hence, m12 is not picky for three
successors of the compatible tuple originating from P1, and
it is easy to verify that the same is true for the remaining
subqueries to be processed. Hence, Why-Not believes that
Audrey is actually not missing from the result.

NedExplain on the other hand will correctly locate the
compatible tuple only in P2. As mentioned previously, all
candidate join partners coming from P1 for Audrey (that
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Fig. 6: Why-Not and NedExplain execution time

similar distribution for use cases referring to the same query,
e.g., Crime1 and Crime2 or GOV1, GOV2, and GOV3, due
to the fact that these use cases engage the same database
instances and evaluate (almost) the same operators. For use
cases involving different queries, we observe that in general,
for SPJ queries, the overall runtime is dominated by the
initialization phase (between 40 and 77%), essentially caused
by the initialization of all relevant java objects. After initializa-
tion, SuccessorFinder has the second largest impact on overall
runtime for most SPJ use cases (Gov1 – Gov3, all based on
Q6, and Crime8 being the exceptions). This phase essentially
corresponds to Alg. 3, where we compute lineage and do set
comparisons. Focusing on the Crime8 exception use case, the
last valid successor is lost very early (on m12 in Fig. 4(c))
after evaluating simple operators, which explains both the low
fraction of runtime used to find successors but also the low
time for the bottom-up traversal. The picture changes when
considering SPJA queries, where most of the time is dedicated
to the computation of valid successors. This can be explained,
by the extra computations needed in the SPJA case of Alg. 3.
These computations basically require additional SQL query
executions, on the input and output of tree nodes placed after
the breakpoint.

Runtime comparison to Why-Not. Fig. 6 displays, for each
use case, the time (in ms) each algorithm needs to produce
its Why-Not answers. Generally, we observe that NedExplain
is faster compared to Why-Not. One reason is that the im-
plementation of the Why-Not algorithm requires the usage of
Trio for lineage calculation, adding a substantial overhead to
runtime especially when many trio tables are referenced as
in Crime1 and Crime2. NedExplain traces the compatible
tuples by issuing queries directly to the underlying Postgres
database based on their unique identifiers in order to find their
successors, which speeds up the process.

In the future, we plan to more extensively study the impact
of various parameters on runtime. To conclude, this first set of

experiments on runtime indicates that NedExplain can provide
high-quality Why-Not answers in reasonable time.
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V. RELATED WORK

Our discussion of related work first focuses on the general
context this work falls in, i.e., the context of data provenance
and query debugging. Second, we review in detail previous
work on query-based why-not provenance, highlighting short-
comings of the state-of-the-art.

A. Data provenance and Query Debugging

Recently, the problem of relational query and more gen-
erally data transformation verification has been addressed
by several techniques, including data lineage [8] and data
provenance [10], sub-query result inspection [11], or visualiza-
tion [12], or query specification simplification [2], [13], [14].
More generally, methods for debugging declarative program-
ming languages [15] may also apply. NedExplain classifies
as a method computing a special type of data provenance,
referred to as why-not provenance [3], [16], [17]. Algorithms
computing why-not provenance can be categorized w.r.t. the
output they generate. We distinguish between instance-based,
query-based, and modification-based why-not provenance.

Instance-based why-not provenance describes a set of source
data modifications that lead to the appearance of the missing-
answer in the result of a query. In our example, a possible
instance-based result includes the insertion of a tuple (a1,
Homer, 801BC) into A and the deletion of (a1, Homer, 800BC)

(due to key constraints). Algorithms computing instance-
based why-not provenance include Missing-Answers [18] and
Artemis [19].

Opposed to that, query-based why-not provenance focuses
on finding subqueries responsible for pruning the missing-
answer from a query result, as illustrated in Example I.1. We
discuss the state-of-the-art algorithm Why-Not [3] in detail
further below.

Algorithms to compute modification-based why-not prove-
nance [17], [20] rewrite the given SQL query so that the
missing-answer appears in the query result of the rewritten

(a) QueryQ2 (b) QueryQ3 (c) QueryQ4 (d) QueryQ5 (e) QueryQ8
(Crime3, Crime4, Crime5) (Crime6, Crime7) (Crime8) (Imdb1, Imdb2) (Crime9, Crime10)

Figure 4: Query trees for queries Q2, Q3, Q4, Q5, Q8

some cases. Furthermore, the different types of answers NedEx-
plain returns convey more information than answers returned by
the Why-Not algorithm, potentially improving a developer’s anal-
ysis and debugging experience in the context of relational queries.
To summarize the highlighted shortcomings, we present the follow-
ing list:
Inaccurate selection of unpicked data. The selection of the
source data items to trace in the workflow does not take into ac-
count self-joins, possibly leading to no explanation or a wrong ex-
planation. Furthermore, the authors choose not to trace data that
contributed to some result (i.e., data in the lineage of any result
tuple), which also reduces the set of why-not questions for which
an explanation may be returned. Crime7 and Crime8 are use cases
illustrating this.
Insufficient definition of successors. The source data items of in-
terest are traced independently from each other, not considering
the global picture given by the occurrence of other source data
items in the trace line, and which we model as valid successors.
In this way, inaccurate manipulations are found to be responsible
(or not responsible) for the missing-answers, as use cases Crime5
and IMDB2 showcase.
Restriction to frontier picky manipulations. Partial results are
computed by the decision to return only frontier picky manipula-
tions, which strongly depend on the query tree representation. For
instance, refer to use cases Crime2 and IMDB1.
Insufficient answer detail. Why-Not may return more than one
answer (i.e., a set of manipulations), in which case it is difficult
to tell the contribution of each of the returned manipulations. Use
cases Crime3 and GOV4 demonstrate this lack of detail.

We defer a more thorough user study to future work.

4.3 Runtime Evaluation
Considering runtime, we first study the runtime distribution over

the different phases of NedExplain. We then compare NedExplain’s
runtime to the runtime of Why-Not.
Phase-wise runtime. We distinguish among four phases of Ned-
Explain: (1) Initialization: the global structures initialization; (2)
CompatibleFinder: the computation of the compatible tuples set;
(3) SuccessorsFinder: the computation of successors of compati-
ble tuples at each subquery output, corresponding to Alg. 3; and (4)
Bottom-up traversal: the traversal of the query tree (including SQL
query executions) following the bottom-up approach, i.e. Alg. 1
without initialization and call to Alg. 3.

Fig. 5 reports the distribution of the execution time over these
phases for each of our use cases. First, we observe a similar dis-
tribution for use cases referring to the same query, e.g., Crime1
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Figure 5: Phase-wise runtime for NedExplain

and Crime2 or GOV1, GOV2, and GOV3, due to the fact that these
use cases engage the same database instances and evaluate (almost)
the same operators. For use cases involving different queries, we
observe that in general, for SPJ queries, the overall runtime is dom-
inated by the initialization phase (between 40 and 77%), essentially
caused by the initialization of all relevant java objects. After initial-
ization, SuccessorFinder has the second largest impact on overall
runtime for most SPJ use cases (Gov1 – Gov3, all based onQ6, and
Crime8 being the exceptions). This phase essentially corresponds
to Alg. 3, where we compute lineage and do set comparisons. Fo-
cusing on the Crime8 exception use case, the last valid successor is
lost very early (on m12 in Fig. 4(c)) after evaluating simple oper-
ators, which explains both the low fraction of runtime used to find
successors but also the low time for the bottom-up traversal. The
picture changes when considering SPJA queries, where most of the
time is dedicated to the computation of valid successors. This can
be explained, by the extra computations needed in the SPJA case of
Alg. 3. These computations basically require additional SQL query
executions, on the input and output of tree nodes placed after the
breakpoint.

Runtime comparison to Why-Not. Fig. 6 displays, for each use
case, the time (in ms) each algorithm needs to produce its Why-
Not answers. Generally, we observe that NedExplain is faster com-
pared to Why-Not. One reason is that the implementation of the
Why-Not algorithm requires the usage of Trio for lineage calcu-
lation, adding a substantial overhead to runtime especially when
many trio tables are referenced as in Crime1 and Crime2. Ned-
Explain traces the compatible tuples by issuing queries directly to
the underlying Postgres database based on their unique identifiers
in order to find their successors, which speeds up the process.

In the future, we plan to more extensively study the impact of
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Figure 6: Why-Not and NedExplain execution time

various parameters on runtime. To conclude, this first set of ex-
periments on runtime indicates that NedExplain can provide high-
quality Why-Not answers in reasonable time.

5. CONCLUSIONS AND OUTLOOK
We have addressed the issue of answering why-not questions

by first formally defining, for the first time, the domain and con-
cepts of Why-Not questions and Why-Not answers w.r.t. relational
queries including projection, selection, join, union, and aggrega-
tion. Based on these definitions, we have described NedExplain,
an algorithm to produce correct Why-Not answers. As discussed
and validated through experiments, NedExplain is capable of pro-
viding a more complete and correct set of answers, compared to the
state-of-the-art algorithm, while being competitive in terms of run-
time. This set of query based explanations could further be used
to obtain modification-based explanations and/or in combination
with instance based explanations to calculate hybrid explanations
to Why-Not questions.

In the future, besides a more thorough experimental study of al-
gorithm behavior, we plan to extend our algorithm to also consider
set difference. This would require tracing data that needs to make it
to the result (compatible tuples) but also data that should not make
it (in order not to eliminate the compatible tuples). We further plan
to study the issue of computing why-not answers such that the re-
sult is invariant w.r.t. equivalent logical query rewritings.
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