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ABSTRACT

Effectively exploring data generated by microblogging services is
challenging due to its high volume and production rate. To ad-
dress this issue, we propose a solution that helps users effectively
consume information from a microblogging stream, by filtering out
redundant data. We formalize our approach as a novel optimization
problem termed Multi-Query Diversification Problem (MQDP). In
MQDP, the input consists of a list of microblogging posts and a
set of user queries (e.g. news topics), where each query matches
a subset of posts. The objective is to compute the smallest subset
of posts that cover all other posts with respect to a “diversity di-
mension” that may represent time or, say, sentiment. Roughly, the
solution (cover) has the property that each covered post has nearby
posts in the cover that are collectively related to all queries relevant
to this covered post.

This is distinct from previous single-query diversity problems,
as we may have two nearby posts that are related to intersecting
but not nested sets of queries, in which case none covers the other.
Another key difference is that we do not define diversity in terms
of post similarity, since posts are too short for this approach to be
meaningful; instead, we focus on finding representative posts for
ordered diversity dimensions like time and sentiment, which are
critical in microblogging. For example, for time as the diversity
dimension, the selected posts will show how certain news events
unfolded over time.

We prove that MQDP is NP-hard and we propose an exact dy-
namic programming algorithm that is feasible for small problem
instances. We also propose two approximate algorithms with prov-
able approximation bounds, and show how they can be adapted for
a streaming setting. Through comprehensive experiments on real
data, we show that our algorithms efficiently and effectively gener-
ate diverse and representative posts.

1. INTRODUCTION

User are overloaded by the high rate of produced microblogging
posts, which often carry no new information with respect to other
similar posts. Our work aims at developing a method for efficiently
extracting diversified and representative posts from microblogging
data. Here are some examples of applications that motivate our
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approach: (i) A user would like to subscribe to several queries (or
topics or hashtags) in order to receive real-time posts relevant to her
interests. For example a journalist that is interested in politics might
follow a set of topics such as “White House’, ‘senate’ or ‘Barack
Obama’, which can be represented as hashtags in a microblogging
service like Twitter. Or, an investor might subscribe to a monitoring
service that provides real time information relevant to terms such
as ‘GOOG’, ‘MSFT’, or ‘NASDAQ’. (ii) Alternatively, a user may
search a microblogging site by submitting a set of queries instead
of individual queries; this has been shown to improve the quality of
search on documents [4].

In all these scenarios many microblogging posts will be relevant
to the query topics, but the complete data set is likely to include
multiple redundant posts with respect to dimensions such as time
or sentiment. Sifting through such data would be overwhelming.

There has been work on building efficient indexes and search
techniques for real-time search on microblogging data, such as Early-
Bird [5], TI [6], and LSII [25]. However, these works do not ad-
dress the information overload problem. There has been also ex-
tensive work on query results diversification [2, 3, 19, 10], where
the key idea is to select a small set of posts that are sufficiently
dissimilar, according to an appropriate similarity metrics.

For a number of reasons these diversity models are not quite ad-
equate for multi-query searching or filtering applications as those
described above: (i) Microblogging posts are too short for text dis-
tance functions to be effective — instead, we eliminate near-duplicate
posts using existing duplicate detection methods like SimHash [17].
(ii) The query set is effectively guiding the content-based diversity,
that is, the user expects to see some results for each of the query.
(iii) Users may want to explore the data according to different di-
versity dimensions. Two such dimensions, especially relevant in
microblogging, are time and sentiment, but other dimensions may
also be useful in summarization of microblogging data.

In summary, our problem setting is fundamentally different from
previous works on query results diversification in two ways: (i)
In contrast to previous works that focus on results diversification
for a single query, we study diversification with respect to mul-
tiple queries. In our setting, the user expresses her information
need through a set of queries, for instance, by subscribing to a
set of topics, like “Obama” or “economy.” Since each post could
be relevant to several queries, a post can be covered by a post in
the results with respect to one query but not with respect to an-
other. This motivates a multiple-query definition of diversity cov-
erage where a post is covered only if it is covered with respect to
all user-specified queries. (ii) Our diversity model does not use
any inter-post similarity metric; instead, in our approach each post
is assigned a value (e.g., timestamp) on the selected diversity di-
mension, and our method produces a subset of posts that covers the
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Figure 1: System Architecture. In this paper, we focus on the Diversified and Representative Post Generation part.

whole dimension range. As explained earlier, this model is more
appropriate for the applications we are targeting.

To model this novel definition of diversity, we introduce an opti-
mization problem called the Multi-Query Diversification Problem
(MQDP), defined as follows: Given a set of user queries, we aim to
identify the minimum representative subset of microblogging posts
such that (i) posts are diverse to each other (e.g., avoid posts match-
ing the same query with similar sentiment, or publication time), and
(ii) all posts that are relevant to at least one query are “covered” by a
selected post. We define a diversity threshold X on the diversity di-
mension, such that two posts at distance at most A apart may cover
each other (assuming they are associated to the same queries). E.g.,
the threshold can be 1 hour if the time dimension is selected.

We study two variations of MQDP. In the offline (static) ver-
sion of MQDP, for a given dataset of microblogging posts, we seek
to identify the minimum number of representative posts that cover
every post in this dataset that is related to a set of queries (e.g. rep-
resented as hashtags). We show that MQDP is NP-hard, and we
propose approximate algorithms to produce the representative re-
sults efficiently. In the streaming version of MQDP, we consider
the scenario where posts arrive in a streaming fashion. The objec-
tive is to extract a small subset of posts that covers all the posts in
the data stream, with the selected posts produced with a bounded
delay.

A key challenge is that coverage is defined both on the diversity
dimension and on the queries matched, that is, two posts relevant to
different queries cannot cover each other, even if they have the same
value on the diversity dimension. For example, a post that only
matches query ‘Obama’ does not cover a post that only matches
query ‘economy’, even if they have the same timestamp (assuming
that time has been selected as the diversity dimension). Further, in
the streaming variant, a key challenge is how to minimize the length
of the returned diversified sub-stream, while at the same time incur
a small delay in deciding if a new post should be returned or not.
The naive approach would be to wait a long time after a post is
published to be able to make a decision given its subsequent posts,
but this would be unacceptable, as users expect very short delays
when viewing microblogging data. We study these tradeoffs both
theoretically and experimentally. Finally, we propose a principled
approach to achieve proportional diversity, where we want to dis-
play to the user more posts from the more popular topics (queries),
while at the same time maintaining diversity.

The system architecture is depicted in Figure 1, where time is
selected as the diversity dimension. There are two options of pro-
viding input to the system. The first option, which corresponds
to the Multi-Query Diversification problem, is by issuing a search
query against an inverted index of microblogging posts. In the sec-
ond option, corresponding to the Streaming Multi-Query Diversifi-
cation problem, the matching module works directly on a stream of
posts (e.g. Twitter stream).
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Our contributions in this paper can be summarized as follows:

e We introduce and formalize the Multi-Query Diversification
problem and its streaming variant (Section 2).

o We show that the Multi-Query Diversification problem is NP-
hard (Section 3).

e We propose exact and approximation algorithms with prov-
able approximation bounds for the Multi-Query Diversifica-
tion problem and its streaming variant. We also study the
tradeoff between the result size and the acceptable delay in
returning a post for the streaming variant (Sections 4 and 5).

e We show a principled approach to achieve proportional di-
versity, where the popularity of topics (queries) is reflected
in the result. For that, we show how a dynamic post-specific
diversity threshold can be defined (Section 6).

e We conduct thorough experiments on real Twitter data and
show that our proposed approximation algorithms can com-
pute the solution efficiently and effectively (Section 7).

Section 8 presents related work, and we conclude and present
future directions in Section 9.

2. PROBLEM FORMULATION

Definitions. Let L be a finite set of labels that can represent queries
(such as hashtags or news articles) and LP(a) be the list of mi-
croblogging posts that are relevant to a label a € L. Let P be the
set of all posts.

We consider a diversity dimension F' that defines a total order on
the posts. We represent each post P; € P as a pair (F/(F;), label(P;)
where F'(P;) is the value of the post P; in dimension F' (for exam-
ple, F'(P;) can be the timestamp, or the sentiment polarity of post
P;) and label(P;) C L is the set of labels that P; is relevant to.

For ease of presentation and without harming the generality, in
the remainder of this work we will assume that F' represents the
publication time of a post, i.e. F(P;) = time(P;). Hence, we
represent each post as a P; = (;, label(P;)) where t; = time(P;)
is the timestamp. If ¢; < t;, i.e., P; is older than P; we represent
itas P; <¢ime Pj. If both P; and P; are relevant to a label a and
[t; — t;] < A, then we will write that P; A-covers a € P;.

Example 1. Consider the posts illustrated in Figure 2. If we define
the threshold A = At then P> \-covers a € Py and a € P3, P,
A-covers a € Py, P3 A\-covers a € P, P35 A-covers ¢ € Py, and
Py A-covers ¢ € Ps.

All the above coverage examples are with respect to a single la-
bel. For our problem definition, we further define the A-cover for a
post and a set of posts as follows.

~
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Figure 2: Example for coverage relations between posts. The time
distances between each consecutive pair of posts are all At.

Definition 1. (Post A-cover) A post P; is \-covered by a set of posts
Z ifVa € label(P;): 3P; € Z such that P; A-covers a € P;.

Definition 2. (Set \-cover) Let P be a finite set of posts. Z C Pis
a A-cover of PifVP; € P: P; is A-covered by Z.

Based on the above definitions, we formalize our Multi-Query
Diversification Problem as follows:

Problem 1 [Multi-Query Diversification Problem
(MQDP)] Given an instance (P, A): a collection of posts P
and a distance threshold A\, compute the minimum cardinality
subset of posts Z C P that A-covers P.

Example 2. Consider the posts depicted in Figure 2. Let P =
{P1, P2, P3, Ps}. Again, assume \ = At. If we select P> and Py
then a € P is A-covered by Pa, a € Ps is A-covered by P», and
c € Ps is A\-covered by Ps. All posts have been \-covered by Ps
or Py, hence the set { P2, Py} A-covers P.

In practice, posts might be arriving constantly. Hence, we also
need to progressively report representative posts within a small
time window from their publication timestamp.

Problem 2 [Streaming Multi-Query Diversification Prob-
lem (StreamMQDP)] Given a set of labels (e.g. queries)
L, a set P of incoming posts where each post P; arrives at
timestamp ¢;, and a distance threshold )\, progressively report
a small cardinality Z C P that A-covers P, with the constraint
that each post P; € Z needs to be reported within time 7 from
time(P;).

In general we might want to diversify incoming posts based on a
function other than their publication time, e.g. based on their sen-
timent polarity or distance from a user’s location. The above defi-
nition of the problem can accommodate this scenario. However in
this setting post coverage will be computed based on the respective
distance function defined on sentiment polarity or geolocation.

3. NP-HARDNESS OF MQDP

If all posts in an instance of MQDP are issued at exactly the
same time, then this instance is in essence an instance of the set
cover problem, where the sets are the queries (represented as sets
of labels). This immediately implies NP-hardness of MQDP; in
fact, it also implies that MQDP cannot be approximated within ratio
better than In |L| [12] (under appropriate complexity-theoretic as-
sumptions). However, the instances needed for this hardness proof
require queries with arbitrary number of labels and such instances
would not appear in realistic data sets. In this section we show
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that MQDP remains NP-hard even for instances with few labels
per post.

Lemma 1. MQDP is NP-hard, even for instances with at most two
labels per post.

Proof. We show that CNF (the satisfiability problem for conjunc-
tive normal form formulas) reduces to MQDP in polynomial time.
Leta = Ci A...AC), be a CNF formula with variables z1, ..., Zp,
where C', ..., Cy, are clauses. We transform « into an instance
(P, ) of MQDP such that « is satisfiable if and only if P has a
A-cover of cardinality at most n(2m + 3).

We now describe this construction. We will take A = 1, and the
set of labels will be L = {ws, us, uit, g, U{citoy - We
will have posts issued at all integral times 1, ..., 2m + 3. Specifi-
cally, for each i = 1, ..., n, P will contain the following posts:

@) (1, {us, wi}), (1, {@:, wi}),
(i) (2m + 3, {us, wi }), (2m + 3, {@s,w;}), and
(iii) (24, {w:}), (2], {@:}), forall j = 1, ...,m + 1.

Also, for each ¢ = 1,...,mn and j = 1,...,m, we include posts
(2j+1,U;;) and (25+1, U;; ), whose label sets U; ; and U;; depend
on whether clause C; contains variable x; or its negation:

(iv) If z; € Cj then Ui = {us, ¢;}, else Uy = {us}.
Itz € Cj then Uij = {’Hi, Cj}, else Uij = {ﬁl}

There are no other posts in P. (See Figure 3 for an example.)

1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1
Ug,Wg Ug Ug,C, ug Ug ug ug Us  UgWg
Ug,Wg U U Ug Ug U Us,Cq Us  UgWg

Figure 3: Anillustration of the construction where m = 3, showing
the posts for ¢ = 5. Only the label sets are shown, to avoid clutter.
The example assumes that x5 € Cy, Ts € Cs, and that these are
the only occurrences of x5 in a.

This reduction clearly runs in polynomial time. So to complete
the proof it is sufficient to show the following claim: « is satisfiable
if and only if P has a A-cover of cardinality at most n(2m + 3). To
prove this claim, we consider both implications separately.

(=) Suppose that « is satisfiable by some truth assignment f ().
The corresponding 1-cover Z for P is constructed as follows. If
f(z;) = 1, we include the following posts in Z; (1, {us;, w;}),
(2m + 3, {us, w; }), (24,{u;}) forall j = 1,...,m+1, and (25 +
1,U;j) forall j = 1,...,m. If f(z;) = 0, we include the following
posts in Z: (1, {@s, ws}), (2m + 3, {@s, w:}), (24, {ui}) for all
j=1,..,m+1,and (25 + 1,U;;) for all j 1,...,m. For
each ¢ we thus include 2 + m + 1 + m = 2m + 3 posts, for the
total of n(2m + 3). All labels w;, u;, and @; are easily seen to be
covered. We claim that all labels c; are covered as well. Consider
any label ¢;. Since « is satisfied by f(), at least one literal in the
corresponding clause Cj is true. Suppose that x; € Cj satisfies
Cj, that is f(z;) = 1. (If Cj is satisfied by Z;, the argument is
similar.) Then, by the definition of Z, post (25 4+ 1, U;) is in Z and
U; = {ui,c;}. All occurrences of ¢; are at time 25 + 1, so ¢; is
covered by Z, as claimed.

(<=) Now suppose that P has a 1-cover Z of cardinality n(2m +
3). Consider a subset Z; of Z consisting of all posts that contain



labels w;, u; or @;, that is Z; contains all posts from Z of the
following form:

1, {ui7 w’b})v (1’ {ﬂi7 wl})’
2m + 3, {u;, wi }), (2m + 3, {@;, w; }),

(
° (
o (25,{us}), (24,{u:}), forj =1,....,m+ 1, and
o (25 +1,Usy), (2 +1,Ui;), forj = 1,...,m.

We claim that |Z;| > 2m + 3. There are 2m + 3 posts with u;,
at times 1,2,...,2m + 3, so to cover them all we need at least
m + 1 posts, and the only way to cover them with m + 1 posts
is by choosing posts (27, {u;}), for j = 1,...,m + 1. Similarly,
we need at least m + 1 posts to cover all #;’s, and the only way to
do that with m + 1 posts would be to choose posts (23, {@;}), for
7 =1,...,m+ 1. Note that these two sets of posts are disjoint and
together they have 2m + 2 posts, with all w;’s are still uncovered.
Thus Z; must indeed contain at least 2m + 3 posts.

Since | Z;| > 2m—+3forall i = 1, ..., n and our budget for posts
is n(2m + 3), we must have that in fact |Z;| = 2m + 3 for all 4.
Consider any ¢. To cover all w;’s, Z; must include at least one of
(1,{wi,w:}), (1, {@s,w;}) and at least one of (2m + 3, {u;, w;}),
(2m + 3, {@;, w; }). As covering all u;’s requires m + 1 posts and
covering all @;’s required m + 1 different posts, So Z; must have
m + 1 posts covering one of u;, %; and m + 2 posts covering the
other, with these other posts covering also all w;’s. We thus obtain
that there are only two choices for Z;:
{(17 {uiv wi})7 (2m +3, {ui7 wl})}

U{(2) + LU, u{(2, a0} or
{(17 {aiv wi})7 (2771_-‘1- 3, {ﬂi, wl})}
U{(2+ 1,03} u{(2i, ui) Y

With the above in mind, we show that o must be satisfiable. If Z;
is of the first type, we set f(x;) = 1, and if Z; is of the second type
then we set f(z;) = 0. Let C;j be any clause. We need to show that
Cj is satisfied. In Z the corresponding label ¢; is covered, which
means that Z contains some post (25 + 1,U;;) or (25 + 1, Uy )
which contains c;. By symmetry, we can assume that ¢; € U;;. By
the form of Z;, as described above, that means that x; € C;. The
correspondence between f() and Z implies also that f(z;) = 1.
Thus x; satisfies clause C;. O

4. ALGORITHMS FOR MQDP

A naive, exhaustive search algorithm to optimally solve MQDP
would run in time exponential in |P|, the number of posts. We first
show that the computational complexity of this algorithm can be
significantly reduced using dynamic programming, to running time
that is exponential only in |L|, the number of labels, which in prac-
tice is a small integer. To reduce the running time even further,
we present two polynomial-time algorithms that produce approx-
imate solutions. The first one is inspired by solutions to the set
cover problem, which has an approximation bound of In(|P||L]).
The second one is a novel algorithm based on a traversal of the or-
dered (by the diversity dimension) list of input posts, which has a
tighter approximation bound of s, where s is the maximum number
of labels (queries) that a post may be associated with.

4.1 Algorithm OPT

We now propose an exact algorithm based on dynamic program-
ming, which we refer to as OPT. We start with several definitions.

Definitions. Number the posts P1, P, ..., P, ordered by their times-
tamps. Letting t; = time(P;) for all j, we then have t1 < t2 <

136

... < tn. (We assume all posts timestamps are different, for sim-
plicity.) To simplify the description of the algorithm, we further
assume that we have an additional initial post Py that contains all
the labels, i.e., label(Py) = L. Any instance can be modified to
have this property, by adding a new post with all labels and € > A
time unit before the first post. This new post will have to belong to
any solution, and it increases the optimum solution by exactly one
post element.

We need a few other definitions. Forany j = 1,...,n, let f(j) =
max {j’ > j:t; <t; + A}. Define a (X, j)-cover to be a set of
posts Z C {Py,..., Py(;)} that covers all posts P, ..., P;. Note
that we do not need to include any posts after time ¢ ;y, because
they cannot cover any posts P, ..., P;.

The end-pattern of a (A, j)-cover Z is defined as a function ¢ :
L — {1,2,..., f(j)} that to each a € L assigns the index {(a) of
the latest post P (,) in Z that contains a. More precisely, we have
a € label(Pe(q)), Pe(ay € Z and a ¢ label(P;) for each P; € Z
such that ¢ > £(a).

If € is the end-pattern of some (A, j)-cover then we will refer
to & as a j-end-pattern. It is easy to see that a function £ : L —
{1,2,..., f(j)} is a j-end-pattern if and only if it satisfies the
following conditions for each label a € L:

(i) Forany b € L, if £(b) > £(a) then a ¢ label( Py ).
(ii) if te(a) + A < ti < t; then a ¢ label(P,).

We will denote by =; the set of all j-end-patterns. An example
illustrating the definition of end-patterns is shown in Figure 4.

The algorithm proceeds from left to right, one post at a time.
When processing each P;, the algorithm will keep track of a set
of partial solutions that cover the first j posts Py, ..., P;. This set
of partial solutions is chosen so that at least one of them can be
extended to a global optimal solution. On the other hand, we need
to make this set small to obtain good running time.

Specifically, for each j and each £ € E; we will compute the car-
dinality h; ¢ of the optimal (), j)-cover with end-pattern equal .
Initially, by our assumption about post Py, the only 0-end-pattern
in Zo is £ defined by £(a) = 0 for all @ € L. For this &, we set
ho’g =1.

Next, suppose that j > 1 and that we have all values hj_1 5,
for n € Z;_1, already computed. Then, for each £ € =Z;, hj¢ is
computed according to the following formula:

hje= min {hj_1n+ An,&)}. (1)
neE;j—1
n=¢

We now explain the notations used in this formula:

e 1) < & means that ) is consistent with &, that is, forany a € L,
if£(a) < (j — 1) then £(a) = n(a).

e A(n,&) = {Pe(a) : £(a) > f(j —1)}| is the number of
posts in & that are not in 7).

When the above iteration completes, the algorithm outputs mingc= .

as the optimum value.

Implementation. We present the algorithm in pseudocode as Algo-
rithm 1, where we return the minimum cardinality instead of the
final posts list for simplicity. Algorithm 1 can be easily modified
to return the final posts if we maintain all j-end-patterns for each j
such that we get the final list of posts by backtracking.

Algorithm 1 starts from the first post P;. At step j (working on
post P;) we already have =;_1, and we first generate all candidate
j-end-patterns, denoted é]‘ (lines 4 - 9). For this, we only need
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Figure 4: An example of an end-pattern. In this figure the label set is L = {1,2,3,4,5,6,7}. A (A /15)-cover Z =
{...; Pro, P12, P13, P16, P19} is marked with squares. The 15-end-pattern of Z is £(1,2, 3,4,5,6,7) = (12, 16, 19, 19, 10, 13, 10).

Algorithm 1 Algorithm OPT
Input: A list of microblogging posts P sorted by timestamp, each post
P; € P with a set of labels label(P;), a threshold A.

Output: The minimum cardinality of a A-cover P.
1: 20 ={(0,...,0)}

2: Ho((0,...,0))=1

3: forj =1 — |P| do

4:  ppl < {} // posts per label

5: fora€ |L|do

6: pplla] < posts in LP(a) in [t; — X, tj + A]

7: if a & label( P;) then

8: ppl[a].add(0)

9:  Generate j-end-patterns: for each label a get one item from ppl[a],
then form an end-pattern with these |L| items. If it is valid (see
conditions of j-end-pattern), add this end-pattern to = -

10: forée é]- do

11: forneEj_l do

12: £+ ¢

13: ifda € L:na) #E&(a) N0 < &(a) < f(j — 1) then

14: next // in this case, it is impossible that n < &

15: AN ]

16: fora € Ldo

17: ifn(a) # &(a) ANé(a) # 0N E(a) € A then

18: A.add(é(a))

19: if £(a) # n(a) A &(a) == 0 then

20: &(a) < m(a) // handle the O items in &
21: if £ is not valid then

22: next // see conditions of j-end-pattern

23 card(€) = Hy—1(1) + A

24: if £ € Z; then

25: Hy(€) + min{eard(€), Hy (€)}

26: else

27: Z;.add(€)

28: H; (&)  card(§)

29: return min Hp(§) — 1
EEEp|

to check the posts in the range [t; — A, t; + A] as posts before
this range cannot cover P; nor later posts, so they do not affect
the subsequent computation. For each candidate end-pattern é in
Zj, Ya € label(P;) : Pg,yA-covers a € label(P;), and for a
label a ¢ label(P;), £(a) could be 0 (which means that we do not
have to select any post for the labels not in label( P;) to A-covers
Pj), or any i that a € label(P;) with |¢; — t;] < A (lines 7 -
9). This case (é (a) = 0) will be fixed during the computation of
the cardinality of a j-end-pattern based on =;_1, where we only
considers 7 € E;_1 that n < £ (lines 13 - 14 ensure this) and we
update the £(a) to n(a) where £(a) = 0 (lines 19 - 20). We put
the updated end-pattern into =, and save or update its cardinality
hje in H; (lines 24 - 28) where H; (£) is the optimal cardinality of
each end-pattern £ in =;.

Correctness. To prove correctness, we first show feasibility, namely
that for each j and £ € Z; there is a (), j)-cover with end-pattern
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equal to £ and cardinality h; . This can be shown by simple in-
duction on j. Suppose that the claim holds for j — 1. Fix any
& € Ej. For this &, let n € E;_1 be the end-pattern that realizes the
minimum in (1). By the inductive assumption, there is a (A, 7 — 1)-
cover Y with end-pattern 7 and cardinality h;_1 ,. By adding to
Y the posts Pe(,) for a € L such that £(a) > f(j — 1), we obtain
a (A, j)-cover Z with end-pattern £ and hj_1,,, + A(n,€) = hje
posts. Note that Z is indeed a correct (\, j)-cover, since all posts
Py, ..., Pj_1 are covered by Y and P; is covered by Z, by the def-
inition of &.

Next, we argue that the final solution is indeed optimal. It is
sufficient to prove that for each j and £ € Z; the value of hj ¢ is
optimal. We again proceed by induction on j. Assume the claim
holds for j — 1. Fix any £ € E; and define Z* to be an optimal
(A, j)-cover with end-pattern £. Let Y™ be obtained from Z* by
removing the posts (strictly) after ¢y;_1) and let n be the end-
pattern for Y*. Then n < £ and Y™ must be an optimal (X, j — 1)-
cover with end-pattern 7, since otherwise, if a smaller (\,j — 1)-
cover with end-pattern n existed, we could add to it the posts of
& after t7(;_1) and obtain a (), j)-cover with end-pattern £ with
smaller cardinality than Z*. Thus Y* has cardinality h;_1,,, by
the inductive assumption. Consequently, the cardinality of Z* is
hjflﬂl + A(% 5)

Time Complexity. The number of all end-patterns is O(|P|'*!), so
the loop on j and £ will iterate O(|P|**?) times. Computing the
minimum in (1) takes time O(|P|'"!) as well, so the time complex-
ity will be O(|P|?!H1+1).

Space Complexity. The most expensive part in terms of required
space is on saving all end-patterns at each position. In order to
compute the minimum cardinality, we only need to maintain the
patterns for the current position and the previous position, as shown
in Algorithm 1. So the space complexity will be O(|P|'“!). Finally
we want to get the minimum set of posts, so we need to keep the
end-patterns at every position to be used for backtracking. Thus,
the space complexity will be O(|P|H+1).

4.2 Algorithm GreedySC

With running time O(|P|/?*1), Algorithm OPT may still be
impractical for large data sets. Thus we propose approximation
algorithms to solve this problem more efficiently.

The first approach is to transform an MQDP instance (P, )
to a set cover problem instance and then apply the greedy set-
cover algorithm. Each element of thus constructed set cover prob-
lem instance is a pair of a post P; € P and a label a: (P;,a)
where a € label(P;). Thus, the universe of the set cover in-
stance is U = {(Fi,a)};,_1  p|.actaber(p,)- We have |P| sets in
the set cover problem (one set for each post). The k-th set S
contains the set of pairs that are A-covered by picking P, i.e.



Algorithm 2 Algorithm GreedySC

Algorithm 3 Algorithm Scan

Input: A list of microblogging posts P sorted by timestamp, a set of labels
L, each label a € L with a list of relevant posts LP(a) C P sorted by
timestamp, a threshold .

Output: A subset of posts Z C P, such that Z A-covers P.

1: §={51,852,...,5p}, initiate each set S; € S as §

2:Z2=90
3: fora € Ldo
4 forj =1 — |LP(a)| do
5: fori = j — |LP(a)| do
6: if [time(LP(a)[j]) — time(LP(a)[z])| > X then
7 break
8: x « index of LP(a)[é] in P
9: y < index of LP(a)[j] in P
10: Sy.add({(LP(a)[j],a))
11: Sy.add((LP(a)[i], a))
12: while true do
13: 4+ argmax(|Sz|)
x
14:  if|S;| == 0 then
15: break
16:  Z.add(P;)
17:  forj=1— |P|do
18: Sj = Sj — Sz‘
19: return Z

Sk = UaElabel(Pk) {<P¢,a> rac€ label(Pi), |tk — ti| < )\}

Algorithm 2 depicts this approach. For ease of presentation we
refer this algorithm as GreedySC in the remainder of this paper. At
each iteration, GreedySC selects the set that contains the largest
number of yet uncovered elements.

Approximation bound. This algorithm has an approximation ratio
of In k, where k is the maximum set size [12]. In our case, k <
[P||L], so |SCTecwSC| < (In |P|+1In |L|)|S°P|. In practice, |P| is
much larger than |L| and hence the error bound is essentially In |P|.

4.3 Algorithm Scan

‘We now propose another algorithm with a provable approxima-
tion bound and better running time. The algorithm process the rel-
evant posts of each label separately. It scans each sorted list LP(a)
to find the optimal solution S, in terms of label a, and it outputs
5% = | e Sa as its final solution.

For each label a, the scan starts from the first post in LP(a).
During the scan, we keep track of the most recent uncovered post
P,. Thus, initially P, is the first post. We scan forward until find-
ing a post P, such that |t, — t,| > A. Then we pick the post P,
that is right before P, and add it to S,. Then the posts from P,
to P, can be all marked as covered (in terms of label a). With the
scan continues, we mark the posts within distance of A to P, as
covered (in terms of label a) and we reset P, to be the first post
that has distance larger than X to P,. The algorithm continues with
the above procedure until it reaches the end of the list, then if the
last post is not A-covered by a selected post, then we add it to S,.
The pseudocode is presented in Algorithm 3.

Correctness. For each post P; in LP(a) there must exist a post in
S, that A-covers a € P; with Algorithm Scan. Since S°°*" is the
union of S, for all @ € L, then S°““™ \-covers each P; € P. Thus
S99 is a A-cover of P.

Approximation bound. Assume that each post is relevant with at
most s < [L| labels. Then the approximation bound of Algo-
rithm Scan is s, i.e. | S*°*"| < s|S°P¢|.

Proof. ltis routine to prove that S, is an optimal A-cover of LP(a).

Thus, we have |LP(a) N S| > |S,|. Hence >, |LP(a) N
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Input: A set of labels L, each label a € L with a list of relevant posts
LP(a) sorted by timestamp, a threshold A.

Output: A subset of posts Z C P, such that Z A-covers P.

1: Z=0

2: fora € Ldo

3 if |P(a)| == 0 then
4 next

50 j+1
6: left + LP(a)[j]
7 picked < null

8:  while j < |LP(a)| do
9 if |time(LP(a)[j]) — time(left)| < X then

jei+1
11: else
12: picked <+ LP(a)[j — 1]
13: Z.add(picked)
14: while j < |LP(a)| do
15: if |time(LP(a)[j]) — time(picked)| < X then
16: j—Jj+1
17: else
18: left + LP(a)[j]
19: break
20:  last < the last postin LP(a)
21:  if picked == null V |time(last) — time(picked)| > X then
22: Z.add(last)
23: return Z

5P| > 37 o1 |Sal. Since each post relates with at most s < [L|
labels, thus s|S°?*| > > |LP(a) N S| > >, |Sal. Fur-
ther it holds that 3~ ., [Sa| > U,c [Sa| = [5°°“"]. Tt follows
that | S°°°"| < s]S°PY. O

Time Complexity. Algorithm Scan examines each post in LP(a)
only once, thus the running time is ., |LP(a)|, whichis O(s|P]).

Optimizations of Algorithm Scan. Algorithm Scan processes each
label separately, which results in some inefficiency, because the
posts selected for one label may also cover posts from other labels.
We consider an improvement to address this inefficiency. When
selecting a post P; for a label a, we remove all posts covered by
P; from all subsequent lists LP(b). The effectiveness of this opti-
mization depends on the ordering of the labels processed by Scan.
We refer to this variant of Scan as Scan+.

5. ALGORITHMS FOR STREAMMQDP

For StreamMDQP, the posts/label matching module works di-
rectly on the stream of microblogging posts instead of a collection
of posts that have been indexed. The algorithm selects a subset
stream of the posts to A-cover the whole stream. For a new rele-
vant post, the algorithm waits a small time 7 to make the decision
whether output this new post or not. On one hand, to minimize the
delay, we want to make a decision as soon as possible on whether
a post should be outputted or not. On the other hand, a longer de-
lay increases the probability of finding a smaller cover. Ideally, we
should decide if a post should be output immediately, that is, with
delay 7 = 0. However, as we show, this leads to an increased total
number of output posts.

We show how Algorithm GreedySC and Algorithm Scan can be
adapted for a streaming setting.

5.1 Streaming Scan

We show that when we make an instant decision (7 = 0), we
incur an error of up to 2s, whereas if we have a delay of 7 > A
then we have the original Algorithm Scan error bound of s.
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Figure 5: An example with approximation ratio 2, for 0 < 7 < A

Delayed ouput of a new post. As we process the stream in chrono-
logical order, we keep the list of posts that have been already out-
putted. New posts can be added to the output if they are not A-
covered by the previously selected ones. In order to decide whether
anew post has to be included in the results we can apply Algorithm
Scan, which is natural for streaming environments, since it pro-
cesses the posts in order.

The algorithm, for each label a € L, keeps track of the fol-
lowing posts: the oldest and the latest uncovered relevant posts,
denoted as P°“(a) and P'“(a) respectively, and the latest out-
putted relevant post P'°(a). And the algorithm waits until time
min{time(P"(a)) + 7, time(P°*(a)) + A} to output P'*(a), at
the same time set P*(a) to P™(a) and both P°*(a) and P™(a)
to null. When a new post P, arrives, for each label a € label(P;),
if P'°(a) A-covers a € P,, the algorithm doesn’t update anything
for label a. Or else the algorithm sets P'*(a), as well as P°*(a) if
it is originally null, to P,. We denote this algorithm as StreamScan.

Similar to the improvement of Algorithm Scan by Scan+, we can
apply the same idea to StreamScan as StreamScan+.

Approximation bound. This algorithm outputs posts exactly as Al-
gorithm Scan when 7 > ), thus they have the same approximation
error bound, i.e. s.

Instant output of a new post. Instead of waiting up to 7 before
a post to be outputted, we can directly decide whether to output
a post or not right after it arrives. For this, we use a small cache
that keeps track of the most recently selected posts for each label
a € L. When a new relevant post P, arrives, if P, is not covered,
we output P, and update the cache appropriately.

Approximation bound. We can show that the above algorithm achieves

a 2s approximation bound if each post is relevant to at most s labels
when 0 < 7 < A

In order to prove this, we will firstly consider the case when
there is only one label. Assume that the results from Algorithm
StreamingScan consists of posts F;, , P;,, ..., P;,, with timestamps
tiy < tip <...<ti,. Forl < j < n,the distance between ¢;,
and ¢;; , , is larger than \ (otherwise they will cover each other and
the algorithm will not pick both of them). Then ¢, , —¢;; > 2A
thus no post can A-cover both P;; and P, ,. Hence, an optimal
solution must contain no less than n/2 posts. Thus the size of so-
lution from this algorithm for label a, S, < 2S2P%, where SoP*
denotes the optimal solution size for the single label a.

We show an example in Figure 5 for 0 < 7 < A, where the
optimal solution consists of the posts presented by red squares, and
the algorithm will return the posts presented as blue dots. Thus the
error factor is 2.

Recall the analysis of approximation bound of Algorithm Scan,
the sum of optimal solution size from each single label is less than
s times of global optimal solution size, i.e. > [SoP!| < sS°P¢,

acl
where S°P* is the global optimal solution. Thus StreamingScan
has a 2s approximation bound in the case of 0 < 7 < A.

5.2 Streaming Version of GreedySC

Delayed ouput of a new post. If we can tolerate a delay of 7 > 0,
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then the streaming Set-cover-based algorithm works as follows:
Assume P’ is the oldest post that has not been covered yet, and as-
sume its timestamp is time(P"). Then, we wait until time time( P’)+
7; let Z be the set of posts with timestamp between time(P') and
time(P') + 7. We execute the GreedySC algorithm in Z select-
ing posts to output, until posts in Z are all covered. We pass the
ones that are already covered and set again time(P’) to be the old-
est uncovered post (the first post in subsequent stream that is not
A-covered by selected posts), and we repeat the same procedure.
We denoted this algorithm as StreamGreedySC.

We can have a variation of StreamGreedySC: instead of exe-

cuting GreedySC on Z until all posts are covered, we can stop
GreedySC on Z once P’ is covered and then update the oldest un-
covered post P’ (which is possibly in Z). We refer this variation as
StreamGreedySC+.
Instant ouput of a new post. If we want to instantly make a de-
cision on whether to output a post, i.e. 7 = 0, then the streaming
version of the Set-cover-based algorithm is the same as the one for
Algorithm Scan, which has worst case error bound of 2s, as ex-
plained above.

6. PROPORTIONAL DIVERSITY THROUGH
VARIABLE )

In the previous sections, we studied the Multi-Query Diversifi-
cation problem assuming that the coverage parameter A is applied
uniformly for the whole range. However, this does not address the
problem of representativeness of the results. For example, if many
posts are posted in the morning but few in the afternoon, it may
be desirable to return more morning posts in the diversified result.
Similarly, if we focus on the sentiment diversity, the selected posts
must reflect the distribution of the public’s sentiment. For example,
news about a decrease in the national unemployment rate would
receive more positive posts, and hence we want to display more
positive posts.

We propose to consider a different A for each post, such that A
is larger in sparse areas and smaller in dense areas. The intuition
is that if there are many say negative posts, then a negative post
should cover another negative post only if they are very close to
each other in terms of sentiment score. This will lead to displaying
more negative posts, to better represent the complete set of posts.

More specifically, we define a A value for each pair of post and
label that this post matches, i.e., for each post P, € P and label
a € label(P;) we define \,(P;), proportional to the density of
posts around P; that match label a.

However, we don’t want the variation of A\ to be too drastic, be-
cause then rare perspectives would not get represented. For exam-
ple, if there are 20 negative posts and 2 positive, and we only show
3 to the user, it would make sense to also show one positive one.
For this reason, it makes sense to choose \ to be a non-linear func-
tion of post density. We propose here a smooth diversity formula,
inspired by the work in [26] on single-query searches, with Aq (P;)
defined by:

_ densityq (t; —Xg,t;+Ao)

Xa(P) = )\oel densityg 7

(@3]

where )\ is a constant threshold set by a domain expert, densityq (t;—
Ao, i + o) is the density of posts that match label a in the time
range [t; — Ao, t; + Ao] (i.e., the number of posts per minute match-
ing label a in this time range) and densityo is the average density
of posts in a 2\ time interval across all labels (i.e., the average
number of posts per minute relevant to any label a € L).

By applying Equation 2, we achieve proportional diversity in
terms of both (i) labels, i.e., the output will contain more posts



from the labels with larger number of matching posts, and (ii) the
diversity dimension, e.g., the output will contain more posts from
the time intervals with more posts.

The astute reader will notice that in contrast to the fixed A setting,
when A is post-specific, the post coverage relation becomes direc-
tional. That is, it is possible that P; A-covers a € P; but not P;
A-covers a € P;. Nevertheless, all proposed algorithms can be eas-
ily adapted to incorporate this property. It does not fundamentally
change the implementation of these algorithms except computing
A for each post per label. For Algorithm GreedySC and Algorithm
Scan, it is straightforward to apply post and label-specific As. For
Algorithm OPT, one detail is that when processing post P; we need
to generate j-end-patterns and hence we need to find all the posts
P; \-covers a € Pj, where |¢; — t;| may be larger than \,(P;) as
there might be Ao (P;) > Aa(P;) s.t. P; A-covers a € P; but not
P; A-covers a € P;. This could potentially reduce the efficiency of
OPT.

7. EXPERIMENTAL EVALUATION

In this section we study the effectiveness and efficiency of the
proposed algorithms for MQDP and StreamMQDP. We describe
the experimental setting in Section 7.1. Sections 7.2 and 7.3 study
the effectiveness and efficiency of the algorithms, respectively.

7.1 Experimental Setting

Datasets. We conduct our experiments on Twitter data, that is,
each document is a tweet. We use topic modeling to extract a set
of topics, which we use as queries (labels), that is, each topic is
mapped to a query,

Posts dataset. We used the Twitter Streaming API through which
we can collect a random sample of up to 1% of the whole public
Twitter stream. We ran the streaming API for 24 hours, on June
12th, 2013, and collected about 4.3 million tweets.

Queries. Recall that a key motivation of our work is to moni-
tor posts related to a user profile, represented as a set of keyword
queries. Given the lack of public profile datasets, and the fact that
a large ratio of tweets are commenting or referring to news arti-
cles [16], we generate a query set by viewing each news topic as a
query.

We use a news articles collection to extract topics, instead of us-
ing the tweets dataset, because we expect that the topics quality will
be higher and also we want to avoid any bias to the algorithms from
selecting queries directly based on the documents dataset. In par-
ticular, we collected news articles from several popular news web-
sites, such as CNN, BBC, NY Times, LA Times etc., through their
RSS feeds during the first half year in 2013 (until Jun 15th). This
news collection consists of over 1 million articles. We applied un-
supervised Latent Dirichlet Allocation (LDA) using an open source
implementation by Mallet' to generate 300 topics on this news col-
lection (the number of topics is an input parameter). Each trained
topic is a set of keywords with corresponding weights. We keep the
top 40 highest-weight keywords for each topic.

To generate label sets L (user profiles), we assume that each
user is interested in a broad topic like politics or sports, and spec-
ifies queries inside this broad topic. The 300 extracted topics are
grouped into 10 broad topics by three researchers in our lab (if
some researcher thought a topic was too ambiguous we discarded
the topic, thus we have 215 topics left). Then, to generate a label set
L, we first randomly pick a broad topic and then randomly pick |L|
topics within the broad topic. Table 1 shows some example topics.

"http://mallet.cs.umass.edu/
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Topic Keywords

woods tiger golf masters championship mcilroy

Sports garcia pga augusta rory mickelson

nfl super bowl blog draft ravens ers football baltimore
patriots jets quarterback giants eagles

obama president barack michelle inauguration house
administration congress presidential republicans

Politics election vote poll presidential party president political

race candidate campaign electoral coalition

Table 1: Example topics with their highest weight keywords.

IL| number of posts
2 136
5 308
20 1180

Table 2: Number of matching posts per minute, for a label set for
various label set sizes.

We create label sets with different sizes (|L|). For each |L|, we
create 100 label sets. Table 2 shows the average number of unique
tweets matching at least one label set per minute, where matching
is defined as containing at least one keyword of the topic (label).
Implementation and Platform. The tweets inverted index shown
in Figure 1 was implemented using Apache Lucene®. Other real-
time indexing systems are also possible, such as EarlyBird [5] or
LSII [25], although indexing is out of the scope of this paper. Note
that an index is only used for the MQDP and not for the streaming
problem variants. We have implemented all algorithms in Java, and
we conducted our experiment on a Windows 7 machine with Intel
i5 3.0GHz CPU and 8 GB RAM.

7.2 Effectiveness Study

MQDP. Given that our exact dynamic programming algorithm OPT
can only be executed on small problem instances, when evaluat-
ing the error of approximation algorithms, we only use a 10 min-
utes subset of our Twitter dataset, which starts at 12pm on Jun 13,
and use small values for A and |L|, such that the number of j-end-
patterns in OPT is not excessively large.

A key factor that may affect the effectiveness of the approxi-
mation algorithms is the overlap among tweets with respect to the
labels of a label set. That is, if many tweets match multiple labels,
then the problem is more challenging and hence the algorithms
may have higher error bounds. We define the post overlap rate
as the average number of labels a post is related to. Figure 6 shows
the relative solution size error (|estimated — optimal|/optimal)
of the approximation algorithms for various post overlap rates, for
IL| = 3. Each point in Figures 6a, 6b and 6¢ represents a label
set. GreedySC generally has better (smaller) error than Scan and
Scan+ except when the overlap rate is very close to 1; recall that
Scan and Scan+ are optimal for a single label (|L| = 1), and hence
are also optimal for multiple labels if the posts have no overlap (no
post is related to multiple labels); this is not the case for GreedySC.
Figure 6d shows that the solution sizes in all algorithms generally
drops when post overlap rate increases, as they can pick posts that
cover posts matching multiple labels.

Figure 7 depicts the relative solution size error of the approxima-
tion algorithms for various A values. We see that all approximation
algorithms have higher error with larger A values, because there are
more possible choices and hence the problem becomes harder.

Figure 8 shows the solution sizes of the approximation algo-
rithms on larger instances for varying number of labels, using the

*http://lucene.apache.org/
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whole 1-day dataset. We see that the solution size of Scan is linear
on |L| since it handles each label separately. GreedySC outper-
forms the other algorithms, especially as |L| increases.
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Figure 8: Solution sizes on 1 day of tweets, for various label set
sizes (|L|).

StreamMQDP. In the streaming setting, it is tricky to define what
the optimal solution is because an algorithm has to make a decision
about outputting a post before knowing what will follow. To avoid
this confusion, we consider as optimal the solution of an optimal
algorithm that has full knowledge of the future posts. That is, the
optimal streaming solution for a time interval is the same as the
optimal static solution for the same interval. We again use a 10-
minute time interval when the optimal solution is required.

Figure 9 presents the relative error for various A values, given
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a fixed decision delay 7. We see that the relative errors generally
increase as A increases, since more coverage combinations are pos-
sible and hence the problem is harder; this is consistent with the
analysis we did for MQDP. We also see that StreamGreedySC+ is
consistently slightly better than StreamGreedySC.

Figure 10 shows the relative error for different 7 values, given
a fixed \. We see that the Scan-based algorithms have stable error
when 7 > A because then the streaming Scan algorithms generate
the same solution as their non-streaming counterparts as discussed
in Section 5.1.

A surprising and interesting observation for the greedy algo-
rithms in both Figures 9 and 10 is that the error has a local peak
when 7 is slightly larger than 2\ and the smallest error is achieved
when A\ = 7. We can explain the behavior based on the “in-
between" posts, that is, short (<< ) ranges of uncovered posts
that are between already covered ranges, and to cover them, we in-
cur big overlap with what is already covered. Hence: (a) We have
a minimum at 7 = X because we are making sure that there are
no “in-between" posts. (b) When 7 >= X we have a maximum
at 7 slightly bigger than 2\ because this maximizes the effect of
“in-between" posts. The algorithm has a relatively high probability
of using two (or three) posts to cover the posts of a label in this 7
interval.

+—+ OPT
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Figure 11: Absolute solution size when |[L| = 2 for a 10-minute
interval for various overlap rate ranges.

Figure 11 shows the effect of the overlap rate on the solution
sizes for A = 10 seconds and 7 = 5 seconds. We see that the
approximation algorithms follow the same trend as their static ver-
sions, that is, the greedy algorithms are better for higher overlap,
whereas the Scan algorithms are better for small overlap (recall that
Scan is optimal for overlap = 1).

Similarly to Figure 8 for MQDP, Figure 12 shows the solution
sizes of the approximation algorithms for StreamMQDP on one
day of tweets. It shows that StreamGreedySC is better than Stream-
GreedySC+ on large .

7.3 Efficiency Study

We conduct our experiments on the one-day dataset. We measure
the execution time of the algorithms on in-memory data, that is,
we do not account for the I/O of loading the inverted indexes into
memory.

Since different queries (labels) may return quite different number
of relevant posts, we compute the execution time per post, which is
what is important to understand the throughput of posts that our
algorithms can handle. We measure the execution times of each
algorithm for |L| = 2, 5, and 20.

MQDP. Figure 13 shows the efficiency results for varying A on
logarithmic axis. We generally see that Scan algorithms are orders
of magnitude faster than the greedy ones, since they only make a
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Figure 12: Solution sizes of approximation algorithms for 1-day of
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sequential pass on the data. The running time of Scan and Scan+
is quite stable for different As, whereas the efficiency of GreedySC
increases sharply when A increases, because the solution size is
smaller with larger A and hence GreedySC will have smaller num-
ber of rounds to pick posts and update the covered range of left
posts.

Another observation is that for larger label set size |L|, the run-
ning time of Scan and Scan+ decreases, since the same post may
cover more other posts. However, GreedySC becomes slower with
larger |L|, since we need to execute more iterations to find the post
with maximum cover range and to update other posts’ cover ranges.

To better understand this behavior, we provide more details on
our implementation of the greedy algorithms. We could maintain a
heap (PriorityQueue in Java) in order to find the set with the max-
imum size at each step. Every time we select a post (a set in the
set cover problem instance), we need to update other posts’ cover
range. For this, we need to delete the original set from the heap and
insert the set back with updated weight (set size). When there are
lots of relevant posts in a short time, this leads to big overhead of
updating this heap. Thus we don’t apply this in our implementa-
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efficiency of StreamGreedySC and StreamGreedySC+ decreases
slightly with the increases of 7, and given a 7 their execution time
generally decreases with larger A, because of smaller number of
iterations of execution of set cover algorithm.

7.4 Discussion

Our experiments show that the two classes of presented approx-
imate algorithms, Scan and GreedySC (including their variants),
offer good relative errors ranging from 0.01 to 0.5 (except the ex-
tremely small 7s in the streaming setting).

GreedySC has lower error than Scan in most settings; its maxi-
mum improvement is about 60% (see difference between GreedySC
and Scan+ for A = 20 seconds in Figure 7) for the static problem
setting, whereas in the streaming setting GreedySC'’s error is unsta-
ble, and is often larger than that of Scan (see Figures 9 and 10).

In addition to the instability, a potentially more serious short-
coming of GreedySC is that it is 1 to 3 orders of magnitude slower
than Scan, which makes Scan more desirable for setting of high
throughput and especially when the algorithm has to be executed
for millions of users (as in Twitter).

Finally, we show that our proposed exact dynamic programming
algorithm is feasible for small problem instances, where the num-
ber of queries is up to 2-3 and A is less than a minute.
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Figure 14: Execution time for StreamMQDP on one day of tweets, for varying A with fixed 7 = 300 seconds.

8. RELATED WORK

Vertical and federal search. Previous works in aggregated search
argue that a user’s intent can be captured in a better way if the
web search retrieves and integrates results from different vertical
domains. Verticals can include for example microblogging sites
(such as Twitter or Google+), user comments, blog feeds or break-
ing news. Additional information found in those verticals can be
used in various ways.

Diaz [8] proposes principled ways to integrate news content into
web search results. In [9] the authors rerank the web documents
based on a set of social network features, such as the number of
tweets that refer to each document, the number of retweets of these
posts, etc. Similarly, [23] applies a vector space model technique
in order to rerank web results based on their similarity with tweet
posts published in a user’s social circle. Our approach in this paper
is different since we do not aim to merge microblogging posts with
web search results.

Linking microblogging posts with news articles. With a similar
motivation to our paper, several works have focused on the relation
between news articles and microblogging posts such as those com-
menting on, referring to, or directly related through links to a news
article or specific event [14, 21, 24, 1, 13, 15]. These works can
be considered complementary to our approach. That is, instead of
treating a news article as a query to retrieve related microblogging
posts, we can apply these works in order to build the relation be-
tween articles and posts. However, efficiency could be a potential
issue in such a scenario.

Diversity. Query results diversification is a well-studied problem
in the field of information retrieval [2, 20] as well as in data man-
agement [19, 10]. Because of the ambiguity of queries, results di-
versification is very helpful to satisfy the search intent of different
users. In this paper, we take a different definition of diversifica-
tion from these works, which is based on multiple queries. Further,
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similarly to [10], we put more focus on results coverage. Santos et
al. [22] work on diversification on explicit sub-queries of the orig-
inal query. They maximize the semantic coverage with respect to
different aspects of the original query.

Giannopoulos et al. [13] address the problem of diversifying user
comments found on news articles such that the selected comments
cover different aspects of the article. Compared to [13], our work
focuses on identifying microblogging posts that refer to multiple
news articles, whereas [13] provides a solution only for one article.
Further, instead of maximizing diversity, we use a coverage-based
optimization goal. Finally, we mainly focus on the efficiency of the
proposed methods, whereas [13] do not consider this aspect.
Publish/subscribe. Different variations of Publish/Subscribe sys-
tems have been proposed such as Topic-Based, Content-Based, and
Type-Based [11]. However, to the best of our knowledge, there
has not been considerable work on building publish/subscribe sys-
tems on microblogging services. The authors in [7] suggest a pub-
lish/subscribe infrastructure for microblogging services to better
support crowdsourced sensing and collaboration applications.

9. CONCLUSIONS AND FUTURE WORK

In this paper we introduced and formalized the Multi-Query Di-
versification Problem (MQDP). We proved MQDP is NP-hard and
we proposed several algorithms for solving it: an exact dynamic
programming algorithm, two efficient approximation algorithms,
as well as some algorithms for the streaming variant. We confirmed
the effectiveness of our approach through extensive experiments on
real Twitter data set.

In the future we will study how our solutions can be adapted for
more diversity dimensions. In particular, we would like to extend
them to the spatiotemporal space, where the selected posts need
to cover both the time and geospatial dimension. Incorporating
geographical information is likely to become more important as,
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Figure 15: Execution time for StreamMQDP on one day of tweets, for varying 7 with fixed A = 300 seconds.

increasingly, more posts are geotagged.

Further, we will study how content-based intra-result diversity
methods [2, 3, 19, 10] can be effectively applied to short posts
[18] — for instance through context expansion — and then how this
content-based diversity can be represented in our multi-query di-
versity framework.
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