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ABSTRACT
Emerging applications face the need to store and query data that are
naturally depicted as graphs. Building a Business Intelligence (BI)
solution for graph data is a formidable task. Relational databases
are frequently criticized for being unsuitable for managing graph
data. Graph databases are gaining popularity but they have not yet
reached the same maturity level with relational systems. In this pa-
per we identify a large spectrum of applications that generate graph
data with specific characteristics that make them candidate for be-
ing stored in a relational system. We describe a novel framework
where data and queries are both treated as abstract graph structures
that can be decomposed into simpler structural elements. We com-
plement this abstract framework with a description of a system that
utilizes three different means of expediting user queries: (i) a flat
description of the graph records using a column-oriented storage
model, (ii) use of bitmap columns for enabling fast access to parts
of these graph records and (iii) a novel framework for selecting
and materializing graph views that significantly expedite retrieval
of records in response to a graph query. To the best of our knowl-
edge we are the first to report results using datasets consisting of
hundreds of millions of graphs with billions nodes, edges and mea-
sure values using a single database server running of a commodity
node. Our results demonstrate that our platform is orders of mag-
nitude faster than alternative systems that natively handle graph
data and a straightforward relational implementation. Moreover,
our materialization techniques (that account for about 10% of extra
disk space) are able to reduce the query execution times further, by
up to 94% compared to an evaluation plan that is oblivious to the
existing materialized graphs views in the database.

1. INTRODUCTION
The data management community has long been interested in

problems related to modeling, storing and querying graphs [1, 2].
Recently, this interest has been renewed with the emergence of ap-
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plications in social networking, location based services, biology
and the semantic web where data graphs of massive scale need to
be processed efficiently.

While such applications of large graphs are attracting a lot of
attention, there are many other popular examples where smaller
graphs are generated in a continuous basis. Examples include Cus-
tomer Relationship Management (CRM) software, Workflow Man-
agement Systems (WMS) and Supply Chain Management (SCM)
applications, all of which generate data records that can be naturally
expressed as graph records. For instance, in a SCM application, a
graph record is a graph that denotes the nodes (places) an article
(or a collection of articles) has been, see Figure 1. The nodes and
edges of this graph may contain interesting measures (e.g. times-
tamps, cost related attributes) that will be useful for analyzing the
efficiency of the SCM application, detecting bottlenecks, etc.

While each of these records is typically small (e.g. the number
of nodes and edges is in the order of hundreds/thousands and not
millions as in a social network graph) and, thus, performance of
atomic operations on them is not a concern, their cumulative size
may easily overwhelm existing BI solutions, when complex ana-
lytical queries are considered. For instance, in SCM the number
of graph records generated is expected to grow substantially with
the increased adaptation of Radio Frequency Identification (RFID)
technology and other sensory infrastructure. Other examples of ap-
plications that produce graph records include Service Provisioning
and manufacturing execution using RFID tags [3]. A large-scale
implementation of the aforementioned processes can easily gener-
ate millions of graph records on a weekly basis.

This shift from flat basket-type data to complex graph records ne-
cessitates reconsideration of Business Intelligence solutions. While
graph and in general non-relational databases are attracting a lot of
popularity, their maturity level is still questionable. A Relational
Database Management System (RDBMS) constitutes a proven tech-
nology with very strong commercial and user bases. Are we ready
to drop relational systems in favor of a new technology platform
or should we try to adapt them to take on the new challenge? In
this paper we make a bold statement that goes against popular be-
lief. We argue that relational systems can easily take on massive
collections of graph records in the aforementioned applications, by
utilizing and adapting techniques such as column-oriented storage,
bitmap indexes and materialized views to the graph data model.
While these adaptations will be thoroughly discussed in the remain-
der of this article, we would like to emphasize that we do not claim
that relational systems are best suited to handle arbitrary graph data
and queries on them. The distinct difference between our targeted
applications (e.g. Service Provisioning, Workflow Management,
Supply-Chain Management) and other applications of graphs (e.g.
social web, biology) is that (i) instead of a single massive graph
our targeted applications need to manage a massive collection of
smaller graphs and (ii) the nodes and edges of these smaller graphs
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are named entities that are mapped to real world or business enti-
ties (e.g. a node may be mapped to a workflow state or a location)
and not abstract elements. The second property implies that graph
queries of the type of graph isomorphism that arise in e.g. compu-
tational biology and have been heavily studied in the past, are not
the focus of our work.

Our framework puts together three different techniques in or-
der to allow efficient processing of datasets consisting of millions
of graphs with billions of nodes/edges. First, a column-oriented
(yet still relational) storage is utilized so as to permit a flat de-
scription of the graph records. This simple but intuitive representa-
tion alleviates the known deficits of row-oriented relational systems
when used for graph processing: recursion and the need to resort
to costly joins for path calculations. Second, we build a very effi-
cient indexing mechanism over this flat representation using bitmap
columns on the column-store that are analogous to bitmap indexes
frequently used in data warehouses [4]. Per the use of these bitmap
columns, execution of complex queries is reduced to binary calcu-
lations on the stored bitmaps, enabling quick processing of com-
plex graph patterns. Our modeling of these indexes is generic and
can further accommodate specialized graph indexes (such as the
gIndex [5]), if required. Finally, we complement our techniques
with a framework that permits the creation of materialized graph
views of different types. As will be explained, these views can
be naturally incorporated in our flat data model and result in sig-
nificant improvements in query times, especially for queries that
perform aggregations on the stored measures.

In order to formalize better the types of analytical queries we
consider, we complement our framework with a discussion of how
complex data analysis tasks that are common in the aforementioned
applications can be efficiently stated and executed. We describe a
unified proposal where analytical queries on the records are them-
selves depicted as graphs that are optionally supplemented with ag-
gregate functions denoting user-defined computations of interest.
These graph queries consolidate measures associated with existing
records. We explore techniques that break ad-hoc aggregations on
graph records into smaller independent computations that we then
expedite via the use of materialized graph views. While materi-
alized views have been considered in data warehousing [6] or the
Semantic Web [7, 8], the details of the views we consider, their se-
lection process and usage in analytical queries over graph records
are quite different.

We complement our work with a thorough evaluation of our tech-
niques using graph databases consisting of hundreds of millions of
graph records with tens of billions of nodes, edges and measure
values on them, using a column-store running off a commodity
node. Our results demonstrate that expensive graph queries can be
rewritten so as to re-use precomputed graph views selected by our
materialization algorithms. Per these rewritings, the cost of a user
query is reduced to a fraction of the cost of the original query that is
oblivious to the existing materialized graph views in the database.
Moreover, we make direct comparisons of our techniques against:
(i) a popular open-source graph database that natively stores and
manipulates graph records, (ii) a commercial Resource Description
Framework (RDF) store and (iii) a commercial RDBMS using row-
oriented storage. These experiments highlight the effectiveness of
our techniques for the data and queries we consider.

2. MOTIVATION
As a running example we consider data generated from an SCM

application that utilizes sensory infrastructure (such as RFIDs) in
order to trace delivery of articles produced by a large organization
to its customers. A customer order is formed from articles that
may be produced at different production lines. These articles often
follow different paths through a network of service hubs before de-
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Figure 1: A SCM Graph Record

livery. The collected trace data for a particular order may be visual-
ized as a graph data record shown in Figure 1. In this graph record,
nodes are used to represent locations of different types. The set of
nodes on the left represent production lines, the middle nodes de-
livery hubs and the nodes on the right delivery points for this order.
The edges of the graph depict delivery routes.

We assume that for this data two interesting measures are being
collected: time and cost. These measures may be associated to
edges, nodes or both. For example, the time measurement on edge
(A,D) denotes the time recorded for shipping the articles, for this
order, from production line A to hub D. The measures at node D
may denote internal delay or processing cost at this hub.

In our considered SCM application, graph records of this type are
continuously generated from the monitoring infrastructure. There
can be thousands of such records formed by the orders of a particu-
lar customer. Moreover, the delivery options may differ according
to the customer type or order type (regular, fast-track, etc). Thus,
there can be other locations or paths, not shown in the record above,
which is only concerned with measured data for a single order.

Given this type of data, there are several computations that may
be requested by an application that analyzes these records in order
to detect anomalies or drive decision support tasks. Examples of
such queries are

• Q1: Compute the delivery time for all articles shipped via a cer-
tain delivery path, e.g. [A,D,E,G, I] or a set of paths.

• Q2: Assuming that delivery legs [C,H] and [F, J,K] are leased
from a certain carrier, compute the delivery cost associated with
shipment of articles via these routes.

• Q3: Compute the longest delay for delivering an article of an
order from a production line in region 1 to customer end-point I
via hubs from region 2.

Queries such as the above are common in SCM applications and
raise several challenges. First, given a dataset consisting of millions
of such graph records how to quickly locate records that obey ad-
hoc structural conditions, such as the existence of one of multiple
paths? Moreover, during a custom analysis, parts of these graphs
may be consolidated based on user-selected conditions.

As an example in query Q3, all production points within region 1
are consolidated into a single "aggregate node". Similarly all hubs
within region 2 can be treated as a single aggregate node for this
query. In the same spirit, node H may correspond to a whole set
of hubs and delivery routes within another region 3 whose details
are hidden in this view of the data record because these details are
of no interest to the application. Assuming that certain statistics
on this hidden part, such as the overall delivery time and cost, are
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pre-computed and stored along with the base records in the form
of an aggregate node (view) H , we need mechanisms that will al-
low us to reformulate a given user query so as to exploit existing
precomputations.

In this paper we provide a framework to address all these chal-
lenges. We formally define the notion of a graph query as the ba-
sic element for retrieving interesting measures and statistics from a
collection of graph records. We then describe a query rewrite mech-
anism that allows us to re-formulate requested computations so as
to utilize existing precomputed summaries in the form of graph
views and we revisit the view selection problem in the presence
of these new and challenging graph datasets.

3. GRAPH DATA AND QUERIES ON THEM

3.1 Graph Data Records
We assume that our dataset consists of a, possibly very large,

collection of graphs annotated with measures of interest. Formally,
a graph record is a directed graph Gr(V,E), where V is the set of
nodes and E the set of its edges. The nodes and edges of this graph
are associated with one or more measure values that will be useful
for analysis. For ease of presentation in what follows we assume
that a single numerical value is associated to each of the elements
(nodes and edges) of each graph record, however our techniques are
applicable when multiple measures are recorded. In cases where a
graph record contains cycles (for instance in the delivery record of
Figure 1 the existence of a "back edge" from D to A may indicate
that certain articles were damaged during shipment and returned
back to the production line A), we adopt a simple flattening policy
that assigns unique identifiers to the depicted nodes (for instance
via a breadth- or depth-first traversal of the graph nodes). In this
example we may use the following naming scheme and describe
the corresponding edges as (A1, D1), (D1, A2), (A2, D2) in order
to remove the cycle on that part of the record. By enforcing the
same naming scheme (for instance based on a breadth-first traversal
of the nodes) on both data and queries (queries are discussed in
Section 3.2), our techniques can handle arbitrary graphs.

We do not make any particular assumption on how these graphs
are generated, thus, there is no requirement for modeling the schema
of the underlying network (in a delivery service) or process (in
a workflow management application) that generate this data. We
only assume that the nodes are labeled using a universally adopted
schema so as to be able to run queries on them afterwards by re-
ferring to common identifiers for the nodes. For instance a sec-
ond graph record for a different customer may contain some of the
nodes and edges depicted in Figure 1 and thus utilize the same iden-
tifiers annotated with its own data; or may contain other nodes/edges
corresponding to a different transport network not associated with
the one shown in this record.

Nodes and edges of the records may have additional metadata
information (e.g. spatial location of a node, capacity of an edge,
etc) that can be utilized by the application, however their presence
does not affect our modeling. Similarly, in certain applications, a
collection of graph records may refer to the same logical unit, as in
the case where an order is broken into multiple sub-orders that are
processed independently. This is also handled easily in our frame-
work by using metadata information in order to relate multiple, ba-
sic graph records, for instance via the use of unique record-ids that
join these sub-orders. The same logic allows us to handle cases
where multiple edges need to be depicted (as in multigraphs), for
instance in a parallel delivery of articles for a single order. All
aforementioned scenarios can be handled via the use of multiple
graph records linked together via additional metadata information.

Metadata on graph records are often utilized in order to form
hierarchies of nodes and edges that allow us to analyze the under-

lying measurements at different granularity levels. For instance,
in Figure 1 all nodes within region 2 may represent hubs located
within the same province. For a certain analysis it may be more
convenient to treat all these nodes as a single aggregate node and
coalesce their measures along with the measures of the constituent
edges accordingly. In our prior work [9], we have discussed opera-
tors that allow us to zoom-in/out of such ad-hoc groups of nodes in
a formal manner and these extensions can be easily adopted to this
work.

3.2 Graph Queries
Given that the datasets of our considered applications consist of

graph records it is only natural to model our queries using the same
foundation. Thus, in this work we describe our basic querying logic
via graph models. A graph query Gq(V,E) is a directed graph
whose nodes are drawn from the same universe of nodes used in
the graph records. The graph query indicates our intention to iden-
tify existing graph records that contain the same structural elements
(nodes/edges) in order to retrieve and process their measures. For-
mally, a graph record Gr is part of the answer of Gq , iff Gq is a
subgraph of Gr and that answer consists of the graph Gq annotated
with the corresponding measures of record Gr . As an example,
query Q1 of Section 2 utilizes a single query graph

Gq1 (V = {A,D,E,G, I}, E = {(A,D), (D,E), (E,G), (G, I)})

in order to retrieve all graph records that contain the aforemen-
tioned path. For each such record, the query returns the correspond-
ing subgraph (which in this example is a single path) along with its
measurements.

Using multiple graph queries, we may form more complex log-
ical conditions on the structure of the graph records under consid-
eration. Let [Gq] denote the set of records from our database that
belong to the answer set of Gq . Then, we can easily derive for-
mulas for computing basic logical operators between graph queries
such as [Gq1 AND Gq2 ]=[Gq1 ] ∩ [Gq2 ], [Gq1 OR Gq2 ] = [Gq1 ]
∪ [Gq2 ], and [Gq1 AND NOT Gq2 ] = [Gq1 ] - [Gq2 ].

Formulas such as the above can be used, for instance, in order to
retrieve orders that deliver articles through hubs on region 2 but ex-
clude hub F . When using bitmap columns, as will be explained in
Section 4.2, for indexing the graph records, these formulas suggest
that efficient retrieval of the requested graphs can be obtained via
proper binary calculations on the content of these columns.

3.3 Paths: A Fundamental Structural Unit for
Graph Queries

A graph query can be decomposed into one or multiple simpler
queries that define paths of nodes. In this subsection we borrow
the notation of [10] and use an extended notion of a path in order
to restrict attention to particular parts of the records. A path is
a sequence of nodes resulting from the concatenation of adjacent
edges. For instance [A,D,E,G, I] is a path whose constituent
edges are (A,D), (D,E), (E,G), and (G, I).

When nodes have measurements associated with them, additional
formalism is needed. For example assume we would like to con-
centrate in the movement of articles via node E, from the time they
depart hub D, up to the time they enter hub location G. Thus,
internal measurements on nodes D and G should be left out of the
analysis. In [10], this "open-ended" path is treated similarly to a nu-
merical interval whose endpoints are excluded: (D,E,G). When
two nodes are connected via an edge, as in the case of D and E,
the open-ended path (D,E) is naturally mapped to edge (D,E).
Similarly, a node can be described as a path starting and ending on
that node, i.e. node A is [A,A]. This description is particularly
useful, if node A contains some hidden structure that is not seen by
the application at this granularity level but is instead abstracted to
a few aggregate measurements on A.
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A path can be opened in only one of its side nodes. For instance,
in Figure 1, path [D,E,G) indicates a path that describes move-
ment of articles from the time they enter location D up to the point
they enter hub G (via E). Finally, [A,G]∗ is used as a shortcut
for referring to the set of paths starting from node A and ending in
node G. This set is called a composite path. The notation is similar
for open-ended paths. In what follows, we often omit the asterisk
in the notation of a composite path, when there is no ambiguity in
the context.

A maximal path in Gq is defined as a path that is not contained in
another path of Gq . Thus, graph query Gq can be described as a set
of maximal paths from the source nodes of Gq to its terminal nodes.
Let Src(Gq) denote the set of source nodes and Ter(Gq) the set
of terminal nodes of graph Gq , respectively. The set of maximal
paths of Gq is [Src(Gq), T er(Gq)]

∗.
If the graph of Figure 1 is used to represent a query graph, then

the source nodes are {A,B,C}, while the terminal nodes are {I,K}.
For convenience, we often want to coalesce multiple nodes into a
virtual aggregate node. As an example, let R2 denote the subgraph
of region 2 in Figure 1. Then, [A,R2)

∗ is used as a shortcut for
the set of all paths from node A to nodes in R2, specifically [A,D)
and [A,B, F ).

In order to allow composition of paths, [10] introduces the path-
join operator (./) that concatenates two paths p1 and p2 when the
ending node of p1 is the same as the starting node of p2 and one of
the two paths is open-ended at the common end-point. For exam-
ple [A,B, F ) ./ [F, J,K)=[A,B, F, J,K]. On the contrary, path
[A,D,E] does not "join" with [E,G, I] since they both include
node E and the resulting composition is not a path (the internal
edge [E,E] would be repeated otherwise). The operator is applied
to composite paths as well by considering path-joins between all
pairs of paths in them.

For instance, if we are only interested in articles that pass through
all hubs of region 2 we can indicate all relevant paths using expres-
sion (R2 is a graph denoting the nodes and edges in region 2)
[Src(Gq), Src(R2)) ./ [Src(R2), T er(R2)] ./ (Ter(R2), T er(Gq)]

This expression does not include path [C,H,K] as the latter does
not contain any location in R2. Moreover, this expression permits
us to reuse precomputed data on region 2, via the use of a material-
ized view, as will be explained in Section 5.

3.4 Path Aggregation
Analytical queries often need to perform ad-hoc aggregation of

measures along existing paths they retrieve. Assuming that a user-
defined function F is given (for instance SUM() or MAX()) we
define a path aggregation query FGq as a shortcut for a process that
retrieves all matching graph records for graph query Gq and then
applies function F on all paths from a source node s in Src(Gq)
to a sink (terminal) node t in Ter(Gq).

As an example, consider the three graph records depicted in Fig-
ure 2. We assume that the graph query Gq is path (A,C,E, F )
and the SUM() function is used for path aggregation. Then, query
SUM(A,C,E,F ) retrieves record 2, as this is the only record that
contains this path. Thus, for record 2, the result to this query con-
tains path (A,C,E, F ) and the aggregate value of 7, which is com-
puted by summing up the measures along the path.

An analytical query can use the result of a path aggregation and
further consolidate the computed aggregates in order to compute
higher level statistics, such as the average delivery time and the
standard deviation for the retrieved records based on the order type,
etc. Since this process is performed on the "flat" data returned from
the underlying graphs, we consider it orthogonal to our techniques
and can be easily handled in a relational store. This is a distinct
advantage of our methods, as the whole analysis can be performed
in-house, within the relational realm.
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Figure 2: Three sample graph records. The id and the associ-
ated measure is depicted over each edge

4. GRAPH DATA IN A COLUMN-STORE

4.1 A Simple Storage Abstraction for Graph
Records

It is well documented that traditional row-oriented relational stores
are not suited for managing graph datasets, since navigation on the
graph records requires successive join operators or recursion [9,
11]. Relational databases that utilize column-oriented storage of
their tables alleviate these problems and permit us to model the
graph records via a very simple relational schema. In particular,
we utilize a single relational table R(recid,m1,m2 . . . ,mn) for
storing all graph records. Attribute recid is the key to this relation
and uniquely identifies each record. Each attribute mi corresponds
to the measure associated with the edge or node with identifier i.
As explained, we assume that nodes and edges are identified with
a unique numbering scheme. This information may be part of the
metadata kept in the data store. Moreover, when no measure data
is recorded by the application on certain elements (nodes or edges),
the corresponding columns may be dropped from the schema. If a
node or edge is not part of the particular record, this is indicated by
a NULL value on the corresponding column.

Edges and nodes of a graph are treated identically in our frame-
work, since a node X can be considered as a special edge [X,X].
In what follows we will be referring to the structural elements of
a record (nodes and edges) as "edges", since there is no distinction
between them in our storage model.

Table 1 provides an example for the representation of the three
records depicted in Figure 2. In the Figure, for each edge we de-
pict its edge-id and the measure recorded on the respective graph
record. In the relation, column mi is used for storing the measures
of edge ei. Columns bi are the respective bitmaps. The last three
columns of the relation are associated with views. The details for
these columns will be described in Section 5.

We note that, unlike applications in social networking or the se-
mantic web, where graphs of massive scale need to be depicted, in
our considered applications (CRM, WMS, SCM, etc) the number
of distinct nodes and edges of the graph records is typically up to
the order of a few thousands. Existing column-oriented RDBMS
easily handle tables with such number of columns. If needed (see
Section 6), this relation can be easily partitioned vertically (us-
ing recids to link the partitions) in order to accommodate even
larger number of distinct edges. Moreover, vertical compression
of columns with many NULL values results in a small footprint for
this particular storage abstraction, as will be demonstrated in our
experiments.
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←−−−−−−−−−−−−−−− measures −−−−−−−−−−−−−−−→ ←−−−−−−−−− bitmaps −−−−−−−−−→ ←−−− views −−−→
rid m1 m2 m3 m4 m5 m6 m7 b1 b2 b3 b4 b5 b6 b7 bv1 mp1 bp1
r1 3 4 2 1 2 NULL NULL 1 1 1 1 1 0 0 1 NULL 0
r2 NULL 1 2 2 1 4 1 0 1 1 1 1 1 1 0 5 1
r3 NULL NULL NULL 5 4 3 1 0 0 0 1 1 1 1 0 4 1

Table 1: Content of master relation for the graphs of Figure 2

4.2 Bitmap Columns for Efficient Retrieval of
Graph Records

Retrieval of records for a given graph query Gq(Vq, Eq) requires
an efficient mechanism for locating records that contain the set of
edges in Eq . Given the flat organization of the graph records we
employ, bitmap indexes can be used for efficient query retrieval.
In particular, for each edge ei a bitmap bi can be used to indicate
records that contain the edge in consideration. Then, evaluation of
query Gq can be accommodated easily by ANDing the bitmaps of
the edges in Eq . Thus, bitmap bq = ANDeqi∈Eqbqi computes the
location of the graph records that are part of the result set of Gq .

The particular implementation of the bitmap indexes, depending
on the particular data store used is orthogonal to our framework. In
our implementation, we extend the schema of R with n columns of
Boolean domain resulting in the following schema

R(recid,m1,m2, . . . ,mn, b1, b2, . . . , bn)

Given the addition of these bitmaps, retrieval of the records that
match query Gq is done via an SQL statement of the form (eqi ∈
Eq and mk is the measure associated with edge ek):

SELECT recid, mq1 , . . . ,mqm

FROM R
WHERE bq1 = 1 AND ... bqm = 1

As it is evident, there is no need for a join in order to answer the
query. More precisely, the requirement to "join" the constituent
edges of the query graph is passed to the column-store engine,
which is built around the idea of quickly joining columns of a ver-
tically partitioned relation.

5. GRAPH VIEW MATERIALIZATION

5.1 Preliminaries
Evaluation of a graph query Gq or a path aggregation query

FGq using the available bitmap indexes involves the retrieval of the
bitmap columns bi from the master relation that correspond to the
edges of the query graph in order to compute their intersection and
locate the matching graph records. Even though each binary col-
umn bi is expected to easily fit in memory (the number of bits in a
naive uncompressed representation of bi are equal to the number of
graph records in the database), still the evaluation of a large query
graph requires ANDing all binary vectors for that graph. Thus, the
I/O cost attributed to these bitmaps for processing a graph query
increases linearly with the number of bitmaps.

To improve response times, most data warehouses maintain the
results of frequently needed queries in addition to the base records.
These results are often referred to as materialized views [6, 12, 13]
and are chosen by a view selection algorithm. This algorithm typ-
ically selects a subset of all possible views until a certain budget
(such as the available disk space) is exhausted. In our work, we
propose a graph-view selection framework that can be used to ex-
pedite processing of graph queries.

We will consider two variations of the problem depending on
the type of queries. In the first, the workload consists of a set of

graph queries Gq={Gqi}. In the second variation of the problem,
the workload consists of path aggregation queries FGq={FGqi

}.
For both instances of the problem, materialized graph views are
considered in order to expedite processing of the selected queries.
The details of these views however vary depending on the instance.

While the techniques we present next are motivated by the use of
views in data warehouses, the details of these views, their selection
process and re-use in graph queries differ from existing works on
materialized views, as will be explained.

5.1.1 Materialized Views for Graph Queries
Recall that evaluation of a graph query Gqi involves the retrieval

of a number of bitmaps. Let BGqi
denote the set of all these

bitmaps and B any subset of it (B ⊆ BGqi
). Let bitmap(B) de-

note the bitmap resulting from ANDing all bitmaps bl ∈ B. Then,
as has been explained, evaluation of Gqi requires computation of
bitmap(BGqi

). Using subset B this can be expressed as

bitmap(BGqi
) = bitmap(B) AND bitmap(BGqi

−B)

This formula simply suggest that we can precompute the conjunc-
tion of any set of bitmaps B required for evaluating Gqi and store
the result as a new bitmap. Then, we can reformulate the query
so as to retrieve the graph records containing the query graph us-
ing a conjunction of the stored bitmap and the remaining bitmaps
not considered in set B. Bitmap(B) is called a graph view in our
framework and can be added in the database schema as a new col-
umn in the master relation R. In SQL, we can treat bitmap(B) as
a regular bitmap column for a virtual edge associated with B and
reformulate the query accordingly. As an example, the subgraph of
region 2 in Figure 1 can be indexed using a single bitmap column,
which is computed by ANDing the bitmaps of the edges that are
internal in region 2.

The benefit of using the graph view resulting from B is that the
number of bitmaps that need to be retrieved for evaluating the query
is reduced by |B| − 1, |B| being the number of bitmaps in set B.
This is because a single bitmap (the graph view) is used instead
of all bitmaps in set B. Taking this idea to the extreme, we can
precompute a single bitmap bitmap(Gqi) for each query in the
workload. This solution will minimize the cost of processing these
queries, however, it is not practical as the number of interesting
graph queries can be very large. Moreover, many of these queries
may share subgraphs, which means that excessive materialization
may not only be impractical but also unnecessary. Thus, we need
techniques that will select the "best" subset of graph views for the
targeted application.

5.1.2 Materialized Aggregate Graph Views for Path
Aggregate Queries

Path aggregate queries include a query graph Gq and an aggre-
gation function that is used in order to consolidate measures along
paths in [Src(Gq), T er(Gq)]. A materialized graph view for Gq

can expedite this query as well. Still, there is an opportunity for
larger gains if, in addition to the bitmap of the view, the database
also stores these pre-computed aggregates.

Let p = {e1, e2, . . . , ek} be a path in Gq . This path may be
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a maximal path in [Src(Gq), T er(Gq)] or any path within graph
Gq . The resulting aggregate of the application of function F in p
denoted as Fp = F (m1,m2, . . . ,mk) is a single value for each
graph record containing p. For algebraic aggregate functions (such
as the average) one can instead store the constituent distributive
sub-aggregates (sum and count for the case of the average function)
so that these pre-computations can be utilized in answering queries
that are supergraphs of Gq .

Each aggregate value may be stored in the database, as a sin-
gle column mp by extending the schema of the master relation R.
Thus, a materialized aggregate graph view for a path aggregation
query FGq contains

• One column mp. The content of this column is equal to Fp, for
each record that contains p, or NULL otherwise.

• One binary column bp that instantiates a bitmap index for all
graph records that contain p.

5.1.3 Summary
In what follows we will describe techniques for extending the

schema of the database with materialized graph views. The result-
ing schema will be

R(recid,m1, . . .mn, b1, . . . bn,bv1
, . . . , bbvk︸ ︷︷ ︸,mp1

, . . . ,mpl
, b

′
p1

, . . . , b
′
pl︸ ︷︷ ︸)

graph views graph aggregate views

Continuing the example of Table 1, there are two views mate-
rialized in the master relation. The first (column bv1 ) is a graph
view corresponding to the subgraph containing edges e1, . . . , e4.
The second is an aggregate view for the path p1=[e6,e7] and for
the SUM() function. The aggregated values on that path that is
contained in records r2 and r3 are stored in column mp1=m6+m7,
while bp1 is the corresponding bitmap.

5.2 Selection of Graph Views
Recall that a certain graph view is a bitmap indicating the exis-

tence of a particular set of edges in the graph records. Given a set of
frequent graph queries Gq={Gqi}, a naive approach is to compute
the union Gall of all query graphs Gqi and consider as candidate
views all possible subsets of the edges in Gall. Since the number
of possible subgraphs is exponential in the size of Gall, this ap-
proach is not practical. What we will show is that this exhaustive
enumeration of candidate views is not even necessary because of a
monotonicity property among the views.

Consider the simplest case where a single graph query Gq is
given. It is easy to verify that if we were to materialize a sin-
gle graph view Gv , then the optimal scenario is to materialize the
whole query, i.e. Gv = Gq . This is because this view (i.e. the
corresponding bitmap), filters out all records but exactly those that
contain the query graph. Assume we instead materialize a subset
view Gv′ ⊆ Gv . Then, in order to answer the single query in the
workload we would need to retrieve the bitmap of Gv′ as well as
the bitmap columns for all edges in Gq −Gv′ .

Retrieval of a bitmap column in a column-store involves fetch-
ing from disk the corresponding bits. Since all bitmaps have exactly
the same length (i.e. the number of graph records in the dataset),
we utilize a simple but reasonable cost model, where the cost of
fetching the bitmaps for a query is proportional to the number of
bitmaps used in the formulation of the query. For a query, we also
ignore the cost of fetching the remaining columns (recid and mea-
sures related to Gq), as this cost is constant and is not affected by
the reformulation of the query in the presence of a graph view. As
has been explained, using a graph view Gv with k edges results in
reducing the number of retrieved bitmaps by k-1, when no other
view exists for the same query.

This analysis suggests that a graph view Gv is of no use, if there
is another larger view Gv′ that can be used for all queries that Gv

is useful for. In that case we say that Gv′ supersedes Gv:

Monotonicity Property (Graph Views): Graph View Gv′ supersedes
graph view Gv (denoted as Gv ≺ Gv′ ) iff Gv ⊂ Gv′ and ∀Gq :
Gv ⊆ Gq ⇒ Gv′ ⊆ Gq .

From this discussion, the following observations are made re-
garding the generation of a set of candidate graph views Cv for a
given workload Gq={Gqi}.

• Each query graph Gqi needs to be considered for materializa-
tion. Even if there is another query Gqj : Gqi ⊂ Gqj , this does
not imply that for the corresponding views Gqi ≺ Gqj . This is
easy to prove by contradiction. If we assume that Gqi ≺ Gqj ,
then for query Gqi it holds that Gqi ⊆ Gqi and (because of the
monotonicity property) it should also hold that Gqj ⊆ Gqi . This
contradicts our assumption that Gqi ⊂ Gqj . Thus, Cv contains
all graphs in Gq .

• Let Gvi,j =Gqi ∩Gqj indicate the non-empty common subgraph
of two query graphs Gqi and Gqj , where Gqi 6= Gqj . Notice
that Gvi,j is not superseded by Gqi (because of query Gqj ) nor
by Gqj (because of query Gqi ). Thus, all subgraphs that are the
intersection of two query graphs need also to be added to Cv .

• Via similar arguments we would need to include in the set of can-
didate views Cv the common subgraphs between three or more
query graphs in the workload.1

Because of the way set Cv is constructed, it follows that a graph
view Gv ∈ Cv is not superseded by any-other graph view in the set.
Thus, the computed set of candidate views, contains no redundant
views. The set Cv is also minimal in the sense that removing a
graph view Gv from that set leads to sub-optimal decisions as we
can find one or more queries in the workload Gq , whose cost can be
reduced further by including Gv back in the set of candidate views.

While computation of set Cv is tractable, unlike the naive method
described earlier, there is still a potential problem that arises when
there is a lot of overlap among the graph queries. In the extreme
scenario where there is overlap between any subset of query graphs,
the number of candidate views is exponential to the number of
graph queries: |Cv|=O(2|Gq|). Even though this exponential depen-
dency is in the number of graph queries (and not in the number of
their edges, as in the naive enumeration), it may still be problematic
for certain applications. For such cases, we propose a workaround
that reduces significantly the cost of generating the set of candidate
graph views that will be input to the graph view selection algorithm
discussed later. Key to our solution is a modeling of the candidate
view generation process as a frequent itemset counting problem.
Assume that each graph query is a "set" of "items", where items
correspond to graph edges in our case. Given a minimum support
minSup ≥ 1 we can compute (e.g. via the a-priori algorithm [14])
all frequent itemsets (an itemset is a set of edges, i.e. a graph view)
whose support is equal or exceeds threshold minSup. The value
of support in this formulation of the problem reflects the number
of graph queries that a graph view can be used for. Because of the
monotonicity property, we need in a post-processing step to filter
out views that are superseded by other views in the result of the
frequent itemset calculation process.

From the set of candidate views generated by either of the meth-
ods described above, we will select a subset of views for materi-
alization. In our exposition, we concentrate on the case when a
1One can expedite this process by iteratively adding the common
subgraphs of the common subgraphs identified in the previous
steps, as was suggested by an anonymous reviewer.
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space budget of k views is defined and will be used to control the
amount of precomputation in the database.

We will address this problem via an equivalent formulation as
an extended set cover problem. Recall that our data store already
contains a bitmap for each edge in the universe of edges stored
in the dataset. Let E={{e1}, . . . , {en}} denote the set of all sets
containing exactly one edge. Similarly, each candidate view is a
set containing 2 or more edges. Let S=E ∪ Cv be the union of the
two sets of sets. To complete the mapping to an extended set cover
problem, each query Gqi is termed a "Universe" Ui i.e. a set of
edges of the corresponding graph query.
Extended Set Cover Problem (multiple universes): Find the min-
imum number of sets in S that can be used to cover all sets Ui.

Finding the solution to the extended set cover problem will nat-
urally lead to a selection of views: those sets of Cv that are part of
the answer. Since there is no known algorithm that can solve this
problem in polynomial time, we will rely on a greedy algorithm
that chooses sets from S based on the number of uncovered edges
in all universes. The greedy algorithm terminates when all query
edges are covered. In our instance of the problem, when an upper
bound of k views is defined, will simply terminate after k steps, or
when a set from E (i.e. an existing bitmap for a single edge) is se-
lected, whichever comes first. Thus, the complexity of the greedy
algorithm is O(

∑
|Ui| × k), i.e. it is linear in its input size (the

size of the query graphs
∑
|Ui|) and the value of parameter k.

5.3 Answering Queries from Views
The same greedy algorithm can be used at query time in order

to select how to best answer (rewrite) a given query via the avail-
able views. In this case we have an instance of the typical set cover
problem with a single universe (the query) and set S contains the
atomic edges and graph views that are materialized in the database.
The bitmaps corresponding to the sets in S selected by the algo-
rithm will be used for answering the query. The solution provided
by the greedy algorithm is an H(n)-approximation of the optimal
solution, where H(n) is the n-th harmonic number, for n being the
number of edges in the query graph.

5.4 Selection of Aggregate Graph Views
Recall that an aggregate graph view Fp includes (i) a column for

the aggregate measure computed for function F along path p and
(ii) the bitmap for p, which is the conjunction of the bitmaps of its
constituent edges. Thus, as in the case of graph views, aggregate
graph views have all the same space requirements (two columns
in this case). They differ however in that, in addition to replacing
multiple bitmap computations, they also reduce the number of mea-
sures retrieved, since the stored aggregate can be used instead of the
corresponding measures for the edges of path p. Thus, the longer
the path p, the more gains we obtain, as more measures from the
master relation are replaced by a single column. We here adopt a
simple cost model that measures the benefit of an aggregate graph
view proportionally to the length of path p that the view instan-
tiates. More formally, the benefit benefit(Fp, FGq ) of using an
aggregate view for a given query FGq is measured proportionally
(any monotone function will do for the analysis that follows) to
the reduction in the number of columns that need to be retrieved
from the column-store, if this view were materialized. This simple
model is justified, since the practice shows that all bitmap columns
have the same cost of retrieval in the column-store.

As in the case of graph views, the biggest challenge is to be able
to compute the set of candidate views that will be given as input
to the greedy algorithm. Clearly, one can not list all possible paths
within the given set of query graphs, as their number is exponential
to the size of the queries. Again, we will reduce the number of the
candidate aggregate views by exploiting the following monotonic-

ity property:

Monotonicity Property (Aggregate Graph Views): For any path pq
and for any two aggregate graph views Fp1 , Fp2 such that p1 ⊆
p2 ⊆ pq: benefit(Fp1 , Fpq ) ≤ benefit(Fp2 , Fpq ).

Intuitively, the monotonicity property states that materialization of
larger paths leads to greater gains. Let pq be a maximal path con-
tained in query FGq . Obviously, Fpq should be considered for ma-
terialization, as it is expected to help reduce the cost of the query.
Let pq′ be a sub-path of pq that does not overlap with any-other
maximal path of the query. The monotonicity property asserts that
the reduction of the query cost induced by Fpq′ can not exceed the
reduction obtained by using Fpq . Thus, Fpq′ should not be a can-
didate for materialization. On the other hand, if path pcommon is
the intersection of two (or more) maximal paths then Fpcommon

is a candidate aggregate view since its combined benefit for these
paths may exceed the benefit from materializing one of the maxi-
mal paths.

Based on the above discussion, the set Cp of candidate paths,
each corresponding to a candidate aggregate graph view is con-
structed as follows.

• Let PAll be the union of all maximal paths in the query work-
load. Let GAll be the graph containing all nodes and edges in
the given set of queries. Notice that by definition repeated nodes
and edges are ignored, thus GAll is not a multigraph.

• A node in GAll is interesting if it is the origin or endpoint of at
least one maximal path in PAll.

• A node is interesting if it is a starting node of two or more dif-
ferent edges traversed by two or more maximal paths in PAll.

• A node is interesting if it is an ending node of two or more dif-
ferent edges traversed by two or more maximal paths in setPAll.

The set of candidate paths Cp is constructed by considering all pos-
sible paths (of length greater than one) between interesting nodes in
GAll. Because of the monotonicity property, for any path p (from a
query graph) not included in this set, there is at least one candidate
path pc, whose corresponding view has benefit that is larger than
that of path p and can thus replace p in a selection of materialized
views.

As an example, in Figure 2 let’s assume that the three graphs
depicted are query graphs instead of graph records: FGr1

, FGr2

and FGr3
, respectively, for some function F (). Then, the inter-

esting nodes are A, B, E and G. Consequently, the candidate
paths are [A,C,E], [A,D,E], [A,C,E, F,G], [A,D,E, F,G]
and [E,F,G] resulting in 5 candidate aggregate graph views. Paths
of length one (i.e. edges) like (A,B) are not considered, since the
database schema already stores their measures. A naive enumera-
tion that considers all subpaths (of length greater than one) of the
three query graphs would result in 11 candidate views instead of
the 5 listed above.

Having the resulting set of candidate aggregate graph views and
given a space budget of k views, selection proceeds by using the
same greedy algorithm described in the previous section.

6. DISCUSSION

6.1 Partitioning the Master Relation
In order to simplify the presentation, we have deliberately pre-

sented a simplified schema where all data, indexes and views are
stored in a single relation, i.e. the “master relation” of Table 1. Of
course, in practice storage of the graph records can be decoupled
from the views and indexes by breaking the columns of this relation
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into appropriate column families. Still, the single relation that will
hold the graph records will contain as many columns as the num-
ber of distinct edges in the universe of the target application. Since
these columns correspond to real world entities (hub locations in
SCM, workflow states in WMS) we do expect that their numbers
will be in the order of hundreds or thousands rather than millions as
in a social networking application. In order to cope with domains
where larger graph records may arise, in our implementation we
utilize a simple vertical partitioning scheme, where the master re-
lation is automatically broken into sub-relations with up to 1 thou-
sand columns each. Intelligent clustering of these columns based
on the users’ query patterns is possible but the details are beyond
the scope of this paper. Partitioning allows us to handle (in our ex-
periments) graph records of up to 100K edges each, even-though
such records may never appear in practice in the applications of in-
terest. Moreover, it should be evident from the discussion that the
schema we propose is not necessarily static but can be expanded
on demand, in case new columns are required for the newly added
records.

6.2 Managing Arbitrary Graphs
The presented storage model handles graphs, with no difference

if there are cycles or not. The framework assigns a table column to
each edge. If there are two directed edges (A,B) and (B,A) or, in
general, back edges that form a cycle this makes no difference to the
storage model. For instance, edges (A,B) and (B,A) are simply
mapped to two different columns. Similarly, for graph queries (with
no aggregation), the presence of cycles doesn’t make any difference
in their formulation and answering processes.

On the contrary, cycles matter when doing path aggregation. In
that case our framework requires, in a pre-processing step, flatten-
ing of each record into a directed acyclic graph (DAG). As an ex-
ample, consider a product, which is successively shipped to the
locations A, B, C, A, D and E, in that order. Removing the cycle
results in a a second copy of node A and the following sequence of
edges (A,B), (B,C), (C,A′), (A′, D) and (D,E). This is nec-
essary when, for example, the aggregate function tries to compute
the total time along paths that connect two nodes. In the previous
example, it helps distinguish that we are computing the total time
starting from the first occurrence of A and not A′ (i.e. the first time
the package left that location). Thus, flattening of the graph into a
DAG is performed so that aggregation on sequences of nodes/edges
works in a desirable manner in the applications of interest. In many
applications (such as in SCM with RFID tags used in tracing the
various products) sequencing of the nodes/edges is already encoded
in the data, for instance using time-stamps recorded by the RFID
readers.

6.3 Incorporating Specialized Graph-Indexes
In the literature there exists a substantial amount of related work

on graph indexing targeting, in most cases, graph isomorphism
queries (see discussion of Section 8). Our target applications do
not require such query primitives and, moreover our aim is at ana-
lytical queries that aggregate the collected measures. Still, there is
a simple way to extend our framework so as to incorporate many
of the existing graph indexes. As an example, the gIndex [5] is us-
ing a set of features to index the graph records, by recording the
graphs that contain each feature. In our representation we can uti-
lize a bitmap column for each such feature using 1’s to indicate
those records that contain it. For the particular example of gIndex,
it utilizes a set of features termed discriminative fragments. In our
implementation, we can optionally utilize the gIndex in the form
of additional bitmap columns (one per fragment) that can be popu-
lated when loading the records.

In our presentation we have instead opted for a very basic form of

NY GNU
Number of graph records 320 Million 100 Million
Total number of measures 27.3 Billion 7.5 Billion
Size on disk 241 GB 68 GB
Distinct number of edge ids 1000 1000

up to 100K in sensitivity tests
Min. number of edges per record 35 45
Max. number of edges per record 100 100

up to 10K in sensitivity tests
Avg. number of edges per record 85 75

Table 2: Description of Datasets and Default Values

indexing based on atomic edges (the bitmap columns). This form of
indexing is practicable in our considered applications where mas-
sive collections of small graph records need to be injected. Popu-
lating the bitmap columns depicted in Table 1 is computationally
straightforward. Selection of the fragments on the other hand re-
quires running an expensive graph mining algorithm [5], something
that may not be feasible for the data sizes we consider in our work.
Moreover, the simple bitmaps we utilize, as will be evident by our
experiments, are very effective, even when querying hundreds of
millions of graph records. These experiments also show that for
graph queries and even more for those that involve aggregation,
materialized views are more efficient than indexes, because they
substantially reduce the number of measures that need to be re-
trieved from disk due to pre-aggregation.

7. EXPERIMENTS

7.1 Experimental Set Up
In this section we provide an experimental evaluation of the pro-

posed framework. All experiments were executed using a PC with
a single i7 860 (2.8GHz) processor, 8GB of memory and a single
1TB 7200rpm HDD. While the choice of column-store is orthog-
onal to our framework, for these experiments we downloaded and
used the popular MonetDB [15] in its default configuration. We
worked with the following two datasets.

• NY: This dataset depicts New York roads and was down-
loaded from:
http://www.dis.uniroma1.it/∼challenge9/download.shtml.

• GNU: This dataset describes connections between Gnutella
hosts and is available at:
http://snap.stanford.edu/data/p2p-Gnutella04.html.

From each dataset we synthesized millions of graph records. The
graph records were generated by invoking multiple random walk
processes in the underlying graphs. We then assigned a random
real value to each of their edges, to be used as a measure for aggre-
gation. In Table 2 we provide several statistics on the graph records
generated from the two datasets.

Our selection of datasets is justified as follows. The NY dataset
may be used to describe a distribution network within the city in a
SCM application. Then, each record may depict the routes of one
or more trucks for delivering a certain load. The second dataset de-
picts network traffic in the P2P network. A network administrator
may use the recorded link usage information in order to calculate
network utilization among different routes or subnets.

In our experiments we used query graphs that are generated ei-
ther with uniform or with Zipf distribution from the set of paths
resulting from the random walk processes. We used the SUM()
function for path aggregation. All experiments were executed 5
times (starting each time with a "cold" system, after a reboot) and
we report the average numbers.
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Figure 3: Query Execution Times in Alternative Systems

7.2 Sensitivity Analysis, Comparison Against
Alternative Implementations

In what follows we provide a sensitivity analysis of our tech-
niques to various parameters. For comparison, we also include re-
sults for (i) a straightforward implementation that uses a commer-
cial RDBMS and row-oriented storage for storing the graph records
using triplets of record id, edge id and measure values and appro-
priate indexes, (ii) an implementation using the neo4j native graph
database, and (iii) a commercial RDF data store. For each sys-
tem we used the default/suggested configuration parameters given
by its provider. As performance of the alternative systems was or-
ders of magnitude slower than our implementation, we used smaller
subsets of the NY dataset consisting of 1, 5 and 10 million graph
records. In the next subsection, we discuss performance of our im-
plementation for the full-scale datasets.

Figure 3(a) depicts the overall execution time for sets of 100 uni-
form graph queries. Performance of our system scales linearly with
the size of the dataset, as for a fixed set of queries, the result set also
scales linearly. In comparison, queries on the row-store are orders
of magnitude slower. The non-relational systems performed better
than the row store database but they were both significantly slower
than our implementation.

In Figure 3(b) we show the query execution times for 100 queries,
when we vary the number of edges in the query graphs from 1
to 1000 for the dataset with 1 million graph records. Unlike the
other implementations, performance of the column-store becomes
even better with increasing the query graph sizes. This is explained
as fewer records are retrieved in response to a more complex graph
query. Thus, the overhead of retrieving more bitmap columns for
evaluating the structural condition is offset by the reduced I/O for
retrieving the corresponding measures.

We next study the effect of data graph record density on the four
storage platforms. We used subsets from the NY data consisting
of 1 million graph records where the number of distinct edge-ids
is 1000. We varied the density of the graph records, where the
latter is defined as the percentage of edges used in a record. For
instance, a density of 20% means that a graph record contains 200
edges. Query graphs are also constructed for varying density fac-
tors. In Figure 3(c) we can see that increasing density does not
affect the column-store because of a similar increase in the size of
the query graphs (see also Figure 3(b)). As expected, the size of
the database (Figure 4) increases linearly for the row-oriented data
store. In the column-store, the database size is independent on the
graph record density and remains constant. In comparison, the na-
tive graph database (Neo4j) seems to require the most disk space
for storing these records.

In Figure 5 we increase the size of the universe of edges from 1K
up to 100K. Each dataset contained 10M graph records with 10%
density. This implies that graph records are getting larger with in-
creasing the domain of edges, and query output size increases pro-
portionally. As discussed in Section 6, in our implementation we
automatically break the master relation into sub-relations when the
number of its columns exceeds 1000. In that case, retrieval of the
graph records requires joining these sub-relations. For the right-
most data point in the Figure there are 100 sub-relations to join.
This is the reason why performance of the column store is getting
worse, by increasing the number of distinct edges. For comparison
we depict the query performance of neo4j, in which query run time
increases linearly, mainly because of the increase in query output.
This Figure suggests that the column-store performs better even for
domains of up to 100K distinct edges, eventhough such large do-
mains are not typical in the applications of interest. As will be
shown next, by the use of materialized graph views, its query per-
formance becomes even better.

7.3 Benefits of Graph Views
We now examine the impact that the materialization of graphs

views has on query answering. These experiments were run us-
ing the full datasets described in Table 2. We used random sets of
100 queries each and measured their wall-clock execution time in-
creasing the number of graph views materialized. The results for
uniform queries are shown in Figure 6 for the NY dataset. The x-
axis depicts the “space budget” and represents the number of views
(bitmap columns) added as a percentage of the queries. The right-
most entry (100%) corresponds to the case where 100 bitmaps are
added. In MonetDB, a bitmap column (a single view) is roughly
0.02% of the database size, when no views are present. This means
that in the extreme case, when all 100 views are materialized, we
expand the database size by only 2%. The y-axis depicts the cumu-
lative execution time for all 100 queries. The graph for the GNU
dataset is similar (queries are faster though because of the smaller
dataset size) and is omitted due to lack of space.

In the graph we break down the total query execution times in
two parts. The bottom part in the charts involves the retrieval of
the measures requested by the queries. A set of 100 queries re-
turns on the average 30 Million graph records from the NY dataset
and 11 Million graph records from the GNU dataset. These graph
records contain about 2.5 Billion and 0.8 Billion measures respec-
tively. Since, no aggregation is performed by these graph queries,
the cost of retrieving these measures is mandatory and is not af-
fected by the use of graph views. The views merely act as indexes
for these queries, affecting the remainder upper part of the execu-
tion times break-down that is shown in the Figure. Considering the
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Figure 6: Run Time (100 Uniform Graph Queries) vs Space Bud-
get, NY Dataset
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Figure 7: Run Time (100 Uniform Aggregate Graph Queries) vs
Space Budget, GNU Dataset

massive size of the results of these queries, execution times even
without any view materialized are small for a single mechanical
drive and with no clustering for these records: each query takes
about 13.5 seconds on the NY dataset and about 4.7 seconds on the
smaller GNU dataset. This performance is explained by the use of
the bitmap columns our framework utilizes for indexing the edges
of each graph record. Still, the use of graph views provides signifi-
cant benefits in reducing the execution times further, by up to 32%.
If we take out of the equation the mandatory cost of fetching the
results, the reduction is up to 57%.

In Figure 7 we repeat the experiment, this time using queries
that perform path aggregation on the returned graphs on the GNU
dataset. Since an aggregate graph view consolidates all measures
along the edges of the path into a single value, using the views re-
sults in fewer values (original measurements or aggregated values)
retrieved by the queries. This is indicated in the results where we,
once again, break down the running time of the queries depicting
the time spent on retrieving the measures. As expected, the bene-
fits of using the views are more profound in that case. For instance
using 100 views results in reducing the execution time of the query
workload by up to 89%. For this data, the size of an aggregate
graph view is about 0.1% of the database size. Thus, the full space
budget for the views corresponds to an increase of the database size
by about 10%.

In Figure 8 we repeat the experiment using zipf-distributed queries.
In the graph we plot the relative execution times for 100 queries
(simple or aggregate) for the two datasets. The relative time is
computed as the fraction of the total time for obtaining the re-
sults over the execution time for the same queries without the use
of views. When queries exhibit skew, there is increased sharing

among the graph queries resulting in larger gains when using ma-
terialized graph views for the same space budget. Overall, there is
a reduction in the execution times of up to about 34% for simple
(non-aggregate) queries and up to 94% for aggregate queries.

In Figure 9 we report the total number of candidates generated
for the NY dataset and for different query types and distributions,
when we vary the minimum support minSup of a candidate view
as explained in Section 5.2. Computation of the candidate views in
our datasets took less than one second, independently of the value
of minSup used. We do not present results for a naive enumer-
ation of the candidates, as this is not computationally feasible for
this workload. We notice that an initial increase of the value for
minSup sharply reduces the number of candidates.

In Figures 10, 11 we extend our framework to include additional
bitmap columns, selected by the gIndex technique, as explained in
Section 6.3. We used gSpan [16] for mining frequent subgraphs
and then we selected from them the set of discriminative fragments
according to the default parameters presented in [5]. Since mining
of frequent graphs is a lengthy process that cannot be completed
on a dataset containing hundreds of millions of graphs, we were
forced to utilize a small subset of the NY dataset containing 10M
records, using a sample of 1% for mining. For this sample size
(100K graph records), identification and selection of the fragments
took 1.5 hours on our machine. In comparison, our view selection
algorithm ran in under a second. Because of the small size of the
sample, in order to further increase the benefits of these fragments
we utilized two different processes for selecting the sample. For
the line depicted as gIndexQ in the Figures, we trained the index
using only records that are part of the query results (for the respec-
tive queries used in each experiment), seeking to obtain a selection
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of gIndex fragments tailored for these queries. Alternatively, we
trained the index using 80% of random records and 20% of records
that answer the queries (line gIndexQ+D). In the Figures we vary
the number of discriminative fragments (columns) selected. All se-
tups include the use of the original bitmap columns on the edges
that we promote in our framework, since without them query ex-
ecution often results in a full scan of the database. The Figures
suggest that using the fragments selected by the gIndex technique
improves reducing query execution times, however this reduction
cannot reach the benefits provided by using the same number of
views, especially for analytical queries that perform aggregation.
On these queries use of the views results in up to 6 times faster
query performance compared to using gIndexQ. We also tested
combining both gIndex and the views on the same query, which for
some queries resulted in marginally smaller execution times than
using only the views.

8. RELATED WORK
In the database literature there is significant work on recursive

queries (e.g. [11, 17, 18]), which have been our motivation. The
work of [9] first discussed measure aggregation over simple path
expressions in a graph. The queries we consider in our framework
are more complex as (being themselves graphs) they can define ar-
bitrary structural conditions for the retrieved records.

Graph summarization operators are discussed in [9, 19, 20]. Such
techniques are complementary and they may be used in conjunction
to our framework. In the recent work of [21], the authors develop
a novel graph OLAP framework that assumes linked set of tuples
that are described via a graph model (e.g. the authors in DBLP,
where links may describe collaboration frequencies). In contrast,
we do not assume the existence of a single graph, but we rather

look at applications that generate millions of graph records. Still,
these techniques may be used with our framework, for example in
order to derive some average graph over a set of customers.

Recent work on large-scale graph processing (e.g. [22, 23, 24])
focuses on applications where a single massive graph structure is
processed. These techniques rely on available parallelism in order
to perform bulk computations on this graph. In contrast, our ap-
plications of interest generate massive collections of independent
graph records. Efficient ad-hoc query processing on these records
demands proper indexing and pre-computation techniques that are
both provided via the graph view framework we introduce.

Graph data can also be depicted using the RDF data model, for
instance treating each edge as a separate triplet. Implementation-
wise, there are two main classes of RDF triplet stores. The first
includes systems that natively store the RDF data using proprietary
binary formats (e.g. Jena TDB, RDF-3X, 4store) and the second
class involves implementations over a relational backend. Systems
of the second class try to leverage proven features of the relational
systems such as scalability, transaction support, security, etc that
are often lacking in native stores. One of the most important ques-
tions for relationally-backed stores is how to shred the RDF schema
into relational tables. A first alternative is to use a single massive ta-
ble for storing the triplets. Despite the simplicity of this approach,
querying requires multiple joins, just as is the case of querying a
graph database stored in a single edge-adjacency relation. A second
alternative is to create multiple relations per RDF data type [25] or
predicate [26]. Recently, a hybrid approach has been proposed [27]
that clusters multiple predicates into the same column of a relation.
While our techniques follow a similar idea of shredding the graphs
into a relational store, the particular details of this process are dif-
ferent. Moreover, the aforementioned techniques assume the exis-
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tence of an RDF schema in order to guide the shredding, while in
our applications, we do not assume prior knowledge of the process
that generates the graph records. Finally, the type of queries we ad-
dress in this work are tailored to the needs of the applications that
generate the graph records and not generic SPARQL statements.

In the literature, there are many works in graph indexing so as
to support subgraph isomorphism testing. In [5] an index called
gIndex makes use of frequent substructures as the basic indexing
feature. Sapper [28] proposed a subgraph indexing and matching
method to find the occurrences of a query graph in a large database
graph with possible missing edges. TreeSpan [29] conducts simi-
larity all-matching using a minimal set of spanning trees for query
q to cover all connected subgraphs of q missing at most k edges.

The aforementioned works differ from our framework in several
aspects. First, they consider the problem of graph isomorphism,
which is important for applications such as computational biology
but is not central in our setting. In our work there is no need to
match edges and paths between queries and the graph database as
they are known a priori. Moreover our framework retains the bene-
fits of having the data in a relational repository, enabling better inte-
gration of the analysis of these records with additional data already
stored in the database. Our techniques are suitable for massive disk
resident datasets. In contrast, many of the aforementioned tech-
niques do not directly discuss storage and retrieval of the graphs (or
indexes they built) from secondary storage. In our techniques we
utilize existing relational technology enabling processing of graph
data that is orders of magnitude larger than the available memory.
Graph indexing techniques require substantial preprocessing of the
data in order to mine frequent features such as subgraphs, trees or
paths. This process may be prohibitively time consuming in large
datasets (this limitation is evident in the sizes of the graph databases
used in these works) in order to build the index. In comparison our
techniques build simple indexes in the form of bitmap columns and
materialized views that are all computed in a single pass.

9. CONCLUSIONS
Graph data is becoming popular due to emerging applications

that need to store, process and manipulate complex datasets. In
this paper we proposed an intuitive framework where both data and
queries are modeled as abstract graph structures. We argued for
and demonstrated in our experiments that relational systems are
efficient in storing graph records given an intuitive flat represen-
tation of these graphs backed by a a column-store and paired with
novel use of bitmap indexes and materialized graph views we intro-
duced. Our experiments using very large graph databases showed
that our platform is orders of magnitude faster not only compared
to a straightforward relational implementation but also than alter-
native systems that natively handle graph data.
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