
Diff-Index: Differentiated Index in Distributed
Log-Structured Data Stores

Wei Tan
IBM T. J. Watson Research

Center
Yorktown Heights, NY 10598,

USA
wtan@us.ibm.com

Sandeep Tata
∗

Google, Inc
Mountain View, CA 94043,

USA
tata@google.com

Yuzhe Tang
†

Georgia Institute of
Technology

Atlanta, GA 30332, USA
yztang@gatech.edu

Liana Fong
IBM T. J. Watson Research

Center
Yorktown Heights, NY 10598,

USA
llfong@us.ibm.com

ABSTRACT
Log-Structured-Merge (LSM) Tree gains much attention re-
cently because of its superior performance in write-intensive
workloads. LSM Tree uses an append-only structure in
memory to achieve low write latency; at memory capac-
ity, in-memory data are flushed to other storage media (e.g.
disk). Consequently, read access is slower comparing to
write. These specific features of LSM, including no in-place
update and asymmetric read/write performance raise unique
challenges in index maintenance for LSM. The structural
difference between LSM and B-Tree also prevents mature
B-Tree based approaches from being directly applied. To
address the issues of index maintenance for LSM, we pro-
pose Diff-Index to support a spectrum of index maintenance
schemes to suit different objectives in index consistency and
performance. The schemes consist of sync-full, sync-insert,
async-simple and async-session. Experiments on our HBase
implementation quantitatively demonstrate that Diff-Index
offers various performance/consistency balance and satisfac-
tory scalability while avoiding global coordination. Sync-
insert and async-simple can reduce 60%-80% of the overall
index update latency when compared to the baseline sync-
full ; async-simple can achieve superior index update per-
formance with an acceptable inconsistency. Diff-Index ex-
ploits LSM features such as versioning and the flush-compact
process to achieve goals of concurrency control and failure

∗Work done while author was at IBM Almaden Research
Center.
†Work done while author was an intern at IBM T. J. Watson
Research Center.

(c) 2014, Copyright is with the authors. Published in Proc. EDBT on Open-
Proceedings.org. Distribution of this paper is permitted under the terms of
the Creative Commons license CC-by-nc-nd 4.0.

recovery with low complexity and overhead. Diff-Index is
included in IBM InfoSphere BigInsights, an IBM big data
offering.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Distributed
databases

General Terms
Design, Experimentation, Performance

Keywords
log-structured merge (LSM) tree, secondary index, CAP
theorem, distributed databases, failure recovery

1. INTRODUCTION
In recent years, scale-out data stores, popularly referred

as NoSQL [28], are rapidly gaining attention to support
Internet-scale applications. Examples are BigTable [7], Dy-
namo [14], PNUTS [11], Espresso [23], Cassandra [2] and
HBase [3]. These stores provide limited operations (mainly
CRUD) compared to relational databases, and excels in elas-
ticity on commodity hardware. Such stores are widely used
by applications that perform CRUD operations while need-
ing scalability.

As applications built on NoSQL stores grow, the need for
database features such as secondary indexes becomes im-
portant. Consider a social review application (similar to
yelp.com) tracking reviews posted by users about restau-
rants, bars, clubs, etc. A common query is to list all reviews
by a certain criteria, e.g., of a particular restaurant, or by a
particular user. The schema in Figure 1 shows three tables:
Reviews, Users, and Products. In a NoSQL store, tables are
usually partitioned across a cluster of servers. A given table
can only be partitioned using one attribute, say by ReviewID
for Reviews. As a result, to efficiently answer queries such
as “find all reviews for a given restaurant” or “find all re-

 

 

700 10.5441/002/edbt.2014.76



Figure 1: Review Schema.

Table 1: LSM tree vs. B-tree
Features LSM B-Tree

Optimized for write moderate read
and write

Write append-only, fast in-place, slower
Write API put for both in-

sert and delete
insert and delete

Read relatively slow relatively fast
Usage BigTable, HBase,

Cassandra, etc
many RDBMS

views written by a given user”, we need secondary indexes
on Reviews.
Challenges of secondary index maintenance in LSM

Internet-scale workloads become more write-intensive with
the proliferation of click streams, GPS and mobile devices.
Because of this, Log-Structured-Merge (LSM) Tree [22] gains
much recent attention. LSM has superior performance in
write-intensive workloads because of its log-like data struc-
ture. However, index maintenance in a distributed LSM
store has not been systematically addressed.

Firstly, existing index approaches on B-Tree (in this pa-
per B-Tree refers to B-Tree, B+ Tree and other B-Tree vari-
ants) cannot be straightforwardly applied to LSM due to
their structural difference. See a comparison of B-Tree and
LSM in Table 1. B-Tree handles updates in an in-place
manner, and is optimized for moderate read-and-write work-
loads; LSM generates only sequential I/O in writes, with no
in-place update, and is optimized for write-intensive work-
loads. As illustrated later in Section 2, in LSM inserts and
updates are indistinguishable, and are implemented with the
same put operator; while in B-tree insert and update are two
separate operators. This implies that in LSM a put does not
know if it is actually an insert or update. As a consequence,
the associated index update needs to incur a read into the
data table, in order to get the old index value and later re-
move it. That is, a read operation is added into the path of a
write in index maintenance. Different from B-tree, in LSM a
read is many times slower than a write. This no in-place up-
date and asymmetric read-write latency, and its implication
to index update, needs to be considered and addressed.

Secondly, LSM stores, like other NoSQL systems, are by-
design partitioned to handle big data. Therefore, base data
and index will be both distributed. How to maintain con-
sistency between base and index, and minimize the mainte-
nance overhead is also challenging.

Thirdly, how to avoid yet another logging system for fail-
ure recovery is key to reduce the overhead of index mainte-
nance and improve overall system performance. Moreover,
this failure recovery protocol has to be reconciled with the
aforementioned index maintenance procedures.

Contribution of Diff-Index
This paper presents Diff-Index (Differentiated Index), a

novel and systematic approach to add global secondary in-
dex on a distributed LSM store, without compromising its
write latency and scalability. To the best of our knowledge,
we are the first to build effective indexes in LSM taking
into account its intrinsic features: no in-place update and
versioned record, read is much slower than write, and dis-
tributed nature.

Diff-Index provides a spectrum of synchronous and asyn-
chronous index maintenance schemes, and a carefully de-
signed, lightweight concurrency control and failure recovery
protocol. Our contribution is as follows:

• We investigate the challenge of secondary index main-
tenance in distributed LSM stores, addressing its no
in-place update feature, asymmetric read/write per-
formance and distributed nature.

• We design Diff-Index comprising four index update
schemes, and quantitatively analyze the performance
of them.
1) sync-full : to complete all index update tasks syn-
chronously;
2) sync-insert : to insert new index synchronously but
lazily-repair old index entries;
3) async-simple: to asynchronously execute index up-
dates and guarantee eventual execution;
4) async-session: to achieve read-your-write semantics
on top of async-simple.

• We design the concurrency control and failure recovery
protocol by exploiting LSM feature such as versioning
and flushing, so as to minimize additional complexity
on top of LSM.

• We implement Diff-Index on HBase. Experiment re-
sults show that Diff-Index offers a variety of perfor-
mance/consistency trade-offs, and scale well without
introducing any global locking or coordination.

Diff-Index is now a feature enhancement of HBase in IBM
InfoSphere BigInsights V2.1 [19], an IBM big data product
built on top of the open-source Hadoop ecosystem. Diff-
Index enables BigInsights to create, maintain and utilize in-
dex for data stored in HBase.

The rest of the paper is organized as follows. Section 2 in-
troduces LSM and HBase. Section 3 discusses consistency of
index and motivates the design of Diff-Index. Sections 4 and
5 present synchronous and asynchronous index schemes in
Diff-Index, respectively. Section 6 discusses the IO cost and
ACID features. Section 7 introduces the implementation in
IBM BigInsights. Section 8 presents comprehensive experi-
ments that explore the latency, throughput and consistency
of Diff-Index under different settings of the extended YCSB
workload. We describe related work in Section 9 and con-
clude in Section 10.

2. BACKGROUND
This section lays out the problem domain that motivates

the design of Diff-Index. Section 2.1 introduces the LSM
model; Section 2.2 introduces HBase as an LSM implemen-
tation.

701



Figure 2: Log Structured Merge tree.

2.1 LSM-Tree Model
LSM model was introduced in 1996 [22] and received a

reviving interest after Google released BigTable [7]. It pre-
vails in workloads with a high rate of inserts and deletes.
The LSM-tree defers and batches data changes by cascad-
ing them from a memory to disk. A LSM-Tree consists of:
an in memory store using tree or map structure, and several
immutable disk stores using B-tree or variants. For example,
the LSM tree in Figure 2(a) consists of an in memory store
(block mem-store) and two disk stores C1 and C2. Writing
into LSM equals an insertion into the mem-store. In practice
a write usually also involves an append to a commit log for
durability purpose. Therefore, an LSM write, including a
memory operation and a sequential I/O, is very fast. When
mem-store reaches to a certain volume, its content is flushed
to disk. For example, the mem-store in Figure 2(a) is flushed
into a new disk store C3 in Figure 2(b). After the flush the
the mem-store becomes empty and denoted as mem-store’
in Figure 2(b). With this procedure, every write is virtually
an append; an update or deletion to an existing record is
achieved by adding a new version (or a tombstone, in case
of deletion) into the mem-store. A newer version is usually
marked by a monotonic timestamp. By this means LSM has
no in-place update and keeps multiple versions of a record.
To retrieve one or multiple versions of a record, the mem-
store and all disk stores need to be scanned, as shown in
Figure 2(b). Therefore a read may include multiple random
I/O and is relatively slow. To alleviate this and consolidate
multi-versions of a record into a single place, disk stores are
periodically compacted. As an example, C1, C2 and C3 are
compacted into C1’, as shown in Figure 2(c).

In Section 4.1 we will revisit these two features of LSM,
i.e., no in-place update and asymmetric read/write latency,
and demonstrate that they impose unique challenges in in-
dex maintenance.

2.2 HBase Data Model and Architecture
Apache HBase is a LSM store mimicking BigTable. Since

our implementation is based on HBase, we briefly introduce
its architecture and API. In HBase, data is organized in ta-
bles. A table contains rows that are identified by a (primary)
row key. Each row may contain an arbitrary number of
named columns with corresponding values and timestamps.
Columns are grouped into column families. Each column
family is partitioned and stored on multiple nodes, and on

Figure 3: HBase architecture.

each node it is stored as a LSM-tree.
We list a subset of HBase’s API:

put(table, key, colname, colvalue): Insert a column
value into a row.
get(table, key, colname): Read a column value and its
timestamp from a row.
delete(table, key, colname): Delete a column from a
row.
Although not shown, there are also multi-column versions
of these methods. For example, the multi-column version
of Put allows many columns in one row to be updated with
a single call. Most APIs can also specify a timestamp to
either put a row with a timestamp or get with a given
timestamp. Without losing generality, we consider a single
column-family table in this paper.

As an example in Figure 3, in each each table, the key
space is partitioned into Regions and each region is assigned
to a RegionServer. The RegionServer is responsible for serv-
ing puts and gets for the keys that fall in the Region. A given
RegionServer may serve more than one Regions. The client
library caches a copy of the partition map and can route
a request for a given key to the appropriate RegionServer.
HBase Master is the management node dealing with tasks
such as table creation and destroy. ZooKeeper [18] is the
cluster management node dealing with region assignment,
node failure, etc.

When a put request arrives at a region server, it first as-
signs a timestamp to the put, and then writes this request to
the Write-ahead-Log (WAL). This timestamp is local to the
RegionServer and is a monotonically non-decreasing long in-
teger generated by System.currentTimeMillis() call in Java.
The WAL is a file on HDFS and it can guarantee durabil-
ity. Once the put has been logged, the RegionServer applies
the update to the Memtable (Memtable is the HBase term
of the aforementioned LSM mem-store). Periodically, the
contents of the Memtable are flushed to the on-disk LSM
component called HTable. HTables also reside in HDFS and
are therefore replicated and durable.

3. MOTIVATION OF DIFF-INDEX

3.1 Global vs. Local Index
In a distributed and partitioned data store, there are two

types of secondary indexes: local and global. As evident
from the name, a local index indexes data in a given re-

702



gion and co-locates with that particular region. In contrast,
a global index indexes all regions in a table, and is poten-
tially itself partitioned across all nodes. The advantage of
a global index is in the handling of highly selective queries,
i.e., those with a small result set. This is because a global
index has an overall knowledge of data location, and allows
sending queries to regions that actually contain the required
data. Its drawback is that the update of a global index in-
curs remote calls and therefore results in a longer latency,
as data and index are not necessarily collocated. On the
other hand, a local index has the advantage of faster update
because of its collocation with a data region; its drawback
is that every query has to be broadcast to each region, and
therefore costly especially for highly selective queries. Both
local and global indexes can be valuable in different settings
[9]. In summary, we focus on global indexes to better sup-
port selective queries on big data. This selection leads to a
distributed index which is subject to CAP theorem.

3.2 Consistency of Index
CAP theorem [6] indicates that any networked and repli-

cated data store can enjoy two of the three properties: con-
sistency, availability and network partition-tolerance. In a
distributed data store, partition-tolerance is always desirable
and this indicates a balance has to be made between consis-
tency and availability. In a lot of circumstances availability
means latency of a request, so latency and consistency needs
to be balanced, subject to CAP theorem.

From the perspective of CAP theorem, index can be con-
sidered as a replication of the base data it indexes. Full
ACID guarantee on index updates is not always desirable
in Internet-scale, write-intensive workloads because of the
following reasons:
1. All-or-nothing semantics restricts the availability of the
system. In some cases when index cannot be synchronized,
users still want the work to proceed.
2. Protocols such as two-phase commit can provide trans-
action guarantee to index updates; however in a distributed
environment this increases latency.
3. Many workloads are write intensive and read from time
to time, such that index update can be delayed. Also, some-
times it is acceptable that the index as a replication does
not catch up with base data.

3.3 Session Consistency
Session consistent read offers a read-your-write semantics

while still getting most of latency and throughput benefits
of asynchronously maintained indexes. We use the social
review application in Figure 1 to explain it. Consider two
different users taking the following sequence of operations:

User 1 User 2
1.View reviews for product A. View reviews for product B

2.Post review for product A.

3.View reviews for Product A. View reviews for Product A

User 1 views the reviews for product A while User 2 browses
the reviews for a different product B. Next, User 1 posts
a review for product A, and asks to view all reviews for
product A – possibly to see if his review gets listed correctly.
If this query is served by looking up an index on column
ProductID of table Reviews, and if this index is maintained
asynchronously, it is possible that User 1, at time=3 does not

Figure 4: The spectrum of Diff-Index schemes.

see his own review when listing all the reviews for product
A, because the index has not yet been updated yet. This
is an undesirable effect, and may lead to User 1 assuming
that his review was lost and resubmitting it – later to find
his review getting listed twice.

Under session consistency, User 1 would be guaranteed to
see his review at time=3 when he lists all reviews for prod-
uct A. However, User 2 is not guaranteed to see User 1’s
review of product A when his query arrived at time=3, af-
ter the review had been posted. For Web 2.0 applications
like this, such a notion of consistency is adequate and can be
attractive if it provides better latency and throughput guar-
antees. Section 5.2 describes the design and implementation
of session consistency in Diff-Index.

3.4 Configurable Consistency in Diff-Index
Compared to solutions that can guarantee a strongly con-

sistent index [13], Diff-Index is desirable for workloads re-
quiring low latency, high availability and with intensive writes.
Diff-Index provides consistency levels as follows (see Fig-
ure 4):

• Causal consistent : once a put operation returns SUC-
CESS to the client, both data and its associated in-
dex entry are persisted in the data store. This is the
strongest consistency level in Diff-Index and achieved
by the sync-full scheme to be introduced in Section 4.1.

• Causal consistent with read-repair : index is causal con-
sistent when client check both index and base table.
This is achieved by scheme sync-insert to be intro-
duced in Section 4.2.

• Eventually consistent : when a data insert returns SUC-
CESS to the client, its associated index entry is not
updated right away but will eventually be. This is the
weakest consistency level in Diff-Index and achieved
by scheme async-simple in Section 5.1.

• Session consistent : on top of async-simple, a client ses-
sion is aware of its own actions, i.e., read-your-write se-
mantics is enforced. This is achieved by scheme async-
session in Section 5.2.

In our design, schemes can be chosen in a per index man-
ner, i.e., each index can choose one from the four schemes.
Users can choose which Diff-Index schemes to use depend-
ing on the workload and consistency requirements. Here are
some general principles:
(1) use sync-full or sync-insert when consistency is needed;
(2) use sync-full when read latency is critical;
(3) use sync-insert when update latency is critical;
(4) use async-simple or sync-session when consistency is not
a concern;
(5) use async-session when read-your-write semantics is needed.

703



Ideally Diff-Index should be able to adaptively choose a
scheme by understanding consistency requirements and ob-
serving workload characteristics such as read/write ratio.
Currently user selection is required and we leave adaptive
scheme selection for future work.

4. SYNCHRONOUS SCHEMES
Before introducing Diff-Index schemes, we go through the

operations incurred in an index update accompanying a base
data update. We use update/write/insert/put interchange-
ably given the nature of LSM. Now we introduce notations
of key-value pairs and operations in base and index tables.
A record, row, or key/value pair: 〈k, v, ts〉 in which k
is the key, v is the value, and ts is the timestamp. We omit
ts when it has no particular meaning in the context.
LSM Tables: base or data table (B), and index table (I);
Operations on LSM: write–put() (P), read–get() (R),
delete–delete() (D);
Operations on base table: put()–PB , get()–RB , and
delete()–DB ;
Operations on index table: put()–PI , get()–RI , and
delete()–DI .

Remark: Here we use notions that are generally applicable
to any LSM store. Readers can easily relate these notions
to HBase terminology. For example, in base table, the key
of a Key/Value pair is HBase’s rowkey plus column name.
In Diff-Index we make the index table a key-only one, i.e.,
an index row uses the concatenation of the index value and
rowkey of the base entry as its rowkey, with a null value.

4.1 Scheme Sync-full
Sync-full consists of steps shown in Algorithm 1: SU1–

put in base table, SU2– put in index table, SU3– read in
base table, and SU4– delete in index table. Since SU1 is
not introduced by index update so we formulate the latency
(L) of index update scheme syn-full as follows:

L(sync-full) = L(PI) + L(RB) + L(DI) (1)

Using sync-full, an index is up-to-date after Algorithm 1
returns successfully. As we discussed in Section 2.1, one fea-
ture distinguishing LSM from B-tree is that, L(RB) is much
larger than L(PI) and L(DI). Therefore, L(RB) is the major
contributor of L(sync-full). As a result, adding index in-
troduces a large latency L(sync-full) on top of L(PB). This
inspires us seeking alternatives to optimize scheme sync-full
and reduce latency.

Algorithm 1 Index update in sync-full

When a put 〈k, vnew, tnew〉 to base table is observed, do
SU1 to SU4:
SU1. Put data into base table: PB(k, vnew, tnew);
SU2. Put index into index table: PI(vnew⊕k, null, tnew)
or PI(vnew ⊕ k, tnew) to omit the null value;
SU3. Read the value of key k before time tnew: vold ←
RB(k, tnew − δ);
SU4. Delete old index from tnew from index table:
DI(vold ⊕ k, tnew − δ).

Remark: in Algorithm 1, δ stands for a infinite small
time unit; in HBase implementation we choose 1 millisecond
as it is the smallest time unit. RB(k, tnew − δ) means read

from the base table, the value of row k before timestamp
tnew.

4.2 Scheme Sync-insert
In scheme sync-full, by running steps SU1 and SU2 only

and skip steps SU3 and SU4, the major component L(RB)
from the right-hand side of Equation 1 is removed. This
scheme, which we call sync-insert, shortens index update
latency significantly:

L(sync-insert) = L(PI) (2)

Let us look at the implication of this scheme. In a base ta-
ble, new data 〈k, vnew, tnew〉 invalidates 〈k, vold, told〉 for any
told < tnew. This is caused by LSM’s semantics: for a given
key, a value with a more recent timestamp overwrites any
value with an older timestamp. However, in index table new
index entry 〈vnew ⊕ k, tnew〉 and the old one 〈vold ⊕ k, told〉
co-exist, because they are with different keys, i.e., vold ⊕ k
and vnew ⊕ k, respectively. So this scheme leaves stale en-
tries in index table. This is acceptable until those entries
are referenced by a query. Therefore to get accurate result
a double-check routine has to be enforced during querying.
As seen in Algorithm 2, sync-insert requires an additional
step SR2 during index read, compared to sync-full. Actu-
ally this additional read-and-delete step is saved earlier in
the index update process of sync-insert.

Algorithm 2 Index read in sync-insert

Input: Index value vindex.
Output: List of rowkeys in base table K.
K ← ∅
SR1: Read index table and get a list of rowkeys with
timestamps: List(〈k, ts〉)← RI(vindex)
SR2:
for all 〈k, ts〉 in List(〈k, ts〉) do

read base table and get newest value of k with times-
tamp: 〈vbase, tb〉 ← RB(k)
if vindex == vbase then
〈vindex ⊕ k〉 is an up-to-date index entry and add k
to K

else
〈vindex ⊕ k〉 is stale and delete 〈vindex ⊕ k, ts〉 from
index table: DI(vindex ⊕ k, ts)

end if
end for
return K

4.3 Concurrency Control
Concurrency control is important for a distributed LSM

store, and is orthogonal to the underlying data structure.
Different concurrency control approaches can be built on
the same abstract LSM model. For a couple of examples:
HBase uses MVCC in each region, writes are sequenced in a
region and reads are non-blocking by following snapshot iso-
lation; MegaStore (an enhancement of BigTable) [4] uses a
single timestamp-oracle across regions, and lock-based two-
phase commit for distributed transactions. Index mainte-
nance protocols have an impact on the correctness of con-
current access. In both sync and async schemes, as seen
in Algorithms 1 and 4, we enforce that an index entry
must have the same timestamp as the base entry it
associated with. We enforce this rule for easy concurrency

704



control and failure recovery. Here, we discuss the issue of
concurrency control and leave the failure recovery issue to
Section 5.3

The generated index entry carries the same timestamp as
a new incoming base entry, so that in sync-full, SU4 can
safely delete the old index record before timestamp tnew.
Please note that in both RB(k, tnew − δ) and DI(vold ⊕
k, tnew−δ), the δ is important. In RB(k, tnew−δ), you want
to read the latest version right before the base put at tnew;
without the δ you could have read exactly the same put at
tnew, which is incorrect. In DI(vold⊕ k, tnew − δ), you want
to delete the value right before tnew; without the δ you could
have deleted the index just put at tnew, if vnew == vold; this
is also incorrect.

In LSM put is a generic term for both insert and up-
date, and a data entry having a newer timestamp (version)
invalids the previous version. For delete, LSM writes a tomb-
stone with a timestamp representing the deletion time. In
other words, deletion is handled similarly as put in LSM,
i.e., deletion can be treated as a put with a null value and a
timestamp. Therefore, in the remaining part of this paper
we only discuss the case of put and the approach can be
extended to handle deletion in a straightforward way.

5. ASYNCHRONOUS SCHEMES
In the previous section we already see that, the index

update latency of sync-full is high since it requires syn-
chronously deleting the old index entry, which in turn re-
quires a read of the previous version of the value in the base
table. The sync-insert scheme offers a lower latency in ex-
change for a worse read latency. It may be an attractive
tradeoff for write-heavy applications. We next describe an-
other scheme named async-simple that offers low latency on
both updates and reads by relaxing consistency.

5.1 Scheme Async-simple
The idea behind async-simple is to use an in-memory

queue called asynchronous update queue (AUQ) to tem-
porarily store all base updates that require index processing,
and acknowledge the client as soon as the base update has
been logged and added into AUQ. Index processing is done
by a background service called the asynchronous process-
ing service (APS) that de-queues from AUQ, inserts new
values into the index table, and deletes corresponding old
values if present. The procedure at update-time and during
background processing is outlined in Algorithms 3 and 4,
respectively.

With the asyc-simple scheme, there will be a time window
when a piece of base data has been updated but its index
has not been fully updated. If partially updated indexes are
accessed by a client, it is possible that an item that was
already updated in the base table either still associates with
an old index (when neither the new value nor the delete
has been delivered), or disappears from the index (when
the delete has been delivered but not the new value), or
associates with two different index values (when new value
has been delivered but not the delete). This is similar to the
guarantees provided by PNUTS [1].

5.2 Session Consistency and Scheme Async-
session

While some applications can live with eventual consis-
tency, Terry et al. [27] argue that sometimes stronger se-

Algorithm 3 Index update in async-simple

When a put 〈k, vnew, tnew〉 to base table is observed, do
AU1 to AU2:
AU1. Do base put PB(k, vnew, tnew); If an index is de-
fined, add the put to AUQ;
AU2. Acknowledge put SUCCESS to the client.

Algorithm 4 Background index processing in async-simple

BA1. If AUQ is not empty, dequeue a put 〈k, vnew, tnew〉
from it;
BA2. Read from base table the value for k at tnew − δ:
vold ← RB(k, tnew − δ);
BA3. Delete old index from tnew: DI(vold ⊕ k, tnew − δ);
BA4. Insert new index PI(vnew ⊕ k, tnew).

mantics are highly desirable. To avoid the cannot-see-your-
own-write abnormality shown in Section 3.3, we propose an
approach that provides session consistency – we call it async-
session. In this scheme, any index look-up is guaranteed to
contain updates to the base data that were made in the same
session. We next detail the process for session consistency.

Consider the sample interaction below:
session s = get_session()

put(s, table, key, colname, colvalue)

getFromIndex(s, table, colname, colvalue)

end_session(s)

put() and getFromIndex() behave exactly like their regu-
lar counterparts except that they take an extra argument:
a session ID s that is generated by the get session() call.
The getFromIndex() call guarantees that it sees all updates
made to any index by the operations in session s. We im-
plemented a session consistent variant to each HBase API
described in Section 2.2.

The basic technique used to provide session consistency is
to track additional state in the client library, and we im-
plement session consistency in HBase Java client library.
In a get session() call, the client library creates a random
session ID, adds an entry in a data structure that tracks
live sessions, and returns this ID to the application. For
all operations that use the session consistent version of the
APIs, the client library maintains a set of client-local, pri-
vate, in-memory tables associated with the session ID and
updates them every time the server returns success for a re-
quest. To service session consistent reads, the client library
first runs a regular read that gets results from the appropri-
ate RegionServer, but before returning to the application, it
merges this read with the contents of the private table in the
client library. The intuition behind this approach is to track
session-local state that might not be synchronously main-
tained in indexes. The main challenge with this approach is
managing the memory allocated to each session storing the
private table subsets.

When a base table is updated, the client library submits
this request as a regular call, but also requests that the server
returns the old value and the new timestamp assigned to the
update. The library uses the old value to generate delete
markers for the keys in the secondary index table(s). It also
uses the same logic as in the server to generate new entries
based on new base records and inserts them into the session-
private hash table.

On getting requests, if there is data in session-private data

705



structure, the results returned by the server get combined
with the data in the data structure. The session-private
data are garbage collected when a session expires or the
client issues an end session() call.

For implementation, a“client” is not necessarily at an end-
user’s machine, but usually at the middleware layer, say in
an application server which acts as the client of the LSM
store. Despite an application server’s ample capacity to
store session information, a session should not stay and grow
indefinitely. We configure a maximum limit for session du-
ration: if a session is inactive longer than this limit (say 30
minutes), then it is destroyed and data garbage collected.
An application that issues a request under this session ID
after 30 minutes will get a session expiration notification and
start a new session. Experiments in Section 8 show that,
it is highly unlikely that asynchronous index updates take
more than 30 minutes to complete, so such an expiration
mechanism makes sense. We also developed a mechanism to
monitor the memory usage of a session, and automatically
disable session-consistency when out-of-memory is to occur,
most likely in update-intensive workloads.

5.3 Failure Recovery of AUQ
As analyzed earlier in this section, schemes async-simple

and async-session provide lower latency for both updates
and reads, with sacrifice in consistency. However, this asyn-
chronism brings about complication in terms of failure re-
covery to guarantee eventual consistency. Since the recovery
logic of LSM is dependent on both the abstract data model
and the specific implementation, we first briefly review the
recovery protocol in HBase. We then introduce the design of
Diff-Index failure recovery protocol by leveraging the generic
LSM features and the recovery protocol of HBase.
Failure recovery of HBase
Recall Figure 3, HBase’s failure recovery relies on these facts:
(1) data in in-memory MemTables have their write-ahead-
logs (WAL) persisted in HDFS, (2) on-disk HTables them-
selves persist on HDFS, and (3) HDFS is fault-tolerant and
accessible by any participant node. When one RegionServer
fails, HBase does the following: the ZooKeeper detects the
failure using a heart-beat mechanism, retrieves the WAL
for that RegionServer from HDFS and splits it into sepa-
rate logs, i.e., one for each Region. Then, the ZooKeeper
re-assigns each Region that used to be hosted by the failed
RegionServer to a new RegionServer. Each of these newly
assigned RegionServers replays the WAL corresponding to
the new region to which it has been assigned, to restore
the MemTable data. After WAL replay the RegionServer
links the MemTable with the earlier-persisted HTables from
HDFS, and finally re-open the region for reads and writes.
In the event that the HBase master fails, a new node takes
over as a new master since all the state is stored in highly-
available Zookeeper.
AUQ failure recovery protocol
In Diff-Index, indexes are also stored as LSM tables. When
a RegionServer fails, all the base and index tables hosted
by this server will be recovered by the specific LSM imple-
mentation, such as HBase. When asynchronous schemes are
used and the AUQ is not empty, those pending requests in
AUQ do not necessarily reach their target regions. While
base and index tables are both recovered by HBase, these
pending requests in AUQ need to be handled as well. In
other words, the recovery protocol needs to guarantee that

index update operations in AUQ are also recovered correctly
during a region restore. A straightforward solution is to add
yet another log for AUQ to ensure its durability, however
this adds to the overhead and complexity to the system.

As discussed in the previous paragraph, in HBase data
that have been flushed to HTable is persistent; data that
are not flushed and still in MemTable are vulnerable but can
be rebuilt from WAL in server failure. Here an important
milestone to watch out is the flush point. During a flush,
a MemTable is emptied and data in it is persisted to one
or more HTables; in the meanwhile, the WAL correspond-
ing to the flushed/persisted data is deleted (this process is
also called WAL roll-forward). We can divide all the pend-
ing requests PR in AUQ in two sets, PR(MemTable) and
PR(Flushed), based on whether the base data is still in
MemTable or already flushed, i.e.,

PR = PR(MemTable) ∪ PR(Flushed) (3)

and,

PR(MemTable) ∩ PR(Flushed) = ∅ (4)

Data in PR(MemTable) and PR(Flushed) have the fol-
lowing behavior in the region recovery process:
(a) each base put in PR(MemTable) will be replayed during
the region recovery;
(b) none of base put in PR(Flushed) will be replayed dur-
ing the region recovery process, since they are all flushed
and persisted in a HTable.

This finer categorization of PR in AUQ inspires us to de-
sign an AUQ recovery protocol without adding yet another
log, when the following two requirements are satisfied.

(1) ensure that PR(Flushed) = ∅ at any time, and

(2) further associate the recovery of PR(MemTable) with
the recovery of the base MemTable.

The reason of (1) is that, if base puts in a MemTable re-
main un-processed in the AUQ after the MemTable flushes,
they become dangling and not able to be reconstructed from
WAL replay, since their corresponding WAL has already
been rolled forward after flush. Figure 5 illustrates how
to achieve (1): We add a preFlush() coprocessor hook to
block the AUQ from receiving new entries, and wait until
the APS drains the AUQ (“1. pause & drain”). Only after
that we do “2. flush” and “3. roll forward” of WAL. With
this draining-AUQ-before-flush constraint, WAL acts as the
log for both MemTable and AUQ.

During a WAL replay, (2) is achieved by: each base put
replayed is also put into AUQ again by Diff-Index, regard-
less of whether or not it has been delivered to index tables
by AUQ before the failure. This ensures delivery of index
update but as a side-effect, some puts may enter AUQ and
get delivered more than once. This behavior is correct with
respect to LSM semantics, because an index entry in Diff-
Index is always with the same timestamp of its base entry;
while in LSM semantics, adding the same entry with the
same timestamp for multiple times, is idempotent.
Low performance impact of the recovery protocol
This draining-AUQ-before-flush approach will slightly delay
flush when the system is under a heavy write load. We show
in Section 8 that in practice, this delay is reasonable. One
may also raise concern about the excessive delivery of in-
dexes during a failure, despite its idempotency. We argue

706



Figure 5: Recovery process of AUQ.

Table 2: I/O cost of Diff-Index schemes
Scheme Action Base

Put
Base
Read

Index
Put

Index
Read

no-index
update 1 0 0 0

read – – – –

sync-full
update 1 1 1+1 0

read 0 0 0 1

sync-insert
update 1 0 1 0

read 0 K K 1

async-simple
update 1 [1] [1+1] 0

read 0 0 0 1

that, since failure recovery occurs relatively rarely, the sim-
plicity of this design outweighs the potential excessive (but
semantically correct) index update.

In summary, a light-wight failure recovery is accomplished
by (1) draining AUQ before LSM flush, (2) ensuring index
and base data having the same timestamp, and (3) re-add
every base put to AUQ during WAL replay. Through this
careful design exploiting features of both generic LSM and
HBase implementation, we avoid adding a separate logging
and recovery mechanism for index; instead we make index
recovery a subroutine in base WAL replay.

6. DIFF-INDEX PROPERTIES
In this section we discuss the I/O cost and ACID proper-

ties of Diff-Index schemes.

6.1 I/O Cost
Table 2 summarizes the complexity of Diff-Index schemes,

in terms of the read/write operations involved. For each
scheme, two actions, i.e., index update and index read, are
considered. For both actions, the number of put in base ta-
ble (Base Put), read in base table (Base Read), put in index
table (Index Put) and read in index table (Index Read), are
counted, respectively. For example, in the sync-full row, an
index update involves 1 Base Put, 1 Base Read , 1 Index
Put and (possibly) 1 Index Delete (summarized as “1+1” in
column Index Put); in the sync-insert row, an index read
involves 1 Index Read, K Base Read (assuming index read
returns K rows), and (possibly) K Index Delete. In the
async-simple row, “[ ]” indicates asynchronous operations.
As previously discussed, we do not distinguish put and delete
because their I/O costs are similar in LSM.

6.2 ACID Properties

Atomicity. When a base put() occurs, there are three
follow-up operations shown in the right-hand side of Equa-
tion 1. Each individual operation, i.e., PI , RB , and DI , is
atomic. This is offered by the atomicity of put(), read()
and delete(), in most LSM stores including HBase. If any of
them fails, we do not roll-back the base put(). Instead, we
insert failed tasks into AUQ where they will be retried by
APS until eventually success. By this, as long as the base
put() succeeds, the associated index update is guaranteed
to eventually complete. In our schemes there is no global
transaction so the three operations are not guaranteed to
occur at the same time point. This of course has implica-
tions on consistency and isolation but with the advantage of
no global locking and coordination.

Consistency. (1) Schemes sync-full and sync-insert are
causal consistent. This means, once all index update oper-
ations complete and a SUCCESS is returned to the client,
both base data and its index are persisted. Else, if any in-
dex operation fails, the base put() is still persisted and the
failed operations is added to the AUQ. In this case, causal
consistency is no longer guaranteed and AUQ is responsible
for the eventual consistency of index updates.
(2) Schemes async-simple and async-session provide even-
tual consistency and session consistency, respectively.

Isolation. HBase provides per region server read commit-
ted semantics. We neither break this nor provide anything
more advanced. Therefore, during an index update, other
concurrent clients can see partial results. For example, a
client may see the base data but not the corresponding in-
dex entry at a time point between PB and PI , since base and
index entry may be on different region servers. Other sys-
tems such as MegaStore [4] have argued that such a scheme
is useful when there is a strict latency requirement.

Durability. (1) As already seen in Section 5.3, the dura-
bility of asynchronous schemes are guaranteed by WAL and
AUQ, and the drain-AUQ-before-flush policy.
(2) For synchronous schemes, i.e., in sync-full and sync-
insert, operations PI , RB , and DI are done after base put().
If any of them fails, we add the failed operation to AUQ
which is responsible for the (eventual) re-execution of it. By
this means, causal consistency degrades to eventual consis-
tency, and the durability is guaranteed by the AUQ dura-
bility protocol in (1).

7. IMPLEMENTATION ON HBASE AND
IBM BIGINSIGHTS

We implement Diff-Index on HBase, as HBase is a widely
used LSM store and also a part of IBM InfoSphere BigIn-
sights V2.1 [19]. BigInsights is an IBM big data product
built on top of the open-source Hadoop ecosystem. It has
an IBM SQL engine called Big SQL to manipulate data in
Hadoop and HBase. Diff-Index facilitates Big SQL to create
secondary indexes for HBase, maintain them, and use index
to speed up queries.

In Figure 6, Diff-Index has a server side component (right)
and a client side one (left). The server side contains three co-
processors, i.e., SyncFullObserver, SyncInsertObserver and
AsyncObserver. SyncFullObserver and SyncInsertObserver
implements schemes sync-full and sync-insert, respectively.
AsyncObserver implements async-simple, and async-session
with the help of the client-side. Coprocessor is a plug-in fea-

707



Figure 6: Diff-Index implementation on HBase and
IBM BigInsights.

ture of HBase and its function is comparable to triggers and
stored procedures in RDBMS. Coprocessor provides a means
to extend HBase’s function without intruding into its core
code. The three coprocessors are deployed in each index-
enabled table. They listen to and intercept each data entry
made to the hosting table, and act based on the schemes they
implement. Each index in a table can choose one scheme out
of four offered by Diff-Index.

The client side component consists of (1) a utility for in-
dex creation, maintenance and cleanse; (2) the index read
API getByIndex ; and (3) a session cache help enforce session
consistency with the server-side AsyncObserver. In case of
sync-insert, a check-and-clean routine mentioned in Algo-
rithm 2 is added in getByIndex. For async-session, results
from index and session cache are combined in getByIndex.
The client library in turn is integrated with Big SQL. In Big
SQL, DDL component creates indexes using a CREATE IN-
DEX statement; Catalog stores index metadata and also put
a copy in HBase table descriptor; Query Engine uses index
metadata in query planning, and accesses indexes via the
aforementioned getByIndex API in query execution.

Besides those already discussed in this paper, other salient
features of Diff-Index include: the support for composite
index, indexing dense columns1, and indexing columns with
customer encoding scheme. For more details about Big SQL
and index usage please refer to [25].

8. EXPERIMENTS

8.1 Experiment Setup
Unless otherwise mentioned, experiments are conducted

on a 10 machine cluster. Each machine is with two quad-
core Intel Xeon E5440@2.83 GHz, 32 GB of RAM, 2 TB hard
disk, and Ubuntu 10.04.1 LTS. A HDFS is deployed with
3-way replication. HDFS NameNode, Hadoop JobTracker,
ZooKeeper and HBase Master are all deployed in one ma-
chine. We used YCSB (Yahoo! Cloud Serving Benchmark)
[12] as the workload driver and deploy it in a second ma-
chine. Each of the remaining 8 nodes is deployed with three

1A dense column is a column comprising multiple fields each
of which is with a different type and encoding. Using dense
columns, which is basically combining multiple columns into
one, can reduce the storage overhead brought by a KV store
like HBase.

Figure 7: Update performance.

processes, i.e., HDFS DataNode, Hadoop TaskTracker, and
HBase RegionServer. We assign 1 GB heap each to DataN-
ode and TaskTracker; we assign 8 GB heap to RegionServer
process and 25% (i.e., 2GB) of it to block cache.

We extend YCSB by adding a item table in which each
row has a unique item id as the rowkey and 10 columns.
Among them, item title and item price are two columns to
index. Therefore we also add two index tables item title and
item price. The other 8 columns are each fed with 100 byte
long random byte arrays of no particular meaning. Alto-
gether each row is approximately of 1 KB in size and con-
sumes 1.5 KB storage in HBase with overhead (including
space for column family name, column name, timestamp,
and amortized space for HFile index and BloomFilter). The
data table item contains 40 million rows and is approxi-
mately 60 GB in size. Each index entry is approximately
60 bytes. We evenly distribute the data and index table
among all 8 region servers. Therefore each server contains
approximately 7.5 GB of base data, which makes the read
disk-bounded.

We test the system with 1 to 320 client threads to achieve
various throughput. Each client thread continuously sub-
mits read/write request to the system. A completed request
will be followed up by another one immediately. Update
performance is measured with 1 million requests or 30 min-
utes, whichever takes longer; this is to make sure that flush
and compaction both occur frequently during the workload.
Read is measured with a warmed block cache and 15 min-
utes run. For a fair comparison with sync-full, we turn off
the client buffer in both YCSB and coprocessors. As a con-
sequence, the throughput we report is not as good as those
in [12]. We argue that rather than the absolute numbers, the
relative performance of different schemes are more interest-
ing. For simplicity, we use async for async-simple, full for
sync-full, insert for sync-insert, and null for no index. We
use index item price to test range query and index item title
for all other experiments.

8.2 Experiment Results
Performance of index update. We have shown that in

a moderate cluster and data set, query-by-index is 2-3 orders
of magnitude faster compared to parallel-table-scan [15].
Now we test index update latency of Diff-Index schemes,
under different throughput (measured in transactions per

708



Figure 8: Read performance.

second, TPS). For comparison purpose we also include the
latency of base put with no index. In Figure 7, the latency
of sync-insert is approximately two times of a base put, be-
cause it does one additional index put besides a base put.
Sync-full’s latency can be five times higher since it involves
a base read. In terms of async, its latency is close to no-
index when the workload is low; its latency increases and
surpasses that of sync-insert when the workload gets higher
since the background AUQ competes for system resource.

Performance of index read. Similarly, we test index
read latency under different throughput. We first use an
exact match query that returns only one row. In Figure 8,
sync-full achieves very low latency since it only needs to ac-
cess the relatively smaller index table; sync-insert’s latency
is much higher because it involves an additional base table
read to check if the index is stale. In terms of async, its read
latency is close to sync-full however the result obtained is
not guaranteed to be consistent.

Figures 7 and 8 shows that, Diff-Index schemes make dif-
ferent trade-offs among update and read performance, and
consistency. Again, we emphasize that the throughput of
the system can be further optimized by enabling client buffer
for update, tuning Hadoop and HBase configuration param-
eters, etc. But it is not within the scope of this paper.

Range query with index. We then test the latency
of range queries, using 10 concurrent client threads and
with selectivity varying from 0.0001% (40 rows in result)
to 0.1% (40k rows in result), by setting the query range for
item price. In Figure 9, sync-insert has a much larger la-
tency as selectivity grows lower (numbers increasing from
0.0001% to 0.1%). This is because that, when selectivity
gets lower, a lot of rows are returned from index query; each
of these rows needs to be double checked and involves a base
read.

Diff-Index on cloud. We also conduct experiments in a
larger cluster in IBM Research Compute Cloud (RC2) [24],
an IaaS cloud for internal IBM use, to test the scalability of
Diff-Index. In RC2 we create a virtual cluster consisting of
42 virtual machines 40 of which are Hadoop DataNodes and
HBase RegionServers, and load 200 million records. Each
node is with four virtual CPUs each at 3.0 GHz, 8 GB RAM
and 55 GB hard disk. Compared to the in-house cluster with

Figure 9: Read latency under different selectivity.

Figure 10: Diff-Index update performance in IBM
Research Compute Cloud (RC2).

8 data servers and 40M rows, this virtual cluster is five times
as large, in terms of data nodes and data volume.

Figure 10 shows the update performance of different Diff-
Index schemes. If linear scale-out could be achieved, 1) 40-
region-server cluster should achieve 5x TPS versus the 8-
region-server cluster; 2) the update latency of 5x TPS in this
40-region-server cluster should be close to that of x TPS in
the 8-region-server cluster. The experimental results shows
that, compared to Figure 7, 1) the 40-region-server cluster
reaches less than 4x TPS; 2) the latencies of all schemes in 5x
TPS case, are a couple of times larger than those of x TPS
in the 8-server-cluster, respectively. Despite the sub-linear
scale-out, the relative performance of all Diff-Index schemes
remain in RC2. The reasons preventing linear scale-out are
the following: 1) the virtual servers are less powerful than
the physical servers in configuration; 2) virtualization brings
a layer of indirection; 3) we also observed contention in both
network and disk I/O among virtual machines.

Index consistency in async-simple. In scheme async-
simple, index update operations are pushed to the AUQ to
be processed, and therefore there is a time-lag between 1)
when a data entry is visible in base table and 2) when its
associated index is visible. We measure the distribution of
this time-lag under different transaction rates, from 600 TPS
to 4000 TPS. To measure staleness, the AUQ in every region
server records two timestamps T1 and T2 for an index update
it handles. T1 is the timestamp of the base data entry in
base table, denoting the time when the data persists in base
table; T2 is the timestamp when AUQ has completed all

709



Figure 11: Time-lag between data and index.

(asynchronous) update tasks for this base entry. The index-
after-data time-lag for a record is the difference of T2 and
T1. Excessive measurement may affect the accuracy, and we
avoid this by sampling only a small fraction (0.1%) of the
inserted data entries.

Figure 11 shows that, staleness of async index grows with
the transaction rate. When the system load is modest (600-
2700 TPS), most index entries are updated within 100 ms.
When system load gets higher, the background AUQ process
contends for resources and the system is close to saturate.
In 4000 TPS, index can be up to several hundred seconds
late.

For the sync-full and async curves in Figure 7, async
reaches a throughput 30% higher than sync-full (4200 vs.
3200 TPS). This moderate higher throughput is credited
to the batching of operations in AUQ. Moreover, if the high
load is transient, by assigning a large-size AUQ the workload
surge can be largely absorbed and much higher throughput
can be achieved by using async.

The experiments in this section illustrate that the perfor-
mance and scalability of Diff-Index is satisfactory. The rel-
ative cost of different Diff-Index schemes matches well with
the complexity analysis in Section 6.1 and Table 2.

9. RELATED WORK
Diff-Index is related to research in both database manage-

ment and distributed systems.
B-tree vs. LSM. There are many studies in B-Tree

based indexes [10, 16, 20]. However, the structural difference
between LSM and B-Tree prevents B-Tree based approaches
from being directly applied. For example, Equation 1 indi-
cates that in LSM, the latency of index maintenance consists
of L(PI), L(RB) and L(DI). Compared to B-Tree: (1) In
LSM, L(PI) and L(DI) is much smaller and L(RB) is much
larger; (2) RDBMS distinguishes insert and update, so RB

(i.e., read base table to get old value) is done during the
put and not needed again in index update. Therefore Equa-
tion 1 for B-tree is: L(sync-full) = L(PI) + L(DI). This
illustrates that RB is a unique and significantly expensive
operation involved in LSM index and no prior work has ad-
dressed it.

On LSM side, bLSM [26] improves LSM’s read perfor-
mance by using a geared scheduler and BloomFilters. While

complementary to Diff-Index, we expect bLSM to improve
the performance of all Diff-Index schemes.

NoSQL stores with index. Some NoSQL stores ex-
plored ways of supporting secondary indexes. MongoDB [21]
and Cassandra support local indexes. Chen et al. [8] propose
a framework for DBMS-like indexes in the cloud, and eval-
uate its performance using distributed hash and B+ tree
structures, respectively. Compared to them, Diff-Index is
specifically tailored for LSM stores, exploiting LSM features
and with a finer grained spectrum of index maintenance
schemes. Huawei has recently released its HBase index im-
plementation [17], which is local and with synchronous up-
date only. In comparison, Diff-Index is global and optimized
for highly selective queries; Diff-Index also offers a broader
spectrum of index schemes. Google Spanner [13] supports
transactional consistent index across data centers, with a rel-
ative high commit latency (50-150 ms). Diff-Index is more
desirable when update latency is of paramount importance
and index inconsistency can be tolerated, being complemen-
tary to Spanner having consistent indexes with a higher la-
tency. Diff-Index is inspired by the idea of asynchronous
view maintenance [1] in Yahoo PNUTS. In comparison, Diff-
Index addresses and leverages the specific features of LSM,
for consistency/latency trade-off, concurrency and failure re-
covery.

Consistency of replicated data. Many systems in-
cluding Dynamo [14] focus on how to balance consistency
and performance in replicated data stores. While Google
Spanner [13] and OMID [29] support global transaction and
synchronous replication, we argue that Diff-Index is very
useful when data ingestion rate is of much higher priority
compared to index freshness. In many real-life workloads
we observed, even when index cannot catch up, data inges-
tion does not tolerate interruption or excessive delay.

10. CONCLUSION
This paper addresses the issue of index maintenance in

one popular category of NoSQL stores, i.e., LSM store. We
demonstrated that, the unique features of LSM, i.e., no in-
place update, asymmetric read/write latency, and the dis-
tributed nature, make it challenging to maintain a fully
consistent index with reasonable update performance. We
proposed Diff-Index, a spectrum of index update schemes
consisting of sync-full, sync-insert, async-simple and async-
session. Guided by CAP theorem, these schemes offer dif-
ferent trade-offs between index update latency and consis-
tency. Experiments on HBase show that sync-insert and
async-simple can reduce 60%-80% of the overall index up-
date latency when compared to the baseline sync-full ; async-
simple can achieve superior index update performance with
an acceptable inconsistency; the read performance of sync-
insert is acceptable when query selectivity is high. These
quantitative results show that Diff-Index offers a variety of
performance/consistency trade-offs, and scale well without
introducing any global locking or coordination.

As far as we know, Diff-Index is the first global index de-
sign on LSM, offering a wide spectrum of index maintenance
schemes that balance performance and consistency. We ex-
ploit the LSM-specific features to achieve light-weight con-
currency control and failure recovery. We implement Diff-
Index on HBase based on its newly introduced coprocessor
framework. While the implementation is on HBase but the
design principle are equally applicable to other LSM stores

710



such as Cassandra and LevelDB. Diff-Index is included in
IBM InfoSphere BigInsights, an IBM big data offering. In
future work we plan to investigate workload-aware scheme
selection, and index compression [5] in Diff-Index.

11. ACKNOWLEDGMENTS
We thank colleagues in IBM InfoSphere BigInsights team,

especially Bert Van der Linden and Deepa Remesh, for con-
structive discussions on use cases and features of HBase in-
dex.

12. REFERENCES
[1] P. Agrawal, A. Silberstein, B. F. Cooper,

U. Srivastava, and R. Ramakrishnan. Asynchronous
View Maintenance for VLSD Databases. In SIGMOD,
pages 179–192, 2009.

[2] Apache.org. Apache Cassandra.
http://cassandra.apache.org/, 2012.

[3] Apache.org. Apache HBase.
http://hbase.apache.org/, 2012.

[4] J. Baker, C. Bond, J. Corbett, J. Furman, A. Khorlin,
J. Larson, J. Léon, Y. Li, A. Lloyd, and V. Yushprakh.
Megastore: Providing scalable, highly available storage
for interactive services. In CIDR, pages 223–234, 2011.

[5] B. Bhattacharjee, L. Lim, T. Malkemus, G. Mihaila,
K. Ross, S. Lau, C. McArthur, Z. Toth, and
R. Sherkat. Efficient index compression in DB2 LUW.
PVLDB, 2(2):1462–1473, Aug. 2009.

[6] E. Brewer. Pushing the CAP: Strategies for
consistency and availability. IEEE Computer,
45(2):23–29, 2012.

[7] F. Chang, J. Dean, S. Ghemawat, W. Hsieh,
D. Wallach, M. Burrows, T. Chandra, A. Fikes, and
R. Gruber. Bigtable: A distributed storage system for
structured data. ACM Transactions on Computer
Systems (TOCS), 26(2):4, 2008.

[8] G. Chen, H. T. Vo, S. Wu, B. C. Ooi, and M. T. Özsu.
A framework for supporting DBMS-like indexes in the
cloud. PVLDB, 4(11):702–713, 2011.

[9] D. Choy and C. Mohan. Locking protocols for two-tier
indexing of partitioned data. In International
Workshop on Advanced Transaction Models and
Architectures, 1996.

[10] D. Comer. Ubiquitous B-tree. ACM Computing
Surveys (CSUR), 11(2):121–137, 1979.

[11] B. F. Cooper, R. Ramakrishnan, U. Srivastava,
A. Silberstein, P. Bohannon, H.-A. Jacobsen, N. Puz,
D. Weaver, and R. Yerneni. PNUTS: Yahoo!’s hosted
data serving platform. PVLDB, 1(2):1277–1288, Aug.
2008.

[12] B. F. Cooper, A. Silberstein, E. Tam,
R. Ramakrishnan, and R. Sears. Benchmarking cloud
serving systems with YCSB. In SoCC ’10, pages
143–154, New York, NY, USA, 2010. ACM.

[13] J. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost,
J. Furman, S. Ghemawat, A. Gubarev, C. Heiser, and
P. Hochschild. Spanner: Google’s globally-distributed
database. In OSDI, 2012.

[14] G. DeCandia, D. Hastorun, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels.

Dynamo: Amazon’s highly available key-value store.
In SOSP, volume 41, pages 205–220. ACM, 2007.

[15] L. Fong, Y. Gao, X. Guerin, Y. Liu, T. Salo,
S. Seelam, W. Tan, and S. Tata. Toward a scale-out
data-management middleware for low-latency
enterprise computing. IBM Journal of Research and
Development, 57(3/4):6:1–6:14, 2013.

[16] G. Graefe. B-tree indexes for high update rates.
SIGMOD Rec., 35(1):39–44, Mar. 2006.

[17] Huawei. Secondary index in HBase.
https://github.com/Huawei-Hadoop/hindex, 2013.

[18] P. Hunt, M. Konar, F. Junqueira, and B. Reed.
ZooKeeper: Wait-free coordination for internet-scale
systems. In USENIX ATC, volume 10, 2010.

[19] IBM. What is New in IBM InfoSphere BigInsights
v2.1. (http://www-01.ibm.com/software/data/
infosphere/biginsights/whats_new.html), 2013.

[20] J. J. Levandoski, D. B. Lomet, and S. Sengupta. The
Bw-tree: A B-tree for new hardware platforms. In
ICDE, 2013.

[21] MongoDB. MongoDB Indexes.
http://docs.mongodb.org/manual/indexes/, 2012.

[22] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The
log-structured merge-tree (LSM-tree). Acta
Informatica, 33(4):351–385, 1996.

[23] L. Qiao, K. Surlaker, S. Das, T. Quiggle, B. Schulman,
B. Ghosh, A. Curtis, O. Seeliger, Z. Zhang,
A. Auradar, C. Beaver, G. Brandt, M. Gandhi,
K. Gopalakrishna, W. Ip, S. Jgadish, S. Lu,
A. Pachev, A. Ramesh, A. Sebastian, R. Shanbhag,
S. Subramaniam, Y. Sun, S. Topiwala, C. Tran,
J. Westerman, and D. Zhang. On brewing fresh
espresso: Linkedin’s distributed data serving platform.
In SIGMOD, pages 1135–1146, New York, NY, USA,
2013. ACM.

[24] K. D. Ryu, X. Zhang, G. Ammons, V. Bala, S. Berger,
D. M. D. Silva, J. Doran, F. Franco, A. Karve, H. Lee,
J. A. Lindeman, A. Mohindra, B. Oesterlin,
G. Pacifici, D. Pendarakis, D. Reimer, and M. Sabath.
RC2-a living lab for cloud computing. In USENIX
LISA, pages 1–14. USENIX Association, 2010.

[25] C. M. Saracco and U. Jain. What’s the big deal about
Big SQL? (http://www.ibm.com/developerworks/

library/bd-bigsql/), 2013.

[26] R. Sears and R. Ramakrishnan. bLSM: A general
purpose log structured merge tree. In SIGMOD, pages
217–228, 2012.

[27] D. Terry, A. Demers, K. Petersen, M. Spreitzer,
M. Theimer, and B. Welch. Session guarantees for
weakly consistent replicated data, 1994.

[28] S. Tiwari. Professional NoSQL. John Wiley and Sons,
2011.

[29] M. Yabandeh and D. Gómez Ferro. A critique of
snapshot isolation. In EuroSys ’12, pages 155–168,
New York, NY, USA, 2012. ACM.

711


