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Abstract
The Time Series Compound (TSC) is a data model designed to
represent sequences of interrelated time series objects, incorpo-
rating interleaved time-gap semantics into a unified structure.
This enables a holistic representation of complex temporal phe-
nomena, such as a patient’s longitudinal medical history across
visits. In this work, we formalize a novel class of queries over
the TSC model with broad applicability, called convergence
queries. They model the similarity of TSC objects increasing or
decreasing over time based on rich time semantics. Convergence
queries, unsupported by existing systems, pose significant pro-
cessing challenges due to their high dimensionality, alignment
complexity, and complex progression semantics intrinsic to TSC
data. To address these challenges, we extend the TSC infrastruc-
ture to support convergence queries as first-class citizens. For
this, we propose a new similarity progression trend scheme and
define two types of convergence: Strict and Statistical. We de-
sign a fully distributed execution pipeline for processing these
convergence queries at scale. To enhance usability, the system
allows for expressive query predicates on convergence charac-
teristics. We introduce query optimization strategies based on
convergence semantics for efficient query execution. To improve
system throughput, we develop batch-aware optimizations that
enable shared access to overlapping data partitions across queries.
Extensive experiments on terabyte-scale datasets show that our
approach achieves up to 10× speedup over baseline methods and
up to 95% accuracy, far surpassing kNN-based solutions for im-
plementing convergence, which at best attain only 20% accuracy.
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1 Introduction
Over the last few decades, advances in science and engineer-
ing as well as the explosion of the Internet of Things (IoT) have
led to the generation of huge volumes of digital data traces, re-
ferred to as time series data [18, 37, 46]. While existing tech-
niques have explored time series data through various types of
analytics, e.g., prediction [17, 27, 62], clustering [8, 25, 38], and
classification [4, 11, 29], only a handful of classical query types
have been investigated on time series data, in particular, kNN
queries [63, 64, 69] and 𝜖−range queries [23, 28, 60]. Moreover,
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these previous techniques adopt the traditional time series data
model that treats each time series object, e.g., the heart rate mea-
surements for a patient at a doctor’s visit, as an independent
standalone object in the database.

Yet the recent observation that applications often generate a
sequence of interconnected and intermittent time series objects sepa-
rated by large time gaps has led us to introduce a novel data model,
referred to as Time Series Compound (TSC) [6]. TSC data arise
in numerous areas from a patient’s series of visits in healthcare
systems [42] to machine condition monitors [19]. For example,
the time series measurements of a patient across different visits
can be viewed as a single TSC object that holistically captures
the patient’s medical history and recovery progression. Thus,
the TSC model can naturally support important end-user queries
such as: "find the k patients whose medical history (i.e., their TSCs)
are the most similar to a patient of interest (i.e., a given query-TSC)".
TSC match semantics take the entire TSC structure as a unified
object into account including the order among its time series
object components and the sizes of the interleaved time gaps
corresponding to times between hospital visits [6].

While our prior work has focused on extending classical sim-
ilarity queries to the TSC model, we propose and study a new
class of time-oriented queries: convergence queries. These queries
aim to identify TSCs whose similarity to a given query-TSC is
not just high in general, but increasing over time—that is, con-
verging toward the query. This concept is critical for real-world
applications that care about directional evolution, not just snap-
shot similarity. It is not captured by any existing time series
query operators [15, 21, 28, 35, 54], and builds upon foundational
ideas of convergence in real analysis [1] and statistical trend
detection [33, 41].
Example 1. TSC Model and Convergence Query Semantics.
Many chronological diseases, e.g., arrhythmia and coronary artery
heart diseases, require close periodic monitoring of patients to track
their measurements, e.g., heart rate, over follow-up visits. These
measurements across all visits of a patient can logically be viewed
as a TSC containing time series objects in their chronological order
along with time gaps in between. These time gaps may correspond
to weeks or even months (see Figure 1). Now, assume two patients
Alice and Tom each with three previous visits, i.e., three TS objects
in each TSC, yet the time gaps between the visits for Alice are reg-
ular check-ups spaced apart by one year each, while Tom had an
intensive observation period of one-week sessions all bunched into a
short timeframe. Otherwise, the readings of their visits are identical,
respectively. Now, consider we want to find patients who exhibit
similar medical progression as Alice. If we were to apply a classical
kNN similarity search query as in the traditional TS model adopted
by the state-of-the-art (SOTA) techniques, e.g., [5, 63, 69], this would
ignore gaps and chronological relationships among the time series
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Figure 1: Example of TSCs: Convergence vs. Similarity.
objects. Thus, they would wrongly conclude that Alice and Tom are
very similar and thus should receive a similar treatment. This may
result in a faulty diagnosis. In contrast, the TSC model inherently
captures the order and gap semantics. This is essential but not suffi-
cient for allowing us to reason about temporal progression, namely,
to discern that Tom’s recorded sessions and observed symptoms
are developing much faster than Alice’s. Identifying such progres-
sion trends requires custom-query semantics—such as convergence
queries—built on the TSC structure.

In this work, we propose a novel query class beyond the above
classical queries like kNN and 𝜖-range applicable to time-oriented
data models such as time series and TSC models, called conver-
gence query. Next, we motivate this prevalent but overlooked
query type.

Example 2. Convergence Motivating Example. As continu-
ation to the medical scenario in Example 1, assume two additional
patients Bob and Cathy, each with three previous visits separated
by year-long time gaps (similar to Alice’s case). Their TSC objects
are depicted in Figure 1. For the purpose of predictive diagnostics
and treatment prescription, classical similarity queries such as kNN
and 𝜖−range that “find the k most similar TSCs to Alice’s TSC”
can be sometimes misleading, or at least may not capture the com-
plete picture. In our example, Cathy’s TSC would be the best match
for Alice’s TSC with respect to kNN distance. However, this result
does not capture the fact that the patterns of these two patients
are increasingly deviating from each other. In contrast, while Bob’s
TSC might not be among the kNN best matches for Alice, the fact
that Bob’s medical progression (TSC) is progressively getting more
similar to Alice’s health behavior over time could be a critical piece
of information useful for the diagnosis of Alice’s medical case. Such
“convergence trend” may imply that Alice and Bob are respond-
ing similarly to their treatments; and thus that we may utilize
Bob’s medical responses as a better prediction for Alice’s future
measurements. Further, early detection that Cathy’s measurements
are diverging from Alice’s could be a vital sign for re-examining
Cathy’s medical conditions–especially if many other patients show
convergence to Alice’s case–e.g., Alice’s TSC may represent a hub
or trend within the dataset.

The TSC model, together with the proposed convergence se-
mantics, is applicable across a wide range of domains. For in-
stance, in manufacturing and IoT applications, sensors are typi-
cally attached to machines to record measurements during op-
eration (time series readings), while remaining inactive when
machines are idle (gap intervals). The early identification of ma-
chines whose TSCs are converging toward faulty patterns can
play a critical role in preventive maintenance. In security appli-
cations, potential threat and attack attempts can be separated by
days or even weeks, and only when viewed holistically and inter-
connected together (through the TSC model) can be analyzed for
potential similarity and convergence to previous attack patterns.

Another example from urban planning, where taxi trajectories
can be categorized into active ride trajectories and passive empty-
trip trajectories. Within the TSC model semantics, one trajectory
class can be selectively masked (i.e., treated as gap intervals) to
enable more focused analysis (e.g., TSC kNN or convergence) of
the other class. This type of analysis is not feasible under the
classical time series data model.

Convergence Queries and Their Opportunities. The above
examples call for this new class of queries, which we refer to as
“Convergence Query”. The notion of convergence as highlighted
above has been investigated in the literature from both theo-
retical and statistical perspectives by the mathematical commu-
nity [22, 34, 52]. However, unfortunately, despite its potential
utility for real-world applications, the data management commu-
nity has to-date not yet explored convergence as a first-class query
operator. As highlighted in Example 2, convergence queries could
be leveraged as a building block operation in various types of
analytics, e.g., prediction, top trends, and divergence.

In this paper, we focus on scalable processing of this new
Convergence Query in the context of the TSC model. Beyond
that, convergence queries could also introduce value-added se-
mantics to other data types as long as they either involve data
series and/or time attributes. This effort may thus opening new
directions for future research beyond our initial first work.

Technical Challenges of Supporting Convergence
Queries. This new query type leads to several technical chal-
lenges, including:
• Lack of convergence query semantics: As a new query type,

TSC convergence query semantics must first be designed. We
need to address research questions such as: What does it mean
for two TSCs to be “converging”? What are the query input
parameters? What is the expected output from this new query
type? And how to measure the inputs similarity progression over
time? This is especially important given our observation that
existing similarity measures proposed for kNN and range queries
produce a single global distance value [23, 28, 60, 69], which
clearly is not sufficient for capturing convergence.
• Higher-order and rich TSC model : While attractive for study-

ing convergence due to the long life span of TSC objects, the TSC
data model is characterized by being composed of an irregularly-
spaced sequence of time series objects separated by variable-
length and often exceedingly long time gaps. Contrary to the
traditional issue of missing values that might arise within a sin-
gle time series [14, 31, 37], time gaps in TSCs not only can be
much longer than the actual time series component but they also
tend to be rich in time-semantic meaning, e.g., the time intervals
between a patient’s visits. Convergence queries must take these
TSC properties into account by treating the composed TSC data
as holistic objects.
• Need for convergence-aware TSC-based distributed indexing:

The terabyte-scale of TSC data continuously generated by mod-
ern applications [2, 19, 57] warrants the need for large-scale
distributed TSC processing systems. Index structures are needed
as they play a critical role in speeding up queries. Unfortunately,
the TSC-aware index we proposed in [6] is tailored for similarity-
based operators, e.g., kNN and range queries. As we will show
experimentally, the convergence operator cannot be developed as
a post-processing stage on similarity operators’s output. Hence,
we instead need to design TSC index internals to directly support
the convergence operator semantics.
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• Need for efficient query processing strategies for convergence
queries: As a new query type, there are no algorithms in the
literature to implement and optimize the execution of conver-
gence queries. Thus, we need to devise an entirely new execution
pipeline that integrates different stages ranging from index-based
retrieval, efficient and early filtering (whenever possible), simi-
larity measures, and convergence tests, among others, all to be
accomplished cohesively in a highly distributed fashion.

State-of-The-Art Techniques andTheir Limitations:Most
queries proposed in the literature on time series data are similarity-
based queries and use either metric distances, e.g., [28, 58], or
elastic distances, e.g., [12, 36, 58]. These queries can be classified
into kNN queries [5, 6, 63, 69] and 𝜖−range queries [23, 60]. The
similarity measures used in these techniques, e.g., [43, 48, 58]
typically return a single distance value for a pair of input objects.
Compared to these query types, our targeted convergence query is
a new distinct query type that requires re-thinking critical query
processing-related aspects as highlighted in the aforementioned
challenges. Moreover, our recent TSC data model proposed in [6]
focuses on kNN queries and basic query types. The TSC-aware
similarity semantics introduced in [6], while effective in captur-
ing TSC whole match, falls short in capturing the progression of
similarity of TSC over time.

Our Approach and Contributions. We propose the first
end-to-end solution for convergence queries on large-scale TSC
datasets. Our key contributions include:

1) Convergence as a Query Type. We are the first to investigate
convergence as a first-class query type and to identify its potential
utility as a building block operator in several types of analytics.
Although convergence queries are broadly applicable to other
time-oriented data types, e.g., time series applications [23, 57, 63,
69], we focus this first work on the TSC data model.

2) Formal Semantics for TSC Convergence Query. We introduce
a new similarity measure, called similarity progression sequence,
for measuring the distance progression between a pair of TSC
objects. This measure, which is internal to the system (i.e., not
part of the query answer), is designed to encode the characteris-
tics of the TSC objects under comparison, e.g., their structural
similarity, time alignments, and gap sizes. We then define the for-
mal semantics of the convergence query on top of the similarity
sequence (see Sections 4.2 and 4.3.)

3) Scalable Optimized Convergence Processing Strategies. We
design a highly distributed execution strategy for scalable con-
vergence queries over TB-scale datasets. This pipeline integrates
the TSC index with plugable statistical tests for determining
convergence. We also propose two types of optimization for im-
proved performance, specifically the predicate-driven partition
prioritization strategy for queries involving convergence-related
predicates, and the multi-query batch strategy that exploits op-
portunities for execution sharing among multiple queries.

4) Extensive Experimental Study. Our results demonstrate that
traditional baselines, e.g., full scan processing, are impractical due
to their prohibitively high execution times¯our method achieves
up to a 10× improvement in performance. Furthermore, the in-
corporation of the described optimization strategies contributes
an additional 2× to 3× speedup, while maintaining high query
recall levels of up to 95%. We provide empirical evidence that
current state-of-the-art kNN operator for TSCs fails to support
the semantics required by the proposed convergence operator,
yielding below 20% accuracy.

Outline. In Section 3, we overview the TSC data model and
its infrastructure. In Section 4, we propose the building blocks
for the convergence query including the formal convergence
definition between two TSC objects, the similarity progression
measure, and characteristics and requirements of the conver-
gence test. Section 5 introduces our convergence query engine
and associated optimizations. Finally, the experimental study and
conclusion are described in Sections 6 and 7, respectively.

2 Related Work
TSC Systems. The most closely related work to the proposed
research is Sloth [6], the only infrastructure in the literature that
supports TSC-type data. However, Sloth is limited to classical
query types, such as KNN. As demonstrated in our compara-
tive study, Sloth fails to produce correct results for convergence
queries, particularly in terms of recall. Therefore, the innovations
introduced in our work—including novel query semantics, effi-
cient convergence execution strategies, and convergence-specific
optimizations—are essential for effectively addressing this new
problem.

Time Series and Trajectory Similarity Search. Another
relevant line of work is similarity search over time series and tra-
jectory data [16]. Trajectories can be viewed as a specialized form
of multivariate time series that capture the movement of objects
through space. A variety of distance metrics have been proposed
in the literature, including Euclidean [24, 44], SAX-based [40, 69],
DTW [30], LCSS [53], Hausdorff [45], and Fréchet distances [47].
Each metric typically necessitates dedicated index structures and
query processing algorithms to efficiently support its specific
semantics. In our system, the alignment and comparison between
pairs of TSCs adhere to the classical Euclidean distance, which is
commonly adopted in literature [5, 6, 24, 44, 69]. The exploration
of alternative metrics is left as a direction for future work.

Learning-Based Similarity Methods: In contrast to the
aforementioned similarity measures, which are all non-learning-
based methods, recent research has introduced learning-based
approaches such as SEANet [56], TS2Vec [65], TNC [51], TS-
TCC [26], and Traj2SimVec [68]. These methods first encode
raw objects into a learned embedding space, after which simi-
larity is estimated based on the distance between the resulting
embeddings. However, due to the inherent complexity of the
TSC data model−such as multi time series objects and extended
gap semantics−combined with the novel semantics required for
convergence queries, current learning-based methods are not
directly applicable to our context.

Distributed Infrastructures for Big Time Series. Several
distributed systems have been developed to process large-scale
TS datasets, e.g., [5, 23, 57, 63, 64, 69]. However, they only limited
to basic similarity search queries. Some focus on whole time
series matching and kNN, e.g., [63, 64, 69], while others focus on
subsequence matching [5, 57, 60]. KV-Match [23, 60] supports
distributed range queries and [5, 57] support kNN queries. Simi-
larly, [20, 39, 61] address similarity search over trajectory data in
distributed settings, but remain limited to classical kNN and spa-
tial range queries. In contrast, our proposed distributed system
uniquely supports both a novel TSC data model and advanced
convergence query semantics.

Time Series Databases: Popular time series database engines,
such as Apache IoTDB [55], InfluxDB [10], and TrajStore [59],
provide highly efficient storage and compression mechanisms,
high-throughput data ingestion and processing, and support for
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online aggregations and analytical tasks. These systems are de-
signed with real-time streaming data ingestion in mind, which is
reflected on the design of their custom data storage and index-
ing mechanisms such as LSM [55] and TSM [10]. These indexes
leverage both memory tables and compressed disk-based files for
efficient data movement. However, these systems are designed
exclusively for the classical time series data model and cannot
handle the TSC model. Moreover, our proposed system is cur-
rently designed for batch processing, and thus its storage and
indexing mechanisms are fully disk-based distributed files.

Although full native integration into existing systems is be-
yond the scope of this work−since it would require substantial
modifications across all layers−we demonstrate a proof of con-
cept by integrating our system into IoTDB [55] as an external
library. In this setup, the two systems coexist, with the advantage
of having the TSC operations callable directly from within the
IoTDB environment. This enables applications to, for example,
construct a TSC dataset from an existing TS tables in the database,
and execute TSC-specific queries from within the IoTDB system
(See Appendix F for more details).

3 TSC Model and Infrastructure: An Overview
A traditional time series TS=⟨ x1,x2, · · · ,x𝑚⟩, x𝑗 ∈ R where 1
≤ j ≤ m, corresponds to an ordered sequence of m real-valued
readings, i.e., the cardinality |𝑇𝑆 | = 𝑚. Each reading 𝑥𝑖 has an
associated timestamp 𝑡𝑖 . Accordingly, the time interval that a
time series spans is denoted as span(TS) = [𝑡1, 𝑡𝑚]. Without loss
of generality, we assume that the readings arrive at fixed time
granularities. Hence, we only store the timestamp of the first
reading.

TSC Data Model. In our prior work [6], we proposed a new
model, called the Time Series Compound (TSC) model, where a
TSC object is represented as a sequence of interrelated time
series objects along with their chronological order and time gap
semantics. A TSC object and dataset are defined as follows.

Definition 1. [Time Series Compound (TSC)]. A time se-
ries compound TSC = ⟨t0, (t1,TS1), (t2,TS2), · · · , (t𝑛 ,TS𝑛)⟩ with
identifier oid(TSC) and starting at timestamp 𝑡0 corresponds to an
ordered sequence of n time series (𝑇𝑆𝑖 ), where 𝑡𝑖 is the start times-
tamp of 𝑇𝑆𝑖 , t0 ≤ t1 < t2 < · · · < t𝑛 , and span(𝑇𝑆1) < span(𝑇𝑆2)
< · · · span(𝑇𝑆𝑛). This array of n+1 time stamps is denoted by
TIM(TSC), while the number of time series objects within the
TSC is denoted by cardinality car(TSC)=n. 1

Definition 2. [TSC Dataset (D𝑇𝑆𝐶 )]. A time series com-
pound dataset D𝑇𝑆𝐶={TSC1, TSC2, · · · , TSC𝑁 } corresponds to
a set of N TSC objects, each with different cardinalities and time
gaps.

TSC-Based Infrastructure. We previously demonstrated
in [6] that existing time series systems cannot efficiently sup-
port the new TSC abstraction and semantics. They investigated
leveraging existing time series technology, augmented with a
middle-tier layer for post-processing, to stitch together TSC ad-
vanced semantics. For example, to encode the equivalent of a
TSC object in existing systems, they distinguish between three
representations: one could store individual time series associ-
ated with a TSC as individual instances (called DECOMPOSE), or
concatenate the time series objects together by either ignoring
the time gaps (called CONCAT), or by filling in the whole gap
1The notations of the interval relationships follow the Allen’s Intervals Algebra [7].
For example, span(𝑇𝑆1) < span(𝑇𝑆2) indicates that𝑇𝑆1 precedes𝑇𝑆2

Figure 2: Convergence Query Syntax.

durations with imputed values to construct one very long con-
tiguous big TS object (called IMPUTE). Our experiments in [6]
showed that none of these three middle-tier inspired approaches
are sufficient, as they not only lack efficiency, and scalability, but
also generate very poor-accuracy results.

To overcome these limitations, in [6] we introduced a dis-
tributed infrastructure Sloth to manage and query large-scale
TSC datasets, with its source code available in [3]. In Section 5.1,
we briefly cover the components of Sloth, which relate the closest
to the technologies we adopt as substrate for our infrastructure.
To realize the proposed convergence operator, we propose and
develop a set of novel query execution strategies, optimization
techniques, and an end-to-end convergence-based framework
integrating these components.

4 Convergence Evaluation strategy
Here, we present syntax and formal definition of the convergence
query (Section 4.1), followed by the evaluation methodology
along with characteristics of the convergence test (Sections 4.2-
4.3).

4.1 Convergence Query
The query syntax of the convergence query is presented in Figure
2. The FOR clause indicates the query object, which is either a
single query TSC (singleQueryTSC) or a batch of query objects
(batchQueryTSC). The system retrieves the converging TSC ob-
jects from a target large-scale and disk-persistent TSC dataset
(TSCDB) while satisfying optional convergence-related predicates
(ConvPred). As further elaborated in Section 4, we support sev-
eral types of predicates that allow users to limit the result set
based on structural properties (structurePred) and on simi-
larity progression properties (simProgressionPred). The USING
clause enables the selection from two different convergence types,
namely Strict and statistical, explained in Section 4.3. The
formal definition of a convergence query is given below.

Definition 3. [TSC Convergence Query] Given a query TSC
object Q-TSC = ⟨Qt0, (Qt1, QTS1), (Qt2, QTS2), · · · , (Qt𝑛 , QTS𝑛)⟩,
a time series compound dataset D𝑇𝑆𝐶= {TSC1, TSC2, · · · , TSC𝑙 }
and optionally a list of convergence predicates ConvergencePred,
the query finds the set R = { TSC𝑖 ∈ D𝑇𝑆𝐶 } such that ∀ TSC𝑖
∈ R, TSC𝑖 converges to Q-TSC and satisfies the predicates in
ConvergencePred as described in Fig. 2.

The convergence (either Strict or statistical) will be for-
mally defined in Section 4.3. Informally, we assume that for two
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given TSCs, the distance between each pair of time series gets
smaller as time progresses (see Alice and Bob TSCs in Figure 1).
Def. 3 can be naturally extended to support a batch of TSC queries
as input.

Next, we present our proposed convergence evaluation method-
ology. In a nutshell, given a query time series compound (Q-TSC)
and a target time series compound (TSC), the convergence query
operator determines if the TSC converges to Q-TSC. This query
operator adopts two main steps: (1) Compute the similarity pro-
gression sequence between Q-TSC & TSC, which corresponds to
a vector of time-oriented TS-level distances. This is explained in
Section 4.2, and (2) Determine whether the computed similarity
progression sequence indicates convergence.

4.2 TSC Structural and Similarity Progression
The TSC convergence operator requires a new notion of similarity
progression over time between TSCs. That is, for a pair of TSCs as
depicted in Fig. 3, our goal is to create a sequence of time-oriented
distances based on which we can determine convergence. We
tackle this similarity progression modeling between TSCs using
a three-pronged strategy consisting of structure-similarity check,
alignment, and similarity sequence generation.

First, given two TSC objects, namely, a query object (Q-TSC)
and a target object (TSC), we determine whether Q-TSC and TSC
are structurally similar. Namely, two TSCs objects are said to be
structurally similar if their overall structure is similar in terms of
number and positions of time series objects and gaps, otherwise
we assume they are not comparable. This similarity is captured
by the Structural Similarity Score defined below.

Definition 4. [Time Series Overlaping in TSCs]. Given a
query TSC Q-TSC = ⟨ Qt0, (Qt1, QTS1), (Qt2, QTS2), · · · , (Qt𝑛 ,
QTS𝑛)⟩ and a target TSC object TSC = ⟨ t0, (t1, TS1), (t2, TS2), · · · ,
(t𝑙 , TS𝑙 )⟩, a time series from Q-TSC (say QTS𝑖 ) is said to overlap
with a time series from TSC (say TS𝑗 ) iff: (1) span(QTS𝑖 )

⊗
span(TS𝑗 ), where

⊗
is any of Allen’s interval relations {𝑜 , 𝑜𝑖 , 𝑠 , 𝑠𝑖 ,

𝑑 ,𝑑𝑖 , 𝑓 , 𝑓 𝑖 , =}, and (2) the size of the overlapping segment exceeds
a system-defined threshold , i.e., [2 ∗ (# 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑝𝑜𝑖𝑛𝑡𝑠)/(
|𝑄𝑇𝑆𝑖 | + |𝑇𝑆 𝑗 |)] > 𝛽 .

For example, referring to Figure 3, the pair of time series ob-
jects from left are considered overlapping (they have 𝑜 & 𝑜𝑖 rela-
tionship), and also the pair from right are considered overlapping
(they have = relationship).

Definition 5. [Structural Similarity Score]. Given a query
TSC Q-TSC = ⟨ Qt0, (Qt1, QTS1), (Qt2, QTS2), · · · , (Qt𝑛 , QTS𝑛)⟩
and a target TSC object TSC = ⟨ t0, (t1, TS1), (t2, TS2), · · · , (t𝑙 ,
TS𝑙 )⟩, their structural similarity score structuralSim is defined as:

structuralSim =2 ∗
⌊

# 𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑒𝑑 𝑇𝑆𝑠 𝑓 𝑟𝑜𝑚 𝑄𝑇𝑆𝐶

car(Q-TSC) + car(TSC)

⌋
(1)

where 𝑐𝑎𝑟 (.) is defined in Def. 1. StructuralSim ∈ [0, 1], where
0 means the pair does not have any overlapping TS component
objects and 1 means that all TS objects of the pair overlap.

For example, the query object (QTSC) and the target object
(TSC) in Figure 3 have six TS objects combined. Among them,
two are considered overlapping, yielding a structure-similarity
score of 4/6 ≈ 67%. Users can express a constraint on such score
(Line 5, Fig. 2), which is leveraged for early filtering on candidate
pairs before applying more expensive evaluation.

Thereafter, a structurally similar pair of TSCs is aligned
through a process that involves time alignment and weighted

Figure 3: TSC Similarity Progression Semantics.
point-to-point matching based on different cases as detailed in Ex-
ample 3. During the alignment process, the query object remains
immutable to ensure that scores from comparing different TSCs
(from the dataset) to the query object are comparable relative to
each other.

Example 3. Referring to Fig. 3, since QTSC and TSC are struc-
turally similar, they now go through the alignment process as fol-
lows. Both TSCs are first left-aligned at a common starting time
(e.g., 𝑡0 in our example). This creates four possible point-to-point
match types: (1) value-to-value (e.g., the 𝑚1 segments in Fig. 3),
where there are time-aligned values in both objects, (2) value-to-
gap (e.g., the𝑚2 segments), where the QTSC has a value while the
target TSC has missing value, (3) gap-to-value (e.g., the𝑚3 and
𝑚4 segments), where QTSC does not have a value but the target
TSC does, and finally (4) gap-to-gap (e.g., the𝑚5 segment in Fig. 3),
where both objects encounter gaps. To align with the immutable
QTSC object, the𝑚1 and𝑚5 segments in TSC remain intact, while
𝑚2 segments are imputed, and𝑚3 and𝑚4 segments are masked.
This results in a modified TSC object as illustrated in Fig. 3, the
middle TSC object.

Thereafter, we compute the distances between value-to-value
points in the QTSC and the altered TSC objects using a weight
function. In this function, users can optionally define penalty
terms (weights) on the imputed or masked values during the
score calculations. We skip the details of the function as it can be
found in [6], while we focus here on the generation of the novel
similarity sequence. Specifically, we do not aggregate the value-
to-value distances to one single aggregate score. Instead, we
locally aggregate the value-to-value distances only at the TS-level.
That is, we maintain a distance score for each aligned pair of the
TS objects within the TSCs. This results in a sequence of similarity
scores referred to as similarity progression sequence (“simSeq”, in
short). This sequence is generated using the similarity progression
metric defined below.

Definition 6. [TSC Similarity Progression Measure]. Given
a query TSC object Q-TSC = ⟨ Qt0, (Qt1, QTS1), (Qt2, QTS2), · · · ,
(Qt𝑛 , QTS𝑛)⟩ and a target TSC object TSC = ⟨ t0, (t1, TS1), (t2, TS2),
· · · , (t𝑙 , TS𝑙 )⟩, a distance measure (d), then the sequence of the
directional distances at the TS-level from Q-TSC to TSC is defined
as:

𝑠𝑖𝑚𝑆𝑒𝑞(Q-TSC→ TSC) = ⟨𝑠1 : [𝑄𝑡1, 𝑑 (𝑄𝑇𝑆1,𝑇𝑆𝑥 )],
𝑠2 : [𝑄𝑡2, 𝑑 (𝑄𝑇𝑆2,𝑇𝑆𝑦)], · · · , 𝑠𝑛 : [𝑄𝑡𝑛, 𝑑 (𝑄𝑇𝑆𝑛,𝑇𝑆𝑧)⟩

(2)

where each 𝑠𝑖 is a TS-level local similarity score consisting of
two components; time (Qt𝑖 ) and distance value (d), 1 ≤ 𝑖 ≤ 𝑛,
𝑛 = 𝑐𝑎𝑟 (𝑄 −𝑇𝑆𝐶) and 𝑇𝑆𝑥 , 𝑇𝑆𝑦 , and 𝑇𝑆𝑧 are TS objects in the
candidate TSC that overlap with the corresponding QTS objects in
Q-TSC, i.e.,𝑄𝑇𝑆1,𝑄𝑇𝑆2 and𝑄𝑇𝑆𝑛 respectively. simSeq() function
is asymmetric, i.e., simSeq(Q-TSC→ TSC) != simSeq(TSC→ Q-
TSC).
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Figure 4: Regularizing simSeq generating rSimSeq

Example 4. Continuing with Example 3 and Figure 3, we now
have three aligned TS objects starting at times 𝑡0 = 20, 𝑡1 = 3092,
and 𝑡3 = 8212. We apply a TS-level similarity distance calcula-
tions using a given weighted Euclidean distance function [6], and
let us assume the distance scores are 3.2, 1.9, and 0, respectively.
This sequence produces the illustrated simSeq as a two dimen-
sional distance vector per Eq. 2, i.e., 𝑠𝑖𝑚𝑆𝑒𝑞 = ⟨𝑠1 : (20, 3.2), 𝑠2 :
(3092, 1.9), 𝑠3 : (8212, 0)⟩. Users can apply predicates on either
or both of these dimensions as highlighted in the query syntax in
Figure 2 (Lines 7 and 8).

Characteristics of Similarity Progression Sequence. We
discern the main characteristics of simSeq from Example 4. First,
simSeq is an irregular time series consisting of car(Q-TSC) values,
i.e. |𝑠𝑖𝑚𝑆𝑒𝑞 | = car(Q-TSC), i.e. 3 in Example 4. The irregular-
ity arises due to TSC-specific characteristics such as different
gap lengths in between TS objects within any given TSC ob-
ject. Second, the 𝑠𝑖𝑚𝑆𝑒𝑞 values are distant from each other. This
holds because of the existence of exceedingly long gaps of the
underlying TSC objects (refer to Section 1).

4.3 Trend Analysis & Identifying Convergence
Our system supports two convergence types, namely strict and
statistical. Strict convergence requires the similarity progression
sequence to be monotonically decreasing without exceptions. Al-
though it is a quick and low-cost test, it might be rarely observed
in real-world applications due to the potential presence of fluctu-
ations and noise. In contrast, statistical convergence relaxes the
monotonicity requirement by applying a statistical trend anal-
ysis test to determine whether the overall sequence exhibits a
significant downward trend. This allows detecting convergence
even in the presence of minor fluctuations.

As a proof-of-concept, we integrate the well-established Mann-
Kendall (MK) Test [41], a non-parametric test widely used for
detecting monotonic trends in time series data. MK is particularly
well-suited to our use case, as it handles missing values and does
not assume a specific data distribution.
Mann-Kendall Test. It is a statistical non-parametric test that
assesses if a monotonic trend holds in a time series. We opt for
this test because it fulfills the TSC-specific characteristics of
simSeq identified in Section 4.2. The original MK-test [34, 41]
requires the data values to be independent [32, 33]. Meaning, it
requires that the time between readings be sufficiently large so
that no correlation between measurements can arise. Despite that,
different versions of the test have been proposed to handle serial
correlation, e.g., [32]. Finally and most importantly, the MK test
can be computed even if there are gaps (also called non-detected
values) in the time series. This is important because our TSC data
by definition has gaps. The notion of gaps in the MK test is due
to the assumption that time series are regular, i.e., generated or
collected at regularly-spaced intervals of time. Thus, for a time
series with values that do not happen at a regular time interval,
it would be injected with gap (non-detect) values to convert it to
become regular.

Regularizing simSeq. As mentioned earlier under characteristics
of simSeq in Section 4.2, simSeq is an irregular TS. Thus in order to
study its trend using the MK-test, we first regularize it (Fig. 4). We
achieve this by transforming the gaps in the sequence into non-
detect points (or gap points) in the𝑚𝑡ℎ dimensional space, where
𝑚 = |𝑇𝑆 |. We chose to transform simSeq into the 𝑚 dimensional
space. Given the similarity progression sequence (simSeq):

𝑠𝑖𝑚𝑆𝑒𝑞(Q-TSC→ TSC) = ⟨𝑠1 : [𝑄𝑡1, 𝑑 (𝑄𝑇𝑆1,𝑇𝑆𝑥 )],
𝑠2 : [𝑄𝑡2, 𝑑 (𝑄𝑇𝑆2,𝑇𝑆𝑦)], · · · , 𝑠𝑛 : [𝑄𝑡𝑛, 𝑑 (𝑄𝑇𝑆𝑛,𝑇𝑆𝑧)⟩

(3)

We start by regularizing the 𝑠𝑖𝑚𝑆𝑒𝑞 readings over the time
dimension as follows. ∀ pairs of consecutive values 𝑠𝑖 and 𝑠𝑖+1
in 𝑠𝑖𝑚𝑆𝑒𝑞, where 0 ≤ 𝑖 ≤ 𝑛 and 𝑛 = |𝑠𝑖𝑚𝑆𝑒𝑞 |, we compute the
number of gap points in the 𝑚𝑡ℎ dimensional space between
them by first computing the length of the gap between each two
consecutive points, and then divide the result by𝑚.

#𝑔𝑖 : 𝑛𝑢𝑚𝑏𝑒𝑟𝑂 𝑓𝐺𝑎𝑝𝑃𝑜𝑖𝑛𝑡𝑠 (𝑠𝑖 , 𝑠𝑖+1) =
𝑄𝑡𝑖+1 − (𝑄𝑡𝑖 + |𝑇𝑆 |)

𝑚
(4)

Thus, the result would be a regular similarity sequence 𝑟𝑆𝑖𝑚𝑆𝑒𝑞

of values (i.e., TS-level distances) separated by a variable number
of gap points as follows.

𝑟𝑆𝑖𝑚𝑆𝑒𝑞(𝑄 −𝑇𝑆𝐶 → 𝑇𝑆𝐶) = ⟨𝑠1, ⟨𝑔 ∗ #𝑔1⟩, 𝑠2,

⟨𝑔 ∗ #𝑔2⟩, 𝑠3, · · · ⟨𝑔 ∗ #𝑔𝑛−1⟩, 𝑠𝑛⟩
(5)

where ⟨𝑔 ∗ #𝑔𝑖 ⟩ corresponds to a sequence of gap points (𝑔) be-
tween 𝑠𝑖 ans 𝑠𝑖+1, with the number of these gap points equal to
#𝑔𝑖 (Eq. 4).

Example 5. Continuingwith Example 4, given simSeq, i.e., 𝑠𝑖𝑚𝑆𝑒𝑞 =

⟨𝑠1 : (20, 3.2), 𝑠2 : (3092, 1.9), 𝑠3 : (8212, 0)⟩, let us assume the
length of TS objects contained in Q-TSC and TSC is |𝑇𝑆 | =𝑚 = 1024.
As per the description above and Eq. 4 & Eq. 5, the regularized sim-
Seq, i.e., rSimSeq= ⟨(20, 3.2), (1044, g), (2068, g), (3092, 1.9), (4116,
g), (5140, g), (6164, g), (7188, g), (8212, 0)⟩, as depicted in Fig. 4.
Since it is a regular sequence, we can ignore the time dimension
and only keep the values. Thus, rSimSeq=⟨3.2, g, g, 1.9, g, g, g, g, 0⟩.

Brief Review of Mann-Kendall Test. MK-test computes the
MK-statistics (𝑆𝑀𝐾 ) of a sequence 𝑟𝑆𝑖𝑚𝑆𝑒𝑞(𝑄 −𝑇𝑆𝐶 → 𝑇𝑆𝐶) =
⟨𝑠1, ⟨𝑔 ∗ #𝑔1⟩, 𝑠2, ⟨𝑔 ∗ #𝑔2⟩, 𝑠3, · · · ⟨𝑔 ∗ #𝑔𝑛−1⟩, 𝑠𝑛⟩ using Eq. 6.
This compares each data value in the sequence to all subsequent
data values. The initial value of 𝑆𝑀𝐾 is assumed to be 0 (indicating
no trend). If a data value from a later time period is higher than
a data value from an earlier time period, 𝑆𝑀𝐾 is incremented by
1, and if it is smaller, then 𝑆𝑀𝐾 is decremented by 1. Otherwise,
𝑆𝑀𝐾 stays the same. The net result of all such increments and
decrements yields the final value of 𝑆𝑀𝐾 .

𝑆𝑀𝐾 =

𝑛−1∑︁
𝑘=1

𝑛∑︁
𝑗=𝑘+1

𝑠𝑖𝑔𝑛(𝑠 𝑗 − 𝑠𝑘 ) (6)

where 𝑗 > 𝑘 , 0 < 𝑘 < 𝑛, 1 < 𝑗 ≤ 𝑛, and

𝑠𝑖𝑔𝑛(𝑠 𝑗 −𝑠𝑘 ) =


1 if 𝑠 𝑗 − 𝑠𝑘 > 0
0 if 𝑠 𝑗 − 𝑠𝑘 = 0 𝑜𝑟 𝑖 𝑓 𝑠 𝑗 𝑜𝑟 𝑠𝑘 𝑎𝑟𝑒 𝑔𝑎𝑝𝑠

−1 if 𝑠 𝑗 − 𝑠𝑘 < 0
(7)

Example 6. Continuing with Example 5, given the sequence rSim-
Seq= ⟨3.2, g, g, 1.9, g, g, g, g, 0⟩, 𝑆𝑀𝐾 (𝑟𝑆𝑖𝑚𝑆𝑒𝑞) = −3.
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Afterwards, the Mann-Kendall computes the variance of 𝑆𝑀𝐾 .

VAR(𝑆𝑀𝐾 ) =
1
18

[
𝑛(𝑛−1) (2𝑛 +5) −

𝐺∑︁
𝑝=1

𝑡𝑝 (𝑡𝑝 −1) (2𝑡𝑝 +5)
]
, (8)

where 𝑛 equals to the number of points in 𝑟𝑆𝑖𝑚𝑆𝑒𝑞, 𝐺 denotes
the number of tied groups and 𝑡𝑝 the number of values in the 𝑝𝑡ℎ
group. The term "tied groups" refers to repeated identical values.
If there are multiple gap values, they are represented as a group.

Example 7. Continuing with Example 6, given rSimSeq = ⟨3.2, g,
g, 1.9, g, g, g, g, 0⟩, we have a single tied group of 6 gap points, i.e.,
𝐺 = 1, 𝑡1 = 6, and 𝑛 = 9. Thus, 𝑉𝐴𝑅(𝑆𝑀𝐾 ) = 47.67.

Lastly, the MK-test computes the normalized MK-test statistic,
denoted by 𝑍𝑀𝐾 , as follows.

𝑍𝑀𝐾 =


𝑆𝑀𝐾 −1√
𝑉𝐴𝑅 (𝑆𝑀𝐾 )

if 𝑆𝑀𝐾 > 0

0 if 𝑆𝑀𝐾 = 0
𝑆𝑀𝐾+1√
𝑉𝐴𝑅 (𝑆𝑀𝐾 )

if 𝑆𝑀𝐾 < 0
(9)

This statistic is then used to assess the presence of a mono-
tonic trend, based on a predefined significance level (typically
95%), which corresponds to a two-tailed critical threshold of
approximately 1.96.

Example 8. Continuing with Examples 6 & 7, given that 𝑆𝑀𝐾 =

−3 & 𝑉𝐴𝑅(𝑆𝑀𝐾 ) = 47.67, then 𝑍𝑀𝐾 (𝑟𝑆𝑖𝑚𝑆𝑒𝑞) = −0.29.

Because 𝑍𝑀𝐾 < 0, this indicates a decreasing trend. However,
since |𝑍𝑀𝐾 | = 0.29 is much smaller than the critical threshold
(1.96 for 95% confidence), the trend is not statistically significant.

Thus, we conclude that the TSC does not converge to the Q-
TSC in this case. This reflects a limitation of the MK-test when
applied to short sequences (e.g., card(𝑄-TSC) < 5). We intention-
ally used a short query sequence in this example for clarity of
explanation.

5 Convergence Query Engine
To support scalable convergence query evaluation, we develop
an execution engine that integrates with the TSC indexing frame-
work and enables efficient retrieval, filtering, and trend analysis.
This section presents the core components of the engine, strate-
gies for single processing, and optimizations for batch query
processing, and predicate-aware early filtering.

5.1 The Underlying TSC Infrastructure
As mentioned in Section 3, our proposed convergence framework
leverages components of Sloth, our prior distributed infrastruc-
ture introduced in [6]. Sloth, built on top of Apache Spark [66],
supports various types of operators and queries on TSC datasets,
e.g., manipulation and transformation operators for creating new
datasets, SQL-like queries to select TSC objects matching certain
criteria, and kNN queries for similarity search. Since our conver-
gence query engine builds on top of Sloth’s storage and indexing
layers, we describe the TSC index framework next.

The TSC index is a distributed indexing structure composed of
two layers: a top layer and a bottom layer (see Figure 5). The top
layer, referred to as the time-aware layer, resides on the cluster’s
master node and serves as a centralized component. Its main
features are illustrated in Figure 5. During the index construction
phase, the framework decomposes each TSC object into its con-
stituent TS objects. These TS objects are then distributed to the

TS objects falling inside 
a given leaf partition are 
organized through the  
     Level 2 index based 
              on the TS values

Figure 5: Overview of TSC Indexing Framework.

appropriate leaf partitions of the top layer based on their start
times. The time intervals defining the boundaries of these leaf par-
titions (indicated in red in Figure 5) are dynamically determined
by the indexing framework to ensure balanced partition sizes. As
outlined in [6], this is accomplished by sampling complete TSC
objects from the dataset, extracting the start timestamps from
their TS components (e.g., 𝑡1, 𝑡2, 𝑡3 in Figure 5), modeling the dis-
tribution of these timestamps, and selecting partition boundaries
accordingly to achieve load balance. During query processing,
the top layer facilitates the efficient identification of relevant data
partitions that contain structurally matching candidates.

The bottom layer is build in a fully-distributed fashion over
each leaf partition independent of the other partitions. This layer
is based on three major steps as depicted in Fig. 5. First, each TS
object is divided into equal-size subvectors. Such subvectorization
helps preserve the locality of the features to be extracted and also
helps mitigating misalignments at query time (e.g., when compar-
ing two TSC objects whose individual TS objects do not perfectly
align). Second, for each sub-vector, features are extracted in a
compact structure referred to as SAX-based histograms [6]. This
structure provides a very compact representation of the data. It
also helps to mitigate misalignments at query time. The third
and final step is called vector quantization, where the objects are
further clustered for more compression. This bottom layer also
stores metadata information essential for re-constructing TSC
objects at query time.

In this work, we preserve the overall index structure, thereby
enabling both operators−kNN and convergence−to utilize the
same framework without incurring additional storage or mainte-
nance overhead. However, several algorithmic enhancements are
introduced to optimize the index lookup and management: (1)
A modified index lookup mechanism, where for the kNN query
operator [6], the bottom layer applies early local kNN filtering
(i.e., each partition returns its top-K results), while for conver-
gence queries all structurally matching TSCs are returned (Sec-
tion 5.2); (2) Predicate pushdown techniques to avoid accessing
irrelevant index partitions (Section 5.4); and (3) An incremental
maintenance strategy to efficiently update the index during data
appends (Appendix E).
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Figure 6: Convergence Analytics using Different Components of our TSC-Holistic System

5.2 Single Query Strategy (SQ-Strategy)

Phase 1: Candidate Set Retrieval. Given a query Q-TSC, the
master node decomposes it into its QTS objects. Then, it extracts
the start times t of allQTS objects of the queryQ-TSC to determine
which partitions to load. This is done by computing all the time
overlaps for the QTS objects using the following equation:

𝑡𝑖𝑚𝑒𝑂𝑣𝑒𝑟𝑙𝑎𝑝𝑅𝑎𝑛𝑔𝑒 (𝑄𝑇𝑆) = [𝑄𝑡 − |𝑇𝑆 | + 𝑜𝑑𝑝,𝑄𝑡 + |𝑇𝑆 | − 𝑜𝑑𝑝]
(10)

where Qt is the start time of QTS, |TS| is TS’s length, and odp is
the maximum overlapped data points (user-parameter).

Then, the master node uses these time ranges to query the
top time-based layer of the index to get their corresponding
partition IDs. Thereafter, the master node loads these identified
candidate partitions into the workers’ memory. It then broadcasts
the query Q-TSC with its TSC-aware feature representation [6] to
the workers.

Now that the candidate partitions are loaded into the work-
ers’ memory, we start computing the TS-level distances. This is
achieved by performing two level filtering at the index’s bottom
layer as follows. First, the workers fetch the TS objects that over-
lap with the QTS objects from the local structure, i.e., using the
HashMaps. Second, the workers perform the approximate distance
calculation between the feature representation of Q-TSC and the
TSC-aware feature representation [6] of these candidates.

Phase 2: Generating Similarity Progression Sequences.
Now, we have the feature-based distances at the TS-level between
all QTSs in the given Q-TSC and the respective TSs of the can-
didate TSCs (i.e., the TSC database). The distances would be in
the form: (oid(TSC), Qt𝑖 , dist), where oid(TSC) is the ID of the
candidate database TSC’s, Qt𝑖 refers to the timestamp of QTS𝑖 ,
and dist denotes the feature-based distances between QTS𝑖 and
the overlapped TS𝑥 in 𝑇𝑆𝐶 .

Thus, to compose the full similarity progression sequence,
we perform groupByKey action. This results in a collection of
candidates similarity sequences in the form: (oid(TSC), List<Qt𝑖 ,
dist>). After this, we sort the list of the distances for each sequence
(i.e., List<Qt𝑖 , dist>) based on time, i.e., 𝑄𝑡𝑖 . Thus, the result is
a collection of similarity progression sequences of all candidate
matches.

Phase 3: Analyzing the Trend. Depending on the conver-
gence mode in the query, the system applies one of two strategies:

USING Strict convergence, the system checks whether the
similarity progression sequence is monotonically decreasing—i.e.,
each value is smaller than the one before it. This check is light-
weight and efficient, requiring no statistical-based test.

USING Statistical convergence, the system applies the Mann-
Kendall (MK) test [33] to determine whether the sequence shows
a statistically significant downward trend. The MK test is run
with a user-defined confidence level (e.g., 95%) and returns the
trend (upward, downward, or no trend), a 𝑝-value, and support-
ing metrics, such as the Theil-Sen estimator [50]. The system

passes only the TSCs exhibiting a downward trend for the Q-TSC,
along with their metadata scores.

5.3 Batch Queries Strategies
Convergence queries are often issued in batches, e.g., given a set
of TSCs representing a set of patients, find for each the top 𝑘

converging TSCs from the dataset. To efficiently process multiple
Q-TSCs, we propose two strategies that minimize redundant
partition loads.

5.3.1 Partition-Sharing Strategy (ShareBQ). This strategy identi-
fies overlapping partitions across all queries in a batch and loads
them once. Each query then independently computes TS-level
distances from the shared data. The execution flow is as follows:
• Extract start times of all QTS objects in the batch.
• Identify and load the union of relevant partitions.
• Perform TS-level distance comparisons and generate simi-

larity progression sequences (simSeq).
• For each candidate, apply the Mann-Kendall trend test (if

the statistical convergence is requested) or the monotonic
decreasing test (if strict convergence is requested).
• Return ranked convergence matches per Q-TSC.

This sharing reduces I/O and improves parallelization effi-
ciency.

5.3.2 Partition-Ranking Strategy (RankBQ). RankBQ extends
ShareBQ by skipping low-impact partitions based on a scoring
mechanism, trading a slight decrease in recall for substantial
speedup. We estimate three scores per partition, namely:
• AccessScore: Frequency of access across batch queries.
• QuantityScore: Importance of each QTS relative to its par-

ent Q-TSC.
• PositionScore: Location of QTS (head, middle, tail).

Partitions are ranked based on these metrics with tunable
weights. A user-specified skip percentage determines how many
lowest-ranked partitions to omit. This supports tunable accuracy-
speed tradeoffs and complements ShareBQ for high throughput
workloads. In Appendix A, we provide more details on both
strategies.

5.4 Predicate-Guided Partition Prioritization
Users can apply value-based predicates on the similarity pro-
gression sequence (simSeq) to control the desired convergence
degree (SQL syntax in Line 9, Figure 2), e.g., the maximum al-
lowed distance between two converging TSCs must be less than
a threshold. Such predicates, in a naive setting, can be applied
at the very end of query processing, i.e., after Phase 3 in Section
4.2.

Here, we make the important observation that, semantically,
the filtering of such predicates often tends to be correlated to
certain regions in TSCs, opening an opportunity for optimiza-
tion. For example, queries that use predicates such as min(simSeq
[0,−1]) < 𝜃 (e.g., 𝜃 = 0.1) suggest a tail-filtering pattern (from
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Figure 7: Comparison of SQ-Strategy and PGPP for head-filtering predicates. PGPP prioritizes early segments of the TSC
based on the predicate max(simSeq) > 𝜃 , reducing partition access compared to SQ-Strategy which loads all segments
uniformly.

the right side) because the minimum distance between two con-
verging TSCs is most likely at (or near) the tail (right) side. In
contrast, a predicate like max(simSeq[0,−1]) > 𝜃 (e.g., 𝜃 = 0.9)
implies head-filtering (from the left side) because the maximum
distance between two converging TSCs is most likely at (or near)
the start (left) side.

Leveraging the above observations, we now propose a light-
weight rule-based loading strategy which we call Predicate-Guided
Partition Prioritization (PGPP). PGPP dynamically selects which
portions of the TSC to load based on the type of predicate. For
min constraints, it employs a tail-first approach, loading TSC
segments starting from the most recent time windows (the right
side). For max constraints, it uses a head-first strategy, beginning
from the earliest time windows on the left side (see Figure 7).

As we demonstrate in our experiments (Section 6.3), the PGPP
strategy significantly reduces the number of partitions touched at
query time while preserving a high recall. The reason is that the
partitions first retrieved by PGPP allow identifying and eliminat-
ing most converging TSCs that do not satisfy the given predicates.
As illustrated in Figure 7, PGPP can be applied in a more or less
aggressive manner controlled by a system parameter, offering a
tuning tradeoff between speed versus accuracy. For example, a
20% threshold is more aggressive than 40% and will result in a
smaller number of partitions (Part 1 & Part 3) being loaded, and
hence faster execution. However, TSC2, in this example, does
not have presence in both Part 1 and Part 3. Hence if it is part of
the ground truth, it will be missed under the 20% threshold. The
PGPP optimization can be seamlessly integrated into both single
and batch query execution pipelines.

5.5 System’s Fault Tolerance
Fault tolerance in our system is inherently supported by the
underlying Apache Spark infrastructure. The query pipeline op-
erates as a series of Spark jobs, which are further distributed into
individual tasks. These tasks are automatically monitored, and
any failures are transparently handled through task re-execution.
Additionally, all TSC datasets and index structures are stored in
HDFS, enabling robust recovery from partition losses or node
failures via HDFS’s built-in replication and fault-tolerance mech-
anisms.

5.6 Convergence Query Complexity Analysis
In this section, we present the complexity analysis of the search
algorithm for single query processing. Let 𝑁 denote the total

number of TS objects in the dataset, 𝑃 the number of partitions
created by the top-level index, and |𝑄 | the number of TS objects
in the query TSC. The top-level index search to find the right par-
tition executes in𝑂 (𝑙𝑜𝑔 𝑃), and it ensures that each query TS only
needs to be compared against approximately 𝑁 /𝑃 candidates (in-
stead of all 𝑁 ). Within each partition, the second-level quantized
index enables sub-linear candidate pruning: rather than scanning
all 𝑁 /𝑃 candidates, only a fraction 𝜌 · (𝑁 /𝑃) are examined, where
𝜌 ≪ 1 reflects the selectivity of the histogram-based filtering.
Finally, all TSC objects that pass the structure-similarity filters
(say 𝐶) are tested for convergence using the MK-test. Hence, the
overall complexity becomes:

𝑂
(
|𝑄 | · (𝑙𝑜𝑔 𝑃 + 𝜌 · 𝑁

𝑃

)
+𝐶) → 𝑂

(
|𝑄 | · (𝜌 · 𝑁

𝑃

)
+𝐶) .

In contrast, a naive baseline that performs a full scan has com-
plexity:

𝑂 ( |𝑄 | · 𝑁 ) +𝐶.
Thus, the two-level indexing strategy achieves up to a 𝑃/𝜌-fold
speedup over the baseline.

6 Experimental Evaluation
6.1 Implementation & Experimental Setup
Cluster Setup. Our cluster consists of 2 super nodes each com-
posed of 56 Intel@Xeon CPU E5-2690 2.60GHz processors, 500GB
RAM, 3.5 TB HDD (each CPU has 8 GBs of assigned dedicated
memory). Each node is connected to a Gigabyte Ethernet switch
and runs Ubuntu 16.04.3 LTS with Spark-2.0.2 and Hadoop-2.7.3.
The memory in each machine is equally distributed across the
machine’s cores. Note that, while our prototype currently utilizes
two supercomputer nodes−reflecting the resources currently
available to our group−the system components are designed to
be highly scalable on commodity hardware, without the need for
high-capacity global memory or centralized processing.

6.1.1 Baseline Algorithms. Single Query Strategy Baseline Al-
gorithms. We have two baselines:

(1) FullScan. This method harnesses the parallel processing
power of the distributed infrastructure by a full scan over the
TSC materialized data. We first group and materialize the time
series data by their TSC id, i.e., OID(TSC) onto the same partition.
Query processing then can use full scans over the partitions in
parallel to answer the query input by computing the simSeqs
with all database TSC objects. Afterwards, the MK-test executes
in parallel across all cores to identify and report the converging
TSCs.
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(2) S-kNN. Here, we investigate how to effectively leverage
existing search techniques to implement our target operator.
Among existing approaches are traditional time series manage-
ment systems enhanced with TSC semantics (Section 3), and the
Sloth system [6]. Prior work in [6] has demonstrated that Sloth
significantly outperforms other conventional methods, e.g., the
time series systems enhanced with the strategies mentioned in
Section 3 such as IMPUTE, DECOMPOSE, and CONCAT, i.e., this
strategies suffered from very low accuracy and hence considered
impractical. Accordingly, our evaluation focuses on a comparison
with the Sloth system. We utilize its TSC kNN operator, which
retrieves the top k most similar matches for a query object. To
maximize the likelihood of identifying converging TSCs, we set a
high value for k (default: K = 2000), 10 times the average number
of converging results for a typical query TSC. On top of these re-
trieved candidates, our lightweight post-processing layer applies
the MK-test to assess convergence.

Batch of Queries Strategy Baseline Algorithms. We compare
with two baseline solutions:

(1) FullScan as described above with all query objects com-
pared in the same scan. And (2) repeated execution of the
SQ-Strategy, namely, executing the best single query strategy
on each query in the batch independently.

6.1.2 Datasets. We work with the following four datasets.
(1) TSC-RandomWalk Dataset. First introduced in our prior

work [6], it extends the RandomWalk benchmark widely used for
time series evaluation, e.g., [23, 63, 69]. Briefly, generating D𝑇𝑆𝐶
consists of: (1) designing the template of a typical TSC, and (2)
generating TS objects to compose each TSC. We generate multiple
datasets by varying the numbers of TSC objects N over ⟨5, 10,
15, 20⟩ millions with an average car(TSC)=15 where |TS|=1024,
resulting in datasets of approximately ⟨260 GB, 520 GB, 790 GB,
1.1 TB⟩. We also create another series of datasets where we fix
the N to 5 millions and vary the average cardinality over ⟨10,
15, 20, 25⟩ TS objects resulting in datasets of ⟨ 150 GB, 220 GB,
400 GB, 500 GB⟩.

(2) Chin Movement & (3) ECG Signal Datasets. We use
two datasets from a sleep study [2]: (1) Chin Movement [67] and
(2) ECG Signal [13]. We extracted the TSC objects following the
method described in [6]. This results in around 5 million TSCs
per dataset (approximately 260 GB), where each TSC on average
consists of 15 TS objects. (4) NYC Taxi Commission. We use
the yellow taxi trip records from 2009 to 2021 [49]. The TSC
objects were extracted as described in [6]. This results in around
2.5x106 TSCs ≈ 110 GB.

6.1.3 Default Parameter Settings. TSC-aware representation
has a set of parameters, including the number of sub-vectors
(SV), codeBook size (CB), and SAX parameters (SAX-Alphabet)
and (SAX-Segments). The following default settings as in [6]: SV
= 8, CB=32, SAX-Alphabet=2 and SAX-Segments=2. Regarding
dataset size = 5 millions TSC objects of cardinality car(TSC)=15
TSs in each. The default batch size is 33 unless otherwise stated.
For the probability level of significance for MK-test, we set 𝛽 =

0.05 for the baseline, i.e., the exact solution FullScan, and for
our approximate strategies (i.e., SQ-Strategy, ShareBQ-Strategy
and RankBQ-Strategy), empirically 𝛽 = 0.25 seems the right
choice to achieve high accuracy. All experiments are conducted
under failure-free conditions, as the fault tolerance capabilities
are entirely provided by the underlying Spark infrastructure
without modification.

6.1.4 ConvergenceQuery EvaluationMetrics. In the follow-
ing, we evaluate convergence query strategies by measuring the
query performance of processing a bunch of 33 distinct queries.
For single query strategies, we apply the queries individually (see
Section 5.2), then we take the average of query response time. For
batch of queries strategies, we exploit sharing opportunities while
processing the queries as explained in Section 5.3. We then divide
the total time of running the batch by the size of the batch. The
recall of both strategies is measured by taking the average of each
single query’s recall – a standard metric for high-dimensional
retrieval queries [5, 9, 63, 69]. Given a query Q-TSC, the set of
exact converging TSCs 𝐺 (𝑄 − 𝑇𝑆𝐶) = {𝑔1, · · · , 𝑔 |𝐺 (𝑄−𝑇𝑆𝐶 ) | },
and the set of approximate converging 𝑇𝑆𝐶𝑠 as R(Q) = {𝑟1,· · · ,
𝑟 |𝑅 (𝑄−𝑇𝑆𝐶 ) | }. Then recall is defined as:

𝑟𝑒𝑐𝑎𝑙𝑙 =
|𝐺 (𝑄 −𝑇𝑆𝐶) ∩ 𝑅(𝑄 −𝑇𝑆𝐶) |

|𝐺 (𝑄 −𝑇𝑆𝐶) | (11)

Notice that recall ∈ [0, 1] where in the ideal case, the recall
score is 1.0, i.e. 100%. This means all converging𝑇𝑆𝐶 are returned.

6.2 Evaluating SQ-Strategy & ShareBQ
In this section, we first evaluate the query response time of single
query strategies including our proposed algorithm SQ-Strategy
(refer to Fig. 8, 1𝑠𝑡 row) under various settings. We then evaluate
our optimized algorithm ShareBQ against the batch base method
FullScan and our SQ-Strategy (refer to Fig. 8, 2𝑛𝑑 row). Finally,
we report the recall of all these algorithms in Fig. 8, 3𝑟𝑑 row.

6.2.1 Varying Dataset Sizes By Changing Number of TSCs.
Single Query Strategies. In Fig. 8 col.(a) row(1), we compare the
base solution (FullScan) to our proposed solution(SQ-Strategy).
FullScan pays the cost of returning exact answers with a slow
response time. Worst yet, as the number of TSCs in the dataset
increases, the response time increases exponentially. In contrast,
our SQ-Strategy is orders of magnitude faster especially for the
TB-scale dataset. This is because 1) SQ-Strategy only loads the
partitions that are likely to contain a structural-similar TSCs, and
2) the TS-Level distance comparisons are feature-based not raw
point-by-point based matches as in FullScan.

Comparing SQ-Strategy to S-kNN, it is consistently up to three
times faster than S-kNN for different dataset sizes. Better yet, the
recall of SQ-Strategy is consistently above 80% and approaching
90% as dataset sizes increase (Fig. 8 col.(a) row(3)). While S-kNN
recall is bad, < 20% for different dataset sizes. Worse yet, S-kNN
recall does not have a clear pattern. This reflects the fact that
the kNN and convergence operators have conceptually unrelated
semantics. Meaning, a close kNN match does not imply that it
converges to a given query, and vice versa.

Batch of queries strategies. Refer to Fig. 8 col.(a) row(2), com-
paring FullScan to ShareBQ, ShareBQ is up to three orders of
magnitude faster for TB-scale datasets. As the number of TSC
objects increases, the response time of FullScan increases expo-
nentially. While ShareBQ increases linearly compared to the base
solution. This is for the same reasons mentioned above for the
Single Query Strategy. Finally, comparing ShareBQ to the repeated
execution of SQ-Strategy with each query, ShareBQ is two times
faster than SQ-Strategy.
6.2.2 Varying Dataset Sizes By Changing TSC Cardinal-
ities. Single Query Strategies. In Fig. 8 col.(b) row(1), compar-
ing the base solution (FullScan) to our proposed solution (SQ-
Strategy), we found that the exact solution FullScan suffers from
a very slow response time and from not being scalable. As the
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Figure 8: Evaluation of SQ-Strategy & ShareBQ: Query Response Time (1𝑠𝑡 row: single query strategies, 2𝑛𝑑 row: batch of
queries strategies) & Recall (3𝑟𝑑 row: single & batch of queries strategies).

cardinality of the TSC increases, the response time increases ex-
ponentially. This is expected, whether the datasets sizes increase
cardinality-wise or because of number of TSCs increase, the
amount of data loaded into memory is ample and thus the solu-
tion is not scalable. SQ-Strategy is up to four orders-of-magnitude
faster compared to the baseline for the largest dataset of TSC
objects with average car(TSC)=25 (approximately 500GB). Com-
paring SQ-Strategy to S-kNN, it is consistently up to two times
faster than S-kNN. Moverover, the recall of SQ-Strategy (Fig. 8
col.(b) row(3)) is consistently above 80% and approaching 90% as
the cardinality increases. This is expected because the MK-trend
test captures the convergence trend more efficiently for longer
TSCs. S-kNN’s recall is bad, < 20% for different dataset size.

Batch of Queries Strategies. In Fig. 8 col.(b) row(2), comparing
FullScan to ShareBQ, the FullScan’s response time increases expo-
nentially as the cardinality of the TSC increases. ShareBQ is up to
three times faster than FullScan, and expected to be much faster
as the trend suggests. Moreover, according to the trend in the fig-
ure, we expect that BQ-Strategy would be even faster compared
to the baseline for larger cardinalities. Comparing ShareBQ to
SQ-Strategy, ShareBQ is two times faster than SQ-Strategy while
achieving the same recall (Fig. 8 col.(b) row(3)).

6.2.3 Varying Misaligned Data Points at the TS-level. This
has almost the same effect on query response time of single pro-
cessing strategies, i.e., FullScan, S-kNN & SQ-strategy (see Fig. 8
col.(c) row(1)), and batch processing strategies, i.e., FullScan, &
ShareBQ (see Fig. 8 col.(c) row(2)). The query response time
increases as the number of misaligned points increases. This
is because this increase of misaligned points increases the re-
quired distance calculations at the TS-level. Despite that, the
ratios between the query response time of these strategies re-
main unaffected. Regarding the recall (Fig. 8 col.(c) row(3)), it
slightly decreases for our proposed strategies, i.e., SQ-Strategy
and ShareBQ, as the number of misaligned data points increases.
This is because it affects the quality of the representation-based

Figure 9: Index Construction Analysis (Time & Size).

distances. Despite that, it is still of an excellent quality usable in
practice staying at a larger than 80% recall.

6.2.4 Comparative Study Across Different Datasets. We
observe that varying the actual datasets does not affect the query
response time of single query strategies (Fig. 8 col.(d) row(1))
nor does it affect the query response time of batch query strate-
gies (Fig. 8 col.(d) row(2)). Rather, as shown in Section. 6.2.1 &
6.2.2, the query response time is dominated and affected by the
dataset size. Despite that, the recall (Fig. 8 col.(d) row(3)) differs
for different dataset types for our index-based strategies (i.e., SQ-
strategy & ShareBQ). This is because we calculate the TS-level
distances between the representations. Thus, different shapes of
the TS objects affect the similarity scores, the trend analysis, and
accordingly affect the recall.

6.3 Evaluating PGPP Partition Loading
We evaluate the impact of the Predicate-Guided Partition Priori-
tization (PGPP) technique by integrating it into the SQ-Strategy.
PGPP adjusts the order and amount of partitions loaded based on
user-defined query constraints over the similarity progression
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sequence (simSeq). We measure the impact of two types of con-
vergence predicates on query time, number of loaded partitions,
and recall.

Case 1: min(simSeq[0, -1]) < 0.1 (Tail Filtering). This sce-
nario targets cases when relevant matches are expected near the
end of the similarity progression sequence. PGPP therefore pri-
oritizes loading partitions corresponding to the latest segments
of TSCs to focus on filtering in that region. (Table 1).

Table 1: Performance under Tail-Filtering Constraint

Strategy Partitions Loaded Recall Avg. Time

FullScan 4759 / 4759 1,880 (100.00%) 32,972 sec
SQ-Strategy 352 / 4759 1,662 (88.40%‡) 466.6 sec
PGPP – Tail 60% 199 / 4759 1,627 (97.89%*) 252 sec (54.0%*)
PGPP – Tail 50% 142 / 4759 1,489 (89.58%*) 215 sec (46.1%*)
PGPP – Tail 40% 114 / 4759 1,421 (85.49%*) 198.3 sec (42.5%*)
PGPP – Tail 30% 87 / 4759 1,421 (85.49%*) 179.6 sec (38.5%*)
PGPP – Tail 20% 39 / 4759 972 (58.50%*) 151 sec (32.4%*)

‡ Relative to FullScan * Relative to SQ-Strategy

Case 2: max(simSeq[0, -1]) > 0.9 (Head-Filterning). This
targets cases where relevant matches are expected near the be-
ginning of the similarity progression sequence. PGPP prioritizes
loading earlier segments of TSCs to focus filtering accordingly
(Table: 2).

Table 2: Performance under Head-Filtering Constraint

Strategy Partitions Loaded Recall Avg. Time

FullScan 4759 / 4759 5,662 (100.00%) 34,620 sec
SQ-Strategy 352 / 4759 5,011 (88.52%‡) 464.3 sec
PGPP – Head 60% 265 / 4759 4,913 (98.05%*) 263.6 sec (56.8%*)
PGPP – Head 50% 210 / 4759 4,853 (96.84%*) 235.3 sec (50.7%*)
PGPP – Head 40% 182 / 4759 4,388 (87.56%*) 209.3 sec (45.1%*)
PGPP – Head 30% 153 / 4759 4,249 (84.76%*) 191.3 sec (41.2%*)
PGPP – Head 20% 94 / 4759 3,139 (62.63%*) 165 sec (35.5%*)

‡ Relative to FullScan * Relative to SQ-Strategy

These experiments show that PGPP significantly reduces query
latency—by up to 3×—while maintaining high recall. The trade-
off between performance and accuracy can be tuned by control-
ling the extent of partition loading based on query semantics.

6.4 Evaluation of Index Construction
Index Construction Time. This includes data shuffling, con-
verting TSC objects into their TSC-aware feature representation,
and organizing them into their local structure. In Fig. 9 (a) and
(b), we vary the number of TSCs and number of TSs in each TSC,
respectively. In both cases, the index construction time is lin-
ear in the dataset size. Index construction time will be quickly
amortized after executing even just a few queries. For example,
TSC-index construction plus executiong of a single query using
SQ-Strategy is 30 seconds faster than executing a single query
using FullScan.

Index Size. In Fig. 9 (c) and (d), we study the impact on index
size when varying the number of TSC objects and cardinality,
respectively. The index size consistently represents 5% of the
dataset size. This is because the index size is dominated by the
size of the feature representation of the TS objects, one for each.
Other index components not only are relatively small, in KBs to
few MBs, but also independent of the dataset size.

7 Conclusion
Convergence queries on time series data, particularly on the Time
Series Compound (TSC) model, represent an unexplored class
of analytics relevant to domains from diagnostics, maintenance,
to security. Our work is the first to address convergence queries
at scale, introducing a distributed processing framework that
leverages the parallelism of modern computing infrastructures
to evaluate convergence over terabyte-scale TSC datasets effi-
ciently. We design a TSC-aware similarity progression measure
and define the semantics of convergence queries. We develop scal-
able query strategies that achieve orders-of-magnitude speedup
over baseline methods, yet with consistently high accuracy. Our
predicate-guided partition prioritization optimization reduces
data loading costs, achieving up to 3× speedup with minimal loss
in recall.

Artifacts
All our source code and implementation artifacts are publicly
available at GitHub: https://github.com/kaluaim/tsc-convergence-
queries. This repository includes the full implementation of the
convergence query engine, including the PGPP optimization,
SQ-Strategy, and batch execution strategies.

Moreover, to demonstrate the integration with an existing
time series management system, we built a plugin for Apache
IoTDB. This plugin enables invoking convergence queries from
within IoTDB and showcases how our system can interoperate
with existing DB systems. The plugin source is available at: https:
//github.com/kaluaim/tsc-cq-iotdb-plugin.
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A Additional Details on Batch-Queries
Strategies

Batch-Queries execution strategies allows multiple, say K, queries
in a batch to be processed concurrently, i.e., the input is batch-
QueryTSC in Fig. 2, line 1. The results obtained by these strategies
are identical to those obtained if we had executed SQ-Strategy
for each of the K queries individually. Better yet, they complete
the processing in a much shorter time and with a better resource
utilization. In the following, we describe two batch strategies
in-depth.

A.0.1 Partition-Sharing Execution Strategy (ShareBQ-Strategy).
Given that different queries might identify potentially several
common partitions, this provides opportunities for shared pro-
cessing. In principle, sharing similar partitions reduces the query
performance time due to having to load potentially less addi-
tional partitions, while utilizing the processing infrastructure.
Thus, given a batch of k Q-TSC queries, this strategy starts by
identifying the union of candidate partitions of all queries in the
batch, as described below.

Phase 1: Candidate Set Retrieval. First, the master node
extracts the start time t of all QTS objects of every query Q-TSC
in the batch and takes the union of these start times to determine
partitions to load. Then, it computes all overlaps for the QTS
objects (refer to Eq. 10). Then, the master node queries the time
structure in TSC-index’s top level with these time ranges to get
their candidate partitions IDs. Thereafter, the master node loads
these partitions into workers’ memory. The decomposed QTS are
transformed into their TSC-aware feature representation [6] and
then grouped by their start time t which results in pairs: (t, List
<oid(Q-TSC), QTS>). These pairs are broadcasted to the workers’
memory.

Phase 2: Generating Similarity Progression Sequences.
In the TS-level structure-based filtering, each worker does the fol-
lowing for each pair <oid(Q-TSC), QTS> in the list (t, List <oid(Q-
TSC), QTS>): 1) the worker fetches the TS objects that overlapped
with QTS objects based on time t from the local structure, i.e.,
HashMap. 2) Then, each fetched TS object is touched once. Mean-
ing, the candidate TS is compared with each single QTS in the
list of values (i.e., List <oid(Q-TSC), QTS>). 3) The result would
be represented as key-value pair (Key:(oid(Q-TSC), oid(TSC)),
value: (Qt, dist)). Second, the master node groups these partial
results by key which results in a collection of pairs in the form:
(Key:(oid(Q-TSC), oid(TSC)), Value: List<(Qt, dist)>). Then, for each
pair, we sort the values based on time, followed by regularizing
the sorted list of distances.

Phase 3: Analyzing the Trend.Given the resulting collection
from phase 2 in the form: (Key:(oid(Q-TSC)), Value: List<(oid(TSC),
regSimSeq)>). Each regSimSeq candidates is passed to MK-test.
Lastly, we note that the ranking would be similar to that of
SQ-strategy, where we perform ranking for each Q-TSC indepen-
dently.

A.0.2 Partition-Ranking Execution Strategy (RankBQ-Strategy).
We now extend ShareBQ by providing additional speedup - how-
ever at the cost of decrease in the approximation accuracy. That
is, RankBQ-Strategy features an elegant speed–accuracy trade-off
capability. As foundation, we formalize this as an optimization
problem. Thereafter, we design a solution that derives the optimal
selection of candidate partitions to process.

The goal of RankBQ strategy is to give each partition a score
based on its impact on query response time and accuracy. This
way, we would prioritize the partitions based on these scores.
This allows us to ignore some of the partitions with the lower
scores to further expedite the query response time, with a small
accuracy loss. Our scoring strategy for a candidate partition (p)
depends on three important scores explained in depth as follows.

AccessScore. It classifies the candidate partitions from being
"heavy-utilization" partitions to "light-utilization" partitions. A
partition is called heavy-utilized if it contains candidates for
many QTS in the batch, and light-utilized if has candidates for
very few QTS in the batch. The accessScore ∈ (0, 1], i.e., the closer
it is to 1 the heavier the partition.It is calculated as accessScore
= numOfAccess/size(BoQ), where numOfAccess=number of QTS
that access the partition and size(BoQ) denotes the number of
query Q-TSC objects in the batch. Meaning, the light-utilizated
partitions are less critical and thus can be ignored because the
number of Q-TSC affected by this omission would be relatively
small.

QuantityScore. It is also important to make sure that the Q-
TSC queries affected by the omission are not critically impacted.
Thus, we incorporate this measure, which we call quantityScore.
Given a QTS in the query batch, this measure computes the ratio
of this QTS to the cardinality of the single Q-TSC it is member
of, i.e., if car(Q-TSC)=x, then ratio 𝑞𝑢𝑎𝑛(𝑄𝑇𝑆) = 1/𝑥 . Clearly,
the larger the cardinality, the smaller the value of quantityScore.
Now, for each partition (p), we set quantityScore quantityScore(p)
= max({quan0, quan1, . . . , quan𝑠𝑖𝑧𝑒 (𝐵𝑜𝑄 ) }). Notice that quanti-
tyScore ∈ (0, 1].

PositionScore. It captures the relative position of QTS in its Q-
TSC, along with how critical this position is relative to capturing
the trend. We studied the importance of masking QTS from head,
middle and tail experimentally and found that masking from
head or tail has almost the same effect. Plus, this is more critical
than masking from the middle. We thus adopt the following
optimization procedure. First, we divide each single Q-TSC in
the batch into three equal time windows: head, middle, and tail.
Thus, each QTS would be annotated with its position computed
based on which time window of the single Q-TSC it is member of.
This position information for every QTS in the batch are used to
score the partition with what we call the positionScore. Namely,
for a given partition p, we calculate the summation of the ratio of
heads, middles, tails of QTS objects that access p relative to their
total number numOfAccess (See line 10, Algorithm 2). Notice
that these ratios are multiplied by a weight, i.e., 𝛼, 𝛽, and 𝛾 ,
respectively, to reflect their relative importance.

Combining the three scores. Once we have the aforemen-
tioned scores assigned to each candidate partition, we compute
the final score by multiplying the three. We give the user the abil-
ity to ignore, reduce or magnify any of these scores by assigning
values to the user-provided parameters weights, i.e., 𝐴, 𝐵, 𝑎𝑛𝑑 Γ
(line 12, Algorithm 2). The overall strategy is provided in Algo-
rithm 1 and Algorithm 2. Next, we explain both in more detail
below.
Collecting statistics about the queries to score candidate
partitions (Algorithm 1). In order to compute the aforemen-
tioned scores for each candidate partition, we need to collect
statistics about the queries (i.e., Q-TSC objects) in the batch as in
Algorithm 1.

We start by decomposing each Q-TSC into its QTS objects
(Line 7-8). For each QTS object, we find its position in the Q-TSC
it is member of. Compute the ratio of this QTS to the cardinality
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Algorithm 1: Collect Statistics to Score Partitions.

Input :BoQ ⊲ Batch of TSC Queries (Q-TSCs),
TStr ⊲ Time Structure (maps time to partitionID).

Output :SPIDs ⊲ Scored Parition IDs.
1 Declare:
2 canPIDs: ⟨⟩ ⊲ stores candidate Partition IDs
3 PIDAcc: ⟨⟩ ⊲ stores mapping PIDs to # of QTSs access
4 PIDPos: ⟨⟩ ⊲ stores mapping PIDs to QTSs positions
5 PIDQuan: ⟨⟩ ⊲ stores mapping PIDs to QTSs quantity
6 foreach Q-TSC in BoQ do
7 foreach (Qt, QTS) in Q-TSC do
8 pos← position(QTS) = Head, Middle, or Tail
9 quan← quantify(QTS) = 1/car(Q-TSC)

10 cPIDs← TStr.getPID(Eq. 10(Qt,|QTS|))
11 canPIDs← canPIDs + (cPIDs, pos, quan)

12 foreach (cPIDs, pos, quan) in canPIDs do
13 foreach PID in cPIDs do
14 PIDAcc← PIDAccess + (PID, 1)
15 PIDPos← PIDPos + ((PID, pos),1)
16 PIDQuan← PIDQuan + (PID, quan)

17 SPIDs← scorePID(PIDAcc, PIDPos, PIDQuan) ⊲

Algorithm 2
18 return SPIDs

of the Q-TSC it is member of (Line 10), followed by finding all
candidate partition for this QTS (Line 12) by accessing the TSC-
index’s top layer. For each query QTS, we then save the list of
its candidate partitions IDS annotated with this QTS position
and quantification (Line 13). Each candidate partition could be
a candidate for different QTS objects in the batch. Thus, after
the processing for all QTS has been completed, we are ready
to aggregate this partial intermediate scores for each candidate
partition. Mainly, for each partition ID in the candidate partition
IDs list (Algorithm 1, line 15), we have three variables to update:
PIDAcc, PIDPos, and PIDQuan.

These variables store partial intermediate scores. For instance,
PIDAcc stores the pair (PID, 1) indicating a single count for each
unique QTS that touches partition p (Line 16). PIDPos stores ((PID,
position value), 1) indicating a single count for the position of
each QTS that touches partition p (Line 17). PIDQuan stores (PID,
quan) indicating the cardinality quantification of each single
QTS that touches p (Line 18). Thereafter, this partial intermediate
scores are passed to Algorithm 2 to aggregate them to result in
final full scores.
Scoring candidate partitions (Algorithm 2). Algorithm 2 is
comprised of two main phases. 1) Aggregating the partial in-
termediate scores collected for each candidate partition, and 2)
scoring these partitions. First, we aggregate the access count and
the positions counts for each partition by triggering a reduce by
key action where the partition ID is the key (Line 3-4). Besides,
we collect QTS quantification for each partition by performing
the group by key action (Line 5). We then join the results of these
aggregated scores by the key, which is the partition ID (Line
6). Now, we have the three scores ready for each partition ID
(Line 6). Namely, access score (Line 9), position score (Line 10),
quantity score (Line 11), and the final score that aggregate them
all (Line 12). We then add the partition ID with its final score into

the list (Line 13). Finally, after assigning scores to all candidate
partitions, we sort them based on the scores.
Ignoring partitions with lower scores. Given the set of candi-
date partitions IDs along with their scores, we determine strate-
gically which partitions to ignore to most effectively utilize the
resources and thus reduce I/O and computational costs. We tackle
this by calculating the number of execution cycles that it takes
the cluster to perform the job.

#𝑂𝑓𝐶𝑦𝑐𝑙𝑒𝑠 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜 𝑓 𝑤𝑜𝑟𝑘𝑒𝑟 𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑠
(12)

Now the user can decide how many cycles to skip by setting
the user-parameter ignorance percentage (ignorPerc), and thus:

𝑛𝑢𝑚𝑂𝑓𝐶𝑦𝑐𝑇𝑜𝐼𝑔𝑛𝑜𝑟𝑒 = 𝑖𝑔𝑛𝑜𝑟𝑃𝑒𝑟𝑐 ∗ 𝑛𝑢𝑚𝑂𝑓𝐶𝑦𝑐𝑙𝑒𝑠 (13)

Thus, we find the number of partitions to ignore as:

#𝑂𝑓 𝑃𝑎𝑟𝑡𝑇𝑜𝐼𝑔𝑛𝑜𝑟𝑒 = #𝑂𝑓𝐶𝑦𝑐𝑇𝑜𝐼𝑔𝑛𝑜𝑟𝑒 ∗ #𝑂𝑓𝑊𝑜𝑟𝑘𝑒𝑟𝑠 (14)

Once we determine the number of partitions to ignore, we
simply get the sorted partition IDs by their scores and ignore
numOfPartToIgnore partitions with the lowest score. Then, we
pass this updated list of partition IDs to phase 2 of the ShareBQ-
Strategy (Section A.0.1). Thereafter, the query strategy will follow
the same steps that ShareBQ-Strategy takes.

Algorithm 2: scorePID: Score Candidate Partitions.

Input :PIDAcc, PIDPos, PIDQuan ⊲ Algorithm 1 (Line
3-5).

1 Initialize:
2 unSortedSPIDs← to store scored partitiones
3 RDD1[(PID, sumOfAccess)]← PIDAcc.reduceByKey(_+_)
4 RDD2[(PID, List<sumOfPos>)]←

PIDPos.reduceByKey(_+_)
5 RDD3[(PID, List<quan>)]← PIDQuan.groupByKey()
6 RDD[(PID, sumOfAccess, List<sumOfPos>, List<quan>)]
← RDD1.join( RDD2.join(RDD3))

7 foreach PID in PIDsMeasures do
8 numAcc← PID.sumOfAccess
9 accessScore← numOfAccess/size(BoQ)

10 positionScore← (𝛼 ∗ 𝐻𝑒𝑎𝑑𝑠
𝑛𝑢𝑚𝐴𝑐𝑐

, 𝛽 ∗ 𝑀𝑖𝑑𝑑𝑙𝑒𝑠
𝑛𝑢𝑚𝐴𝑐𝑐

,
𝛾 ∗ 𝑇𝑎𝑖𝑙𝑠

𝑛𝑢𝑚𝐴𝑐𝑐
)

11 quantityScore←Max(PID.List<quan>)
12 score← ((𝐴*accessScore) * (𝐵 * positionScore) * (Γ*

quantityScore))
13 unSortedSPIDs← unSortedSPIDs + (PID, score)
14 SPIDs← unSortedSPIDs.sortBy(score)
15 return SPIDs

B Additional Details On PGPP
Predicate-Guided Partition Prioritization (PGPP) directs the order
of partition loading based on user-defined query predicates such
as min(simSeq), max(simSeq), or median(simSeq). This appen-
dix presents the detailed pseudocode showing how PGPP selects
a constrained subset of partitions according to the predicate type
and loading threshold (e.g., 20%, 40%).
PGPP operates over a list of ranked segment timestamps (rsts)
and selects which partitions to load using the predicate type (min,
max, or median), the loading threshold, and a system-defined
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Algorithm 3: PGPP Partition Selection Strategy
Input :rsts: Ranked time segment indices

measurement: Predicate type (min, max, median)
threshold: Fraction of segments to load (e.g., 0.2)
cutPoints: Array of index cut points
minPartitions: Minimum number of partitions
lenOfTS: Length of each time series segment
overlapDataPoints: Overlap length between segments

Output :results: Set of selected partition IDs
1 results← empty set
2 partitionsCount← ceil(length(rsts) × threshold)
3 if partitionsCount < minPartitions then
4 partitionsCount← minPartitions

5 switch (measurement) do
6 max: offset← 0
7 min: offset← length(rsts) − partitionsCount

8 median: offset← ceil(length(rsts) / 2) − ceil(partitionsCount /
2)

9 for 𝑖 ← 0 to partitionsCount − 1 do
10 rst← rsts[i + offset]
11 l← rst − lenOfTS + overlapDataPoints
12 if l < 0 then
13 l← 0

14 r← rst + lenOfTS − overlapDataPoints

15 leftP← index of first cut point > l

16 rightP← index of first cut point > r

17 if leftP < 0 then
18 leftP← length(cutPoints)

19 if rightP < 0 then
20 rightP← length(cutPoints)

21 Add all partitions in [leftP, rightP] to results

22 return results

minimum number of partitions to ensure reliability. These selec-
tions are then mapped to partition identifiers using the cut-point
boundaries of the system index.

Reconstructing simSeq After PGPP Filtering
PGPP aggressively reduces the number of initially loaded par-
titions to lower I/O cost. Consequently, similarity progression
sequences (simSeq) for candidate TSCs are initially constructed
using only a subset of the full data.

To avoid any loss of accuracy due to partial data, PGPP per-
forms a second-stage refinement step for each candidate that
passes the initial filter:

(1) The system fetches the full TSC record either from a local
cache or a backend database.

(2) It then reconstructs the complete simSeq by comparing
all segments of the full candidate TSC against the query
TSC.

(3) The full sequence is re-evaluated against the user-specified
predicate (e.g., min(simSeq) < 0.1).

This deferred full-resolution validation ensures that PGPP
maintains high recall while significantly reducing overall com-
pute and I/O costs. Furthermore, it preserves compatibility with
both strict and statistical convergence modes, making PGPP ro-
bust to practical deployment settings.
This two-phase design enables PGPP to deliver a balanced strat-
egy that achieves fast filtering via partial loads, and accurate
results via selective recomputation of similarity progression on
qualified candidates.

C Additional Ablation Studies

• Study on the data balancing across the index partitions. In
this experiment, we examine the distribution of time series (TS)
objects across the index partitions. To determine the partitioning
boundaries at the first level of the index (see Section 5.1), we
employ a sampling technique that estimates the distribution of
the TS objects’ start times. The objective is to produce partitions
of approximately equal size, which is critical for efficient parallel
processing.

Our evaluation is conducted on two dataset scales−1M and
10M TSCs−from the RandomWalk dataset. Table 3 reports the
statistics of partition sizes, measured by the number of TS objects.
The results show that the partitions are well balanced, exhibiting
both low standard deviation (the Std column) and a small coeffi-
cient of variation, which represents the standard deviation as a
percentage of the mean.

Table 3: Statistics on the Index Partition Sizes
Dataset Min Max Avg Std Coeff. of Variation

1M TSC 29,560 33,463 31,411.48 623.6 2.0%
(#TS: 14,498,825)

10M TSC 27,260 33,442 30,981.88 1125.88 3.6%
(#TS: 145,006,966)

• Study on the effectiveness of the index’s second level. In

this experiment, we evaluate the performance benefits of employ-
ing the second-level index (the content-based index in Figure 5)
relative to the first-level index. In the latter configuration, the TS
objects within each partition are maintained without indexing
and are scanned sequentially at query time.

The evaluation is conducted on four dataset sizes derived from
the RandomWalk dataset, as summarized in Table 4. All experi-
mental parameters are set according to the default configuration
described in Section 6.1.3. The table reports the execution time (in
minutes) for a single query under both indexing strategies. The
results clearly demonstrate the importance of the second-level
index, which yields a query execution speedup of approximately
50% to 60%.

Table 4: Single Query Execution Time (in mins) under Two
Index Configurations.

Dataset Level 1 Only Level 1 + Level 2 Speedup %

5M TSC 11 5.1 54%
10M TSC 13.3 5.8 56%
15M TSC 17.3 6.9 60%
20M TSC 22.7 9.4 59%

• Study on the impact of batch size on batch process-
ing. In batch processing, the size of the batch (the number of
query objects) is a critical parameter. In Fig. 10 (a), we study the
effect of varying the batch size on the query’s response time.
As illustrated, the larger the batch size, the smaller the average
query response time (the y axis) for both ShareBQ and FullScan.
Whereas, on the recall side, varying the batch size has no impact
on the accuracy as expected (Fig. 10 (b)). The main reason the av-
erage query response time goes down is that the execution time
is dominated by the I/O operations (i.e., loading the partitions
into the workers’ memory). This anticipated observation served
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Figure 10: Evaluating Batch Processing Strategies.

as the primary motivation for the design of the RankBQ Strategy
presented in Section 5.3 and Appendix A. In the following, we
present experimental evaluation on the RankBQ Strategy.

• Study on the RankBQ Strategy on batch processing. As
presented in Section 5.3 and Appendix A, the core idea behind
the RankBQ Strategy is to skip loading the data partitions whose
contributions to the queries’ answers are expected to be very
limited. And thus, RankBQ provides a tradeoff between speeding
up queries’ response time, and hopefully, marginal and low drop
in accuracy.

Recall that RankBQ relies on estimating individual scores
(namely, accessScore, quantityScore, and positionScore) to each
partition. And then, aggregate these scores to a finalScore as ex-
plained in Appendix A (Algorithms 1 and 2). Before generating
the batch of the queries (see Section 6.1.2), we start by setting
the distribution of the number of TS and the gap lengths to expo-
nential. This guarantees that there will be definitely some shared
candidate partitions between the queries. It thus guarantees that
there is a room for optimization so we could test our algorithms.

We generate a batch of 1000 queries and set executors to 56.
By applying Algorithm 1, we find that the number of partitions
is 392. Thus, we have 7 execution cycles (Eq. 12). In Fig. 10 (c) &
(d), we show the effect of each score on the query response time
and recall when performing all cycles without ignoring any cycle
as in ShareBQ (i.e., 7 cycles) versus ignoring up to 60% of cycles
(i.e., 4 cycles). As expected, the less number of execution cycles,
the faster the query response time and the lower the recall for
all scoring options. The aggregated finalScore achieves the best
recall among the other alternatives (Fig. 10 (d)). Also, accessScore
is the second-best in recall, however, the slowest because the
ignored partitions have the lowest computation costs as they
contain the fewest number of candidate matches. The position
score metric is the fastest, as it mitigates the costs of the MK-test.
The users can select which score to use and/or to weigh them to
balance between the gain in time and the loss in recall of these
scores as illustrated in Algorithm 2 Line 12.

D Index Maintenance
Maintaining the index structure incrementally under data ap-
pends— which is the dominant operation in time series appli-
cations compared to deletions— is relatively straightforward.
Algorithm 4 outlines the key steps required to preserve balanced
partitions following an update. Specifically, after inserting the
new TSC dataset𝐷 into the current index to obtain 𝐼𝑁𝑋𝑛𝑒𝑤 (Line

1), the index statistics are updated (Line 2). Next, any partition 𝑃

that exceeds the computed average size by more than 𝛽% is split
into two adjacent partitions (Lines 4–8). Conversely, if a partition
𝑃 falls below the computed average size by more than 𝛽%, the
algorithm first attempts to merge 𝑃 with a sibling partition, when
possible (Lines 12–14). If merging is not feasible (as it will be
over-sized), then 𝑃 and its sibling are combined and then re-split
into two balanced partitions (Line 16).

E Integration with Time Series Management
Systems

To demonstrate the feasibility of integrating our convergence
query engine with existing time series management systems,
we developed a plugin for Apache IoTDB. The plugin enables
direct invocation of indexing and convergence query operations
through extended SQL commands in IoTDB.

Integration Workflow. The integration process consists of two
main phases:

(1) TSC Conversion and Indexing. Raw time series data
stored in IoTDB is first transformed into Time Series Com-
pound (TSC) format. This conversion is triggered by a
custom SQL command, and the resulting TSC dataset is
then indexed using our Spark-based backend system.

(2) Convergence Query Execution. Once the index is built,
users can run convergence queries directly from IoTDB
using another extended SQL command. The plugin passes
the query parameters to our system, which performs query
evaluation. Due to limitations in IoTDB’s output handling,
the query results are written to HDFS instead of being
returned inline.

Example Commands. We implemented two SQL-style exten-
sions in the plugin:
• SELECT tsc_create_index(...) – Extracts and trans-

forms TS data into TSCs, then builds the index.
Example usage inside IoTDB:

SELECT tsc_create_index(
*,
'scope'='root.sg1.**',
'hdfs_uri'='hdfs://.../',
'spark_submit'='/path/to/spark-submit',
'tsc_jar'='/path/to/cq.jar',
'index_conf'='/path/to/index.conf'

) FROM root.sg1.**

• SELECT tsc_convergence(...) – Executes a conver-
gence query using the prebuilt index.
Example usage inside IoTDB:

SELECT tsc_convergence(
sensor1,
'scope'='root.sg1.device1.sensor1',
'query_conf'='/path/to/query.conf',
'dataset'='<dataset_id>'

) FROM root.sg1.device1

Plugin Repository. The source code for the IoTDB integration
plugin, along with usage examples and documentation, is publicly
available at: https://github.com/kaluaim/tsc-cq-iotdb-plugin

This prototype demonstrates that convergence queries can be
seamlessly embedded within existing TSDB ecosystems, resulting
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Algorithm4: Incremental Index Update for Data Append
Input :D: New TSC dataset to append

INX𝑜𝑙𝑑 : Current index structure
Stats𝑜𝑙𝑑 : {TSC𝑐𝑛𝑡 , TS𝑐𝑛𝑡 , PartAvg, PartSizes[] }
𝛽 : Deviation threshold from avg., e.g., 60% (triggers

re-structuring)
Output :INX𝑛𝑒𝑤 : New index structure (after D’s append)

Stats𝑛𝑒𝑤 : {TSC𝑐𝑛𝑡 , TS𝑐𝑛𝑡 , PartAvg, PartSizes[] }
1 INX𝑛𝑒𝑤 ← insert D into INX𝑜𝑙𝑑 using default mechanism
2 Stats𝑛𝑒𝑤 ← update Stats𝑜𝑙𝑑 during D insertion

3 for each partition P containing at least 𝛽 above Stats𝑛𝑒𝑤 .PartAvg do
4 // ***Trigger Splitting***
5 Sample from P, learn start-time dist., and select a mid-way splitting

point.
6 Update INX𝑛𝑒𝑤 ← split TS objects in P over new partitions P1 & P2
7 Update INX𝑛𝑒𝑤 ← re-construct Level 2 index for P1 & P2
8 Update Stats𝑛𝑒𝑤 .PartSizes[]

9 for each partition P containing less than 1 − 𝛽 below Stats𝑛𝑒𝑤 .PartAvg do
10 // ***Trigger Merging***
11 P∗ ← Select the left or right sibling partition having lower capacity
12 if capacity (P ∪ P∗) does not exceed 𝛽 above Stats𝑛𝑒𝑤 .PartAvg then
13 Update INX𝑛𝑒𝑤 ← insert P’s objects into P∗ and merge intervals
14 Update Stats𝑛𝑒𝑤 .PartSizes[]

15 else
16 Trigger the splitting steps on (P ∪ P∗) (Lines 4-8)

17 return INX𝑛𝑒𝑤 & Stats𝑛𝑒𝑤

in minimal overhead and enabling the broader applicability of
our framework.
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