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Abstract
Modern key-value stores rely on LSM-tree architectures for high
write throughput, but suffer from complex read patterns that
challenge traditional caching strategies. Existing cache designs,
such as block cache and range cache, perform well under certain
workloads but sub-optimal under others, and static configura-
tions often fail to adapt to dynamic access patterns. We present
AdCache, a reinforcement learning-assisted caching system that
dynamically adjusts cache partitioning and admission policies
based on workload characteristics. AdCache employs an actor-
critic model to learn the best memory allocation between block
cache and range cache, and incorporates lightweight admission
control for both point lookups and range scans. It selectively
caches frequent keys and only the most beneficial portions of
scans, thereby avoiding unnecessary evictions and improving
memory efficiency. Our implementation of AdCache in RocksDB
achieves up to 14% higher cache hit rate and reduces SST reads
by up to 25% compared to the default block cache.
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1 Introduction
Key-value stores are an important part of many modern systems,
supporting applications such as real-time analytics, recommen-
dation engines, content delivery, and cloud services [7, 10]. To
handle high write and read demands, many key-value stores, like
RocksDB [17], LevelDB [20], and Cassandra [16], use a storage
method called the Log-Structured Merge (LSM) tree. LSM trees
help improve write performance by collecting updates in memory
and then writing them to disk in batches as sorted, immutable
files across several levels [35].

Caching is a foundational technique used across nearly all lay-
ers of modern computing infrastructure. It plays a critical role in
improving latency, reducing backend pressure, and saving com-
putation or I/O cost by storing frequently accessed data closer
to the application. From CPU caches and operating system page
caches to content delivery networks (CDNs) and database buffer
pools, caching is deeply integrated into hardware and software
systems. However, most of these caching systems are designed
primarily for workloads composed of point queries, where each
request accesses a single object, key, or memory block. In con-
trast, key-value stores built on Log-Structured Merge (LSM) trees
frequently serve not only point lookups but also range scan
queries. These range queries access sequences of adjacent key-
value pairs, often touching large portions of the dataset in a
short time window. Meanwhile, compaction operations in LSM
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Figure 1: Performance trade-off across different workload
patterns under existing LSM-tree caching strategies.

trees periodically rewrite and reorganize the data layout, invali-
dating cached blocks associated with outdated files. These two
characteristics, large-footprint queries and structural changes,
create caching challenges that differ significantly from traditional
systems designed primarily for isolated point accesses.
Challenges and limitations of existing caching strategies.
The structural and workload differences between LSM-tree-based
key-value stores and other systems present unique challenges
for cache management. Two types of caching stratigies have
been proposed for LSM-tree systems. Traditional block-based
caching strategies, similar to page-based caching in non-LSM
systems, are used in LSM-tree systems like RocksDB to store
data blocks fetched from disk and are highly effective for point
lookups. However, their performance degrades under frequent
compactions, which rewrite files and invalidate cached blocks
identified by file offset. To mitigate this, Leaper [47] introduces
data block prefetching after compactions to reduce the impact of
large-scale cache invalidation.Result-based caching, like Range
Cache [43], on the other hand, abandons the conventional block
structure and caches query results as sorted key-value sequences.
While this result-based caching design is compaction-resilient
and well-suited for scan-heavy workloads, it tends to achieve
lower hit rates than block cache in workloads with few updates.
This is mainly due to the structural mismatch between the cache
layout and the block-based storage organization on disk, which
can reduce reuse efficiency for point queries and short scans.
As depicted in Figure 1, neither block-based nor result-based
caching strategies can consistently perform well across all work-
load scenarios. Each is suited to a specific access pattern, and
their strengths do not generalize. Consequently, a naive combina-
tion of the two, such as statically partitioning memory between
block cache and range cache, fails to adapt to dynamic workloads.
The optimal cache ratio in one phase, e.g., a scan-heavy work-
load, may become suboptimal in another, such as a point-heavy
phase. Without the ability to reallocate memory dynamically,
static designs suffer from either overflow or underutilization of
fixed-size cache components, leading to degraded performance
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and conflicting eviction behavior. Moreover, such designs lack the
ability to distinguish high-value accesses from low-value noise,
the infrequent queries that are unlikely to be reused, especially
the long range scans. Admitting noisy items into the cache can
evict more valuable entries, compounding performance issues
under dynamic workloads. To support the wide variety of work-
load compositions encountered in real-world systems, a more
flexible and adaptive caching architecture is required, one that
can dynamically reconfigure its internal structure and selectively
filter entries based on observed query behavior and access trends.
The Research Question: How to enable the cache compo-
nents of LSM-tree systems with compaction-resistance,
noise-resistance, and workload-adaptivity? Specifically, the
cache should maintain high effectiveness even in the presence of
frequent compactions, which are inherent to LSM-tree designs,
and should avoid admitting low-frequency or large-size noise
accesses that waste limited cache space. This includes selectively
admitting scan results without over-committing memory to long,
infrequent scans, and filtering point lookups that are unlikely
to be reused. Achieving this balance requires a dynamic strat-
egy that can adapt to workload shifts and distinguish between
valuable and transient access patterns in real time.
Design 1: Adaptive caching framework for mixed cache
data structures. The first key contribution of our work is a uni-
fied and adaptive caching framework that bridges two previously
separate paradigms: block caching and query-result caching. In
LSM-tree-based key-value stores, these two caching strategies
have previously been treated as independent components, often
with fixed memory partitions and no coordination. In contrast,
our system dynamically adjusts the memory allocation between
block cache and range cache in response to real-time workload
characteristics. This allows the system to exploit the strengths of
both approaches: the fine-grained, compaction-resilient behavior
of result caching and the spatial efficiency of block caching for
lookup-heavy workloads. By integrating both cache types under
a single adaptive controller, our design eliminates the need for
manual tuning and static cache boundaries, enabling more ef-
fective utilization of limited memory across diverse and shifting
workloads.
Design 2: Selective admission control. In addition to adaptive
cache partitioning, our system introduces fine-grained admission
control mechanisms tailored to both point lookups and range
scans. For point lookups, we implement a lightweight, frequency-
based admission policy that filters out low-reuse keys, ensuring
that only frequent items are cached. This prevents cache pollu-
tion from one-off or noisy accesses. For range scans, rather than
following the traditional all-or-nothing approach, our method
learns to cache only the most useful subset of scan results. This
selective behavior is particularly important in LSM-tree environ-
ments, where scan operations can touch large key ranges and
easily exhaust the cache if not controlled. By applying admission
control to both access types, our system reduces unnecessary
evictions, improves memory efficiency, and adapts to a wide
variety of workload patterns.
Design 3: Reinforcement learning-based adaptive controller.
At the core of our system is a reinforcement learning (RL) con-
troller that jointly manages both cache partitioning and admis-
sion control. Instead of relying on manually tuned heuristics or
static thresholds, the RL agent continuously observes workload
patterns—such as access type ratios, cache hit statistics, and scan
lengths—and outputs decisions that govern the block-to-range
memory ratio as well as admission thresholds for point and scan
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Figure 2: The structure of LSM-tree key-value stores.

queries. This unified control loop enables the system to adapt in
real time to shifting workloads without requiring prior profiling
or expert knowledge. Compared to rule-based or analytical meth-
ods, which often rely on strong assumptions or costly runtime
statistics, RL offers a more scalable and flexible alternative. It can
implicitly capture complex relationships between workload fea-
tures and performance outcomes, learning effective policies from
observed behavior. The decision space is continuous and low-
dimensional, making the controller lightweight enough for online
deployment while still expressive enough to support diverse and
dynamic caching strategies. By optimizing for long-term hit rate,
the RL controller ensures robust performance across heteroge-
neous and evolving workloads.
Contributions. In summary, we make the following contribu-
tions.
• This paper explores reinforcement learning-based adap-

tive caching tailored specifically for LSM-tree-based key-
value stores. We present a hybrid caching system that
dynamically manages both block and range cache under
mixed workloads with the following techniques: (1) We
propose a unified, workload-aware cache architecture that
integrates block-based and result-based caching under a
single adaptive framework, enabling flexible memory par-
titioning guided by workload characteristics. (2) We design
fine-grained admission control strategies for both point
lookups and range scans. These mechanisms filter low-
reuse items and selectively admit high-value data into the
cache, significantly reducing pollution from infrequent
queries. (3) We introduce a lightweight actor-critic rein-
forcement learning agent that operates online and adjusts
cache partition ratios and admission thresholds in real
time, guided by a I/O-based reward model tailored to LSM-
tree workloads.
• We implement AdCache (Adaptive Cache Management

with Admission Control), a reinforcement learning (RL)
caching system for LSM-tree storage engines on the top
of RocksDB. AdCache achieves up to 14% higher cache
hit rate and reduces SST reads by up to 25% compared
to the default block cache in RocksDB. Under dynamic
workloads, AdCache improves the average throughput by
12%.

2 Background
2.1 LSM Tree
Log-Structured Merge (LSM) trees are a write-optimized data
structure used in key-value stores like RocksDB, LevelDB, and
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Cassandra. The system overview of a LSM-based Key-Value Store
is shown in Figure 2. They buffer writes in memory and flush
them to disk in batches, offering better write throughput than
traditional B-tree-based systems [27, 36].

An LSM-tree organizes data across multiple levels of sorted
files, also referred to as sorted runs [34, 38]. In RocksDB, each
level from Level-1 onward contains a single sorted run, while
Level-0 may contain multiple overlapping sorted runs to accom-
modate higher write throughput. New writes go into a memory
table (MemTable), which is later flushed to disk as immutable
sorted files (SSTables, SSTs). These files are periodically merged
by a process called compaction to remove obsolete data and main-
tain order.
Updates and Compactions. In LSM-tree systems, updates, in-
cluding inserts and overwrites, are first written to an in-memory
structure (MemTable) and then flushed to disk as immutable
sorted string tables (SSTables). Over time, these files are peri-
odically merged and reorganized through a process called com-
paction. Compactions eliminate obsolete entries, reclaim space,
and maintain sorted order across levels, but also change the phys-
ical layout of data on disk. As a result, compactions can invalidate
cache entries that are tied to specific file offsets, posing challenges
for conventional block caching.
Point Lookups. A point lookup retrieves the value for a single
key. The query is first checked against the MemTable and any
unflushed data in the Write-ahead Log (WAL). If not found, the
system searches through SSTables from newest to oldest, using
Bloom filters and index blocks to quickly skip irrelevant files
and blocks. Once the key is located, its containing data block
is loaded and potentially cached. In read-intensive workloads,
point lookups benefit significantly from effective caching.
Range Lookups. Range lookups, also called scans, retrieve all
key-value pairs within a specified key range. These queries may
span multiple SSTables and levels, requiring a merge of sorted
streams. Even short range scans can touch many blocks, es-
pecially when data is fragmented across levels. Because each
SSTable must be sequentially traversed for matching keys, range
scans tend to generate more block reads and exhibit different
caching behaviors compared to point lookups. Without admission
control, large scans can quickly evict useful cached entries.

2.2 Caching Strategies in LSM-Tree Systems
Caching strategies in LSM-tree-based key-value stores (LSM-
KVS) can generally be divided into two classes: block-based
caching, which caches physical data blocks as they appear on
disk, and result-based caching, which stores the results of queries
directly as key-value pairs in memory. These two approaches re-
flect different trade-offs in terms of cache granularity, compaction
sensitivity, and suitability for various access patterns.
Block-Based Caching in LSM-KVS. Since data in LSM-trees is
stored on disk in the form of fixed-size data blocks, block-based
caching is the most common and straightforward approach. Sys-
tems like RocksDB and LevelDB implement a Block Cache that
stores recently accessed data blocks in memory, typically man-
aged with LRU or CLOCK-based eviction policies. Block caching
is efficient for point lookups and short-range scans, particularly
when key locality is strong. However, one major drawback of
this approach is its sensitivity to compaction. When compaction
rewrites SSTables, the cached blocks—identified by file and off-
set—become invalid, even if the logical data remains unchanged.
This leads to abrupt drops in hit rate and wasted memory. To
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Figure 3: Structure of result-based caching strategy Range
Cache. A point lookup results in a single key being cached,
and a range lookup results in a range of adjacent keys being
cached.

alleviate this, Leaper [47] introduces post-compaction block
prefetching to repopulate the cache. LSbM-tree [40] offers a
buffer cache on disk for compaction solely. However, these meth-
ods still inherits the limitations of physical block granularity and
compaction invalidation.
Result-Based Caching in LSM-KVS. To mitigate cache invali-
dation caused by compactions, result-based caching was intro-
duced as an alternative to traditional block-based approaches.
Instead of storing entire data blocks, this strategy caches query
results directly as key-value pairs, which are decoupled from
the physical SSTable layout and thus unaffected by compaction.
RocksDB implements a simple form of result-based caching
through the Row Cache, which stores frequently accessed key-
value pairs without retaining the full data block in memory.
SpotKV [31] takes the I/O cost of point lookups into considera-
tion. AC-Key [45] extends this idea by integrating three types
of caches: a key-value cache (KV Cache), a key-pointer cache
(KP Cache), and a block cache. Both KV and KP caches are im-
mune to compactions but are limited to serving point lookups.
AC-Key further introduces a hierarchical caching structure that
dynamically adjusts the memory allocation across these three
cache types using the Adaptive Replacement Cache (ARC) policy.
Range Cache [43] generalizes this idea to support range queries.
It caches the results of both point and range lookups in a sorted
structure (e.g., a skip list), as illustrated in Figure 3. Because
range cache entries are based on logical key order rather than
file layout, they remain valid across compactions. This makes
result-based caching particularly effective in update-heavy work-
loads. However, in read-oriented workloads with stable data and
fewer compactions, range cache often underperforms compared
to block-based strategies. This is primarily due to the mismatch
between the cache’s logical layout and the underlying block-
based storage structure, which can reduce hit locality, increase
lookup cost and extra I/Os for long scans.

3 AdCache: Reinforcement Learning-Driven
Cache Partitioning and Admission

This section presents the design of our reinforcement learning-
assisted caching framework for LSM-tree-based key-value stores.
Our system addresses two key challenges: how to efficiently
cache query results, and how to dynamically balance the mem-
ory allocation between different cache types based on workload
characteristics. The entire framework is driven by an online re-
inforcement learning agent that adapts cache behavior in real
time.
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Figure 4: Components and mechanisms of AdCache.

3.1 Overview of AdCache
Figure 4 shows the high-level architecture of our proposed re-
inforcement learning-assisted cache management system. The
system consists of two major parts: the LSM-tree system and the
Background Tuning Module.

The LSM-tree system handles incoming application requests,
and forward it to the Dynamic Cache Component. Dynamic
Cache Component consists of a block cache and a range cache
with a dynamic memory boundary adjusted in runtime. The
Background Tuning Module continuously monitors system per-
formance. A Stats Collector gathers workload statistics and
block I/O measurements. The Policy Decision Controller, im-
plemented using an actor-critic reinforcement learning model,
adjusts cache parameters based on the observed state and reward
signals. The model outputs two main decisions: (1) the memory
partitioning between block cache and range cache, and (2) the ad-
mission control parameters for query results. The workload logs
can be collected for pretraining to enhance system scalability,
learning stability and avoid further online learning costs.

Importantly, all model inference and training occur asyn-
chronously in the background. Cache parameter updates are
decoupled from the main query serving path, ensuring that rein-
forcement learning computations introduce no noticeable over-
head to normal database operations. This overall architecture
allows the system to adapt its caching strategy dynamically to
changing workloads, improving cache hit rates and system effi-
ciency without manual tuning.

3.2 Cache Interaction Workflow
To better illustrate how our caching framework integrates into
the query processing and data access pipeline, we separate the
system behavior into two conceptual workflows: the query han-
dling path and the cache fill path, as shown in Figure 5.
Query Handling Path. When a query (either a point lookup or
a range scan) arrives, it first checks the range cache. If the query
result is found, it is returned immediately without further I/O.
Otherwise, the system proceeds to probe the MemTable, which
contains recently written data. If still unresolved, the system
searches for the corresponding data blocks in the block cache.
On a block cache miss, the query ultimately triggers a disk read.
This top-down process prioritizes memory-resident data and
minimizes disk access whenever possible.
Cache Fill Path. When data is retrieved from disk due to a cache
miss, it flows through the cache fill path. The accessed blocks are
inserted into the block cache, enabling potential reuse in future
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Figure 5: Workflow of queries in AdCache.

queries. Additionally, depending on the workload and learned
policy, a portion of the query result may also be admitted into the
range cache. This bottom-up path captures how queries populate
the cache and how data flows into memory over time.

3.3 Adaptive Cache Partitioning
Our system employs two distinct types of caches: the block
cache and the range cache. Each cache targets different access
patterns and exhibits different sensitivities to compaction and
workload characteristics.

By combining both cache types and adjusting their relative
sizes dynamically, our system can adapt to a wide variety of
workloads. For example, in a point-lookup-oriented workload
mixed with updates and scans, maintaining a large range cache
with a small block cache can maximize memory reuse and hit
rate. Even in this setting, having a small block cache remains
important: when a range query is not fully cached in the range
cache, the system must scan the underlying LSM-tree. Since LSM-
trees organize data in levels with exponentially increasing size,
blocks from lower levels are accessed more frequently during
scans. A small block cache can effectively capture these hot blocks
from lower levels, significantly improving scan performance and
overall cache hit rate. This phenomenon has also been observed
by [43].

To manage the memory allocation between block cache and
range cache, we introduce a dynamic cache boundary. The bound-
ary determines how much memory is allocated to each cache
type at runtime. Rather than using a static partition, the bound-
ary is continuously adjusted by the RL agent based on real-time
workload statistics, such as point-to-scan ratios, cache hit/miss
rates, scan lengths, and the observed impact of compactions.

In workloads with little update activity and stable access pat-
terns, the RL agent shifts the boundary toward a larger block
cache. In workloads with frequent compactions operations, it
reallocates more memory to the range cache while preserving
a small but effective block cache for important blocks at lower
levels and other hot data blocks. This adaptive partitioning en-
sures that memory is always focused on the cache structure that
provides the highest benefit for the current workload.

3.4 Admission Control for Lookup Queries
Admission control was originally introduced to prevent cache
pollution, where infrequently accessed items evict more valuable
data. Early cache systems admitted all misses by default, but
research such as TinyLFU [15] demonstrated that this can signif-
icantly reduce cache efficiency in point lookup-only workloads
with skewed or bursty access patterns. TinyLFU introduced a
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lightweight frequency-based admission policy, showing that se-
lectively admitting only high-frequency items improves hit rate
and overall performance. In LSM-tree-based systems, this issue
is further amplified: frequent compactions, writes, and mixed
workloads cause fluctuations in access locality, making naive ad-
mission highly inefficient. Caching every key after a miss, even
once, can lead to evicting hot items that would have otherwise
served multiple accesses. Therefore, selective admission is espe-
cially beneficial in this context.
Frequency-Based Admission for Point Lookups. Our system
integrates a frequency-aware admission policy specifically for
point lookups. When a miss occurs, we increment the frequency
counter of the key in a compact data structure (e.g., Count-Min
Sketch). Instead of immediately admitting the key into the cache,
we calculate its normalized importance by comparing its fre-
quency to the global sum of frequencies across missed keys. A
key is only admitted if this normalized score exceeds a tunable
threshold. To ensure adaptability across workloads, the admission
threshold is not fixed but dynamically adjusted by our reinforce-
ment learning (RL) agent. A static threshold can be either too
strict or too permissive depending on the workload character-
istics, particularly the access skew, query type, and cache size.
For instance, consider two workloads following Zipfian distribu-
tions with different skewness values: one highly skewed and one
closer to uniform. To achieve the best cache utilization for the
same cache size, we would need to admit only the top-N hottest
keys. However, the frequency ratios corresponding to those top-
N keys would differ significantly between the two workloads due
to their distinct distributions. This means a fixed threshold might
over-admit in one case and under-admit in another. In theory,
if we had precise knowledge of the key distribution, we could
analytically determine the ideal admission threshold. But collect-
ing and maintaining accurate distributional statistics in real-time
incurs significant computational overhead. Instead, our design
embraces a lightweight, learning-based approach that adjusts the
admission threshold on the fly. This follows a similar philosophy
seen in recent learning-based cache eviction strategies [41, 46],
where models adapt decisions based on observed access patterns
without relying on manually defined heuristics. Our RL module
effectively learns the appropriate threshold under different con-
ditions, enabling robust, low-cost, and high-performance cache
management across dynamic and heterogeneous workloads. To
keep frequency counts bounded and responsive to changing pat-
terns, we adopt a decay mechanism. Once a key’s count reaches
a saturation point (e.g., 8), all frequencies and the global sum are
halved. This ensures that only consistently hot keys are retained
while old or bursty keys naturally fade from the cache decision
process.

Overall, this lightweight admission scheme acts as a first line
of defense against cache pollution. By combining principled fre-
quency tracking with adaptive thresholds, we ensure efficient
use of cache space even in highly dynamic, compaction-prone
environments.
Partial Admission for Range Lookups. Range lookups are a
frequent access pattern in key-value store workloads, especially
in analytical and batched queries. However, caching the full result
of a scan can severely degrade cache performance. Scans typically
touch a large sequence of keys in a short time window, and
admitting all of them into the cache can quickly evict high-value
entries, particularly those serving point lookups.

This issue becomes even more problematic under mixed work-
loads. As shown in Figure 6, a short scan of length 16 may evict
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around 8 data blocks from the block cache, which is more than
the ideal 4 blocks (assuming 4 entries per block). This is because
the scanned key range overlaps with each sorted run in the LSM-
tree, and each run contributes at least one accessed block. For
the range cache, a long scan of length 64 can evict 64 key-value
entries. If these entries were previously serving point lookups,
their eviction would result in up to 64 additional I/O operations.
Such scan-related evictions reduce the overall hit rate by dis-
placing frequently accessed items with low-reuse scan results.
Since most scan keys are not accessed again, this leads to wasted
cache space and more future misses. Consequently, the cache be-
comes less effective at absorbing point lookup traffic, degrading
performance system-wide.

To address this, we propose a scan-aware partial caching policy
that selectively caches only a portion of each scan, based on two
adaptive parameters: 𝑎 and 𝑏. These parameters are learned and
adjusted by the RL agent in response to workload behavior. If
a scan’s length 𝑙 is less than a threshold 𝑎, we admit the entire
scan into the cache. The rationale is that short scans are unlikely
to harm cache efficiency and may benefit from full reuse. If the
scan length 𝑙 > 𝑎, we compute the number of items to cache as
𝑏 · (𝑙 − 𝑎). The parameter 𝑏 controls the aggressiveness of partial
caching, effectively determining how many repeated accesses are
needed before the full scan range becomes cached. Overlapping
scans naturally accelerate this process. By adjusting 𝑎 and 𝑏, the
system learns to balance between preserving memory for point
lookups and accelerating hot scan ranges. The default value of 𝑎 is
initialized to match the average length of short scans observed in
the workload. This strategy ensures that frequent or overlapping
scans gradually populate the cache without overwhelming it,
while infrequent or long scans have a limited and controlled
memory footprint. Note that this strategy can also be applied
to the block cache, where the number of blocks instead of the
number of keys is controlled.

3.5 Reinforcement Learning-Based Control
At the core of our system is a lightweight reinforcement learning
(RL) agent responsible for dynamically adjusting cache manage-
ment parameters. We choose actor-critic due to its ability to
efficiently handle continuous control, such as tuning cache ratios
and thresholds, while maintaining low overhead and stable learn-
ing—making it well-suited for online deployment in LSM-tree

135



EDBT ’26, 24-27 March 2026, Tampere (Finland) Ye et al.

systems [11, 21, 28]. The actor-critic architecture learns to opti-
mize two key decisions: the allocation ratio between different
cache structures, and the admission thresholds for point lookups
and range scans. These parameters are difficult to set statically,
as optimal values vary significantly with workload composition.
For instance, a cache ratio suitable for read-heavy workloads may
perform poorly under write-intensive or scan-heavy patterns.
Similarly, fixed admission thresholds can either be too strict, miss-
ing frequent keys, or too lenient, admitting noise that pollutes
the cache.

To achieve online adjustment of cache parameters, several
alternative strategies exist, but each comes with limitations in
the context of LSM-tree key-value stores. Rule-based approaches
and manually tuned heuristics depend on prior knowledge of
workload characteristics, which is often unavailable or unreliable
in real-world deployments. Analytical models, though effective
in controlled environments, tend to break down under the com-
plex and evolving workload patterns typical in LSM-KVS, such
as shifting ratios of reads, writes, and scans. Additionally, real-
time tracking of workload distributions or computing optimal
parameters often introduces significant computational overhead.

In contrast, Reinforcement Learning (RL) offers an adaptive
and generalizable solution by learning directly from runtime
feedback such as cache hit rates. (1) The relationship between
cache hit rate and control parameters (e.g., admission thresholds
or cache ratios) is complex and non-linear, making it difficult to
model analytically or tune manually. (2) RL can implicitly cap-
ture key access distributions and workload dynamics without
explicitly collecting or maintaining detailed workload statistics,
reducing overhead. (3) RL requires minimal prior knowledge
and supports continuous online adaptation, enabling the sys-
tem to self-optimize in real time and maintain high performance
under diverse and evolving workloads. Model Design. The ac-
tor network receives the current system state as input, which
includes cache statistics (e.g., occupancy, hit/miss ratios) and
workload patterns (e.g., access frequencies, scan-to-point ratios,
and scan length distributions). It outputs cache control actions,
specifically: (1) the memory partitioning between block cache
and range cache, and (2) the caching policy parameters for partial
scan admission. The critic network estimates the value of the
current policy to guide learning. Training is performed online
with optional offline pretraining. The reward signal is based on
the cache hit rate, but because the range cache stores query re-
sults rather than physical data blocks, conventional cache hit
measurements are not directly applicable. Instead, we estimate
the total number of block I/Os that would occur without any
caching and derive a normalized reward.
Reward Calculation. Let the notations be defined as in Table 1.
For block cache, the hit rate can be conveniently calculated by

ℎ = 1 − IOmiss

IO
,

where IO represents the total number of data block I/Os with-
out caching. However, in query-result-caching systems, IO is not
directly observable. To address this, we estimate the total number
of block I/Os without caching, denoted as IOestimate, given by

IOestimate = 𝑝 × IOpoint + 𝑠 × IOscan,

where the total number of I/Os is computed as the sum of I/Os
caused by point lookups and those caused by range scans.

For point lookups, bloom filters are typically deployed in LSM-
tree systems to reduce the number of disk accesses during the

Symbol Definition

𝑝 Number of point lookup queries
𝑠 Number of scan queries
𝑙 Average scan length (number of keys)
𝐵 Number of entries per block
𝐿 Number of levels in the LSM-tree
𝑟 total number of sorted runs in the LSM-tree
𝑟0 Average number of sorted runs in Level 0
𝑟max
0 Maximum number of sorted runs in Level 0

IO Total number of block I/Os without caching
IOestimate Estimated block I/Os without caching
IOmiss Actual measured block I/Os after cache misses
IOpoint Average I/Os caused by a point lookup operation
IOscan Average I/Os caused by a range lookup operation
ℎ Cache hit rate
ℎestimate Estimated cache hit rate

Table 1: Summary of symbols used in cache control and
reward calculation.

queries. The average number of I/Os per point lookup can be
estimated as:

IOpoint = 1 + FPR,
where FPR denotes the false positive rate of the Bloom filter.
Bloom filters are highly memory-efficient, and in our setting, we
assume the FPR is negligible. For instance, a Bloom filter with 10
bits per key is sufficient to reduce the FPR close to zero. Given a
key size of 24 bytes and a value size of 1000 bytes, the memory
cost of such a Bloom filter accounts for only around 1.2% of the
total database size. While a memory trade-off exists between the
Bloom filter and cache (particularly when using a very limited
Bloom filter budget of 1–5 bits per key), this scenario typically
arises only under highly constrained memory and point-lookup-
heavy workloads, which are uncommon in practical deployments.
Therefore, we omit this trade-off and focus our optimization
efforts solely on the use of cache memory. For range scans, the I/O
cost consists of two parts. First, a seek phase initializes iterators
over all sorted runs that overlap with the requested key range. In
RocksDB’s leveled compaction scheme, this results in an average
of (𝐿 − 1) + 𝑟 iterators. To estimate the number of sorted runs,
we adopt a model based on 1-leveling structures commonly used
in systems such as RocksDB. The estimated number of runs, 𝑟 , is
given by

𝑟 = 𝐿 − 1 +
𝑟max
0
2

,

where 𝐿 denotes the number of levels and 𝑟max
0 represents the

maximum number of runs in Level 0, usually defined by write
stall trigger factor. Second, each iterator traverses data blocks
until the desired scan length 𝑙 is satisfied. Assuming each block
contains 𝐵 entries, the total number of I/Os per scan is:

IOscan =
𝑙

𝐵
+
(
𝐿 +

𝑟max
0
2
− 1

)
.

By substituting the above into the total I/O expression, we obtain:

IOestimate = 𝑝 × (1 + FPR) + 𝑠 × 𝑙

𝐵
+ 𝑠 ×

(
𝐿 +

𝑟max
0
2
− 1

)
.

The estimated cache hit rate ℎestimate is calculated by comparing
the number of avoided block I/Os against the no-cache baseline:

ℎestimate = 1 − IOmiss

IOestimate
,
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where IOmiss is the measured number of block I/Os after cache
misses and IOestimate is the estimated number of block I/Os with-
out caching. This estimation method can be used to calculate the
hit rate for both block cache and range cache without requiring
knowledge of the actual number of I/Os. Its accuracy has been
validated in the context of block cache. The hit rate ℎ can be
expressed as:

ℎ = 1 − IOmiss

IO
= 1 − IOmiss

IOestimate
= ℎestimate .

By using ℎestimate as the reward, our RL agent is able to con-
tinuously adapt cache partitioning and admission parameters
to maximize real-time cache efficiency without any offline pro-
filing or manual workload tuning. To ensure stability during
learning, we do not feed the raw hit rate ℎestimate directly as the
reinforcement learning reward. Instead, we apply an exponential
smoothing mechanism to gradually adjust the reward signal over
time. Specifically, the reward is updated at each step as

ℎsmoothed ← 𝛼 × ℎsmoothed + (1 − 𝛼) × ℎestimate,

𝑟𝑒𝑤𝑎𝑟𝑑 ← Δℎsmoothed

ℎsmoothed
,

where 𝛼 ∈ [0, 1] is the smoothing factor. A larger 𝛼 places more
weight on past rewards, leading to slower adjustments, while a
smaller 𝛼 makes the reward more responsive to recent hit rate
changes. Even under static workloads, the reuse distance of keys
can vary slightly over time due to natural randomness in key
access patterns. These small shifts can cause temporary spikes or
drops in the measured cache hit rate. Frequent fluctuations in hit
rate can lead to frequent cache boundary adjustments, resulting in
increased evictions and degraded system performance. To avoid
the reinforcement learning agent overreacting to such short-term
fluctuations, we apply smoothing to the hit rate signal before
using it as the reward. By stabilizing the reward input, we ensure
that cache tuning decisions are based on long-term trends rather
than transient noise.
Adaptive Learning Rate. In order to accelerate model converge,
as well as increase learning stability, an adaptive learning rate
for the actor is deployed. The learning rate 𝑙𝑟 is updated by the
following equation at the beginning of every window.

𝑙𝑟 = 𝑙𝑟 × (1 − 𝑟𝑒𝑤𝑎𝑟𝑑).
This formula is designed to adapt the learning rate based on
workload dynamics: increasing it when a workload change is
detected and decreasing it when the workload remains stable.
When a workload shift occurs, the hit rate drops, resulting in a
negative reward and a higher learning rate. This encourages the
model to explore more aggressively and escape local optima in
search of a new global optimum. Conversely, when the workload
remains stable, the reward becomes positive, and the learning rate
gradually decreases over time, promoting faster convergence.

3.6 Pretraining
We incorporate a lightweight pretraining phase to initialize the ac-
tor model before deployment. This pretraining can be conducted
in either a supervised or unsupervised manner. In the supervised
setting, the model is trained using a collection of representative
workload vectors paired with target configurations, where the
target values can be obtained through controlled experiments. In
the unsupervised setting, the model follows the same reinforce-
ment learning process as in the online phase, learning directly
from reward signals without explicit labels. The representative
workloads can be gathered from deployed databases or manually

crafted to simulate edge cases such as rapidly changing access
patterns. Once trained, the model is saved and used at runtime,
reducing startup overhead and improving early-stage learning
stability.

Pretraining offers several advantages: (1) Portability and scal-
ability: A pretrained model can be deployed across machines,
avoiding per-machine retraining. (2) Efficiency: It reduces the
computational cost during deployment, especially on resource-
constrained systems. (3) Stability: It enables faster adaptation to
dynamic workloads by providing the model with a well-informed
initialization, thus avoiding long warm-up periods during online
learning.

4 Implementation
In this section, we explain the design and implementation de-
tails of AdCache, focusing on the model location, computational
overhead, memory, and concurrency support.

4.1 Model Location
The reinforcement learning model used in AdCache resides on
the CPU, meaning that training, inference, and model storage
all consume CPU resources. While GPUs are commonly used to
accelerate deep learning tasks, we argue that placing our model
on the CPU is a more appropriate choice in our context.

Running learning computations on CPUs is a standard practice
in learning-based caching systems, as seen in prior works such as
LeCaR [41] and Cacheus [37]. Our model is relatively small and
lightweight, making it unlikely to benefit from the parallelism
offered by modern GPUs. Moreover, transferring data between
CPU and GPU would introduce additional latency, which could
negatively impact system performance. Importantly, most pro-
duction environments running databases like RocksDB do not
have GPUs available. Therefore, deploying the model on CPU is
a more practical and efficient design decision.

4.2 Computational Overhead
Integrating reinforcement learning into a cache management sys-
tem presents a key challenge: model inference and training must
not interfere with the performance of normal query processing.
Cache systems must serve point lookups and scans with minimal
latency, and any noticeable computational overhead from online
learning could degrade system responsiveness.

To address this, we adopt a window-based control mechanism
that amortizes reinforcement learning computation over time.
Incoming queries are grouped into fixed-size windows, typically
1000 operations each. At the end of each window, we collect work-
load statistics such as the ratio of point lookups to scans, average
scan lengths, and cache hit rates. These statistics serve as the in-
put state for the actor-critic model. The cache control actions used
during each window are based on the predictions made at the
end of the previous window. Specifically, the model output from
the previous window is retrieved and applied throughout the
current window, while the newly collected statistics are used to
update the model asynchronously. In other words, cache param-
eter updates are always one window behind the latest observed
workload.

In scenarios with limited computational resources, like multi-
client environments, the window size can be manually configured
to a larger value. This reduces training invocation frequency and
ensures minimal training impact on client threads.
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This design ensures that model inference and training are fully
decoupled from the main serving path. Reinforcement learning
computation runs in the background, without blocking query
execution. As a result, the computational overhead of online
learning becomes negligible relative to the cost of serving normal
database operations. Detailed evaluations on the computational
overhead can be found in Section 5.4.

4.3 Memory Overhead.
Besides computational overhead, reinforcement learning-based
cache control introduces some additional memory consumption.

In our system, both the actor and critic networks are light-
weight fully connected neural networks with a hidden dimension
of 256. Each network consists of an input layer, two hidden layers,
and an output layer, using 32-bit floating-point precision for all
parameters. The total number of parameters across both models
is roughly 140,000, resulting in a combined memory usage of ap-
proximately 550 KB for storing network weights. This overhead
is negligible compared to typical cache sizes, which are often on
the order of tens to hundreds of megabytes. When online train-
ing is enabled, additional memory is required to store gradients
and optimizer states. For each parameter, the Adam optimizer
maintains two auxiliary tensors (first and second moment esti-
mates), and backpropagation temporarily stores gradients. As
a result, the total memory overhead during online training is
approximately four times the model parameter size, amounting
to around 2 MB in total, as shown in Table 2.

Compared to the size of typical cache allocations, often sev-
eral gigabytes, this memory footprint is negligible. Even under
continuous online training, the memory consumption remains
small and does not impact system scalability or efficiency.

Component Estimated Memory Usage

Actor + Critic model parameters 550 KB
Gradients (Actor + Critic) 550 KB
Optimizer states (Adam) 1.1 MB

Total memory overhead 2.2 MB

Table 2: Memory overhead of reinforcement learning
model and online training.

4.4 Concurrency Control
There is no concurrency issue in single-client scenarios, as op-
erations on the range cache and block cache are executed se-
quentially without conflict. However, in multi-client environ-
ments, concurrency control becomes necessary. To address this,
we implemented a sharded range cache architecture, similar to
RocksDB’s block cache, since the original Range Cache design
does not support multi-threaded access by default. The database
key space is partitioned into multiple shards, each guarded by its
own lock to manage concurrent access. Operations on different
shards are independent, enabling safe and efficient parallelism.
Furthermore, since the system is highly I/O-bound under multi-
client workloads, the latency introduced by lock contention is
negligible.

5 Evaluation
We first describe our experimental setup, including the workloads
and baselines used for comparison. We then present detailed
results and analysis across both static and dynamic workloads.

5.1 Experimental Setup
AdCache is implemented on Rocksdb, and our code is available
at Github. We conduct our experiments on a machine running
Ubuntu 22.04, equipped with an Intel Core i9-13900K CPU (36
MB L3 cache), 128 GB of RAM, and a 2 TB NVMe SSD. The LSM-
tree storage engine is configured to use a 1-leveling compaction
policy with a size ratio of 10 between levels. A Bloom filter with
10 bits-per-key is enabled to optimize point lookups. The key size
is set to 24 bytes and the value size to 1000 bytes, and the total
database size is 100GB. Each SSTable file is configured to be 4
MB in size, and each data block within an SSTable is 4 KB. Write
slowdown is triggered at 4 level 0 files, and write stop is triggered
at 8 level 0 files. Online training of AdCache is triggered at the
end of every window containing 103 operations. The actor-critic
reinforcement learning module is configured with an initial actor
learning rate of 1 × 10−3 and a critic learning rate of 1 × 10−3.
By default, 𝛼 is set to 0.9 to emphasize long-term cache hit rate
improvements over immediate gains, the access pattern follows
Zipfian distribution with 0.9 skewness, the queries are done by a
single client and AdCache uses 25% cache with no pretraining
unless specified in the experiment. For evaluations involving
latency measurements, direct I/O is enabled for SST file reads to
bypass the operating system page cache. This ensures that all
measured latencies reflect the storage engine’s internal caching
behavior without external memory effects.

To highlight the necessity of a unified and workload-aware
design, we include Range Cache with LeCaR and Range Cache
with Cacheus as representative baselines that naively combines a
learning-based eviction strategy with an LSM-tree cache struc-
ture. LeCaR [41] and Cacheus [37]are well-known reinforcement
learning-based policies designed for general-purpose caches, and
is often cited as lightweight yet effective alternatives to tradi-
tional eviction strategies. Further description of them can be seen
in Section 6. Despite that LeCaR and Cacheus perform well gen-
erally, they are not designed with the characteristics of LSM-tree
systems in mind, such as compactions and invalidation. These
baselines serve as an example of a straightforward application
of RL to caching in LSM-KVS, without deeper integration or
adaptation to LSM-specific behaviors. By comparing with this
baseline, we demonstrate that simply augmenting an existing
LSM cache with an RL-based eviction policy is insufficient. In
contrast, our design integrates RL holistically—jointly tuning
structural choices, admission policies, and parameter thresholds
based on workload dynamics—resulting in significantly better
performance across diverse workloads.

We evaluate the following cache management strategies:

• RocksDB (BlockCache): The default block caching mech-
anism used in RocksDB, which caches raw data blocks
directly based on their disk layout.
• KV Cache: A key-value cache that stores the results of

point lookups, allowing fast retrieval without disk access.
Only point queries benefit from this cache, while scans
still access underlying data blocks.
• Range Cache: The design proposed in [43], which caches

the results of range queries in a logical key-value struc-
ture (skip list) to eliminate cache invalidations caused by
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compactions. Since Range Cache is not open-source, we
reimplement it following the description in the original
paper.
• Range Cache with LeCaR: A variant of Range Cache

where the traditional LRU eviction policy is replaced by
LeCaR, an online learning-based caching policy. This base-
line evaluates the effectiveness of a naive combination of
ML-based eviction strategies and LSM-tree workloads.
• Range Cache with Cacheus: A variant of the Range

Cache in which the default LRU eviction policy is replaced
with Cacheus. Cacheus is a successor to LeCaR, enhanced
with scan and churn workload supports.
• AdCache: Our proposed system, which uses reinforce-

ment learning to dynamically adjust cache partitioning
and admission policies based on observed workload pat-
terns.

5.2 Evaluation on Static Workloads
To investigate how different caching schemes perform under
varying cache sizes and workload types, we evaluate all methods
on four representative static workloads. These workloads are
designed to isolate specific access patterns:
• Point Lookup: Consists solely of point queries.
• Short Scan: Performs range scans of fixed length 16.
• Balanced: Contains an even mix of 33% point lookups,

33% short scans, and 33% writes.
• Long Scan: Performs range scans of fixed length 64.

This setup allows us to analyze how each caching strategy
responds to specific access patterns and how their effectiveness
scales with available cache capacity. The evaluation results are
presented in Figure 7, where subfigures (a), (b), (c), and (d) corre-
spond to the Point Lookup, Short Scan, Balanced, and Long Scan
workloads, respectively.
Point Lookup. In the point lookup workload, both Range Cache
and KV Cache behave identically, functioning as pure key-value
caches with an LRU eviction policy. Block Cache, by contrast,
stores data in blocks rather than individual key-value entries. This
can lead to inefficient memory usage when infrequently accessed
keys occupy space within cached blocks, resulting in a lower
overall hit rate. When the LRU policy in Range Cache is replaced
by LeCaR and Cacheus, the hit rate improves by approximately 3%
and 8% respectively under small cache sizes, demonstrating the
potential benefit of machine learning-based (ML-based) eviction
strategies in general pattern workloads. AdCache consistently
achieves the best or equally-best hit rate across all cache sizes,
highlighting the value of filtering out infrequently accessed keys
through its admission control mechanism. Compared to Range
Cache, AdCache provides up to a 9% improvement in hit rate,
and up to 14% compared to Block Cache, reducing the number of
SST reads by up to 25%.
Short Scan. In short-scan workloads, KV Cache fails to cache re-
sults due to the nature of the access pattern. Surprisingly, Range
Cache—whether using LeCaR or Cacheus—underperforms com-
pared to Block Cache. Although scans are involved, the access
pattern resembles point lookups, with each item spanning mul-
tiple blocks. Range-based caching offers little benefit here, as
partial hits still incur the full cost of an LSM-tree seek. AdCache
adapts effectively by converting the entire range cache into a
block cache, recognizing the superior performance of block-based
strategies in this setting. Its partial admission policy allows full
scan results (e.g., 16+ entries) to be cached per query, making

its hit behavior and performance nearly identical to that of the
block cache.
Balanced Workload. In the balanced workload, KV Cache only
serves point lookups, yielding the lowest hit rate. Range Cache
performs worse under small cache sizes due to the high cost
of partial scan misses, but its hit rate approaches that of Block
Cache as the cache grows. LeCaR and Cacheus often underper-
form compared to Range Cache, despite using learning-based
eviction. AdCache starts with block cache at small sizes and
shifts to range cache as capacity increases. Its admission control
helps filter infrequent keys, leading to higher hit rates at larger
sizes. Specifically, it achieves a 6% hit rate gain over Block Cache,
reducing SST file reads by 16.2%.
Long Scan. In the long-scan workload, fully caching infrequent
scans leads to high eviction and low hit rates. Range Cache
with LRU or LeCaR underperforms Block Cache across all sizes.
However, Cacheus and LeCaR improve hit rates under small
caches, demonstrating the advantage of learning-based eviction.
AdCache applies partial admission at all cache sizes, limiting
memory usage from infrequent queries. As a result, AdCache
reduces SST file reads by about 17.2% compared to RocksDB block
cache.

5.3 Evaluation on Dynamic Workloads
To evaluate the adaptability of caching strategies under evolving
access patterns, we construct a dynamic workload consisting of
six workload phases executed sequentially: A→ B→C→D→ E
→ F. The operation ratios for each phase are shown in Table 3.
These workload phases are designed to emulate realistic us-
age patterns observed in LSM-tree-based systems, which are
widely deployed in write-heavy applications such as time-series
databases, log processing platforms, and cloud-native storage sys-
tems. We begin with a read-dominant phase to simulate analytical
workloads with long scans, then gradually transition into more
balanced or write-heavy phases that reflect common ingestion-
heavy scenarios. The inclusion of mixed read and write patterns
captures the complexity of real-world applications where point
lookups, range scans, and write operations often coexist. This
progression also aligns with the design motivation of LSM-trees,
to handle high write throughput efficiently, while stressing the
cache system’s ability to adapt to evolving access behaviors over
time.

Workload Get (%) Short Scan (%) Long Scan (%) Put (%)

A 1 1 97 1
B 1 49 49 1
C 49 49 1 1
D 25 25 1 49
E 1 49 1 49
F 1 12 12 75

Table 3: Dynamic workload phases used in evaluation.

Each phase runs for a fixed number of 50 million operations.
We monitor both cache hit rate and end-to-end throughput of
the workload sequences, as shown in Figure 8. Throughput is
measured in the form of query per second (QPS). The rankings
of throughput and hit rate are shown in Table 4.

Across most workload phases, AdCache ranks as the best or
among the top-performing schemes. In read-heavy workloads (A,
B, and C), it favors block cache, while in write-heavy workloads
(D, E, and F), it switches to range cache, mirroring the best cache
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Figure 7: Hit rate of different caching strategies with varying cache sizes under static workloads.
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Figure 8: Throughput and hit rate of different caching
strategies under dynamic workloads.

Workload RocksDB Range Cache LeCaR Cacheus AdCache

A 2/2 5/3 4/4 3/5 1/1
B 2/2 5/4 4/3 3/5 1/1
C 2/2 3/4 5/3 4/5 1/1
D 1/5 4/4 5/1 3/3 2/2
E 2/4 4/5 5/2 3/3 1/1
F 5/5 3/4 4/1 1/3 2/2

Average 2.3/3.3 4.0/4.0 4.5/2.3 2.8/4.0 1.3/1.3

Table 4: Rankings of caching schemes (throughput/hit rate)
across dynamic workload phases. Lower is better.

choice for each setting. A temporary drop in hit rate is observed
during the transition from workload C to D, reflecting the struc-
tural switch. Further analysis of this transition is provided in
Section 5.4.

RocksDB’s block cache performs best in read-heavy workloads,
benefiting from its alignment with the on-disk data structure. In
contrast, Range Cache outperforms block cache in write-heavy
workloads due to its resilience to cache invalidation during com-
paction. Range Cache with LeCaR and Cacheus generally matches
vanilla Range Cache in hit rate, but shows improved throughput
in some cases, like workload F, highlighting the potential of RL-
based caching strategies. AdCache, with its adaptive cache parti-
tioning and admission control, consistently achieves the highest
overall throughput and hit rate. In write-heavy and long-scan
workloads, it delivers a 25%–37% improvement in throughput
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Figure 9: Hit rate of different caching strategies under vary-
ing workload skewness.

over RocksDB. However, its performance drops in workload D,
mainly due to (1) incomplete cache adaptation following a work-
load shift, and (2) overhead from frequent insertions into the
range cache’s skip list, combined with sequential access to both
range and block caches.

5.4 Understanding AdCache Behavior
To further investigate the caching behavior in LSM-tree systems
and the effectiveness of AdCache, we conduct a series of micro-
benchmark experiments.
Workload Skewness. We vary the point lookup and range scan
skewness of the Zipfian workloads, and the experiment results
are shown in Figure 9. We use the same workload ratio with 50%
update and equal amount of point lookups and short scans.

As expected, most caching strategies benefit from higher skew-
ness due to stronger access locality. KVCache, however, remains
largely insensitive to skewness, achieving low and flat hit rates
across all settings due to its inability to capture range scans under
mixed workloads. Range Cache with LRU, LeCaR, and Cacheus
achieve lower hit rates than block cache under low skewness,
but outperforms it under high skewness. This is because block
cache stores infrequent keys in the same blocks along with fre-
quent keys. While this characteristic benefits performance under
random access patterns (low skewness), it becomes a limitation
when the workload exhibits a clear separation between hot and
cold keys, as block cache may waste memory on less useful data.

AdCache consistently outperforms all baselines across the
entire skewness spectrum. It achieves a 77% hit rate at skewness
1.0 and up to 93% at skewness 1.2, showing strong adaptivity to
highly localized workloads. Compared to RocksDB’s block cache,
AdCache achieves up to a 12% improvement in cache hit rate and
reduces SST file reads by as much as 34.3%.
Training Parameters. To evaluate the impact of learning pa-
rameters on the model’s convergence and stability, we varied
the window size and 𝛼 in the reward function and observed
the model’s behavior during a workload shift. Specifically, the
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Figure 10: Impact of model parameters on model conver-
gence.

system is warmed up under a read-heavy workload, and then
transits into a short-scan-heavy workload. The results are shown
in Figure 10.

The first figure shows the impact of window size, which con-
trols how often the model updates. All experiments use a fixed 𝛼

of 0.9. The “pretrained” curve represents a pretrained model with
no online learning, updating cache settings every 1000 queries.
AdCache adapts to the workload shift under all window sizes, but
convergence is slower with a window size of 10,000 due to infre-
quent updates. The pretrained model experiences a sharper hit
rate drop, as it lacks both online adaptation and reward smooth-
ing. Window sizes of 100 and 1000 perform similarly in terms of
hit rate, but we adopt 1000 as the default for its slightly lower
overhead.

The second figure shows the impact of the smoothing factor
𝛼 on reward calculation, with all experiments using a window
size of 1000. The “pretrained” model, as before, updates cache
settings periodically without online learning. All settings even-
tually converge after the workload shift, except 𝛼 = 0, which
settles into a suboptimal configuration due to overreacting to
short-term hit rate fluctuations. The pretrained model shows the
sharpest drop, followed by 𝛼 = 0, which lacks smoothing but still
learns gradually. Models with 𝛼 = 0.5 and 0.9 behave similarly,
achieving stable convergence, indicating the system is not highly
sensitive to the exact 𝛼 value as long as smoothing is present.

The third figure shows how cache parameters evolve over time,
using a window size of 1000 and 𝛼 = 0.9. The range cache ratio
(blue) starts near 100% for point-lookups and drops to around 0%
after transitioning to a short-scan-heavy workload, consistent
with prior findings that block cache performs better in short scans.
The frequency threshold for point lookups (yellow) remains near
0, admitting most non-one-off keys, with a brief spike during
the transition as the model tries to probe its impact. The scan
threshold (red), derived from 𝑎 and 𝑏, stabilizes around 16–18 in
the new workload, matching the scan length of 16.
Training Overhead. To analyze the computational overhead
introduced by background training, we gradually increased the
number of client threads and measured the system throughput.
The results are presented in Figure 11(a). As the number of clients
increases from 1 to 32, the per-client QPS remains largely unaf-
fected. This indicates that the background training process does
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Figure 11: Learning overhead and ablation study of Ad-
Cache.

not introduce significant interference. Furthermore, the per-client
QPS is not notably constrained by the number of CPU cores, as
the system’s primary bottleneck lies in I/O throughput rather
than computation.
Ablation Study. To demonstrate the effectiveness of both ad-
mission control and adaptive cache partitioning, we evaluated
AdCache with only one of the two components enabled at a time.
The results are presented in Figure 11(b).

The black line at the bottom represents Range Cache, which
yields the lowest hit rate among all configurations. The blue line
corresponds to AdCache with only admission control enabled.
In this setting, partial admission is applied to scan operations,
allowing a portion of each long scan (approximately 16-20 en-
tries) to be cached upon access, thereby improving effectiveness
without overwhelming the cache. This approach results in an 11%
increase in hit rate over Range Cache. The green line illustrates
the effect of enabling only adaptive cache partitioning. Under
long-scan workloads, block cache has proven more effective, as
shown in earlier experiments. As a result, AdCache reallocates
memory in favor of block cache, effectively converting range
cache into block cache. This adjustment yields a 55% improve-
ment in hit rate. Finally, the red line at the top shows the full
AdCache configuration with both components enabled, achieving
a 61% hit rate improvement over Range Cache.

6 Related Work
Analytical Models and Theoretical Cache Studies. The study
of caching has a long history, with many efforts focused on im-
proving cache efficiency through analytical modeling and smarter
eviction strategies. Most analytical approaches model cache be-
havior using statistical properties such as access frequency, re-
cency, reuse distance, and object size.

Early works [1, 12, 39] introduced stack distance distributions
to analytically model cache hit rates under various replacement
policies. Reuse distance [13, 22, 26] became a central concept
for understanding temporal locality in workloads, and was later
extended into absolute reuse distance [3] to better model policies
beyond LRU. Eviction policies have also evolved from traditional
heuristics toward more adaptive techniques. LRFU [25] and subse-
quent policies [14, 15, 33] combine recency and frequency signals
to improve eviction decisions. Other works incorporate object
size into eviction priority [6, 9, 23, 29], addressing the imbalance
caused by large entries consuming disproportionate cache space.

With the rise of machine learning, several studies [4, 5, 8,
18, 19] explore training models on individual cache objects to
predict reuse distance or future access probability. GL-Cache [46]
generalizes this idea by grouping objects to reduce computational
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overhead. Another line of research learns from policy experts: for
example, LeCaR [41] maintains adaptive weights over LRU and
LFU, selecting eviction candidates based on learned confidence
in each policy and updating weights using hits in eviction history.
Cacheus [37] is a successor to LeCaR, designed to extend LeCaR’s
capabilities of LRU and LFU policies by adding support for scan
and churn workloads. Other approaches such as LHD [2] aim to
learn directly from access distributions to estimate object utility
and rank items accordingly.
Caching in Real Systems. Key-value stores (KVS) are a founda-
tional storage abstraction widely used in databases, distributed
systems, and cloud services. Recent research has explored the
deployment of KVS architectures across diverse hardware plat-
forms, including traditional spinning disks, flash-based SSDs, and
persistent memory. While caching strategies across these systems
share the common goal of improving hit rate, they often optimize
for distinct performance objectives. For instance, in-network
and memory-disaggregated caching systems [24, 30, 44] are de-
signed to minimize round-trip latency and reduce computational
overhead. In-memory multi-core KVS designs [32] emphasize
reducing DRAM contention and improving parallelism by em-
ploying techniques such as shared-prefix concurrent trees. To
address the hardware bottleneck of limited CPU cache growth,
[42] propose an application-level mechanism that indirectly con-
trols CPU cache behavior without hardware modification.

7 Conclusion
In this paper, we presented AdCache, an adaptive caching system
for LSM-tree-based key-value stores that combines reinforcement
learning with lightweight admission control and dynamically
choose between block cache and range cache layouts. By learning
workload characteristics online, AdCache effectively balances
caching strategies for point lookups and scans, while avoiding
the overhead of unnecessary data eviction.

Through extensive evaluation, AdCache consistently outper-
forms existing caching schemes across a wide range of workloads.
It achieves up to 14% higher cache hit rate compared to tradi-
tional block cache, and reduces the number of SST file reads by up
to 25%. Our results demonstrate that intelligent, learning-based
cache partitioning and selective admission provide a promising
direction for improving storage system performance under dy-
namic and mixed workloads.

8 Artifacts
To facilitate reproducibility and further exploration, we provide
the full implementation of AdCache, including source code, work-
load generators, and experiment scripts, in our public GitHub
repository: https://github.com/qingshanlanshan/AdCache-LSM.
The repository includes detailed instructions on how to configure,
build, and run the experiments described in this paper. Please re-
fer to the README.md file in the repository for setup instructions,
system requirements, and usage examples.
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