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Abstract
Increasingly, Large Language Models (LLMs) are utilized for di-

verse data processing tasks. In this paper, we focus on leveraging

LLMs for reliable data transformation in heterogeneous datasets,

a core step in data analysis pipelines. We address the challenges

of retrieving appropriate data transformation functions for tasks

such as converting Unix timestamps to human-readable dates or

extracting specific elements from complex data formats. Current

solutions rely on code analysis and manually designed workflows,

which are limited in flexibility and semantic understanding.

We propose a novel framework that prioritizes retrieving

trusted transformation functions from a pre-defined set using

LLMs. If no appropriate function is found, the system falls back

on code generation by LLMs, though this is a last resort due

to concerns about accuracy, hallucinations, and production re-

liability. Our framework balances function retrieval accuracy

with validation costs using a two-stage approach: an indexing

phase for generating function descriptions and embeddings, and

a query phase for matching transformations. We consider three

variants of the reliable function retrieval problem, introducing

conformal prediction techniques, enhanced with abstention and

size constraints, to ensure retrieval coverage while controlling

validation costs.

Empirical evaluations demonstrate the effectiveness of our so-

lutions, offering a trade-off between retrieval size and validation

efficiency, attesting that our solutions to the problems introduced

handle abstention scenarios and size constraints effectively.
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1 Introduction
Data transformations play a pivotal role in database research,

enabling the seamless integration of heterogeneous datasets from

diverse sources and formats [14, 15, 45]. The heterogeneity of

data types and formats often complicates the transformation

process, requiring substantial time and expertise from end-users

like data scientists and analysts. To mitigate these complexities,

the self-service data transformation paradigm has been proposed

[14, 15], allowing users to autonomously discover and leverage

reusable data transformation functions with greater efficiency.

Figure 1 shows a data transformation case with two datasets

from different sources to be analyzed. For the same attribute, such

as date, source A encodes it as Unix timestamps, while source B

stores it as a time string following a specific format. To extract the

day of the week, distinct transformation functions are needed for

each source. For example, dayofweek_from_timestamp()would

be applied to source A, whereas dayofweek_from_str() would

be used for source B. Once these transformations are executed,

further analysis, such as performing statistical operations on
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Day of the
Week

Area
Code

Last
Name

...

Wednesday 609 Doe ...

Monday 425 Doe ...

Thursday 425 Smith ...

Friday 425 Miller ...

Monday 650 Chen ...

Monday 425 Smith ...

... Timestamp Phone Number Name

... 1577836800 (609)-993-3001 John K. Doe Jr.

... 1592226645 425 960 3556 Mr. Doe, John

... 1609459199 425.736.9999 Jane A. Smith

... TimeStr Phone Number User Name

... Fri Oct 28 2022 +1-425-736-9998 Miller, Donald

... Mon Aug 21 2023 1-650-123-4183 Chen, Daniel

... Mon Dec 25 2023 +1-4250013981 Smith, Jane

Source A

Source B

Target

dayofweek_from_str()

dayofweek_from_timestamp()

Transformation Function

Figure 1: Data Transformation Examples

the data by weekday, can proceed. Similarly, we may want to

analyze data based on other attributes, such as extracting the

area code from phone numbers or isolating last names from full

names. Such transformations are common in real-world scenarios

and can be time-consuming and labor-intensive if performed

manually.

The data transformations described above are frequently nec-

essary when different formats are required for tasks like visual-

ization or joinability search [45]. Crafting the appropriate func-

tion for such transformations often demands coding expertise

(e.g., proficiency in programming languages) and can be time-

consuming, especially when dealing with numerous datasets

from varied sources. To minimize manual effort, we aim to allow

users to provide a few paired input-output examples as a demon-

stration, enabling the system to automatically create/identify a

transformation function.

Background:With the recent success of Large Language Mod-

els (LLMs) in a wide range of domains such as natural language

question answering (QA) [8], text-to-SQL translation [26], and

code generation [29], it is conceivable to prompt an LLM to gen-

erate a function that performs the required transformation when

presented with input-output example pairs, converting the input

into the desired output [7], which is referred to as the code gen-
eration approach. However, despite the demonstrated strengths

of LLMs, the code generation approach faces several challenges,

including hallucinations [7], which may result in erroneous code

generation [6, 24, 29, 30, 37, 39, 43].

Existing studies demonstrate that code generation for tasks

described in text using an LLM achieves an accuracy of up to

89% for classic algorithms [6], which may drop to 75% on a large

set of questions, even with additional feedback [37]. Moreover,

as the DS-1000 benchmark [24] demonstrates, for in-line code

completion in the data science domain, the state-of-the-art mod-

els can only achieve 60% accuracy. To corroborate these find-

ings, following the same approach, we generate code for the

data transformation tasks of the TDE benchmark [15] utilizing

gpt-4o, and then validate the code by actual execution, resulting

in only 52% accuracy. A detailed manual analysis of the errors

shows that the minority of them are due to minor issues such
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as representation precision (e.g., using a different precision level

for unit transformation) and formatting issues (e.g., using nu-

meric instead of string for output), which are specifically caused

by the characteristics of data transformation tasks and can be

easily fixed by human inspection. Nonetheless, around 40% of

the errors originate from flawed logic, necessitating thorough

and detailed code revision. Although in theory errors can be

identified by running the generated code on provided examples

and prompting the LLM to regenerate the code and test cases

[30, 37] until successful, integrating such code into a production

environment raises significant reliability and security concerns

due to the inherent nondeterministic behavior of LLMs [6]. In

practice, any LLM-generated code must undergo human verifica-

tion to meet production standards. Due to these stringent quality

control requirements, leveraging LLMs for direct code genera-

tion is considered unreliable, hinders automation, and requires

manual inspection [6, 29, 40].

We explore leveraging LLMs to perform function retrieval

from a pre-defined set of trusted functions, referred to as Data
Transformation Function Retrieval, or simply Function Retrieval,
focusing on retrieving the appropriate function for the transfor-

mation task. As invoking such functions may incur costs (e.g.,

when accessed via APIs) or performance overhead, the brute-

force approach that exhaustively tests each function can be ex-

pensive [15], especially considering the large number of test cases

to be invoked to validate each function. Prior work [14, 15] ex-

plored function indexing with code analysis techniques. However,

these approaches were developed before the advent of LLMs and

exhibit limited automated semantic understanding. As a result,

they require complex workflows and extensive preparation, and

rely on case execution and example generation to approximate

semantic modeling.

Our Proposal: We propose a framework that utilizes LLMs to

perform function retrieval, resorting to code generation only

when necessary, thus combining the advantages of both ap-

proaches. We assume that human inspection will always be

required to ensure the correctness and reliability of any code

generated for production use. To minimize the reliance on code

generation and reduce the need for human validation, we as-

semble a comprehensive set of trusted transformation functions

beforehand. Such a pre-assembled set can be extensive, compris-

ing generic functions from widely used libraries and packages,

which are assumed to be tested, trusted, and reliable. For any

given data transformation request, we first attempt to retrieve

the appropriate function from the trusted set using LLMs. The

retrieved functions will then undergo a validation step to identify

the correct function, which involves applying each retrieved func-

tion to the input provided in the query and comparing the output

with the desired result. The validation process incurs a quan-

tifiable validation cost, which may include both monetary and

performance overhead. Code generation, including additional

steps such as test case generation and human inspection, is only

invoked if the correct function cannot be found. The trusted

transformation functions can also be periodically updated to ac-

commodate evolving needs. For simplicity, we assume a compre-

hensive function set; however, our framework naturally extends

to non-comprehensive sets by mapping unmatched queries to a

placeholder function that triggers code generation.

For clarity, we use the term query to denote the example pair

specifying the desired transformation from input to output, and

target function to refer to the function capable of performing

the required data transformation on the example. Our proposed

framework: (1) retrieves a set of functions for the given query, (2)

validates the retrieved set to determine the target function, and

(3) invokes code generation and human inspection if the target

function is not identified in the previous steps. To measure the

quality of the retrieved set, two common metrics from the litera-

ture can be utilized [2, 33]: coverage, which indicates whether the

target function is included in the retrieved set, and the average
size of the retrieved set, which reflects the number of functions

that need to be verified.

We propose using LLM and embeddings to perform function

retrieval, as illustrated in the first part of Figure 2(B). The frame-

work begins with generating textual descriptions for functions

and queries, which are subsequently transformed into embed-

dings. For functions, two approaches are available: (a) if the

source code is accessible, we employ an LLM with prompting

techniques, where the function code is input, and the LLM gen-

erates a text description detailing the function signature and

core functionality; (b) if the code is unavailable, we extract text

description from human-authored documentation (e.g., textual

descriptions of function signatures and behaviors from libraries).

These descriptions typically include key information such as in-

put/output data types and the fundamental transformation logic

of each function. Similarly, for a given query, we utilize LLMs

directly to obtain textual descriptions of functions that perform

the transformation from the input to the output. Once the text

descriptions for functions and queries are generated, they are

transformed into embeddings using an embedding model.

A straightforward approach to perform function retrieval is to

utilize embeddings and retrieve the 𝑘-nearest functions for each

given query in the embedding space. In such cases, the average

size of the retrieved set is fixed to 𝑘 , while there is no coverage

guarantee. Furthermore, the 𝑘 value for each query required to

cover the target function could differ. In practice, one may wish

to balance 𝑘 and coverage based on individual needs.

To solve the above issue, we propose our ReFRED framework

and specify an additional calibration step (shown in Figure 2(A))

utilizing Conformal Prediction [41]. During calibration, we as-

sume that a set of (query, target function) pairs has been col-

lected from past examples. Based on the distances between the

query and its target function, we perform a calibration step to

aid reliable retrieval (detailed in Section 3), introducing coverage

guarantees; such distances are stored and utilized for handling

new queries.

Before handling new queries, a preprocessing step is per-

formed to obtain, store and index function embeddings for all pre-

defined functions (Section 3.1.1). When a user submits a query by

providing an example of the desired transformation, we prompt

an LLM to generate a description of a function capable of per-

forming the transformation and perform retrieval utilizing our

calibration results. The typical pipeline operates as follows: af-

ter the candidate functions are retrieved ( A○ in Figure 2, labeled

Retrieval), we validate the set by executing each function on the

provided input-output example. The function that produces the

correct output is deemed the target function. If none of the re-

trieved functions can perform the transformation, we instruct

the LLM to generate code to accomplish the task ( B○ in Figure 2,

labeled Fallback). In the fallback case, the generated code under-

goes a quality control review by a human before being integrated.

Contributions: Our main contribution is establishing a quan-

tifiable trade-off between average retrieval size and coverage,

balancing retrieval success with validation cost. Moreover, by

identifying low-quality queries without sacrificing coverage, we
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Data Transformation Functions Function Embeddings

Reliable Retrieval

Query Embedding

Retrieved Functions

Generate / Retrieve?

Ⓐ Retrieval

Ⓒ Generation

New Function

Ⓑ Fallback

(query, target function) 
Pairs for Calibration

Query Descriptions

Calibration Result

Target Function Descriptions

Embedding
Model

Query & Target Function
Embeddings

LLM

(B) Handling New Queries

LLM / Human

Query Description

Function Descriptions

Calibration Result

LLM / Human

(A) Calibration

Input: [1723213495, ...]
Output: [Friday, ...]

Calibration Pre-processing InferenceLegend

Figure 2: ReFRED Framework Overview

can skip validation and directly invoke LLM-based code genera-

tion ( C○ in Figure 2), reducing overhead. Our contributions are

summarized as follows:

• We present the novel problem of utilizing LLM for Reliable

Function Retrieval during data transformations.

• We formally define three variants of the reliable function

retrieval problem. The first variant establishes quality guar-

antees for function retrieval in terms of the probability of

retrieving the correct function. The second variant extends

the problem by allowing the framework to abstain from re-

trieval when the expected retrieval result size is large, thereby

reducing validation costs. The third variant further refines

the problem by explicitly bounding the size of the retrieved

set, which implicitly controls the validation costs.

• We propose formal solutions for these problems. In partic-

ular, we demonstrate how conformal techniques can be uti-

lized to provide probabilistic guarantees in our problem con-

text, and propose novel algorithms Function Retrieval with

Abstention (FRA) and Size-Constrained Function Retrieval

with Abstention (CFRA), showcasing their theoretical proper-

ties.

• We empirically assess the effectiveness of the proposed method

on diverse datasets and demonstrate the trade-offs that are

feasible using our approach.

2 Problem Definition
Definition 2.1 (Data Transformation Function). A data trans-

formation function 𝑓 ∈ 𝐹 , where 𝐹 denotes the set of all trusted

functions available, maps an input data space X𝑖𝑛 to an output

data space X𝑜𝑢𝑡 , with no restrictions imposed on the elements

of these data spaces. Given an input 𝑥𝑖𝑛 ∼ X𝑖𝑛 , the function 𝑓

produces an output 𝑥𝑜𝑢𝑡 . For any input-output pair, denoted as

𝑥 = (𝑥𝑖𝑛, 𝑥𝑜𝑢𝑡 ) ∼ X𝑖𝑛 × X𝑜𝑢𝑡 , the relationship 𝑥𝑜𝑢𝑡 = 𝑓 (𝑥𝑖𝑛)
holds. For simplicity, we refer to the pair 𝑥 as originating from 𝑓 ,

denoted as 𝑥 ∼ 𝑓 , where 𝑓 is the target function for 𝑥 .

Given an input-output pair 𝑥 , our focus is on the task of iden-

tifying the target function 𝑓 from a pre-defined set of functions,

𝐹 . We refer to this task as data transformation function retrieval.

Definition 2.2 (Data Transformation Function Retrieval). For a

given query, consisting of an input-output pair 𝑥 = (𝑥𝑖𝑛, 𝑥𝑜𝑢𝑡 ),
and a set of transformation functions 𝐹 , Data Transformation

Function Retrieval returns a set of functions 𝐹𝑥 ⊆ 𝐹 relevant

to query 𝑥 . The quality of 𝐹𝑥 can be measured by the metrics

discussed below.

We abbreviate this problem as function retrieval (or simply

retrieval). Each query 𝑥 is assumed to originate from at least one

function, termed the target function
1
, within the retrieved set

𝐹𝑥 , i.e. ∃𝑓 ∈ 𝐹𝑥 such that 𝑥 ∼ 𝑓 . However, this condition may

not always hold, meaning that the target function may not be

present in the retrieved set. To capture this, we use a coverage

metric to indicate whether the target function is included in the

retrieved set.

Definition 2.3 (Function Retrieval Coverage). The coverage of a

retrieved set 𝐹𝑥 for a given query 𝑥 is defined as:

𝐶 (𝑥, 𝐹𝑥 ) = 1∃𝑓 ∈𝐹𝑥 ,𝑥∼𝑓
For any single query 𝑥 , 𝐶 (𝑥, 𝐹𝑥 ) ∈ {0, 1}. Thus, for queries

drawn from a distribution 𝑃 , the expected retrieval coverage is

E[𝐶 (𝑥, 𝐹𝑥 )] ∈ [0, 1]. Assuming that the function that answers

query 𝑥 is already in 𝐹 , a straightforward way to achieve full

coverage (i.e., 𝐶 (𝑥, 𝐹𝑥 ) = 1) is to include all available functions

in 𝐹𝑥 for any query 𝑥 , i.e., 𝐹𝑥 = 𝐹 . However, this approach incurs

significant validation costs; in the worst case, every function

must be verified against the query. Therefore, we aim to reduce

the size of the retrieved set while maintaining high coverage.

Definition 2.4 (Function Retrieval Size). The size of the retrieval

set is defined as the cardinality of the retrieved function set, i.e.,

𝑆 (𝐹𝑥 ) = |𝐹𝑥 |.

Increasing the retrieval coverage often requires enlarging the

retrieval set, which in turn increases the retrieval size. Our ob-

jective is to balance the trade-off between coverage and retrieval

size.

We study retrieval with coverage guarantees, aiming to mini-

mize retrieval size while ensuring marginal coverage, assuming

queries come from a distribution X. We first specify the problem

of retrieval with a coverage guarantee.

Problem 1 (Function Retrieval with Marginal Cover-

age Guarantee). Given a specified mis-coverage rate 𝛼 ∈ (0, 1),
retrieval aims to provide a marginal guarantee on coverage, i.e.,
E[𝐶 (𝑥, 𝐹𝑥 )] ≥ 1 − 𝛼 for 𝑥 ∈ X.

However, ensuring coverage alone does not guarantee reduced

validation costs, as higher coverage typically entails a larger re-

trieval set. Ideally, we would like to maintain marginal coverage

guarantees for all queries while minimizing retrieval size, allow-

ing for efficient validation without compromising the retrieval

of the target function. For queries where this balance cannot be

achieved, we can abstain from providing a solution (thus avoiding

validation costs) and instead resort to generating the code using a

large language model (LLM). To formalize this, we introduce the

concept of retrieval with abstention and constraints on retrieval

size.

1
Note that there may be multiple target functions for the same query. Since iden-

tifying at least one target function suffices to address the query, we focus on this

case without loss of generality.
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Problem 2 (Function Retrieval with Abstention). Given
an abstention ratio 𝛽 ∈ (0, 1), only a subset of queries X′ ⊆ X will
be answered, where P(X′ | X) = 1 − 𝛽 . For the answered queries
𝑥 ∼ X′, the marginal coverage still satisfies the mis-coverage rate
𝛼 , i.e., E[𝐶 (𝑥, 𝐹𝑥 )] ≥ 1 − 𝛼 , while the expected retrieval size for
queries to be abstained is greater than the rest, i.e., E[𝑆 (𝐹𝑥 ) | 𝑥 ∈
X \ X′] > E[𝑆 (𝐹𝑥 ) | 𝑥 ∈ X′].

Although our solution to Problem 2 will introduce a tunable

abstention ratio while still guaranteeing marginal coverage, we

still lack a way to control the retrieval size and thus implicitly

control the validation cost. Next, we introduce constraints on

retrieval size while maintaining marginal coverage guarantees.

Problem 3 (Size-Constrained Function Retrieval with

Abstention). For a specified retrieval size 𝜅, only a subset of
queries from the original distribution, 𝑃 ′ ⊆ 𝑃 , will be answered,
such that for 𝑥 ∼ 𝑃 ′, the expected coverage satisfies E[𝐶 (𝑥, 𝐹𝑥 )] ≥
1 − 𝛼 and the expected retrieval size satisfies E[𝑆 (𝑥)] ≤ 𝜅.

3 Reliable Data Transformation Function
Retrieval

3.1 Framework Overview
As shown in Figure 3, our framework for handling a new query

has two components: A Embedding Generation, which maps

queries and functions into the same embedding space, and B

Reliable Function Retrieval, which uses conformal prediction to

select candidate functions. Large retrieval sets are abstained to

reduce validation cost, triggering direct code generation (B.2),

while smaller sets allow direct validation (B.1). If validation fails,

the framework falls back to code generation, optionally human-

validated before adding to the function set. We discuss each

component below.

3.1.1 Embedding Generation. For a given query 𝑥 = (𝑥𝑖𝑛, 𝑥𝑜𝑢𝑡 ),
both 𝑥𝑖𝑛 and 𝑥𝑜𝑢𝑡 can be arbitrary data types. Our approach is

to derive natural language descriptions of all functions in 𝐹 as

well as of the function 𝑓 with property 𝑥𝑜𝑢𝑡 = 𝑓 (𝑥𝑖𝑛) utilizing

LLMs [7].

Specifically, we utilize prompts to instruct LLM to generate

two types of descriptions: (1) in a pre-processing step we generate

a description
2

for each function in the function set 𝐹 , denoted

as 𝐷 𝑓 (depicted as the Preprocessing Step in Figure 3) and (2)

at query time we inquire from an LLM to generate a natural

language description of the transformation required to transform

𝑥𝑖𝑛 to 𝑥𝑜𝑢𝑡 , denoted as 𝐷𝑥 , (depicted as the Query Step in Figure

3). We impose the same narrative for both types of descriptions

and include information such as the signature of the function

and a description of the procedure the function implements to

conduct the transformation.

To assess the closeness of natural language function descrip-

tions, we utilize embedding models to produce embeddings of

descriptions in the same latent space and measure the distance

between the query embedding and function embeddings. We use

𝑒𝑥 to represent the embedding for query 𝑥 , while 𝑒𝑓 represents

the embedding for a function 𝑓 . In our framework, we utilize GPT

and text embedding models from OpenAI to obtain descriptions

and embeddings
3
.

2
This can be accomplished with the assistance of an LLM or utilizing standard

function textual descriptions from libraries.

3
Specifically, we choose gpt-3.5-turbo-0125 and text-embedding-3-small.

The specific LLM and associated embeddings utilized are orthogonal to our

approach.

Note that during the generation process, both the descriptions

and embeddings may be imperfect, potentially introducing noise

and erroneous results. We account for this issue and mitigate its

impact through reliable function retrieval, which we discuss in

the following section.

3.1.2 Reliable Function Retrieval. For a given query, we compute

its embedding and rank all indexed functions by distance in

the embedding space. A common top-𝑘 selection fixes 𝑘 , but

this limits flexibility, as the retrieval size cannot adapt to query-

specific characteristics. Moreover, embedding noise may cause

the target function to appear close for some queries yet distant

for others.

To overcome this limitation, we propose an alternative strat-

egy that determines a query-specific distance threshold. Based

on this threshold, we can retrieve all functions whose distances

to the query fall within the defined range, resulting in a vari-

able number of retrieved functions per query. This approach

enables more precise control over coverage quality for different

queries (depicted as Reliable Function Retrieval in Figure 3). A

key challenge is determining the appropriate distance threshold

for reliable function retrieval (Figure 3.B.1). Utilizing the concept

of conformal prediction [41], we gather a set of query examples

with the corresponding target functions as the calibration set

and perform a dedicated calibration step to derive the necessary

thresholds. Moreover, based on the problem formulation (Prob-

lems 2 and 3), we also wish to abstain from answering certain

queries and perform code generation directly based on the cali-

bration result (Figure 3.B.2). In the following sections, we explore

this topic in depth.

3.2 Function Retrieval with Marginal
Coverage Guarantee

In this section, we provide a solution to Problem 1. We first

introduce conformal predictions in Section 3.2.1, which forms

the basis of our subsequent solution in Section 3.2.2.

3.2.1 Conformal Prediction. Let 𝑧𝑖 = (𝑥𝑖 , 𝑦𝑖 ) be an example ob-

served from some distributionZ = X ×Y, where X is the object
space and Y is the label space. Let 𝛼 ∈ (0, 1) be the given error
level. Then conformal prediction [4, 25, 41] provides a marginal

guarantee
4

of the prediction set 𝐼 (𝑋 ) ⊆ Y for a new example,

𝑍 ∼ Z, such that the following holds.

P(𝑌 ∈ 𝐼 (𝑋 )) ≥ 1 − 𝛼 (1)

In its standard form, conformal prediction assumes data ex-
changeability, which is weaker than the i.i.d assumption [41], to

provide a valid guarantee. The framework is generalized even if

the exchangeability assumption does not hold [5], thus providing

a general solution framework under any data distribution.

Let {𝑧𝑖 = (𝑥𝑖 , 𝑦𝑖 ) | 𝑖 ∈ {1 . . . 𝑛}} be the observations. Confor-

mal prediction works as follows [3]: (a) Define a non-conformity

measure 𝑠 ∈ R, which is used to quantify the error made by the

model. (b) Compute 𝑞 as the
⌈ (𝑛+1) (1−𝛼 ) ⌉

𝑛 quantile of the cali-

bration scores {𝑠 (𝑥𝑖 , 𝑦𝑖 ) | 𝑖 ∈ {1 . . . 𝑛}}. (c) For a new example 𝑋 ,

the prediction set is computed as 𝐶 (𝑋 ) = {𝑦 : 𝑠 (𝑋,𝑦) ≤ 𝑞}.

4
The guarantee is marginal because it holds on average over the entire data distri-

bution, not necessarily for every single data point. For example, even though the

overall coverage is 95%, for some individual points, the actual coverage could be

slightly higher or lower.
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Figure 3: The Overall Framework with Embedding Generation and Reliable Function Retrieval.

Both the above calibration step and model training could be

costly for each new example; thus, a commonly applied algo-

rithm is the split conformal prediction and its numerous variants

[31], where the model is trained and calibrated only once, while

the calibration result will be applied for all data points during

inference.

3.2.2 Function Retrieval with Conformal Prediction. In our set-

ting, we can first build a calibration set by collecting query and

target function pairs. This can be accomplished by imposing data

transformation requests, providing example input and output

(forming a query), and utilizing the set of functions at our dis-

posal to retrieve the true target function; for this, we rank the

set of functions with respect to the query, utilizing embeddings

and conducting validation. This is a task that is performed once

as part of the setup. We then proceed by calibrating a predic-

tor using split conformal prediction [41] using the calibration

set. Thus, in this setting, the object space is the queries in the

embedding space, X = R𝑁
, where 𝑁 is the number of dimen-

sions, while the label space Y = R is the space of distances of

the queries to their target functions. For each query embedding

𝑒𝑥 ∈ X, the ground-truth distance of the query 𝑥 to its target

function is denoted 𝑑𝑥 ∈ Y. We use the ground-truth distance as

our non-conformity score, formally,

𝑠 (𝑒𝑥 , 𝑑𝑥 ) = 𝑑𝑥 (2)

We use 𝑠𝑥 to denote the non-conformity score for simplicity in

the remaining sections. Then, we compute 𝑞 as the
⌈ (𝑛+1) (1−𝛼 ) ⌉

𝑛
quantile of the non-conformity scores in the calibration set (as

described in Section 3.2.1). For a new query 𝑞′, we compute

our prediction interval as 𝐼 (𝑞′) = [0, 𝑞]. Conformal prediction

guarantees that P(𝑑𝑞′ ∈ 𝐼 (𝑞′)) ≥ 1 − 𝛼 . The functions to be

retrieved are collected based on the prediction interval, 𝐹𝑞′ =

{𝑓 ∈ 𝐹 | 𝑑𝑓 ∈ 𝐼 (𝑞′)}. It is evident that E[𝐶 (𝑞′, 𝐹𝑞′ )] ≥ 1 − 𝛼 .

We refer to this method as Function Retrieval with Conformal

Prediction, or simply FRCP.

3.3 Function Retrieval with Abstention
In this section, we propose our solution to the problem outlined

in Problem 2. Given an abstention ratio 𝛽 , our objective is to

consistently abstain from queries associated with larger retrieval

sizes. However, this presents a challenge, as the retrieval size for

a specific query is unknown until the retrieval process has been

executed.

One approach is to estimate the retrieval size with conformal

prediction and subsequently abstain from queries with larger

estimated retrieval sizes. However, this may compromise con-

formal prediction’s coverage guarantee of including the target

function. This is because the calibration process focuses on opti-

mizing retrieval size rather than preserving conformal prediction

coverage.

To ensure the desired coverage guarantee, the key intuition

is that if we can partition the query space R𝑛
into groups based

on their retrieval sizes, and then achieve conditional coverage

guarantees within each group, we can safely abstain from queries

belonging to groups with larger retrieval sizes. Building on this

intuition, we first present a learned approach that provides con-

ditional coverage guarantees for each group in Section 3.3.1. We

then introduce our proposed solution and describe how to esti-

mate the retrieval sizes for each group in Section 3.3.2.

3.3.1 Conformal Prediction with Learned Features. Kiyani et al.

[23] propose a general approach, where the ultimate goal is to

provide full conditional coverage that for every 𝑥 ∈ X:

P(𝑌 ∈ 𝐼 (𝑋 ) | 𝑋 = 𝑥) = 1 − 𝛼 (3)

This goal aims to provide a coverage guarantee of 1 − 𝛼 for

each query 𝑥 . However, such a full conditional coverage is impos-

sible with a finite-size calibration set [23]. Thus it was proposed

to relax it and learn a partitioning of the covariate space such

that queries in the same partition are similar in terms of their

prediction sets.

Specifically, this partitioning can be represented by a function

classH , which outputs a vector of the probabilities of an object

𝑥 belonging to𝑚 groups
5
. Consider a single group and let 𝑆 be

the distribution of the non-conformity scores in that group. It

is known that for the random variable 𝑠 ∈ 𝑆 minimizing the

expected pinball loss over 𝑞 yields an (1 − 𝛼)-quantile of the

distribution [23].

ℓ𝛼 (𝑞, 𝑠) =
{
𝛼 (𝑞 − 𝑠) if 𝑞 ≥ 𝑠,

(1 − 𝛼) (𝑠 − 𝑞) if 𝑞 < 𝑠 .

By design, pinball loss aims to optimize by penalizing less when

we overestimate and penalizing more when we underestimate

the true value. We refer to 𝑞 as the learned quantile value.

With that in mind, we formulate the following optimization

problem. Let q = (𝑞1, . . . 𝑞𝑚) ∈ 𝑅𝑚 , where 𝑚 is the number

of desired groups. Consider a calibration set (𝑥𝑖 , 𝑠𝑖 ), 1 ≤ 𝑖 ≤ 𝑛

consisting of queries along with their non-conformity scores, and

a function classH . The joint optimization problem is formulated

as follows:

ℎ∗, 𝑞∗ = argmin

𝑞∈R𝑚,ℎ∈H

1

𝑛

𝑛∑︁
𝑗=1

𝑚∑︁
𝑖=1

ℎ𝑖 (𝑥 𝑗 )ℓ𝛼 (𝑞𝑖 , 𝑠 𝑗 ) (4)

5
In practice, this can be a neural network with a multi-class output layer or a set of

functions such as linear functions.
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where ℎ𝑖 is the probability that a query belongs to group 𝑖 , and

𝑠 𝑗 denotes the non-conformity score for 𝑗-th example.

To quantify the error of such an approach, Mean Squared Con-
ditional Error (MSCE) is introduced, which measures the deviation

of prediction sets 𝐼 (𝑋 ) from Equation 3, defined as

𝑀𝑆𝐶𝐸 (Z, 𝛼, 𝐼 ) = E[(P(𝑌 ∈ 𝐼 (𝑋 ) | 𝑋 = 𝑥) − (1 − 𝛼))2] (5)

whereZ is the distribution of the examples (Section 3.2.1). Next,

we explore approaches that simultaneously control the propor-

tion of examples in certain groups and guide each group to have

distinct retrieval sizes.

In practice, the optimization problem in Equation 4 can be

solved using neural networks (i.e., utilizingℎ𝜃 to deriveH , where

𝜃 represents the network parameters). The training process can

be conducted through alternating gradient descent, where a few

gradient descent steps are taken on both 𝑞 and 𝜃 in each iteration

[23].

However, as we will show in our experiments (Section 4), this

general approach is not suitable in our context. The primary

limitation is that the resulting joint optimization, leading to the

learned network ℎ𝜃 , fails to: (a) control the proportion of ex-

amples assigned to each group, and (b) consistently generate

partitions where each group exhibits a distinct retrieval size. This

occurs because neither the group size nor the retrieval size within

each group are explicitly included in the optimization objective.

In Problem 2, our specific goal is to ensure that at least one

group has an expected retrieval size larger than that of the other

groups. If we can identify such a group, comprising a 𝛽 pro-

portion of samples from the distribution Z, the problem can

be addressed by abstaining from this group while maintaining

coverage guarantees for the remaining groups. In the following

section, we explore methods that allow for controlling the pro-

portion of examples in specific groups while ensuring that each

group has a distinct retrieval size.

3.3.2 Function Retrieval with Abstention. To address the chal-

lenges outlined in Section 3.3.1, we introduce a guided approach

for selecting the function class H during calibration. The key

intuition is to partition the space such that: (a) approximately

𝛽 proportion of the samples from the original distribution is as-

signed to a specific group, denoted as 𝐺𝑎 , and (b) the queries

within group𝐺𝑎 yield retrieval sets that are larger in expectation

compared to those in the remaining groups.

The proposed method involves decoupling the joint optimiza-

tion problem in Equation 4 into two distinct steps: (a) first, par-

tition the calibration set and define the function class H by

training a neural network ℎ𝜃 on an auxiliary classification task,

and (b) once the partitioning is established using the network

ℎ𝜃 , proceed to optimize only for 𝑞∗ in Equation 4. This separa-

tion simplifies the optimization process while ensuring that the

partitioning aligns with the objective of managing retrieval sizes

across groups. We next discuss these two steps separately.

Step 1. Auxiliary Classification Task. We now outline the

process for preparing the training data for the auxiliary clas-

sification task. A key challenge is that the retrieval size for a

query cannot be directly obtained, as it is only available when

the retrieval is performed with the specified mis-coverage rate

𝛼 . To address this, we propose using a minimal retrieval size as a

proxy to guide the partitioning (and we refer to the steps below

collectively as minimal retrieval size computation), defined as

follows:

(1) First, compute the non-conformity score 𝑠𝑥 for each query 𝑥

as specified in Equation 2.

(2) Next, construct an interval 𝐼 (𝑥) = [0, 𝑠𝑥 ] for each query

𝑥 . This interval is the minimum interval that guarantees

coverage of the ground-truth distance between the query and

its target function.

(3) Using the interval 𝐼 (𝑥), define a set of functions 𝐹𝑥 = {𝑓 ∈
𝐹 | 𝑑𝑓 ∈ 𝐼 (𝑥)}, referred to as the minimal retrieval function
set. This set contains the smallest number of functions that

ensures inclusion of the target function for query 𝑥 .

(4) The size of the set |𝐹𝑥 | is used as the minimal retrieval size.
This minimal retrieval size serves as a proxy to guide the

partitioning of queries during the auxiliary classification task.

With the minimal retrieval size, we can construct a dataset to

trainH on the auxiliary task. To achieve this, we introduce the

Function Retrieval with Abstention (FRA) Algorithm, shown in

Algorithm 1.

Algorithm 1: FRA

1 𝐿𝑥 ← the list of query embeddings in the calibration set;

2 𝐿𝑠 ← a list of minimal retrieval sizes;

3 𝑠𝛽 ← the 1 − 𝛽 quantile of 𝐿𝑠 ; 𝐿𝑙 ← {};
4 foreach 𝑠 ∈ 𝐿𝑠 do
5 𝑙𝑎𝑏𝑒𝑙 ← 𝑠 ≤ 𝑠𝛽 ? 0 : 1; 𝐿𝑙 .append(𝑙𝑎𝑏𝑒𝑙 ) ;
6 ℎ𝜃 ← the neural network for partitioning;

7 Train ℎ𝜃 on (𝐿𝑥 , 𝐿𝑙 ) as a classification task;

We assume, without loss of generality, that the query space is

partitioned into two groups, with one group representing 𝛽 pro-

portion of the examples. The algorithm operates as follows: First,

compute the minimal retrieval size for each query (Steps 1-2), and

then determine the (1 − 𝛽) quantile from the computed retrieval

sizes (Step 3), which will serve as the split point for partitioning.

Next, queries in the calibration set are labeled based on this split

value (Step 5). Specifically, a neural network ℎ𝜃 is trained using

the labeled data (Steps 6-7). For instance, with 𝛽 = 0.2, the algo-

rithm identifies the 0.8 quantile of the minimal retrieval sizes,

which serves as the threshold (𝑠𝛽 ) for group assignment. Queries

with a minimal retrieval size less than 𝑠𝛽 are assigned a label

of 0, while those with a minimal retrieval size greater than or

equal to 𝑠𝛽 are assigned a label of 1. In this case, queries labeled

as 1 constitute approximately 𝛽 proportion of the set and will be

treated as the group for abstention.

The algorithm can be readily extended to support more groups,

though we omit the details here for brevity. The network ℎ𝜃 is

trained using labeled data, employing Binary Cross Entropy loss

for two groups or Cross Entropy loss when handling multiple

groups. Dropout can be applied during training to prevent over-

fitting.

It is important to note that the labels generated in the algo-

rithm (Steps 4-7) are used solely to guide the training of the

partitioning network ℎ𝜃 . These manually assigned labels may

not fully capture the underlying structure of the original distri-

bution space. Therefore, after training ℎ𝜃 , we use it to re-assign

labels to the queries in the calibration set. The intuition here is

that ℎ𝜃 can learn structural patterns in the covariates, enabling

consistent partitioning of future queries based on these learned

patterns.
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Step 2. Obtaining quantile values. After obtaining the par-

titioning network ℎ𝜃 , it remains necessary to determine the ap-

propriate quantile values within the groups we choose not to

abstain from in order to solve Problem 2. We explore two poten-

tial approaches:

Learned Approach (LA): We fix the network ℎ𝜃 and use gra-

dient descent to optimize 𝑞∗, as specified in Equation 4. This

approach modifies only the training process ofH , and as a result,

the theoretical analysis presented in Section 3.3.1 remains valid.

Conformal Prediction Approach (CPA): After training ℎ𝜃 ,

we can directly apply conformal prediction within the groups

we opt not to abstain from. In this scenario, ℎ𝜃 is treated as

a partitioning function based on covariates, aligning with the

framework of group-conditional conformal prediction [32]. We

can thus apply our proposed FRCP method (Section 3.2.2) for

the group that chooses not to abstain; we refer to this approach

as CPA. This approach provides marginal coverage guarantees

within each group, ensuring coverage for the remaining non-

abstaining groups. Formally, let 𝐺𝑎 denote the group that ℎ𝜃
chooses to abstain. Under exchangeability, for 𝑋 ∼ X, it’s trivial

that the following holds:

P(𝑌 ∈ 𝐼 (𝑋 ) | 𝑋 ∉ 𝐺𝑎) ≥ 1 − 𝛼
Analysis. We utilize the minimal retrieval size to guide the

partitioning network in learning how to partition based on covari-

ates. We manually construct the training set for the classification

task, which serves as a guide for partitioning. Within this train-

ing set, we assign a proportion 𝛽 of the queries with the largest

minimal retrieval size to a group, denoted as𝐺𝑎 . The partitioning

network then learns, based on query features, to partition future

queries such that one group will consistently contain approxi-

mately 𝛽 of the queries, characterized by the largest expected

retrieval sizes.

Formally, let 𝐺𝑎 (labeled as 1) and 𝐺𝑏 (labeled as 0) be two

groups of queries from the calibration set utilizing Algorithm 1,

drawn from distribution X, and let 𝑆 ′ (𝑥) denote the minimal

retrieval size for query 𝑥 . Since we partition groups based on

the minimal retrieval size, it follows that E[𝑆 ′ (𝐹𝑥 ) | 𝑥 ∈ 𝐺𝑎] >
E[𝑆 ′ (𝐹𝑥 ) | 𝑥 ∈ 𝐺𝑏 ].

From the steps in the minimal retrieval size computation, for a

query 𝑥 , a larger 𝑆 ′ (𝑥) corresponds to a higher non-conformality

score 𝑠𝑥 , and conversely, a smaller 𝑆 ′ (𝑥) implies a lower 𝑠𝑥 . With-

out loss of generality, we can state that E[𝑠𝑥 | 𝑥 ∈ X] increases

as E[𝑆 ′ (𝐹𝑥 ) | 𝑥 ∈ X] increases. Let 𝑞𝑎 be the 1 − 𝛼 quantile of

non-conformity scores for group𝐺𝑎 , and𝑞𝑏 be the corresponding

quantile for group 𝐺𝑏 . We have 𝑞𝑎 > 𝑞𝑏 . Since the retrieval size

is computed based on the quantile, a higher quantile 𝑞 results

in a larger retrieval size. Therefore, as 𝑞 increases, the expected

retrieval size E[𝑆 (𝐹𝑥 ) | 𝑥 ∈ X] also increases. Consequently, we

have E[𝑆 (𝐹𝑥 ) | 𝑥 ∈ 𝐺𝑎] > E[𝑆 (𝐹𝑥 ) | 𝑥 ∈ 𝐺𝑏 ].
Let L be the loss function of the partitioning network ℎ𝜃 .

When L = 0 and the calibration set is sufficiently large, un-

der the i.i.d. assumption, for any query drawn from the origin

distribution, where 𝑥 ∈ X, the following holds:

E[𝑆 (𝐹𝑥 ) | ℎ𝜃 (𝑥) = 1] > E[𝑆 (𝐹𝑥 ) | ℎ𝜃 (𝑥) = 0] (6)

As the model converges in practice, L approaches zero, ensuring

that Equation 6 remains valid. We will empirically validate this

approach in the experiments section.

3.3.3 Function Retrieval with Abstention for New Queries. After

calibration, we should obtain: (a) the partitioning network ℎ𝜃 ,

which assigns a given query to a group, and (b) the quantile

value 𝑞𝑖 for each group 𝑖 . To provide reliable function retrieval,

for a new query 𝑞′, we first assign it to a group using ℎ𝜃 . Two

cases arise: (1) if 𝑞′ is assigned to the group which we wish

to abstain from, 𝐺𝑎 , we perform abstention directly; (b) if 𝑞′ is

assigned to any other group 𝑖 , we calculate our prediction interval

𝐼 (𝑞′) = [0, 𝑞𝑖 ], where 𝑞𝑖 is the quantile value associated with the

group 𝑖 , and produce retrieval set 𝐹𝑞′ = {𝑓 ∈ 𝐹 | 𝑑𝑓 ∈ 𝐼 (𝑞′)}.

3.4 Size-Constrained Function Retrieval with
Abstention

We now address Problem 3, where the goal is to specify a target

retrieval size𝜅 such that queries with a retrieval size larger than𝜅

are subject to abstention. For simplicity, we continue to denote the

abstaining group of queries as 𝐺𝑎 and the non-abstaining group

as 𝐺𝑏 . This problem is challenging because the partitions 𝐺𝑎 and

𝐺𝑏 must be determined, and the exact expected retrieval size for

queries in 𝐺𝑏 can only be computed—given a mis-coverage rate

𝛼—once the partitioning is finalized. To address this, we propose

a method aimed at ensuring that the expected retrieval size for

𝐺𝑏 is as close as possible to the specified target 𝜅.

In Section 3.3.2, we introduced the concept of the minimal re-
trieval size for partitioning the calibration set. A straightforward

strategy involves using the target retrieval size 𝜅 as a threshold to

partition the calibration set: samples with a minimal retrieval size
exceeding 𝜅 are assigned to 𝐺𝑎 , while the remaining samples are

assigned to 𝐺𝑏 . We refer to this strategy as the initial partition.

To ensure marginal coverage, we compute the quantile value

for group 𝐺𝑏 after forming the initial partition. This value will

be used to calculate the actual retrieval size for queries in 𝐺𝑏 .

However, the actual retrieval size may differ significantly from

𝜅. To better align with 𝜅, we propose an iterative adjustment to

the initial partition. We refer to such a method Size-Constrained

Function Retrieval with Abstention (CFRA), detailed in Algo-

rithm 2.

We first partition the calibration set into two groups based on

𝜅 using minimal retrieval size (i.e., we derive the initial partition)

(Lines 1-3). Then, we collect the unique distance values between

each query and its target function in each group (Lines 4-5) and

compute 𝑞 for group𝐺𝑏 with the given mis-coverage rate 𝛼 (Line

6), based on which we can obtain the actual retrieval size for

group 𝐺𝑏 (Line 7). The computation works as follows: (a) we

first obtain the actual retrieval set for each query 𝑥 ∈ 𝐺𝑏 with

the quantile value 𝑞, (b) we then compute the retrieval size for

each query 𝑥 , and aggregate the average value among all queries

in 𝐺𝑏 , denote as current average retrieval size 𝑛̂. Depending on

the value of 𝑛̂, we either remove data points from 𝐺𝑎 (Lines 9-

13) or add more data points to 𝐺𝑏 (Lines 15-21). For example,

if 𝑛̂ exceeds the target 𝜅, we iteratively remove points with the

highest distances (Lines 9-11) and stop once 𝑛̂ falls just below 𝜅

(Lines 12-13, lines 19-21). We then construct the training labels

accordingly and train ℎ𝜃 as outlined in Section 3.3.2 (Lines 22-23).

Similarly, the quantile value for the non-abstain group can be

obtained using the same FRCP method discussed in Section 3.2.2.

With Algorithm 2, we construct the labels for groups 𝐺𝑎 and

𝐺𝑏 , such that E[𝑆 (𝐹𝑥 ) | 𝑥 ∈ 𝐺𝑏 ] ≤ 𝜅, and use these labels to

train the partitioning network ℎ𝜃 . Under the i.i.d. assumption,

for queries drawn from the original distribution 𝑥 ∈ X, with a

sufficiently large calibration set, as the loss of the partitioning

network approaches zero (i.e., L → 0), the objective E[𝑆 (𝐹𝑥 ) |
ℎ𝜃 (𝑥) = 0] ≤ 𝜅 can be achieved. We will empirically demonstrate
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Algorithm 2: CFRA

1 𝐿𝑥 ← the list of query embeddings in the calibration set;

2 𝐺𝑎 ← 𝑥 ∈ 𝐿𝑥 with minimal retrieval size > 𝜅;

3 𝐺𝑏 ← 𝑥 ∈ 𝐿𝑥 with minimal retrieval size ≤ 𝜅;

4 𝐷𝑎 ← unique distances between

queries and the groud-truth function in 𝐺𝑎 ;

5 𝐷𝑏 ← unique distances between

queries and the groud-truth in 𝐺𝑏 ;

6 𝑞 ← compute_q_hat(𝐺𝑏 , 𝛼 ) ;

7 𝑛̂ ←compute_average_size(𝐺𝑏 , 𝑞);

8 if 𝑛̂ > 𝜅 then
9 𝑠𝑙𝑖𝑠𝑡 ←sort 𝐷𝑏 in descending order;

10 for 𝑠 ∈ 𝑠𝑙𝑖𝑠𝑡 do
11 remove examples with distance 𝑠 from 𝐺𝑏 ;

12 recompute 𝑞 and 𝑛̂;

13 if 𝑛̂ < 𝜅 then break ;

14 else
15 𝑠𝑙𝑖𝑠𝑡 ←sort 𝐷𝑎 in ascending order;

16 for 𝑠 ∈ 𝑠𝑙𝑖𝑠𝑡 do
17 add examples with distance 𝑠 to 𝐺𝑏 ;

18 recompute 𝑞 and 𝑛̂;

19 if 𝑛̂ > 𝜅 then
20 remove the example added in the previous step ;

21 break;

22 𝐿𝑙 ← labels based on 𝐺𝑎 and 𝐺𝑏 ;

23 train ℎ𝜃 on (𝐿𝑥 , 𝐿𝑙 ) as a classification task;

in the experiments that this method yields an average retrieval

size that is less than 𝜅.

After calibration, we obtain the partitioning network ℎ𝜃 and

quantile 𝑞𝑖 for each group. For a new query 𝑞′, inference follows

Section 3.3.3 and is omitted for brevity.

3.5 Extensions
In this section, we further discuss two extensions to the problems.

3.5.1 Reliable Retrieval Beyond Exchangeability. In the general

case, conformal methods accommodating non-exchangeability

[5] can also be applied, with our framework still applicable.

The main change lies in computing the quantile in FRCP (Sec-

tion 3.2.2).

Specifically, in the non-exchangeability setting, we assign a

weight to each example in the calibration set during query time

to compute the threshold value. Let 𝑒𝑞 represent the embedding

of the new query 𝑞, and the weight of an example 𝑥 from the

calibration set is computed as 𝑤𝑥 = 𝑒𝑥𝑝 (−𝑑 (𝑒𝑞, 𝑒𝑥 )/𝜏) for a

hyper-parameter 𝜏 (default value of 1). This weight controls the

influence of each calibration, with the intuition that points closer

to the query point should exert more influence. The weights are

normalized as 𝑤̂𝑥 = 𝑤𝑥/(1 +
∑
𝑥∈X𝑐𝑎𝑙 𝑤𝑥 ), where X𝑐𝑎𝑙 is the

calibration set. The cutoff threshold 𝑞 is computed as 𝑞 = inf{𝑠 |
1(𝑠𝑥 ≤𝑠 )𝑤̂𝑥 ≥ 1 − 𝛼}, where 𝑠𝑥 is the non-conformity score as

defined in Section 3.2.2, and 1𝑐𝑜𝑛𝑑 is the indicator function that

equals 1 if the condition 𝑐𝑜𝑛𝑑 is met and 0 otherwise.

With the non-exchangeability assumption, the bound of Equa-

tion 1 becomes slightly looser. Further details of the analysis

can be found in [5]. By modifying the quantile computation in

FRCP, our framework extends to non-exchangeability settings

while still providing a marginal coverage guarantee for all three

problems we discussed so far. We will compare these methods in

the experiments.

3.5.2 Reliable Retrieval with an Additional RegressionModel. Our

framework operates in the embedding space, leveraging natural

language descriptions. However, due to the imprecision and vast-

ness of natural language, performing retrieval based solely on

the nearest neighbors may not always yield relevant functions. It

is natural to expect that the quality of descriptions of the query

transformation and function descriptions, directly impacts the

quality of nearest neighbor retrieval. Assuming we can achieve

quality descriptions, a regression model can be introduced to

predict the expected distance to the target function in the embed-

ding space before retrieval, thereby refining the retrieval set. Let

𝑀𝑟𝑒𝑔 be a regression model predicting the distance to the target

function, denoted 𝑑′𝑥 = 𝑀𝑟𝑒𝑔 (𝑥), for a given query 𝑥 . Rather than

directly using nearest neighbor retrieval, we define a prediction

band around 𝑑′𝑥 to construct the retrieval set.

Our framework supports this extension with two modifica-

tions: (a) redefining the non-conformity score to be the residual

between the predicted and actual distance to the target function,

i.e., 𝑠′ (𝑒𝑥 , 𝑑𝑥 ) = |𝑀𝑟𝑒𝑔 (𝑥) − 𝑑𝑥 |; and (b) defining the prediction

interval 𝐼 ′ (𝑥) = [𝑑′𝑥 − 𝑞, 𝑑′𝑥 + 𝑞], from which the retrieval set is

constructed as 𝐹 ′𝑥 = {𝑓 | 𝑑𝑓 ∈ 𝐼 ′ (𝑥)}.
In this setting, we expect that |𝐹 ′𝑥 | < |𝐹𝑥 |, where 𝐹𝑥 is the

retrieval set constructed using the FRCP method in Section 3.2.2.

The intuition is that, if the regression model performs well, the

prediction interval will be narrower than without 𝑀𝑟𝑒𝑔 , meaning

that |𝑑′𝑥 −𝑑𝑥 | < 𝑑𝑥 . Assuming a uniform distribution of functions

in the embedding space, this should result in |𝐹 ′𝑥 | < |𝐹𝑥 |. We will

empirically demonstrate the impact of including and excluding

the regression model in our framework in the experiments.

4 Experimental Evaluation
4.1 Experiments Setting
We employ GPT-3.5-turbo-0125 as the large language model

(LLM) in our experiments, to generate descriptions of functions

and queries, and text-embedding-3-small to obtain embed-

dings. All algorithms are implemented in Python. We use three

datasets with different complexities: (a) STD: We created the

Simple Transformation Dataset (STD) with 60 functions over

numerical, string, and boolean data. Each function has 20 queries,

totaling 1,200 queries. (b) TDE: We use the dataset from [15], con-

taining complex transformations (e.g., unit conversion, pattern

extraction, URL encoding), and augment it with additional gener-

ated queries, yielding 2,250 queries over 227 functions. (c) DS1K:

To enable large-scale validation, we adapt DS-1000 [24], yielding

13,129 queries over 771 functions. Unlike simple transformations,

these functions target specific code-completion scenarios, where

code snippets serve as functions and task descriptions as queries.

The transformation functions for each dataset are implemented

in Python, and LLM-generated descriptions are provided for each

function. Note that our method is independent of the LLM choice

and function implementations, as we focus on reliable retrieval in

the embedding space. All the datasets are made publicly available

6
. Unless otherwise specified, each dataset is split into calibra-

tion and test sets evenly. To demonstrate statistical trends, we

perform 10 independent runs with different random seeds for

each method and report the results from all runs.

The experiments aim to achieve three primary objectives:
• Coverage Validation. To ensure that the empirical coverage

across all methods (Sections 3.2 to 3.4) aligns with the

6
https://github.com/dbllm/refred
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Figure 4: End-to-End Evaluation Results on All Datasets

target level, maintaining the specified mis-coverage rate,

𝛼 .

• Average Retrieval Percentage Comparison. For methods in-

corporating an abstention option (Sections 3.3 and 3.4),

we aim to demonstrate that queries with abstention con-

sistently result in a larger empirical average retrieval size

if the retrieval is performed, than those without. To better

visualize the results, we show the average retrieval size as

a percentage of the total number of pre-defined functions

for all queries, denoted as average retrieval percentage.

• Method Extensions Evaluation. To demonstrate that our

proposed extension methods (Section 3.5) enhance either

the empirical coverage or the average retrieval percentage.

Ultimately, we seek to show that by tuning the mis-coverage

rate 𝛼 , one can balance the trade-off between function execution

cost during validation and function generation cost.

4.2 Reliable Function Retrieval
In this section, we follow the objectives outlined in Section 4.1,

and evaluate the Coverage Validation and Average Retrieval Per-
centage Comparison objectives first across all methods (Sections 4.2.2

to 4.2.4). We then address the Method Extensions Evaluation in

Sections 4.2.5 and 4.2.6. Additionally, in Section 4.2.7, we vary

the embedding models to demonstrate that our method is not

sensitive to the specific choice of embedding model. Finally, in

Section 4.2.8, we present the trade-off between function execution

and code generation.

4.2.1 Comparison with other Baselines. To demonstrate the ben-

efit of our proposed methods, we compare against popular ap-

proaches for the function transformation task, including: (1) CG
(CodeGeneration): LLM directly generates Python code from in-

put/output pairs. (2) RAG (Retrieval-Augmented Generation):
Queries and functions are first embedded (as in Section 4.1), the

top-𝑘 functions are then retrieved, and an LLM selects one as the

transformation function. (3) RV (Retrieval-and-Validation):
Similar to RAG, but instead of LLM selection, functions are val-

idated against the query, guaranteeing correctness if the tar-

get function is retrieved. We also evaluate our proposed FRCP
method (Section 3.2.2), which applies conformal prediction with

mis-coverage rate 𝛼 ∈ [0.01, 0.5] and reports validation accuracy.

We show our experiment results on the above baselines in

Figure 4a. For both approaches CG and RAG, the result qual-

ity depends on various factors, including model, prompts, etc.

We report our results using the best prompt we tried. Results

are shown for three LLMs, including gpt-4o-mini (denoted as

CG/4o and RAG/4o), gpt-5-mini (denoted as CG/5 and RAG/5),

and codex-mini-latest model finetuned on code generation

tasks (denoted as CG/X and RAG/X). The CG method achieves vary-

ing levels of accuracy across different datasets: among them, it

performs best on the STD dataset and worst on the DS1K dataset,
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age for Varying 𝛼 with FRCP

highlighting the intrinsic challenge of the task when employing

the code generation approach.

For RAG and RV, we also vary 𝑘 ∈ {3, 5} to examine its im-

pact, denoted as RAG@k and RV@k. The accuracy of CG and RAG

depends heavily on the underlying LLM, with gpt-5-mini per-

forming best. For retrieval-based methods (i.e., RAG and RV),

accuracy is limited by LLM generation errors, so RAG cannot ex-

ceed RV. Increasing 𝑘 improves both RAG and RV, but all baseline

methods operate on a best-effort basis, leaving accuracy beyond

user control.

As can be observed from Figure 4b, our proposed method

FRCP allows users to specify a mis-coverage rate 𝛼 (denoted as

FRCP/𝛼 , where 𝛼 varies from 0.01 to 0.5), enabling the achieved

accuracy to closely match the user’s target. Such results can be

consistently observed on all these datasets. The parameter 𝛼

indirectly controls the size of the retrieved function set, thereby

influencing either the cost of LLM invocations for code generation

or the cost of function invocations. We will further discuss such

topics in detail in the following sections.

4.2.2 Function Retrieval with Marginal Coverage Guarantee. We

present the results of our proposed method, FRCP, introduced

in Section 3.2.2, where we vary the mis-coverage rate 𝛼 from

0.5 to 0.01. Figure 5 illustrates the expected coverage rate as a

diagonal line. Each box plot corresponds to a different 𝛼 value

and represents the coverage over 10 independent runs. The boxes

depict the interquartile range, which encompasses the middle 50%

of the coverage values, with whiskers extending to the minimum

and maximum observed values. Note that while the x-axis labels

appear evenly spaced for better visualization, the corresponding

𝛼 values are not uniformly distributed. In both data sets, we

observe that the expected coverage rate is statistically maintained

for each 𝛼 .

From Figure 6, as 𝛼 decreases to 0.01, the coverage improves,

but the average retrieval percentage increases to more than 40%

for STD, 30% for TDE, and 20% for DS1k, imposing significant

validation costs. This suggests that while function retrieval using

large language models (LLMs) yields practical results, there is a

tradeoff: higher coverage comes at the cost of larger validation

sets. Our method allows users to manage this tradeoff by adjust-

ing the mis-coverage rate (𝛼), offering control over the balance

between coverage and validation cost.

4.2.3 Function Retrieval with Abstention. We begin by present-

ing the performance of the general approach, CPLF, as outlined

in Section 3.3.1. Following this, we discuss the results of our

proposed methods in detail.

CPLF: We implement the CPLF method proposed by Kiyani, et.

al. [23] and utilize it for our task, using two groups (i.e., setting

the number of output classes to 2 for the partitioning network).

For each value of 𝛼 , we run CPLF 10 times independently and
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Figure 7: CPLF on TDE Dataset.
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Figure 8: Avg. Retrieval Percentage per Group on TDE

count how many groups are obtained at the end of each run.

Due to space constraints, we present the results for the TDE

dataset in Figure 7; the results on other datasets exhibit a similar

trend. Figure 7a presents the actual number of groups obtained

for different values of 𝛼 . For example, when 𝛼 = 0.05, 2 out of

10 runs produce 2 groups, while 8 runs only produce one group.

CPLF does not consistently generate the desired two groups

across both datasets. The best performance is observed with the

TDE dataset when 𝛼 = 0.2, where two groups are obtained in

the result for 6 out of 10 runs. Further increasing the expected

number of groups produces similar results.

This behavior can be attributed to two key factors: (a) optimiz-

ing the joint problem involving both the partitioning network

and the quantile value is complex and may require careful hyper-

parameter tuning, and (b) the large embedding space for natural

language descriptions introduces multiple possible solutions to

the joint optimization problem. Additionally, the inherent ran-

domness in the gradient descent process can lead to suboptimal

outcomes.

In Figure 7b, we also plot the average retrieval percentage for

each group when two groups are successfully formed. Since the

average retrieval size is not explicitly optimized by CPLF, the

percentages of the two groups may not vary significantly. For

example, when 𝛼 = 0.1, there is a noticeable gap between the

average retrieval percentages of groups A and B. However, as

𝛼 increases to 0.3, the retrieval percentages for the two groups

become more similar. These findings suggest that CPLF is not

suited for our specific task, emphasizing the necessity of our

proposed method.

FRA: We present our FRA-based methods, described in Sec-

tion 3.3.2, in Figures 8 to 11. Specifically, FRA is used to obtain

the partitioning network while applying either LA (referred to

as FRA+LA) or CPA (referred to as FRA+CPA) to compute the

quantile value. The abstention rate is set by default to 𝛼 = 0.2,

meaning that approximately 20% of queries are expected to be

abstained.

Figure 8 shows the average retrieval percentage on the TDE

dataset; the results on other datasets show a similar trend and

are omitted due to space constraints. Since the partitioning net-

work is guided by the grouping results utilizing minimal retrieval

0.5 0.4 0.3 0.2 0.1 0.05
0.0

0.1

0.2

0.3

0.4

A
bs

ta
in

 R
at

e

(a) FRA+LA

0.5 0.4 0.3 0.2 0.1 0.05
0.0

0.1

0.2

0.3

0.4

A
bs

ta
in

 R
at

e

(b) FRA+CPA

Figure 9: Abstain Rate with FRA (TDE)
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Figure 12: Varying 𝛽 on TDE (FRA+CPA)

percentage, our method consistently identifies two groups with

significantly different average retrieval percentages, as reflected

in both figures. We denote group A as the set of queries that

will be abstained from answering, while group B represents the

remaining queries. Additionally, the specified abstention rate is

met, as shown in Figure 9. The results for the STD dataset exhibit

the same trend and are omitted for brevity. In the remaining

experiments, we focus on FRA+CPA, as FRA+LA yields similar

results.

Furthermore, we plot the coverage for all datasets using both

approaches in Figures 10 and 11. As shown, the empirical cover-

age is maintained near the target value. However, compared to the

base conformal prediction method applied to the entire dataset

(Figure 5), the empirical coverage for non-abstained queries tends

to be lower than expected. This discrepancy stems from the bias

introduced by the partitioning network, which violates the ex-

changeability assumption. Later in this section, we will demon-

strate how methods that do not assume exchangeability can

address this issue.

Varying 𝛽: We also vary the value of 𝛽 from 0.1 to 0.5 to demon-

strate the flexibility of the FRA method and present the results

on TDE in Figure 12 (STD also shows similar results). Regardless

of the specific value of 𝛽 , the partitioning network consistently

maintains the desired proportion of samples to abstain from an-

swering (Group A in Figure 12a). Furthermore, we observe that

the average retrieval percentage of each group remains signifi-

cantly different across all 𝛽 values in Figure 12b, suggesting that

queries likely to produce larger retrieval percentages are more

prone to being abstained.
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Figure 16: Coverage with CFRA+CPA Varying 𝛼

As the abstention rate 𝛽 increases, we also notice a drop in

empirical coverage, as shown in Figure 13. This decrease in cover-

age is attributed to two factors: (a) as more queries are abstained,

fewer samples remain in each group for calibration, leading to

poorer calibration results; and (b) the partitioning network may

introduce bias, violating the exchangeability assumption.

Varying Number of Groups: The FRA method can be extended

to support more than two groups. We increase the number of

groups from 2 to 4 and compute the overall coverage for non-

abstained queries, as shown in Figure 14. As the number of groups

increases, the overall coverage decreases. This trend is consistent

with our earlier observation in Figure 11, where empirical cover-

age tends to fall below the expected coverage. As more groups

are introduced, the gap between empirical and expected coverage

widens. These findings suggest that, for reliable function retrieval

with abstention, using two groups yields the best results.

4.2.4 Size-Constrained Function Retrieval with Abstention. For

the solution to Problem 3, we set 𝜅 = 4% of the number of pre-

defined functions (𝜅 = 1% for the DS1K dataset due to the high

number of functions) and evaluate the CFRA method (Section 3.4)

with CPA to compute quantile values across varying values of 𝛼 .

Figure 15 presents the results for TDE and DS1K. The results for

STD are omitted as they exhibit a trend similar to those observed

with TDE. The box plot shows the average retrieval percentage for

non-abstained queries (left y-axis), while the line plot presents

the empirical abstention rate 𝛽 (right y-axis). When 𝛼 = 0.5,

the abstention rate for both datasets is 0, which means that all

queries are answered. As 𝛼 decreases from 0.4 to 0.1, the empirical

abstention rate increases. Furthermore, as shown in Figure 16, the

gap between the empirical and expected coverage increases as 𝛼

approaches 0.05. This pattern aligns with our earlier observations

regarding the impact of varying 𝛽 in Section 4.2.3. Later, we will

demonstrate how incorporating non-exchangeability can help

reduce the coverage gap.

We also vary𝜅 from 2% to 8% of |𝐹 |, and Figure 17 presents that

the empirical average retrieval percentage remains controlled

within the 𝜅 threshold on TDE. As 𝜅 increases, the empirical

abstention rate 𝛽 decreases (right y-axis), as more queries are

answered without abstention. The same trend is also observed

on STD and omitted for brevity.

4.2.5 Reliable Function Retrieval with Non-Exchangeability. We

implemented all three of our methods utilizing non-exchangeability,

as described in Section 3.5.1; we append the suffix “+W" to

their notation to signify this (denoting a weighted approach).

The results on TDE are presented in Figure 18, while the same

trend can be observed on STD as well (omitted due to space

constraints). Compared to the original methods, incorporating

non-exchangeability reduces the gap between the empirical cov-

erage and the target coverage. This suggests that conducting

estimations under non-exchangeability is the preferred method-

ology in practice.

4.2.6 Reliable Function Retrieval with Additional Regression Mod-
els. We also conducted experiments with regression models, as

discussed in Section 3.5.2. Specifically, we evaluated two models:

Support Vector Regression (SVR) and Multi-Layer Perceptron

(MLP); we compared them to a baseline that does not utilize a

regression model (NoReg) on the TDE dataset using the FRCP

method. The comparison is shown in Figure 19, with other meth-

ods and datasets exhibiting similar trends.

For this experiment, the dataset was split in a 4:3:3 ratio, where

40% of the data was used to train the regression models, while the

remaining was split evenly for calibration and testing. Regardless

of the regression model used, target coverage was consistently

maintained, as shown in Figure 19a. For improved visualization,

we used a line plot where the solid line represents the mean

value, and the shaded area around it indicates the range between

the minimum and maximum values at each 𝛼 level. However,

the advantage of using regression models is not evident when 𝛼

is large; in fact, the average retrieval percentage may increase

significantly if models like SVR are applied. When the target

coverage is low, results based on nearest neighbors are sufficiently

effective. On the other hand, when a higher coverage rate is

needed (i.e., with lower 𝛼 values), regression models, such as

SVR and MLP, can reduce the average retrieval percentage, as

observed when 𝛼 = 0.1.

4.2.7 Varying Embedding Methods. We also demonstrate that

our proposed approach is orthogonal to the choice of embed-

ding methods Specifically, we switch the embedding model to

all-mpnet-base-v2 for function and query descriptions. Fig-

ure 20 presents experimental results on the DS1K dataset using

the FPA+CPA method, as discussed in Section 4.2.3. As shown,

the observed trends are consistent with our previous experi-

ments, confirming that our methods are compatible with varying

embedding models. Similar trends were observed in all other

experiments, which are omitted here for brevity.

4.2.8 Reliable Data Transformations with Code Generation. Fi-

nally, we demonstrate that varying 𝛼 can effectively balance the

number of function validation invocations, which occur during

the validation phase, against the number of code generations. In
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Figure 18: Coverage on TDE Dataset with Non-Exchangeability Assumption
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Figure 19: Reliable Function Retrieval with Regression
Models (with FRCP method, on TDE dataset)
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Figure 20: Results with Sentence Transformers (with
FPA+CPA method, on DS1K dataset)
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Figure 21: Function Execution and Generation Invocations
on TDE with FRA+CPA

Figure 21a, the left y-axis presents the number of function vali-

dation invocations, while the right y-axis presents the number

of times we opt for code generation. Note that in practice, the

cost of each code generation invocation can be significant, as it

involves considerable time and effort to execute test cases and

perform human verification. For example, considering the case of

performing function validation in 10 test cases per function, on

the TDE dataset (Figure 21b), as we increase the target coverage

rate (i.e., decrease 𝛼), the cost of function validation decreases,

while the cost of code generation increases, and vice versa. Even

when 𝛼 = 0.05, the function execution cost remains significantly

lower than validating all functions, which takes approximately

over 30 hours. Our proposed framework allows empirically se-

lecting an appropriate 𝛼 value, along with a specific abstention

method, to best meet specific application needs.

4.2.9 Summary. Through the above experiments, we show that

for a given miscoverage rate 𝛼 , all our proposed methods address-

ing different problems achieve coverage at or near the desired

level, thereby ensuring reliable function retrieval. By adjusting

𝛼 , one can balance the cost between function execution and code

generation. We also evaluated the effectiveness of two extensions

in this setting.

5 Related Work
Self-service data transformation systems have been extensively

studied over the past few decades, with the primary goal of

creating user-friendly interfaces for performing data transfor-

mations [1, 13–16, 20–22, 38, 45, 46]. These capabilities have

been integrated into widely used commercial tools, such as Excel

[13] and Power BI [15]. However, traditional approaches rely on

techniques such as code analysis [15], predefined sets of trans-

formation operators [20, 45], or heuristic ranking algorithms

[14, 16, 22], which can limit their flexibility and suffer from noisy

inputs [10]. Recent research has begun exploring the use of ma-

chine learning to enhance these systems [9]. The emergence of

large language models (LLMs) [44] has expanded the potential for

various applications, including data transformation tasks [36] and

joinability search [10], with promising results. However, LLMs

are known to suffer from issues like hallucinations [19], leading to

the development such as prompting techniques [17, 27, 28, 34, 42]

and Retrieval Augmented Generation [11, 12, 18] to mitigate these

issues. Such approaches remain best-effort methods, where the

cost and accuracy depend implicitly on the underlying model and

parameters, and no theoretical guarantees can be provided. In

contrast, conformal prediction [4, 31, 35, 41], a statistical frame-

work that provides coverage guarantees, is well-suited for uncer-

tainty quantification and has been successfully applied to various

machine learning tasks [4]. Distinct from prior work, this paper

proposes to abstain from answering a proportion of questions

by leveraging conformal prediction, ensuring reliable retrieval

results.

6 Conclusion
In this paper, we address the problem of reliable function retrieval

using large language models (LLMs) for data transformation tasks.

By leveraging conformal prediction techniques, we explore three

methods that provide reliable retrieval results while offering

trade-offs between code validation costs and code generation.

Our experimental results demonstrate the effectiveness of these

methods and highlight the benefits of the proposed framework.
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