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We propose a novel framework that prioritizes retrieving
trusted transformation functions from a pre-defined set using
LLMs. If no appropriate function is found, the system falls back
on code generation by LLMs, though this is a last resort due
to concerns about accuracy, hallucinations, and production re-
liability. Our framework balances function retrieval accuracy
with validation costs using a two-stage approach: an indexing
phase for generating function descriptions and embeddings, and
a query phase for matching transformations. We consider three
variants of the reliable function retrieval problem, introducing
conformal prediction techniques, enhanced with abstention and
size constraints, to ensure retrieval coverage while controlling
validation costs.

Empirical evaluations demonstrate the effectiveness of our so-
lutions, offering a trade-off between retrieval size and validation
efficiency, attesting that our solutions to the problems introduced
handle abstention scenarios and size constraints effectively.
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1 Introduction

Data transformations play a pivotal role in database research,
enabling the seamless integration of heterogeneous datasets from
diverse sources and formats [14, 15, 45]. The heterogeneity of
data types and formats often complicates the transformation
process, requiring substantial time and expertise from end-users
like data scientists and analysts. To mitigate these complexities,
the self-service data transformation paradigm has been proposed
[14, 15], allowing users to autonomously discover and leverage
reusable data transformation functions with greater efficiency.
Figure 1 shows a data transformation case with two datasets
from different sources to be analyzed. For the same attribute, such
as date, source A encodes it as Unix timestamps, while source B
stores it as a time string following a specific format. To extract the
day of the week, distinct transformation functions are needed for
each source. For example, dayofweek_from_timestamp() would
be applied to source A, whereas dayofweek_from_str() would
be used for source B. Once these transformations are executed,
further analysis, such as performing statistical operations on
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dayofweek_from_str()

Figure 1: Data Transformation Examples

the data by weekday, can proceed. Similarly, we may want to
analyze data based on other attributes, such as extracting the
area code from phone numbers or isolating last names from full
names. Such transformations are common in real-world scenarios
and can be time-consuming and labor-intensive if performed
manually.

The data transformations described above are frequently nec-
essary when different formats are required for tasks like visual-
ization or joinability search [45]. Crafting the appropriate func-
tion for such transformations often demands coding expertise
(e.g., proficiency in programming languages) and can be time-
consuming, especially when dealing with numerous datasets
from varied sources. To minimize manual effort, we aim to allow
users to provide a few paired input-output examples as a demon-
stration, enabling the system to automatically create/identify a
transformation function.

Background: With the recent success of Large Language Mod-
els (LLMs) in a wide range of domains such as natural language
question answering (QA) [8], text-to-SQL translation [26], and
code generation [29], it is conceivable to prompt an LLM to gen-
erate a function that performs the required transformation when
presented with input-output example pairs, converting the input
into the desired output [7], which is referred to as the code gen-
eration approach. However, despite the demonstrated strengths
of LLMs, the code generation approach faces several challenges,
including hallucinations [7], which may result in erroneous code
generation [6, 24, 29, 30, 37, 39, 43].

Existing studies demonstrate that code generation for tasks
described in text using an LLM achieves an accuracy of up to
89% for classic algorithms [6], which may drop to 75% on a large
set of questions, even with additional feedback [37]. Moreover,
as the DS-1000 benchmark [24] demonstrates, for in-line code
completion in the data science domain, the state-of-the-art mod-
els can only achieve 60% accuracy. To corroborate these find-
ings, following the same approach, we generate code for the
data transformation tasks of the TDE benchmark [15] utilizing
gpt-4o, and then validate the code by actual execution, resulting
in only 52% accuracy. A detailed manual analysis of the errors
shows that the minority of them are due to minor issues such
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as representation precision (e.g., using a different precision level
for unit transformation) and formatting issues (e.g., using nu-
meric instead of string for output), which are specifically caused
by the characteristics of data transformation tasks and can be
easily fixed by human inspection. Nonetheless, around 40% of
the errors originate from flawed logic, necessitating thorough
and detailed code revision. Although in theory errors can be
identified by running the generated code on provided examples
and prompting the LLM to regenerate the code and test cases
[30, 37] until successful, integrating such code into a production
environment raises significant reliability and security concerns
due to the inherent nondeterministic behavior of LLMs [6]. In
practice, any LLM-generated code must undergo human verifica-
tion to meet production standards. Due to these stringent quality
control requirements, leveraging LLMs for direct code genera-
tion is considered unreliable, hinders automation, and requires
manual inspection [6, 29, 40].

We explore leveraging LLMs to perform function retrieval
from a pre-defined set of trusted functions, referred to as Data
Transformation Function Retrieval, or simply Function Retrieval,
focusing on retrieving the appropriate function for the transfor-
mation task. As invoking such functions may incur costs (e.g.,
when accessed via APIs) or performance overhead, the brute-
force approach that exhaustively tests each function can be ex-
pensive [15], especially considering the large number of test cases
to be invoked to validate each function. Prior work [14, 15] ex-
plored function indexing with code analysis techniques. However,
these approaches were developed before the advent of LLMs and
exhibit limited automated semantic understanding. As a result,
they require complex workflows and extensive preparation, and
rely on case execution and example generation to approximate
semantic modeling.

Our Proposal: We propose a framework that utilizes LLMs to
perform function retrieval, resorting to code generation only
when necessary, thus combining the advantages of both ap-
proaches. We assume that human inspection will always be
required to ensure the correctness and reliability of any code
generated for production use. To minimize the reliance on code
generation and reduce the need for human validation, we as-
semble a comprehensive set of trusted transformation functions
beforehand. Such a pre-assembled set can be extensive, compris-
ing generic functions from widely used libraries and packages,
which are assumed to be tested, trusted, and reliable. For any
given data transformation request, we first attempt to retrieve
the appropriate function from the trusted set using LLMs. The
retrieved functions will then undergo a validation step to identify
the correct function, which involves applying each retrieved func-
tion to the input provided in the query and comparing the output
with the desired result. The validation process incurs a quan-
tifiable validation cost, which may include both monetary and
performance overhead. Code generation, including additional
steps such as test case generation and human inspection, is only
invoked if the correct function cannot be found. The trusted
transformation functions can also be periodically updated to ac-
commodate evolving needs. For simplicity, we assume a compre-
hensive function set; however, our framework naturally extends
to non-comprehensive sets by mapping unmatched queries to a
placeholder function that triggers code generation.

For clarity, we use the term query to denote the example pair
specifying the desired transformation from input to output, and
target function to refer to the function capable of performing
the required data transformation on the example. Our proposed
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framework: (1) retrieves a set of functions for the given query, (2)
validates the retrieved set to determine the target function, and
(3) invokes code generation and human inspection if the target
function is not identified in the previous steps. To measure the
quality of the retrieved set, two common metrics from the litera-
ture can be utilized [2, 33]: coverage, which indicates whether the
target function is included in the retrieved set, and the average
size of the retrieved set, which reflects the number of functions
that need to be verified.

We propose using LLM and embeddings to perform function
retrieval, as illustrated in the first part of Figure 2(B). The frame-
work begins with generating textual descriptions for functions
and queries, which are subsequently transformed into embed-
dings. For functions, two approaches are available: (a) if the
source code is accessible, we employ an LLM with prompting
techniques, where the function code is input, and the LLM gen-
erates a text description detailing the function signature and
core functionality; (b) if the code is unavailable, we extract text
description from human-authored documentation (e.g., textual
descriptions of function signatures and behaviors from libraries).
These descriptions typically include key information such as in-
put/output data types and the fundamental transformation logic
of each function. Similarly, for a given query, we utilize LLMs
directly to obtain textual descriptions of functions that perform
the transformation from the input to the output. Once the text
descriptions for functions and queries are generated, they are
transformed into embeddings using an embedding model.

A straightforward approach to perform function retrieval is to
utilize embeddings and retrieve the k-nearest functions for each
given query in the embedding space. In such cases, the average
size of the retrieved set is fixed to k, while there is no coverage
guarantee. Furthermore, the k value for each query required to
cover the target function could differ. In practice, one may wish
to balance k and coverage based on individual needs.

To solve the above issue, we propose our ReFRED framework
and specify an additional calibration step (shown in Figure 2(A))
utilizing Conformal Prediction [41]. During calibration, we as-
sume that a set of (query, target function) pairs has been col-
lected from past examples. Based on the distances between the
query and its target function, we perform a calibration step to
aid reliable retrieval (detailed in Section 3), introducing coverage
guarantees; such distances are stored and utilized for handling
new queries.

Before handling new queries, a preprocessing step is per-
formed to obtain, store and index function embeddings for all pre-
defined functions (Section 3.1.1). When a user submits a query by
providing an example of the desired transformation, we prompt
an LLM to generate a description of a function capable of per-
forming the transformation and perform retrieval utilizing our
calibration results. The typical pipeline operates as follows: af-
ter the candidate functions are retrieved (® in Figure 2, labeled
Retrieval), we validate the set by executing each function on the
provided input-output example. The function that produces the
correct output is deemed the target function. If none of the re-
trieved functions can perform the transformation, we instruct
the LLM to generate code to accomplish the task (B) in Figure 2,
labeled Fallback). In the fallback case, the generated code under-
goes a quality control review by a human before being integrated.

Contributions: Our main contribution is establishing a quan-
tifiable trade-off between average retrieval size and coverage,
balancing retrieval success with validation cost. Moreover, by
identifying low-quality queries without sacrificing coverage, we
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Figure 2: ReFRED Framework Overview

can skip validation and directly invoke LLM-based code genera-
tion (© in Figure 2), reducing overhead. Our contributions are
summarized as follows:

e We present the novel problem of utilizing LLM for Reliable
Function Retrieval during data transformations.

e We formally define three variants of the reliable function
retrieval problem. The first variant establishes quality guar-
antees for function retrieval in terms of the probability of
retrieving the correct function. The second variant extends
the problem by allowing the framework to abstain from re-
trieval when the expected retrieval result size is large, thereby
reducing validation costs. The third variant further refines
the problem by explicitly bounding the size of the retrieved
set, which implicitly controls the validation costs.

e We propose formal solutions for these problems. In partic-
ular, we demonstrate how conformal techniques can be uti-
lized to provide probabilistic guarantees in our problem con-
text, and propose novel algorithms Function Retrieval with
Abstention (FRA) and Size-Constrained Function Retrieval
with Abstention (CFRA), showcasing their theoretical proper-
ties.

o We empirically assess the effectiveness of the proposed method
on diverse datasets and demonstrate the trade-offs that are
feasible using our approach.

2 Problem Definition

Definition 2.1 (Data Transformation Function). A data trans-
formation function f € F, where F denotes the set of all trusted
functions available, maps an input data space X, to an output
data space Xyy¢, with no restrictions imposed on the elements
of these data spaces. Given an input x;, ~ Xin, the function f
produces an output x,y;. For any input-output pair, denoted as
x = (Xin, Xout) ~ Xin X Xous, the relationship xour = f(xin)
holds. For simplicity, we refer to the pair x as originating from f,
denoted as x ~ f, where f is the target function for x.

Given an input-output pair x, our focus is on the task of iden-
tifying the target function f from a pre-defined set of functions,
F. We refer to this task as data transformation function retrieval.

Definition 2.2 (Data Transformation Function Retrieval). For a
given query, consisting of an input-output pair x = (xin, Xour),
and a set of transformation functions F, Data Transformation
Function Retrieval returns a set of functions F,, C F relevant
to query x. The quality of Fx can be measured by the metrics
discussed below.

We abbreviate this problem as function retrieval (or simply
retrieval). Each query x is assumed to originate from at least one
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function, termed the target function!, within the retrieved set
Fx,ie. 3f € Fx such that x ~ f. However, this condition may
not always hold, meaning that the target function may not be
present in the retrieved set. To capture this, we use a coverage
metric to indicate whether the target function is included in the
retrieved set.

Definition 2.3 (Function Retrieval Coverage). The coverage of a
retrieved set Fy for a given query x is defined as:

C(x,Fx) = ]]-EIfEFx,x~f

For any single query x, C(x, Fx) € {0, 1}. Thus, for queries
drawn from a distribution P, the expected retrieval coverage is
E[C(x, Fx)] € [0,1]. Assuming that the function that answers
query x is already in F, a straightforward way to achieve full
coverage (i.e., C(x, Fyx) = 1) is to include all available functions
in Fy for any query x, i.e., Fx = F. However, this approach incurs
significant validation costs; in the worst case, every function
must be verified against the query. Therefore, we aim to reduce
the size of the retrieved set while maintaining high coverage.

Definition 2.4 (Function Retrieval Size). The size of the retrieval
set is defined as the cardinality of the retrieved function set, i.e.,
S (F x) = |F x |

Increasing the retrieval coverage often requires enlarging the
retrieval set, which in turn increases the retrieval size. Our ob-
jective is to balance the trade-off between coverage and retrieval
size.

We study retrieval with coverage guarantees, aiming to mini-
mize retrieval size while ensuring marginal coverage, assuming
queries come from a distribution X. We first specify the problem
of retrieval with a coverage guarantee.

PrOBLEM 1 (FUNCTION RETRIEVAL WITH MARGINAL COVER-
AGE GUARANTEE). Given a specified mis-coverage rate o € (0, 1),
retrieval aims to provide a marginal guarantee on coverage, i.e.,

E[C(x,Fx)] 21— a forx € X.

However, ensuring coverage alone does not guarantee reduced
validation costs, as higher coverage typically entails a larger re-
trieval set. Ideally, we would like to maintain marginal coverage
guarantees for all queries while minimizing retrieval size, allow-
ing for efficient validation without compromising the retrieval
of the target function. For queries where this balance cannot be
achieved, we can abstain from providing a solution (thus avoiding
validation costs) and instead resort to generating the code using a
large language model (LLM). To formalize this, we introduce the
concept of retrieval with abstention and constraints on retrieval
size.

!Note that there may be multiple target functions for the same query. Since iden-

tifying at least one target function suffices to address the query, we focus on this
case without loss of generality.
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PROBLEM 2 (FUNCTION RETRIEVAL WITH ABSTENTION). Given
an abstention ratio € (0,1), only a subset of queries X’ C X will
be answered, where P(X’ | X) = 1 — f. For the answered queries
x ~ X', the marginal coverage still satisfies the mis-coverage rate
a, i.e, E[C(x, Fx)] = 1 — a, while the expected retrieval size for
queries to be abstained is greater than the rest, i.e, E[S(Fx) | x €
X\ X'] > E[S(Fyx) | x € X'].

Although our solution to Problem 2 will introduce a tunable
abstention ratio while still guaranteeing marginal coverage, we
still lack a way to control the retrieval size and thus implicitly
control the validation cost. Next, we introduce constraints on
retrieval size while maintaining marginal coverage guarantees.

PROBLEM 3 (S1zZE-CONSTRAINED FUNCTION RETRIEVAL WITH
ABSTENTION). For a specified retrieval size x, only a subset of
queries from the original distribution, P’ C P, will be answered,
such that for x ~ P’, the expected coverage satisfies E[C(x, Fx)] >
1 — a and the expected retrieval size satisfies E[S(x)] < k.

3 Reliable Data Transformation Function
Retrieval

3.1 Framework Overview

As shown in Figure 3, our framework for handling a new query
has two components: 9 Embedding Generation, which maps
queries and functions into the same embedding space, and @
Reliable Function Retrieval, which uses conformal prediction to
select candidate functions. Large retrieval sets are abstained to
reduce validation cost, triggering direct code generation (B.2),
while smaller sets allow direct validation (B.1). If validation fails,
the framework falls back to code generation, optionally human-
validated before adding to the function set. We discuss each
component below.

3.1.1 Embedding Generation. For a given query x = (Xipn, Xout),
both x;j;, and x0y; can be arbitrary data types. Our approach is
to derive natural language descriptions of all functions in F as
well as of the function f with property xoy; = f(xip) utilizing
LLMs [7].

Specifically, we utilize prompts to instruct LLM to generate
two types of descriptions: (1) in a pre-processing step we generate
a description2 for each function in the function set F, denoted
as Dy (depicted as the Preprocessing Step in Figure 3) and (2)
at query time we inquire from an LLM to generate a natural
language description of the transformation required to transform
Xin t0 Xout, denoted as Dy, (depicted as the Query Step in Figure
3). We impose the same narrative for both types of descriptions
and include information such as the signature of the function
and a description of the procedure the function implements to
conduct the transformation.

To assess the closeness of natural language function descrip-
tions, we utilize embedding models to produce embeddings of
descriptions in the same latent space and measure the distance
between the query embedding and function embeddings. We use
ex to represent the embedding for query x, while ey represents
the embedding for a function f. In our framework, we utilize GPT
and text embedding models from OpenAl to obtain descriptions
and embeddings>.
2This can be accomplished with the assistance of an LLM or utilizing standard
function textual descriptions from libraries.
3Speciﬁcally, we choose gpt-3.5-turbo-0125 and text-embedding-3-small.

The specific LLM and associated embeddings utilized are orthogonal to our
approach.

264

Yueting Chen et al.

Note that during the generation process, both the descriptions
and embeddings may be imperfect, potentially introducing noise
and erroneous results. We account for this issue and mitigate its
impact through reliable function retrieval, which we discuss in
the following section.

3.1.2  Reliable Function Retrieval. For a given query, we compute
its embedding and rank all indexed functions by distance in
the embedding space. A common top-k selection fixes k, but
this limits flexibility, as the retrieval size cannot adapt to query-
specific characteristics. Moreover, embedding noise may cause
the target function to appear close for some queries yet distant
for others.

To overcome this limitation, we propose an alternative strat-
egy that determines a query-specific distance threshold. Based
on this threshold, we can retrieve all functions whose distances
to the query fall within the defined range, resulting in a vari-
able number of retrieved functions per query. This approach
enables more precise control over coverage quality for different
queries (depicted as Reliable Function Retrieval in Figure 3). A
key challenge is determining the appropriate distance threshold
for reliable function retrieval (Figure 3.B.1). Utilizing the concept
of conformal prediction [41], we gather a set of query examples
with the corresponding target functions as the calibration set
and perform a dedicated calibration step to derive the necessary
thresholds. Moreover, based on the problem formulation (Prob-
lems 2 and 3), we also wish to abstain from answering certain
queries and perform code generation directly based on the cali-
bration result (Figure 3.B.2). In the following sections, we explore
this topic in depth.

3.2 Function Retrieval with Marginal
Coverage Guarantee

In this section, we provide a solution to Problem 1. We first
introduce conformal predictions in Section 3.2.1, which forms
the basis of our subsequent solution in Section 3.2.2.

3.2.1  Conformal Prediction. Let z; = (x;,y;) be an example ob-
served from some distribution Z = X X Y, where X is the object
space and Y is the label space. Let & € (0, 1) be the given error
level. Then conformal prediction [4, 25, 41] provides a marginal
guarantee? of the prediction set I(X) C Y for a new example,
Z ~ Z, such that the following holds.

P(YeIX)>1-a 1)

In its standard form, conformal prediction assumes data ex-
changeability, which is weaker than the i.i.d assumption [41], to
provide a valid guarantee. The framework is generalized even if
the exchangeability assumption does not hold [5], thus providing
a general solution framework under any data distribution.

Let {z; = (xi,y;i) | i € {1...n}} be the observations. Confor-
mal prediction works as follows [3]: (a) Define a non-conformity
measure s € R, which is used to quantify the error made by the

model. (b) Compute § as the w quantile of the cali-
bration scores {s(x;,y;) | i € {1...n}}. (c) For a new example X,
the prediction set is computed as C(X) = {y : s(X,y) < ¢}.

4The guarantee is marginal because it holds on average over the entire data distri-
bution, not necessarily for every single data point. For example, even though the
overall coverage is 95%, for some individual points, the actual coverage could be
slightly higher or lower.
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Figure 3: The Overall Framework with Embedding Generation and Reliable Function Retrieval.

Both the above calibration step and model training could be
costly for each new example; thus, a commonly applied algo-
rithm is the split conformal prediction and its numerous variants
[31], where the model is trained and calibrated only once, while
the calibration result will be applied for all data points during
inference.

3.2.2  Function Retrieval with Conformal Prediction. In our set-
ting, we can first build a calibration set by collecting query and
target function pairs. This can be accomplished by imposing data
transformation requests, providing example input and output
(forming a query), and utilizing the set of functions at our dis-
posal to retrieve the true target function; for this, we rank the
set of functions with respect to the query, utilizing embeddings
and conducting validation. This is a task that is performed once
as part of the setup. We then proceed by calibrating a predic-
tor using split conformal prediction [41] using the calibration
set. Thus, in this setting, the object space is the queries in the
embedding space, X = RN where N is the number of dimen-
sions, while the label space Y/ = R is the space of distances of
the queries to their target functions. For each query embedding
ex € X, the ground-truth distance of the query x to its target
function is denoted dy € Y. We use the ground-truth distance as
our non-conformity score, formally,

S(e‘x, dx) =dy (2)

We use sy to denote the non-conformity score for simplicity in
the remaining sections. Then, we compute § as the w
quantile of the non-conformity scores in the calibration set (as
described in Section 3.2.1). For a new query ¢q’, we compute
our prediction interval as I(¢’) = [0, §]. Conformal prediction
guarantees that P(dy € I(¢")) = 1 — a. The functions to be
retrieved are collected based on the prediction interval, Fy =
{f € F | df € I(¢')}. It is evident that E[C(q", Fy)] > 1 - a.
We refer to this method as Function Retrieval with Conformal
Prediction, or simply FRCP.

3.3 Function Retrieval with Abstention

In this section, we propose our solution to the problem outlined
in Problem 2. Given an abstention ratio f, our objective is to
consistently abstain from queries associated with larger retrieval
sizes. However, this presents a challenge, as the retrieval size for
a specific query is unknown until the retrieval process has been
executed.

One approach is to estimate the retrieval size with conformal
prediction and subsequently abstain from queries with larger
estimated retrieval sizes. However, this may compromise con-
formal prediction’s coverage guarantee of including the target
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function. This is because the calibration process focuses on opti-
mizing retrieval size rather than preserving conformal prediction
coverage.

To ensure the desired coverage guarantee, the key intuition
is that if we can partition the query space R” into groups based
on their retrieval sizes, and then achieve conditional coverage
guarantees within each group, we can safely abstain from queries
belonging to groups with larger retrieval sizes. Building on this
intuition, we first present a learned approach that provides con-
ditional coverage guarantees for each group in Section 3.3.1. We
then introduce our proposed solution and describe how to esti-
mate the retrieval sizes for each group in Section 3.3.2.

3.3.1 Conformal Prediction with Learned Features. Kiyani et al.
[23] propose a general approach, where the ultimate goal is to
provide full conditional coverage that for every x € X:

PYelIX)|X=x)=1-a 3)

This goal aims to provide a coverage guarantee of 1 — a for
each query x. However, such a full conditional coverage is impos-
sible with a finite-size calibration set [23]. Thus it was proposed
to relax it and learn a partitioning of the covariate space such
that queries in the same partition are similar in terms of their
prediction sets.

Specifically, this partitioning can be represented by a function

class H, which outputs a vector of the probabilities of an object
x belonging to m groups’. Consider a single group and let S be
the distribution of the non-conformity scores in that group. It
is known that for the random variable s € S minimizing the
expected pinball loss over § yields an (1 — a)-quantile of the
distribution [23].
a(g—s) ifg>s,
(1-a)(s - §)
By design, pinball loss aims to optimize by penalizing less when
we overestimate and penalizing more when we underestimate
the true value. We refer to g as the learned quantile value.

With that in mind, we formulate the following optimization
problem. Let q = (§1,...¢m) € R™, where m is the number
of desired groups. Consider a calibration set (x;,s;),1 < i <n
consisting of queries along with their non-conformity scores, and
a function class H. The joint optimization problem is formulated
as follows:

ifg<s.

fa(qu 3) = {

I .
argmin — ZZh’(xj)t’a(q,—,sj)
geR™ he'H n j=1i=1

R = 4)

5In practice, this can be a neural network with a multi-class output layer or a set of
functions such as linear functions.
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where h' is the probability that a query belongs to group i, and
s; denotes the non-conformity score for j-th example.

To quantify the error of such an approach, Mean Squared Con-
ditional Error (MSCE) is introduced, which measures the deviation
of prediction sets I(X) from Equation 3, defined as

MSCE(Z,a,]) =E[(P(Y € I(X) | X =x) = (1 -a))?] (5
where Z is the distribution of the examples (Section 3.2.1). Next,
we explore approaches that simultaneously control the propor-
tion of examples in certain groups and guide each group to have
distinct retrieval sizes.

In practice, the optimization problem in Equation 4 can be
solved using neural networks (i.e., utilizing hg to derive H, where
0 represents the network parameters). The training process can
be conducted through alternating gradient descent, where a few
gradient descent steps are taken on both g and 8 in each iteration
[23].

However, as we will show in our experiments (Section 4), this
general approach is not suitable in our context. The primary
limitation is that the resulting joint optimization, leading to the
learned network hy, fails to: (a) control the proportion of ex-
amples assigned to each group, and (b) consistently generate
partitions where each group exhibits a distinct retrieval size. This
occurs because neither the group size nor the retrieval size within
each group are explicitly included in the optimization objective.

In Problem 2, our specific goal is to ensure that at least one
group has an expected retrieval size larger than that of the other
groups. If we can identify such a group, comprising a f§ pro-
portion of samples from the distribution Z, the problem can
be addressed by abstaining from this group while maintaining
coverage guarantees for the remaining groups. In the following
section, we explore methods that allow for controlling the pro-
portion of examples in specific groups while ensuring that each
group has a distinct retrieval size.

3.3.2  Function Retrieval with Abstention. To address the chal-
lenges outlined in Section 3.3.1, we introduce a guided approach
for selecting the function class H during calibration. The key
intuition is to partition the space such that: (a) approximately
B proportion of the samples from the original distribution is as-
signed to a specific group, denoted as G, and (b) the queries
within group G, yield retrieval sets that are larger in expectation
compared to those in the remaining groups.

The proposed method involves decoupling the joint optimiza-
tion problem in Equation 4 into two distinct steps: (a) first, par-
tition the calibration set and define the function class H by
training a neural network hy on an auxiliary classification task,
and (b) once the partitioning is established using the network
hg, proceed to optimize only for ¢* in Equation 4. This separa-
tion simplifies the optimization process while ensuring that the
partitioning aligns with the objective of managing retrieval sizes
across groups. We next discuss these two steps separately.

Step 1. Auxiliary Classification Task. We now outline the
process for preparing the training data for the auxiliary clas-
sification task. A key challenge is that the retrieval size for a
query cannot be directly obtained, as it is only available when
the retrieval is performed with the specified mis-coverage rate
a. To address this, we propose using a minimal retrieval size as a
proxy to guide the partitioning (and we refer to the steps below
collectively as minimal retrieval size computation), defined as
follows:
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(1) First, compute the non-conformity score sy for each query x
as specified in Equation 2.

(2) Next, construct an interval [(x) = [0,sy] for each query
x. This interval is the minimum interval that guarantees
coverage of the ground-truth distance between the query and
its target function.

(3) Using the interval I(x), define a set of functions Fy = { fe
Fldse I(x)}, referred to as the minimal retrieval function
set. This set contains the smallest number of functions that
ensures inclusion of the target function for query x.

(4) The size of the set |Fy| is used as the minimal retrieval size.

This minimal retrieval size serves as a proxy to guide the
partitioning of queries during the auxiliary classification task.

With the minimal retrieval size, we can construct a dataset to

train H on the auxiliary task. To achieve this, we introduce the

Function Retrieval with Abstention (FRA) Algorithm, shown in

Algorithm 1.

Algorithm 1: FRA

1 Ly « the list of query embeddings in the calibration set;

2 Lg « alist of minimal retrieval sizes;

3 sp < the 1 — B quantile of Ls; L « {};

4 foreach s € Ly do

5 L label « s < sg?0:1; Lj.append(label);

6 hg « the neural network for partitioning;

7 Train hg on (Ly, L;) as a classification task;

We assume, without loss of generality, that the query space is
partitioned into two groups, with one group representing f pro-
portion of the examples. The algorithm operates as follows: First,
compute the minimal retrieval size for each query (Steps 1-2), and
then determine the (1 — ) quantile from the computed retrieval
sizes (Step 3), which will serve as the split point for partitioning.
Next, queries in the calibration set are labeled based on this split
value (Step 5). Specifically, a neural network hy is trained using
the labeled data (Steps 6-7). For instance, with § = 0.2, the algo-
rithm identifies the 0.8 quantile of the minimal retrieval sizes,
which serves as the threshold (sg) for group assignment. Queries
with a minimal retrieval size less than sz are assigned a label
of 0, while those with a minimal retrieval size greater than or
equal to sg are assigned a label of 1. In this case, queries labeled
as 1 constitute approximately f proportion of the set and will be
treated as the group for abstention.

The algorithm can be readily extended to support more groups,
though we omit the details here for brevity. The network hg is
trained using labeled data, employing Binary Cross Entropy loss
for two groups or Cross Entropy loss when handling multiple
groups. Dropout can be applied during training to prevent over-
fitting.

It is important to note that the labels generated in the algo-
rithm (Steps 4-7) are used solely to guide the training of the
partitioning network hy. These manually assigned labels may
not fully capture the underlying structure of the original distri-
bution space. Therefore, after training hy, we use it to re-assign
labels to the queries in the calibration set. The intuition here is
that hy can learn structural patterns in the covariates, enabling
consistent partitioning of future queries based on these learned
patterns.
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Step 2. Obtaining quantile values. After obtaining the par-
titioning network hyg, it remains necessary to determine the ap-
propriate quantile values within the groups we choose not to
abstain from in order to solve Problem 2. We explore two poten-
tial approaches:

Learned Approach (LA): We fix the network hy and use gra-
dient descent to optimize §*, as specified in Equation 4. This
approach modifies only the training process of {, and as a result,
the theoretical analysis presented in Section 3.3.1 remains valid.

Conformal Prediction Approach (CPA): After training hy,
we can directly apply conformal prediction within the groups
we opt not to abstain from. In this scenario, hy is treated as
a partitioning function based on covariates, aligning with the
framework of group-conditional conformal prediction [32]. We
can thus apply our proposed FRCP method (Section 3.2.2) for
the group that chooses not to abstain; we refer to this approach
as CPA. This approach provides marginal coverage guarantees
within each group, ensuring coverage for the remaining non-
abstaining groups. Formally, let G, denote the group that hy
chooses to abstain. Under exchangeability, for X ~ X, it’s trivial
that the following holds:

PYEIX) | X¢Ga) 21~

Analysis. We utilize the minimal retrieval size to guide the
partitioning network in learning how to partition based on covari-
ates. We manually construct the training set for the classification
task, which serves as a guide for partitioning. Within this train-
ing set, we assign a proportion f of the queries with the largest
minimal retrieval size to a group, denoted as G,. The partitioning
network then learns, based on query features, to partition future
queries such that one group will consistently contain approxi-
mately f of the queries, characterized by the largest expected
retrieval sizes.

Formally, let G, (labeled as 1) and G, (labeled as 0) be two
groups of queries from the calibration set utilizing Algorithm 1,
drawn from distribution X, and let $’(x) denote the minimal
retrieval size for query x. Since we partition groups based on
the minimal retrieval size, it follows that E[S’(Fx) | x € G4] >
E[S"(Fx) | x € Gp].

From the steps in the minimal retrieval size computation, for a
query x, a larger S’ (x) corresponds to a higher non-conformality
score sy, and conversely, a smaller S’ (x) implies a lower sy. With-
out loss of generality, we can state that E[syx | x € X] increases
as B[S (Fx) | x € X] increases. Let §, be the 1 — a quantile of
non-conformity scores for group G, and g, be the corresponding
quantile for group Gj,. We have ¢, > §p. Since the retrieval size
is computed based on the quantile, a higher quantile g results
in a larger retrieval size. Therefore, as ¢ increases, the expected
retrieval size E[S(Fx) | x € X] also increases. Consequently, we
have E[S(Fyx) | x € Gq] > E[S(Fx) | x € Gp].

Let £ be the loss function of the partitioning network hy.
When £ = 0 and the calibration set is sufficiently large, un-
der the ii.d. assumption, for any query drawn from the origin
distribution, where x € X, the following holds:

E[S(Fx) | hg(x) = 1] > E[S(Fx) | hg(x) = 0] (6)
As the model converges in practice, £ approaches zero, ensuring
that Equation 6 remains valid. We will empirically validate this
approach in the experiments section.

3.3.3  Function Retrieval with Abstention for New Queries. After
calibration, we should obtain: (a) the partitioning network hgy,
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which assigns a given query to a group, and (b) the quantile
value ¢; for each group i. To provide reliable function retrieval,
for a new query ¢’, we first assign it to a group using hg. Two
cases arise: (1) if ¢’ is assigned to the group which we wish
to abstain from, G,, we perform abstention directly; (b) if ¢’ is
assigned to any other group i, we calculate our prediction interval
I(¢’) = [0, §;], where §; is the quantile value associated with the
group i, and produce retrieval set Fyy = {f € F | dy € I(q')}.

3.4 Size-Constrained Function Retrieval with
Abstention

We now address Problem 3, where the goal is to specify a target
retrieval size k such that queries with a retrieval size larger than
are subject to abstention. For simplicity, we continue to denote the
abstaining group of queries as G, and the non-abstaining group
as Gp. This problem is challenging because the partitions G, and
Gp, must be determined, and the exact expected retrieval size for
queries in Gy, can only be computed—given a mis-coverage rate
a—once the partitioning is finalized. To address this, we propose
a method aimed at ensuring that the expected retrieval size for
Gy, is as close as possible to the specified target «.

In Section 3.3.2, we introduced the concept of the minimal re-
trieval size for partitioning the calibration set. A straightforward
strategy involves using the target retrieval size k as a threshold to
partition the calibration set: samples with a minimal retrieval size
exceeding « are assigned to G,, while the remaining samples are
assigned to Gp,. We refer to this strategy as the initial partition.

To ensure marginal coverage, we compute the quantile value
for group Gy, after forming the initial partition. This value will
be used to calculate the actual retrieval size for queries in G,
However, the actual retrieval size may differ significantly from
k. To better align with k, we propose an iterative adjustment to
the initial partition. We refer to such a method Size-Constrained
Function Retrieval with Abstention (CFRA), detailed in Algo-
rithm 2.

We first partition the calibration set into two groups based on
k using minimal retrieval size (i.e., we derive the initial partition)
(Lines 1-3). Then, we collect the unique distance values between
each query and its target function in each group (Lines 4-5) and
compute § for group Gy, with the given mis-coverage rate « (Line
6), based on which we can obtain the actual retrieval size for
group Gp, (Line 7). The computation works as follows: (a) we
first obtain the actual retrieval set for each query x € G, with
the quantile value g, (b) we then compute the retrieval size for
each query x, and aggregate the average value among all queries
in Gp, denote as current average retrieval size ii. Depending on
the value of 7, we either remove data points from G, (Lines 9-
13) or add more data points to G (Lines 15-21). For example,
if 71 exceeds the target k, we iteratively remove points with the
highest distances (Lines 9-11) and stop once 7 falls just below x
(Lines 12-13, lines 19-21). We then construct the training labels
accordingly and train hy as outlined in Section 3.3.2 (Lines 22-23).
Similarly, the quantile value for the non-abstain group can be
obtained using the same FRCP method discussed in Section 3.2.2.

With Algorithm 2, we construct the labels for groups G, and
Gy, such that E[S(Fx) | x € G,] < k, and use these labels to
train the partitioning network hy. Under the i.i.d. assumption,
for queries drawn from the original distribution x € X, with a
sufficiently large calibration set, as the loss of the partitioning
network approaches zero (i.e., £ — 0), the objective E[S(Fx) |
hg(x) = 0] < k can be achieved. We will empirically demonstrate
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Algorithm 2: CFRA

1 Ly « the list of query embeddings in the calibration set;

2 G, < x € L, with minimal retrieval size > k;
3 Gp < x € Ly with minimal retrieval size < k;
4 D, < unique distances between
queries and the groud-truth function in Gg;
5 Djp < unique distances between
queries and the groud-truth in Gp;
g < compute_q_hat(Gp, ) ;

=N

=

n «—compute_average_size(Gp, q);

o

if 2 > k then

9 slist «<—sort Dy, in descending order;
10 for s € slist do
1 remove examples with distance s from Gp;
12 recompute § and 71;
13 if 7 < k then break ;
14 else
15 slist «sort D, in ascending order;
16 for s € slist do
17 add examples with distance s to Gp;
18 recompute § and 71;
19 if 2 > k then
20 remove the example added in the previous step ;
21 L break;

22 L; « labels based on G, and Gp;
23 train hg on (Ly, L;) as a classification task;

in the experiments that this method yields an average retrieval
size that is less than «.

After calibration, we obtain the partitioning network hg and
quantile ¢; for each group. For a new query ¢’, inference follows
Section 3.3.3 and is omitted for brevity.

3.5 Extensions

In this section, we further discuss two extensions to the problems.

3.5.1 Reliable Retrieval Beyond Exchangeability. In the general
case, conformal methods accommodating non-exchangeability
[5] can also be applied, with our framework still applicable.
The main change lies in computing the quantile in FRCP (Sec-
tion 3.2.2).

Specifically, in the non-exchangeability setting, we assign a
weight to each example in the calibration set during query time
to compute the threshold value. Let e4 represent the embedding
of the new query g, and the weight of an example x from the
calibration set is computed as wxy = exp(—d(eg, ex)/r) for a
hyper-parameter 7 (default value of 1). This weight controls the
influence of each calibration, with the intuition that points closer
to the query point should exert more influence. The weights are
normalized as Wy = wx/(1 + Xyex,,; Wx)> Where X¢g is the
calibration set. The cutoff threshold ¢ is computed as § = inf{s |
L5, <s)Wx = 1 - a}, where sy is the non-conformity score as
defined in Section 3.2.2, and 1,4 is the indicator function that
equals 1 if the condition cond is met and 0 otherwise.

With the non-exchangeability assumption, the bound of Equa-
tion 1 becomes slightly looser. Further details of the analysis
can be found in [5]. By modifying the quantile computation in
FRCP, our framework extends to non-exchangeability settings
while still providing a marginal coverage guarantee for all three
problems we discussed so far. We will compare these methods in
the experiments.
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3.5.2 Reliable Retrieval with an Additional Regression Model. Our
framework operates in the embedding space, leveraging natural
language descriptions. However, due to the imprecision and vast-
ness of natural language, performing retrieval based solely on
the nearest neighbors may not always yield relevant functions. It
is natural to expect that the quality of descriptions of the query
transformation and function descriptions, directly impacts the
quality of nearest neighbor retrieval. Assuming we can achieve
quality descriptions, a regression model can be introduced to
predict the expected distance to the target function in the embed-
ding space before retrieval, thereby refining the retrieval set. Let
Mpreq be a regression model predicting the distance to the target
function, denoted dy, = Myeq(x), for a given query x. Rather than
directly using nearest neighbor retrieval, we define a prediction
band around df to construct the retrieval set.

Our framework supports this extension with two modifica-
tions: (a) redefining the non-conformity score to be the residual
between the predicted and actual distance to the target function,
ie., s'(ex,dx) = |Mreg(x) — dx|; and (b) defining the prediction
interval I’ (x) = [d} — g, d% + q], from which the retrieval set is
constructed as Fy = {f | df € I'(x)}.

In this setting, we expect that |Fy| < |Fy|, where Fy is the
retrieval set constructed using the FRCP method in Section 3.2.2.
The intuition is that, if the regression model performs well, the
prediction interval will be narrower than without M;¢g4, meaning
that |d% —dx| < dx. Assuming a uniform distribution of functions
in the embedding space, this should result in |Fy| < |Ey|. We will
empirically demonstrate the impact of including and excluding
the regression model in our framework in the experiments.

4 Experimental Evaluation

4.1 Experiments Setting

We employ GPT-3.5-turbo-0125 as the large language model
(LLM) in our experiments, to generate descriptions of functions
and queries, and text-embedding-3-small to obtain embed-
dings. All algorithms are implemented in Python. We use three
datasets with different complexities: (a) STD: We created the
Simple Transformation Dataset (STD) with 60 functions over
numerical, string, and boolean data. Each function has 20 queries,
totaling 1,200 queries. (b) TDE: We use the dataset from [15], con-
taining complex transformations (e.g., unit conversion, pattern
extraction, URL encoding), and augment it with additional gener-
ated queries, yielding 2,250 queries over 227 functions. (c) DS1K:
To enable large-scale validation, we adapt DS-1000 [24], yielding
13,129 queries over 771 functions. Unlike simple transformations,
these functions target specific code-completion scenarios, where
code snippets serve as functions and task descriptions as queries.
The transformation functions for each dataset are implemented
in Python, and LLM-generated descriptions are provided for each
function. Note that our method is independent of the LLM choice
and function implementations, as we focus on reliable retrieval in
the embedding space. All the datasets are made publicly available
6. Unless otherwise specified, each dataset is split into calibra-
tion and test sets evenly. To demonstrate statistical trends, we
perform 10 independent runs with different random seeds for
each method and report the results from all runs.
The experiments aim to achieve three primary objectives:
o Coverage Validation. To ensure that the empirical coverage
across all methods (Sections 3.2 to 3.4) aligns with the

Chttps://github.com/dbllm/refred
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Figure 4: End-to-End Evaluation Results on All Datasets

target level, maintaining the specified mis-coverage rate,
a.

o Average Retrieval Percentage Comparison. For methods in-
corporating an abstention option (Sections 3.3 and 3.4),
we aim to demonstrate that queries with abstention con-
sistently result in a larger empirical average retrieval size
if the retrieval is performed, than those without. To better
visualize the results, we show the average retrieval size as
a percentage of the total number of pre-defined functions
for all queries, denoted as average retrieval percentage.

e Method Extensions Evaluation. To demonstrate that our
proposed extension methods (Section 3.5) enhance either
the empirical coverage or the average retrieval percentage.

Ultimately, we seek to show that by tuning the mis-coverage
rate a, one can balance the trade-off between function execution
cost during validation and function generation cost.

4.2 Reliable Function Retrieval

In this section, we follow the objectives outlined in Section 4.1,
and evaluate the Coverage Validation and Average Retrieval Per-

centage Comparison objectives first across all methods (Sections 4.2.2

to 4.2.4). We then address the Method Extensions Evaluation in
Sections 4.2.5 and 4.2.6. Additionally, in Section 4.2.7, we vary
the embedding models to demonstrate that our method is not
sensitive to the specific choice of embedding model. Finally, in
Section 4.2.8, we present the trade-off between function execution
and code generation.

4.2.1 Comparison with other Baselines. To demonstrate the ben-
efit of our proposed methods, we compare against popular ap-
proaches for the function transformation task, including: (1) CG
(Code Generation): LLM directly generates Python code from in-
put/output pairs. (2) RAG (Retrieval-Augmented Generation):
Queries and functions are first embedded (as in Section 4.1), the
top-k functions are then retrieved, and an LLM selects one as the
transformation function. (3) RV (Retrieval-and-Validation):
Similar to RAG, but instead of LLM selection, functions are val-
idated against the query, guaranteeing correctness if the tar-
get function is retrieved. We also evaluate our proposed FRCP
method (Section 3.2.2), which applies conformal prediction with
mis-coverage rate a € [0.01,0.5] and reports validation accuracy.

We show our experiment results on the above baselines in
Figure 4a. For both approaches CG and RAG, the result qual-
ity depends on various factors, including model, prompts, etc.
We report our results using the best prompt we tried. Results
are shown for three LLMs, including gpt-40-mini (denoted as
CG/40 and RAG/40), gpt-5-mini (denoted as CG/5 and RAG/5),
and codex-mini-latest model finetuned on code generation
tasks (denoted as CG/X and RAG/X). The CG method achieves vary-
ing levels of accuracy across different datasets: among them, it
performs best on the STD dataset and worst on the DS1K dataset,
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highlighting the intrinsic challenge of the task when employing
the code generation approach.

For RAG and RV, we also vary k € {3,5} to examine its im-
pact, denoted as RAG@k and RV@k. The accuracy of CG and RAG
depends heavily on the underlying LLM, with gpt-5-mini per-
forming best. For retrieval-based methods (i.e., RAG and RV),
accuracy is limited by LLM generation errors, so RAG cannot ex-
ceed RV. Increasing k improves both RAG and RV, but all baseline
methods operate on a best-effort basis, leaving accuracy beyond
user control.

As can be observed from Figure 4b, our proposed method
FRCP allows users to specify a mis-coverage rate « (denoted as
FRCP/a, where o varies from 0.01 to 0.5), enabling the achieved
accuracy to closely match the user’s target. Such results can be
consistently observed on all these datasets. The parameter o
indirectly controls the size of the retrieved function set, thereby
influencing either the cost of LLM invocations for code generation
or the cost of function invocations. We will further discuss such
topics in detail in the following sections.

4.2.2  Function Retrieval with Marginal Coverage Guarantee. We
present the results of our proposed method, FRCP, introduced
in Section 3.2.2, where we vary the mis-coverage rate « from
0.5 to 0.01. Figure 5 illustrates the expected coverage rate as a
diagonal line. Each box plot corresponds to a different a value
and represents the coverage over 10 independent runs. The boxes
depict the interquartile range, which encompasses the middle 50%
of the coverage values, with whiskers extending to the minimum
and maximum observed values. Note that while the x-axis labels
appear evenly spaced for better visualization, the corresponding
a values are not uniformly distributed. In both data sets, we
observe that the expected coverage rate is statistically maintained
for each a.

From Figure 6, as o decreases to 0.01, the coverage improves,
but the average retrieval percentage increases to more than 40%
for STD, 30% for TDE, and 20% for DS1k, imposing significant
validation costs. This suggests that while function retrieval using
large language models (LLMs) yields practical results, there is a
tradeoff: higher coverage comes at the cost of larger validation
sets. Our method allows users to manage this tradeoff by adjust-
ing the mis-coverage rate (), offering control over the balance
between coverage and validation cost.

4.2.3  Function Retrieval with Abstention. We begin by present-
ing the performance of the general approach, CPLF, as outlined
in Section 3.3.1. Following this, we discuss the results of our
proposed methods in detail.

CPLF: We implement the CPLF method proposed by Kiyani, et.
al. [23] and utilize it for our task, using two groups (i.e., setting
the number of output classes to 2 for the partitioning network).
For each value of @, we run CPLF 10 times independently and
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count how many groups are obtained at the end of each run.
Due to space constraints, we present the results for the TDE
dataset in Figure 7; the results on other datasets exhibit a similar
trend. Figure 7a presents the actual number of groups obtained
for different values of a. For example, when a = 0.05, 2 out of
10 runs produce 2 groups, while 8 runs only produce one group.
CPLF does not consistently generate the desired two groups
across both datasets. The best performance is observed with the
TDE dataset when a = 0.2, where two groups are obtained in
the result for 6 out of 10 runs. Further increasing the expected
number of groups produces similar results.

This behavior can be attributed to two key factors: (a) optimiz-
ing the joint problem involving both the partitioning network
and the quantile value is complex and may require careful hyper-
parameter tuning, and (b) the large embedding space for natural
language descriptions introduces multiple possible solutions to
the joint optimization problem. Additionally, the inherent ran-
domness in the gradient descent process can lead to suboptimal
outcomes.

In Figure 7b, we also plot the average retrieval percentage for

each group when two groups are successfully formed. Since the
average retrieval size is not explicitly optimized by CPLF, the
percentages of the two groups may not vary significantly. For
example, when a = 0.1, there is a noticeable gap between the
average retrieval percentages of groups A and B. However, as
a increases to 0.3, the retrieval percentages for the two groups
become more similar. These findings suggest that CPLF is not
suited for our specific task, emphasizing the necessity of our
proposed method.
FRA: We present our FRA-based methods, described in Sec-
tion 3.3.2, in Figures 8 to 11. Specifically, FRA is used to obtain
the partitioning network while applying either LA (referred to
as FRA+LA) or CPA (referred to as FRA+CPA) to compute the
quantile value. The abstention rate is set by default to a = 0.2,
meaning that approximately 20% of queries are expected to be
abstained.

Figure 8 shows the average retrieval percentage on the TDE
dataset; the results on other datasets show a similar trend and
are omitted due to space constraints. Since the partitioning net-
work is guided by the grouping results utilizing minimal retrieval
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Figure 12: Varying f on TDE (FRA+CPA)

percentage, our method consistently identifies two groups with
significantly different average retrieval percentages, as reflected
in both figures. We denote group A as the set of queries that
will be abstained from answering, while group B represents the
remaining queries. Additionally, the specified abstention rate is
met, as shown in Figure 9. The results for the STD dataset exhibit
the same trend and are omitted for brevity. In the remaining
experiments, we focus on FRA+CPA, as FRA+LA yields similar
results.

Furthermore, we plot the coverage for all datasets using both

approaches in Figures 10 and 11. As shown, the empirical cover-
age is maintained near the target value. However, compared to the
base conformal prediction method applied to the entire dataset
(Figure 5), the empirical coverage for non-abstained queries tends
to be lower than expected. This discrepancy stems from the bias
introduced by the partitioning network, which violates the ex-
changeability assumption. Later in this section, we will demon-
strate how methods that do not assume exchangeability can
address this issue.
Varying f5: We also vary the value of § from 0.1 to 0.5 to demon-
strate the flexibility of the FRA method and present the results
on TDE in Figure 12 (STD also shows similar results). Regardless
of the specific value of §, the partitioning network consistently
maintains the desired proportion of samples to abstain from an-
swering (Group A in Figure 12a). Furthermore, we observe that
the average retrieval percentage of each group remains signifi-
cantly different across all § values in Figure 12b, suggesting that
queries likely to produce larger retrieval percentages are more
prone to being abstained.
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As the abstention rate § increases, we also notice a drop in
empirical coverage, as shown in Figure 13. This decrease in cover-
age is attributed to two factors: (a) as more queries are abstained,
fewer samples remain in each group for calibration, leading to
poorer calibration results; and (b) the partitioning network may
introduce bias, violating the exchangeability assumption.
Varying Number of Groups: The FRA method can be extended
to support more than two groups. We increase the number of
groups from 2 to 4 and compute the overall coverage for non-
abstained queries, as shown in Figure 14. As the number of groups
increases, the overall coverage decreases. This trend is consistent
with our earlier observation in Figure 11, where empirical cover-
age tends to fall below the expected coverage. As more groups
are introduced, the gap between empirical and expected coverage
widens. These findings suggest that, for reliable function retrieval
with abstention, using two groups yields the best results.

4.2.4  Size-Constrained Function Retrieval with Abstention. For
the solution to Problem 3, we set k = 4% of the number of pre-
defined functions (k = 1% for the DS1K dataset due to the high
number of functions) and evaluate the CFRA method (Section 3.4)
with CPA to compute quantile values across varying values of a.
Figure 15 presents the results for TDE and DS1K. The results for
STD are omitted as they exhibit a trend similar to those observed
with TDE. The box plot shows the average retrieval percentage for
non-abstained queries (left y-axis), while the line plot presents
the empirical abstention rate f (right y-axis). When a = 0.5,
the abstention rate for both datasets is 0, which means that all
queries are answered. As « decreases from 0.4 to 0.1, the empirical
abstention rate increases. Furthermore, as shown in Figure 16, the
gap between the empirical and expected coverage increases as o
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approaches 0.05. This pattern aligns with our earlier observations
regarding the impact of varying f in Section 4.2.3. Later, we will
demonstrate how incorporating non-exchangeability can help
reduce the coverage gap.

We also vary k from 2% to 8% of | F|, and Figure 17 presents that
the empirical average retrieval percentage remains controlled
within the x threshold on TDE. As « increases, the empirical
abstention rate f§ decreases (right y-axis), as more queries are
answered without abstention. The same trend is also observed
on STD and omitted for brevity.

4.2.5 Reliable Function Retrieval with Non-Exchangeability. We
implemented all three of our methods utilizing non-exchangeability,
as described in Section 3.5.1; we append the suffix “+W" to
their notation to signify this (denoting a weighted approach).
The results on TDE are presented in Figure 18, while the same
trend can be observed on STD as well (omitted due to space
constraints). Compared to the original methods, incorporating
non-exchangeability reduces the gap between the empirical cov-
erage and the target coverage. This suggests that conducting
estimations under non-exchangeability is the preferred method-
ology in practice.

4.2.6 Reliable Function Retrieval with Additional Regression Mod-
els. We also conducted experiments with regression models, as
discussed in Section 3.5.2. Specifically, we evaluated two models:
Support Vector Regression (SVR) and Multi-Layer Perceptron
(MLP); we compared them to a baseline that does not utilize a
regression model (NoReg) on the TDE dataset using the FRCP
method. The comparison is shown in Figure 19, with other meth-
ods and datasets exhibiting similar trends.

For this experiment, the dataset was split in a 4:3:3 ratio, where
40% of the data was used to train the regression models, while the
remaining was split evenly for calibration and testing. Regardless
of the regression model used, target coverage was consistently
maintained, as shown in Figure 19a. For improved visualization,
we used a line plot where the solid line represents the mean
value, and the shaded area around it indicates the range between
the minimum and maximum values at each « level. However,
the advantage of using regression models is not evident when o
is large; in fact, the average retrieval percentage may increase
significantly if models like SVR are applied. When the target
coverage is low, results based on nearest neighbors are sufficiently
effective. On the other hand, when a higher coverage rate is
needed (i.e., with lower a values), regression models, such as
SVR and MLP, can reduce the average retrieval percentage, as
observed when a = 0.1.

4.2.7 Varying Embedding Methods. We also demonstrate that
our proposed approach is orthogonal to the choice of embed-
ding methods Specifically, we switch the embedding model to
all-mpnet-base-v2 for function and query descriptions. Fig-
ure 20 presents experimental results on the DS1K dataset using
the FPA+CPA method, as discussed in Section 4.2.3. As shown,
the observed trends are consistent with our previous experi-
ments, confirming that our methods are compatible with varying
embedding models. Similar trends were observed in all other
experiments, which are omitted here for brevity.

4.2.8 Reliable Data Transformations with Code Generation. Fi-
nally, we demonstrate that varying a can effectively balance the
number of function validation invocations, which occur during
the validation phase, against the number of code generations. In
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Figure 21a, the left y-axis presents the number of function vali-
dation invocations, while the right y-axis presents the number
of times we opt for code generation. Note that in practice, the
cost of each code generation invocation can be significant, as it
involves considerable time and effort to execute test cases and
perform human verification. For example, considering the case of
performing function validation in 10 test cases per function, on
the TDE dataset (Figure 21b), as we increase the target coverage
rate (i.e., decrease @), the cost of function validation decreases,
while the cost of code generation increases, and vice versa. Even
when a = 0.05, the function execution cost remains significantly
lower than validating all functions, which takes approximately
over 30 hours. Our proposed framework allows empirically se-
lecting an appropriate « value, along with a specific abstention
method, to best meet specific application needs.

=T

272

Yueting Chen et al.

BN FRACPA L~ BN CFRA+CPA =
09 mm FRAsCPATW i -+ 09 mmm CFRA+CPA+W ks T
o 0.8 %T N 08 =
507 jen 807 &
3 e 8 e
06 . 06 %’f
05 %a 05 ﬁ
05 04 03 02 01 005 05 04 03 02 01 005
a a
(b) FRA+CPA+W (c) CFRA+CPA+W

Figure 18: Coverage on TDE Dataset with Non-Exchangeability Assumption

4.2.9 Summary. Through the above experiments, we show that
for a given miscoverage rate , all our proposed methods address-
ing different problems achieve coverage at or near the desired
level, thereby ensuring reliable function retrieval. By adjusting
«, one can balance the cost between function execution and code
generation. We also evaluated the effectiveness of two extensions
in this setting.

5 Related Work

Self-service data transformation systems have been extensively
studied over the past few decades, with the primary goal of
creating user-friendly interfaces for performing data transfor-
mations [1, 13-16, 20-22, 38, 45, 46]. These capabilities have
been integrated into widely used commercial tools, such as Excel
[13] and Power BI [15]. However, traditional approaches rely on
techniques such as code analysis [15], predefined sets of trans-
formation operators [20, 45], or heuristic ranking algorithms
[14, 16, 22], which can limit their flexibility and suffer from noisy
inputs [10]. Recent research has begun exploring the use of ma-
chine learning to enhance these systems [9]. The emergence of
large language models (LLMs) [44] has expanded the potential for
various applications, including data transformation tasks [36] and
joinability search [10], with promising results. However, LLMs
are known to suffer from issues like hallucinations [19], leading to
the development such as prompting techniques [17, 27, 28, 34, 42]
and Retrieval Augmented Generation [11, 12, 18] to mitigate these
issues. Such approaches remain best-effort methods, where the
cost and accuracy depend implicitly on the underlying model and
parameters, and no theoretical guarantees can be provided. In
contrast, conformal prediction [4, 31, 35, 41], a statistical frame-
work that provides coverage guarantees, is well-suited for uncer-
tainty quantification and has been successfully applied to various
machine learning tasks [4]. Distinct from prior work, this paper
proposes to abstain from answering a proportion of questions
by leveraging conformal prediction, ensuring reliable retrieval
results.

6 Conclusion

In this paper, we address the problem of reliable function retrieval
using large language models (LLMs) for data transformation tasks.
By leveraging conformal prediction techniques, we explore three
methods that provide reliable retrieval results while offering
trade-offs between code validation costs and code generation.
Our experimental results demonstrate the effectiveness of these
methods and highlight the benefits of the proposed framework.
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