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Abstract

Many e�ective dissimilarity measures for variable-length time

series, such as DTW, MSM, or TWED, are expensive to compute

because their runtimes increase quadratically with the time se-

ries’ lengths. When used in hierarchical agglomerative clustering

algorithms that need to compute all pairwise time series dissimi-

larities, they cause slow runtimes and do not scale to large time

series collections. However, there are use cases, where fast, inter-

active hierarchical clustering is necessary. For these use cases,

progressive hierarchical clustering algorithms can improve run-

times and interactivity. Progressive algorithms are incremental

algorithms that produce and continuously improve an approxi-

mate solution, which eventually converges to the exact solution.

In this paper, we present DendroTime, the �rst (parallel) pro-

gressive clustering system for variable-length time series col-

lections. The system incrementally computes the pairwise dis-

similarities between the input time series and supports di�er-

ent ordering strategies to achieve progressivity. Our evaluation

demonstrates that DendroTime’s progressive strategies are very

e�ective for clustering scenarios with expensive time series dis-

similarity computations.
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1 Clustering time series

Time series clustering is an active and popular research area

with hundreds of publications per year [1, 21, 22, 24]. The ob-

jective is to group similar time series, such that the time series

within a group are more similar to each other than time series

of di�erent groups. Time series clustering is often the starting

point for exploratory analysis and, thus, applied in many ap-

plication domains, such as greenhouse monitoring [50], speech

recognition [18], environmental monitoring [9], healthcare [56],

and energy management [19]. A clustering can be calculated

in di�erent ways, including feature-based (e. g., Time2Feat [8]),

partitional sequence-based (e. g., k-Means [22] or k-Shapes [41]),

or hierarchical sequence-based (e. g., hierarchical agglomerative

clustering (HAC) [1, 24, 41]).
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Figure 1: Dendrogram quality (WHS) and convergence in-

dicator (#CumClusterChanges@k) of DendroTime’s ada

(progressive) and fcfs (non-progressive) strategies for the

ACSF1 dataset withMove-Split-Merge [57] (MSM) and av-

erage-linkage. The vertical dashed line marks the switch

from the approximate to the exact dissimilarity computa-

tion phase.

In this paper, we propose a novel HAC technique because HAC

is particularly useful for the (interactive) clustering of time se-

ries [1, 14, 24, 41]: It can leverage elastic dissimilarity measures to

cluster variable length input time series, it does not require users

to specify the number of clusters upfront [1], and it achieves high

comparative qualities in benchmarks with elastic dissimilarity

measures [24, 61]. However, because HAC has to call a usually

costly (elastic) dissimilarity function for all pairs of time series,

it scales poorly and works for only small datasets [1].

To deal with the high computational complexity of HAC, re-

searchers have proposed approximate HAC algorithms [12, 25,

26, 61] that compute the dissimilarities for a small selection of

time series pairs and infer them for the remaining ones. Because

this strategy works only for certain dissimilarity measures and

linkage methods, existing approximate HAC algorithms are lim-

ited in their e�ectiveness and applicability. So to control the

computational complexity of HAC and integrate it into interac-

tive clustering processes, we propose to calculate a hierarchical

clustering progressively.

Progressive algorithms [5, 33, 44, 45, 55, 62, 68] are incremental

algorithms that try to achieve better early qualities than tradi-

tional incremental algorithms; they produce the same results as

exact algorithms when they terminate. Progressive algorithms

are di�erent from online or streaming algorithms, in that they

process static datasets but intend to gradually improve the result

quality. A progressive clustering algorithm should, thus, quickly

compute an approximate dendrogram that rapidly converges to

the exact dendrogram. It allows scientists to monitor the dendro-

gram over time and stop the clustering process early, shortening
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the feedback cycle. This is visualized in Figure 1, which shows

the result quality (measured using WHS) of a progressive al-

gorithm (left) compared to a non-progressive algorithm (right)

over its runtime. Because measuring the result quality requires

knowledge of the ground truth dendrogram, which is unavail-

able in practice, a novel, unsupervised convergence indicator

(#CumClusterChanges@k in Figure 1) is used to communicate the

progress of the algorithm to the user. The progressive clustering

approximates the exact result relatively quickly, which allows

for early termination, but the non-progressive curve converges

only at the very end.

We present DendroTime, a parallel, progressive clustering

system that computes a hierarchical clustering for large collec-

tions of time series. The algorithm creates and continuously im-

proves an approximate dendrogram, and, thus, an approximate

solution of the time series clustering problem. The approximate

dendrogram converges to the exact solution when DendroTime

�nishes. To achieve progressivity, the system sequentially com-

putes the pairwise dissimilarities between the input time series

and supports di�erent ordering strategies. DendroTime is in-

dependent of the time series dissimilarity measure and the ag-

glomerative linkage method. While some progressive algorithms

can provide convergence guarantees [47, 68], heuristics-driven

progressive algorithms, such as algorithms for progressive data

cleaning [33, 44, 55, 62], progressive data mining [5, 45], and the

approach to progressive hierarchical clustering presented in this

paper, cannot provide these guarantees. Hence, we experimen-

tally evaluate DendroTime with the most e�ective dissimilarity

measures in their respective categories and four linkage meth-

ods. We start the paper with an introduction to time series and

hierarchical agglomerative clustering (Section 2). Then, we make

the following contributions:

(1) We propose PrAC, the �rst progressive HAC algorithm,

which is based on intelligent ordering strategies for dis-

similarity computations; and Area under the WHS-runtime-

curve, a novel convergence measure for HAC algorithms

(Section 3).

(2) We develop a task- and data-parallel execution strategy,

which separates dissimilarity computations from periodic

dendrogram constructions, and optimizes the progressive

dissimilarity ordering strategies for improved scalability

(Section 4).

(3) We introduce DendroTime, a practical clustering system

that combines the parallelized hierarchical clustering al-

gorithm PrAC with the novel unsupervised convergence

indicator #CumClusterChanges@k to enable interactive,

progressive HAC processes (Section 5).

(4) We conduct an evaluation of PrAC and DendroTime on

135 time series clustering datasets of various sizes (Sec-

tion 6) and demonstrate their applicability for time series

anomaly detection in the EDEN ISS case study (Section 7).

2 Hierarchical agglomerative clustering
(HAC) for time series

DendroTime is a progressive HAC system for time series. It

takes a collection of variable-length time series as input and

incrementally computes their pairwise dissimilarities. Using the

pairwise dissimilarities, DendroTime periodically constructs a

dendrogram by iteratively merging the two mutually closest

clusters.

Time series. A time series is an ordered sequence of real-valued

data points, recorded in regular intervals over time. For illustra-

tions and experiments, we focus on univariate time series, in

which data points consist of a single variable.

De�nition 2.1 (time series cf. [53]). A univariate time series ) ∈
R
< is a sequence of real-valued points C8 ∈ R, where 1 ≤ 8 ≤ <.

The length of the time series ) is denoted as < = |) |, and the

8Cℎ-point of the series as) [8] = C8 . A subsequence ) [8, ;] of a time

series ) is a continuous subset of the values in ) starting from

index 8 with length ; : {C8 , C8+1, . . . , C8+;−1}, where 1 ≤ 8 ≤ < − ; .

Usually ; ≪<.

The input to DendroTime is a potentially large set of time

series with varying lengths:

De�nition 2.2 (Dataset). A dataset T = {)1, . . . ,)=} is a set of

= time series )8 with 1 ≤ 8 ≤ =, where = = |T | is the cardinality

of T .

Time series dissimilarity measures. A dissimilarity measure

3 (·, ·) determines a numerical value that describes the distance

between two objects (in our case, two time series )8 ,)9 ). A HAC

algorithm uses a dissimilarity matrix of all pairwise time series

to �nd similar and dissimilar time series pairs. Dissimilarity mea-

sures for HAC need not be metrics: they do not always satisfy the

triangle inequality, and the dissimilarity between two di�erent

objects might be zero [20, 36].

Time series dissimilarity measures can be classi�ed into �ve

categories [43]: lock-step, sliding, elastic, kernel, and embedding

measures. The most widely used dissimilarity measure, also for

HAC algorithms, is the Euclidean distance (ED). It is a lock-step

measure [43] that compares all points of two time series element-

wise. While lock-step measures can technically be applied to time

series, they are not well suited for this purpose because (i) they

ignore the ordering of the points, (ii) they are sensitive to shifts

in time or scaling di�erences, and (iii) they require truncation,

padding, or resampling to deal with unequal-length time series.

Sliding and elastic dissimilarity measures, on the other hand,

try to align two time series optimally by comparing one time

series with all shifted versions of the other or computing a warp-

ing/editing path between the two time series, respectively. This

allows these measures to accurately capture dissimilarities in

variable-length time series with shifted patterns. However, both

sliding and elastic measures are harder to compute than lock-step

measures.

Kernel measures use a mapping function to implicitly trans-

form the time series into a higher-dimensional space, in which

they compute the time series’ dissimilarity. The mapping function

can have lock-step, sliding, or elastic properties [43].

To cover the runtime-behaviors of all dissimilarity measure

categories, we use the best performing measure per category

as representative in our experiments, according to the evalua-

tion of Paparrizos et al. [43]: Lorentzian distance (LD) for lock-

step, Shape-based Distance [41] (SBD) for sliding, Move-Split-

Merge [57] (MSM) for elastic, and Dynamic Time Warping Ker-

nel [34] (KDTW) for kernel measures. We exclude embedding

measures because they perform signi�cantly worse than the

other measures and require a learning step, which is not ap-

plicable in our clustering setting. We also include the popular

Dynamic Time Warping [6] (DTW) measure. Adding more dis-

similarity measures to DendroTime is easy but does not provide

further insights because DendroTime’s convergence behavior

mainly depends on the measures’ computational complexity. The
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(a) Graphical dendrogram.
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(b) Stepwise dendrogram.

Figure 2: Output of a HAC algorithm for = = 5 instances.

The implicit cluster identi�ers (:, ;, . . . ) are displayed as

(<ID>).

computation of MSM, DTW, and KDTW is expensive, having

a time and space complexity in $ (<2). SBD can be computed

in $ (< · ;>6(<)) time, and LD in $ (<). We refer the interested

reader to Paparrizos et al. [43] and Holder et al. [22] for the de-

tailed de�nitions and analysis of these and further time series

dissimilarity measures. As suggested by Ratanamahatana and

Keogh [48] and con�rmed by Holder et al. [22], DendroTime

uses Sakoe-Chiba bounding with a 5% window-size for MSM

and DTW by default; as recommended by Paparrizos et al. [43],

unit-length normalization for LD and z-normalization for KDTW;

and no standardization for SBD.

Hierarchical agglomerative clustering. HAC is an unsuper-

vised, well-established machine learning method for constructing

hierarchical partitionings of data instances. Agglomerative clus-

tering methods start with singleton clusters (clusters that contain

a single instance) and iteratively merge the two mutually closest

clusters until all instances of a dataset are part of a single cluster.

This sequential procedure creates a hierarchy of cluster merges,

which can be depicted as a dendrogram. Each level in the hier-

archy corresponds to a dataset partitioning. Figure 2a shows a

dendrogram for a dataset with = = 5 instances.

We denote the set of all (hierarchical) clusters of a HAC al-

gorithm as C = {�1, . . . ,�2=−1}. The clusters in C can have

di�erent cardinalities, ranging from 1 for singletons to = for the

�nal cluster at the root containing all nodes.

HAC algorithms can use di�erent linkage methods to calculate

the inter-cluster dissimilarities 3link (�: ,�; ), which determine

the order of cluster merges. The most common linkage methods

are single, complete, average, weighted, ward, centroid, and me-

dian linkage [17, 36]. To compute the results for single linkage,

we use the MST algorithm [51], and to compute the results for

complete, average, and weighted linkage, we use the NN-chain

algorithm [37], as recommended by Müllner [39]. Ward, centroid,

and median linkage are excluded because they assume Euclidean

distances [39].

The input to an HAC algorithm are the
(=
2

)
=

= (=−1)
2

dissim-

ilarities 3 ()8 ,)9 ) for all pairs of time series )8 ,)9 in the input

dataset T , where )8 ≠ )9 . Because all hierarchical clustering

methods are sensitive to each input value [39], they need to

ultimately process all input values and their runtime is, thus,

bounded by Ω(=2).
The output of a HAC algorithm is a series of cluster merges,

which we can parse into a tree-based graphical dendrogram. We

use the e�ective stepwise dendrogram data model [39] for storing

the cluster merges in memory and on disk. A stepwise dendro-

gram is a compact representation of the merging steps performed

by a HAC algorithm. Instead of storing all possible 2= − 1 clus-

ters of the dataset, it records the cluster merging steps. Figure 2

displays a stepwise dendrogram for = = 5 instances with its cor-

responding graphical representation. In a stepwise dendrogram,

the order of merge steps matters and also needs to be chosen

for ties, i. e., two merges with the same dissimilarity. For the re-

mainder of the paper, we use the terms stepwise dendrogram and

dendrogram interchangeably; for the tree-based representation,

we use the term graphical dendrogram.

3 Progressive dissimilarity computation

Our goal is the design of a progressive HAC algorithm that can

be used for interactive variable-length time series clustering with

expensive dissimilarity measures on large collections of time

series. For this, we need an algorithm that (i) has a very fast

initialization time (time to �rst approximate result), (ii) continu-

ously updates the approximate result while new dissimilarities

become available, and (iii) converges to the exact dendrogram

upon completion.

Unlike other papers on improving HAC, e. g., [54, 64], we

consider the computation of the pairwise dissimilarities to be

part of the clustering algorithm: these computations make up

most of the runtime. The actual share of runtime depends on the

computational complexity of the used dissimilarity measure, but

ranges from 55 % (ED, LD) to 98 % (DTW, MSM, SBD, KDTW).

First, this section introduces our two-phased algorithm PrAC,

which continuously updates an approximate dendrogram until it

converges to the exact dendrogram (Section 3.1). Subsequently,

we discuss di�erent strategies to order the computation of the

exact pairwise time series dissimilarities (Section 3.2). Finally, we

propose a convergence measure for PrAC that allows us to assess

the rate of convergence for di�erent strategies (Section 3.3)

3.1 PrAC: Progressive agglomerative
clustering

The main intuition behind progressive clustering is that not all

pairwise dissimilarities are equally important for the clustering

process. For dense regions, the dissimilarities within the region

are crucial and must be accurate: small changes in the dissimi-

larity values can drastically change the order of cluster merges.

However, small changes in dissimilarities between time series

that are far apart do not a�ect the order of cluster merges much.

Thus, dissimilarities of close time series need to be exact, while

dissimilarities of distant time series can be approximated, and

a progressive clustering strategy should compute the exact dis-

similarities for close time series before those for distant time

series.

PrAC �rst approximates all pairwise dissimilarities and then

sequentially computes the exact dissimilarities, while continu-

ously updating the dendrogram. Using the MST or NN-chain

algorithm, PrAC periodically constructs the dendrogram from

scratch based on the latest dissimilarity matrix. The periodicity

of the dendrogram updates could be de�ned based on the number

of dissimilarity computations, but since every modern machine

o�ers multicore support, PrAC simply runs the dendrogram

constructions continuously in parallel (Section 4.1). The dissim-

ilarities between time series are computed in two phases: The

�rst phase computes all approximated time series’ dissimilarities;

these are needed as hints for any progressive re�nement strategy.

The second phase computes all exact dissimilarities according to

a heuristic ordering strategy that tries to maximize re�nement

gains. This two-phased approach o�ers early approximate results
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(1) Approx. (2) Exact

Dendrogram construction

Figure 3: PrAC consisting of two phases: (1) approximated

dissimilarity computation and (2) exact dissimilarity com-

putation; unset dissimilarity (= ∞), approximated dis-

similarity 3̃ ()8 ,)9 ), exact dissimilarity 3 ()8 ,)9 ).

(approximate dendrograms), gradual and possibly fast result im-

provements, and guarantees to eventually converge to the exact

result. Note that the exact dissimilarity calculations take signi�-

cantly longer to compute than the approximations, so that PrAC

spends most time in the second phase. While PrAC cannot guar-

antee a monotone or optimal convergence, we show empirically

in Section 6.2 that our heuristics provide fast convergence for

computationally expensive dissimilarity measures.

Figure 3 provides a visualization of the progressive clustering

approach: PrAC starts by loading all time series into memory

and initializing all elements of the dissimilarity vector to +∞.

The initial dendrogram has all time series in the root cluster.

In the approximated dissimilarity computation phase (1), we

consecutively estimate the pairwise dissimilarities between time

series and periodically construct the dendrogram. To estimate

the dissimilarity between two time series, we extract a random

small subsequence of length<sub = 20 out of the time series and

pass it through our dissimilarity measure 3 . If a time series )8 is

shorter than<sub, we set<sub = |)8 |. The estimated dissimilarity

3̃ between two time series )8 and )9 is calculated as

3̃ ()8 ,)9 ) =
<0G

(
|)8 |, |)9 |

)

<sub
· 3

(
)8 [28 ,<sub],)9 [2 9 ,<sub]

)

where 0 ≤ 28 < |)8 | −<sub and 0 ≤ 2 9 < |)9 | −<sub

and<sub ≤ |)8 | and<sub ≤ |)9 |
Because the approximation does not consider length di�er-

ences, we need to extrapolate the approximated dissimilarity 3 (
)8 [28 ,<sub],)9 [2 9 ,<sub]), which is based on short random sub-

sequences of length<BD1 of)8 and)9 . Without the extrapolation,

the approximated dissimilarities would have a di�erent value do-

main than the exact dissimilarities, and, thus, not estimate our de-

sired values well. The chosen extrapolation factor
<0G ( |)8 |, |)9 |)

<sub

is e�cient to compute and generalizes to all our time series dis-

similarity measures. Setting the subsequence length <sub to a

small, constant value, i. e. to 20, drastically speeds up the dissimi-

larity computations ($ (=2) ≪ $ (=2 ·<2)), but still results in a

good and distance-measure-speci�c estimation quality, as we can

observe in Figure 1 (the initial jump is due to the approximated

dissimilarities). In our experiments, we use a subsequence from

the middle of the time series. In practice, however, we did not ob-

serve signi�cant di�erences in the approximation quality when

extracting the subsequence from other positions. While more and

more dissimilarities are estimated, the dendrogram takes shape

and time series are removed from the root cluster and put into

sub-clusters. When all dissimilarities have been estimated, the

approximated dendrogram is �nished and the algorithm switches

into the second phase.

In the exact dissimilarity computation phase (2), we incremen-

tally compute the exact pairwise dissimilarities, update the dis-

similarities in the dissimilarity vector, and also periodically con-

struct the dendrogram. We use the approximated dissimilarities

and the approximate dendrogram to determine a “good” (cf. Sec-

tion 3.3) order for the computation of the expensive exact dissim-

ilarities, such that the stepwise dendrogram quickly converges

to the exact solution. Depending on the dissimilarity computa-

tion ordering strategy (cf. Section 3.2), we compute the exact

dissimilarities one after the other and update the dissimilarity

matrix and the dendrogram. The exact dissimilarities gradually,

but not necessarily monotonically, improve the order of cluster

merges, whereby the dendrogram progressively approaches the

exact solution. When all approximated dissimilarities have been

replaced by their exact value, we trigger the dendrogram con-

struction one last time. This ensures that, independent of the

periodic dendrogram update schedule, the algorithm terminates

with an exact dendrogram.

3.2 Dissimilarity computation ordering

Our progressive HAC algorithm PrAC incrementally computes

all approximated dissimilarities and then all exact dissimilarities.

The order of the approximated dissimilarity computations is

insigni�cant for the convergence rate of the algorithm because

Phase 1 constitutes only a small fraction of the overall runtime.

Hence, PrAC simply computes the approximated dissimilarities

in the order in which the time series are loaded from disk (cf. fcfs

strategy below). Because the exact dissimilarity computations are

expensive to compute, their order needs to be optimized, such

that dissimilarities between close time series are computed before

dissimilarities between distant time series.

We now describe six dissimilarity computation ordering strate-

gies with the �rst two (fcfs and rand) being baseline strategies.

�rst-come-�rst-served. The fcfs baseline strategy simply or-

ders the dissimilarity computations in the order we load the time

series from disk. When loading time series )8 (for 2 ≤ 8 ≤ =), it

generates the pairs ()9 ,)8 ) for all 1 ≤ 9 < 8 . The time series in

our datasets are not stored in any speci�c order.

random. This baseline strategy takes the order of the fcfs strat-

egy and shu�es the time series pairs. In our experiments in

Section 6, we sample 1,000 random orders to demonstrate that

random orders lead to slow convergence.

time-series-length-ascending. The tsla strategy sorts the time

series pairs in ascending order by their average length. For

sliding and elastic dissimilarity measures, computing the dis-

similarity between two small time series is over-proportionally

faster than between two large time series because the dissim-

ilarity computations scale superlinearly with the time series’

lengths. Thus, PrAC maximizes the update rate at the beginning

of Phase 2 with decreasing update rates toward the end. This

strategy degrades to the fcfs strategy if all time series have the

same length.

approximate-dissimilarity-ascending. The ada strategy de-

�nes an ordering heuristic based on the dissimilarities from the

approximation phase, from small to large. As motivated earlier,

approximation errors for close time series have a larger impact

on the clustering than approximation errors for distant time se-

ries. Hence, ada tries to �x the high-impact errors early, so that
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intra-pre-cluster
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medoids
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Figure 4: Dissimilarity matrix for the precl strategy for a

dataset with 6 time series and 3 pre-clusters ( medoid,

approximate dissimilarity, exact dissimilarity, pre-

cluster), updates at each step are highlighted with color.

the estimated dendrogram converges to the exact dendrogram

progressively.

pre-clustering. The precl strategy, which is visualized in Fig-

ure 4, follows a three-step approach inspired by the JET algo-

rithm [61]: (i) The intra-pre-cluster step partitions the approxi-

mated dendrogram into
⌈
3
√
=
⌉

pre-clusters and computes the

exact dissimilarities for all time series pairs within these pre–

clusters. Figure 4 shows the dissimilarity matrix for a dataset

with six time series and three pre-clusters; the computed ex-

act dissimilarities of all pairs of time series within a cluster

are shown as colored, �lled dots in each pre-cluster. (ii) The

medoids step determines the medoid (colored diamond) for each

pre-cluster and computes the dissimilarities of all medoid pairs

(colored, �lled dots). The medoid dissimilarities are more pre-

cise than the approximated dissimilarities and are, therefore,

used to overwrite all inter-pre-cluster pairs of corresponding

pre-clusters to improve their dissimilarity estimations. (iii) The

inter-pre-cluster step computes the exact dissimilarities of all in-

ter-pre-cluster pairs that were set to the medoid dissimilarities

in the previous step (light gray dots).

We compute the dissimilarities between time series from close

pre-clusters before those between far-apart pre-clusters. The

�nal step covers the most dissimilarity computations and, thus,

takes most of the runtime. However, inter-cluster pairs also tend

to be farther apart than the previous pairs, so that updating

the medoid-estimated dissimilarities once more with the exact

dissimilarities causes fewer changes to the dendrogram than

the updates before, again causing updates to the dendrogram

to arrive progressively.

In our evaluation (Section 6.3), we demonstrate that our novel

ada and precl strategies signi�cantly outperform the other strate-

gies and that ada scales better than precl to larger time series

collections.

3.3 Measuring progressiveness

To evaluate the e�ectiveness of our PrAC algorithm and its or-

dering strategies, some measure of progressiveness should capture

the speed of convergence for a gradually improving dendrogram

toward an exact solution. Because no such measure currently

exists for this setting, we propose a novel convergence measure

called Area under the WHS-runtime-curve (WHS-R-AUC). It peri-

odically assesses the similarity between the current approximate

dendrogram and the �nal exact dendrogram using our novel den-

drogram similarity measure weighted hierarchy similarity (WHS).

The faster the dendrogram similarity approaches 1.0, the better

the progressive algorithm and strategy are. Because the �nal

exact dendrogram is not available in practice, we additionally

propose an unsupervised convergence indicator, called #Cum-

ClusterChanges@k, in Section 5 to communicate the convergence

to users. In the following, we �rst discuss a suitable similarity

measure for dendrograms, and then utilize it to formulate the

convergence measure WHS-R-AUC.

Similaritymeasure. Internal clustering evaluation measures [16],

such as the Silhouette coe�cient or the Davies-Bouldin index,

are not applicable for measuring the similarity of two dendro-

grams by de�nition: These unsupervised measures assess the

cluster cohesion of a single �at clustering but cannot judge the

similarity between two clusterings. Traditional external cluster-

ing evaluation measures, such as (A)RI, (A)MI, or the Dice index,

compare two �at clusterings, which are just single cuts of the

dendrogram [46]. Because deciding where to cut the dendrogram

has a considerable impact on the measured similarity and the

desired number of clusters is problem-speci�c, our similarity

measure should consider all potential dendrogram cuts.

We propose the dendrogram similarity measure weighted hier-

archy similarity (WHS) to quantify the similarity of an approxi-

mated dendrogram to the exact dendrogram: For every cluster in

the approximated dendrogram, we �nd the most similar cluster

in the exact dendrogram; then, we take the average of all cluster

similarities as the dendrogram similarity. Searching for the most

similar cluster is necessary because dendrograms may vary in

their structure so that level-wise cluster matches are rather in-

accurate. Because we can represent clusters of the dendrogram

as sets of time series identi�ers, we can de�ne the most similar

cluster as the partner cluster with the highest Jaccard similarity.

For the comparison, we propose a greedy matching approach

because calculating all cluster similarities and �nding a perfect

bi-partite matching is expensive. It exploits that larger clusters

are more indicative of the �nal clustering result than smaller

clusters; thus, we match clusters starting from the top of the

dendrogram.

To calculate the WHS between an approximated stepwise

dendrogram �̃ and the target stepwise dendrogram � , we �rst

compute all clusters for both dendrograms: C̃ for �̃ and C for

� . Because the singleton clusters and the root cluster are always

identical, we average the best match similarity just for the clusters

2= − 2 to = + 1 (from large clusters to small clusters):

WHS(C̃, C) = 1

= − 2

2=−2∑

8==+1

(
<0G

{
� (�̃8 ,� 9 ) |� 9 ∈ C′})

where � (�8 ,� 9 ) = |�8∩� 9 |
|�8∪� 9 | is the Jaccard similarity of two clusters,

and C′ is C without the singleton clusters and the root cluster.

Once a cluster � 9 from the target dendrogram is matched, it is

removed from C′, so that every target cluster is matched once.

In addition to the greedy matching strategy, we further accel-

erated the Jaccard similarity calculation with the use of Bloom

�lter representations for all clusters. Both performance optimiza-

tions of the similarity measure lead to approximate results. We

did not observe any (signi�cant) di�erences in precision, but

can e�ciently calculate the similarities after every dendrogram

construction.

Convergence measure. Convergence assesses the qualitative

progress of a progressive algorithm during its execution. Because

a progressive algorithm arrives at the exact solution when it

terminates, we are not interested in the �nal result quality but

rather in the time needed to get su�ciently close to the exact result.

Because su�ciently close is use-case dependent, we continuously
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measure the similarity of the approximated dendrogram to the

target dendrogram during the execution of PrAC with the WHS

similarity measure. The resulting list of similarities can be plotted

against the runtime of the algorithm, as shown in Figure 1. To

measure the convergence of the similarities in a single number

(WHS-R-AUC), we calculate the area under the curve (AUC) [7]:

WHS-R-AUC =

∫ Cmax

0

WHS(C̃C , C) 3C

where Cmax is the maximum runtime of the compared algorithms

and C̃C represents the clusters of the approximated dendrogram

at timestamp C . To calculate WHS-R-AUC, we use the trapezoidal

rule.

4 Scaling PrAC to large datasets

Time series HAC is easy to parallelize and scales almost linearly

with the number of cores because the runtime is dominated by

independent pairwise dissimilarity computations. So to make

PrAC competitive, the latter needs to be parallelized as well. We

present how to parallelize both the dissimilarity computations

and the dendrogram construction of PrAC (Section 4.1), and how

the di�erent dissimilarity computation ordering strategies can

use the available resources e�ciently. The baseline strategies (fcfs

and rand) and the tsla strategy do not perform any initial com-

putations and are, therefore, already very e�cient. The ada and

precl strategies, however, require some preparation before candi-

dates for exact dissimilarity computations can be suggested. We

describe their implementations and optimizations in Sections 4.2

and 4.3, respectively.

4.1 Parallelizing dissimilarity computations

To process the dissimilarity computations as fast as possible, we

use data-parallelism for the dissimilarity computations: Follow-

ing the coordinator-worker pattern, one thread (coordinator) is

responsible for generating and tracking the dissimilarity compu-

tation jobs and the remaining threads (workers) pull the jobs from

the coordinator and perform the dissimilarity computations. The

coordinator, �rst, generates jobs for the approximation of the dis-

similarities following the fcfs strategy; then, it generates a second

wave of jobs for the computation of the exact dissimilarities fol-

lowing one of the dissimilarity computation ordering strategies.

For balanced resource utilization and reactivity, PrAC uses adap-

tive batch sizes. Batching groups G dissimilarity computations

into a single job (= batch) to be processed by the same worker.

The workers track how much time they take to process their jobs

and send the processing times back to the coordinator. The coor-

dinator keeps track of all processing times and adjusts the batch

size G , such that a certain target processing time (default: 500ms)

is attained. This batching strategy minimizes communications

costs while keeping workloads balanced.

Even if the dissimilarity computations account for the majority

(up to 95%) of the runtime, for larger collections, the construc-

tion of the dendrograms becomes relatively slow compared to

an individual dissimilarity computation. Thus, PrAC also needs

to balance the time spent on computing dissimilarities, which is

making progress, and the time spent on updating the dendrogram,

which is communicating progress. In the proposed solution, we use

task-parallelism for the dissimilarity computations and the dendro-

gram construction: We designate a speci�c thread to continuously

update the dendrogram and use all remaining threads for all

other activities. The maximum of dendrogram construction time

and dissimilarity computation time determines the dendrogram
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Figure 5: Distribution of dissimilarities for the BeetleFly

dataset and the DTW measure. We show a segmentation

with 10 segments. Each segment contains roughly the same

number of dissimilarities (bold numbers on top).

update periodicity; for larger input collections, this frequency

lowers naturally.

4.2 Optimizing the ada strategy

The ada strategy takes as input the approximate dissimilarity

vector and generates an order for all time series pairs, starting

from the pair with the smallest approximate dissimilarity to that

with the largest approximate dissimilarity.

A naive implementation of this strategy would simply create

and sort a vector of time series ID pairs and then iterate over

this vector. However, this approach requires a signi�cant amount

of memory for the vector and a signi�cant amount of time for

initialization, during which no dissimilarities are computed. For

example, a dataset with = = 25,000 time series would contain(=
2

)
= 312.487.500 pairs and take up 11.6GiB of memory. Sorting

this array takes a lot of time compared to the dissimilarity compu-

tations, especially if = > <. So to scale the ada strategy to large

datasets, we only approximate the ordering of the time series

pairs: the order is based on only approximated dissimilarities

anyway. More speci�cally, instead of sorting time series pairs, we

simply divide the dissimilarities into segments with roughly the

same cardinality. To minimize memory requirements, we avoid

materializing time series’ ID pairs and store only segment bound-

aries and a copy of the current dissimilarity vector (requiring

2.3GiB in our example). We can then process one segment after

the other by generating the ID pairs on demand.

As shown in Figure 5, the (approximated) dissimilarities are

not evenly distributed in the value range, but roughly follow

a (skewed) normal distribution. Thus, equally spaced segment

boundaries would yield segments with diverging cardinalities.

With the observation that the dissimilarities usually follow a

normal distribution, we can e�ciently estimate the parameters

of the distribution (` and f2) in a single pass over the data using

Welford’s algorithm [60], and then use the inverse error function

(erf−1) to compute our segment boundaries.

We split the value range into : = 3 ∗ ;>6(
(=
2

)
) segments to

balance the quality of the approximated ordering (possibly large

: for smaller segments) with the time required to generate time

series pairs (possibly small : because we need to iterate over the(=
2

)
pairs : times). Because the normal distribution is symmetric,

we always generate an even number of segments. The mean `

is our �rst segment boundary (pivot G:/2) separating segment

:/2 − 1 and :/2. The next two pivot values G:/2−1 and G:/2+1
should enclose (together with `) ? = 100/: % of the dissimilarities,
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on the left (for segment :/2 − 1) and right (for segment :/2) side

of the mean, respectively. We can estimate the G in ` + Gf2

for covering ? % of the values using the inverse error function:

G =

√
2 · erf−1 (2?). For the example in Figure 5, we have : = 10

segments. The �rst pair of pivots each enclose ? = 10% of the

values between themselves and the mean: G =

√
2 ·erf−1 (2 ·0.1) =

0.25. Thus, the pivots must be at ` + 0.25f2 and ` − 0.25f2. The

next pair of pivots each enclose ? = 20% between themselves

and the mean (G =

√
2 · erf−1 (2 · 0.2) = 0.52), and so forth. The

most outer boundaries are −∞ and +∞.

Once we have computed the segment boundaries (in a single

pass!), we can generate the time series pairs segment-wise: For

each segment and starting with the segment with the smallest

dissimilarities, we iterate over the dissimilarity vector and check

for each current pair whether its approximate dissimilarity falls

into the segment boundaries. If yes, we schedule the pair’s exact

dissimilarity computation; otherwise, we skip the current pair.

When PrAC reaches the end of the dissimilarity vector, we switch

to the next segment and re-start the iteration from the beginning.

Hence, PrAC scans the dissimilarity vector : times. The order

of pairs within one segment is arbitrary, but we ensure that the

pairs with the lowest 100/: % of dissimilarities are generated

�rst; then, the next 100/: % and so on. Even though we scan

the dissimilarity vector : times, we (i) allocate only minimal

additional memory, (ii) can generate comparison candidates after

only a very brief initialization time (Θ(=)), and (iii) can also hide

the scanning latency (amortized $ (=/:)) by pre-computing a

batch of time series pairs in advance.

4.3 Optimizing the precl strategy

The precl strategy requires an assignment of time series to pre-

clusters before it can start scheduling any exact dissimilarity

computations. We use the existing hierarchical clustering process

(MST or NN-chain algorithm) to generate a stepwise dendro-

gram and then cut the dendrogram, such that the precl strategy

receives the desired number of clusters. This process is triggered

once all approximate dissimilarities have been computed. Unfor-

tunately, constructing and cutting the dendrogram can take a

considerable amount of time, during which the workers would

not make progress in computing exact dissimilarities. To avoid

idle workers, the precl strategy instead uses the fcfs strategy to

schedule some exact dissimilarity computations while it waits

for the pre-cluster assignments.

Once the pre-cluster assignments have been received, the precl

strategy switches to its original three-step processing scheme,

starting with the exact intra-pre-cluster dissimilarity calculations.

For the �rst and second processing steps, all dissimilarity compu-

tations have the same priority and can be scheduled in any order.

For the �nal inter-pre-cluster step, which contains most of the

dissimilarity computations, precl creates a partial order for the

dissimilarity calculations: It creates pairs of pre-clusters and sorts

them in ascending order by their medoid dissimilarity. Sorting

the pre-clusters is only in $
(
(= −

√
=) ;>6(= −

√
=)
)
. The inter-

pre-cluster dissimilarities are then scheduled, one pre-cluster

pair after the other. The individual dissimilarity computations

within a pre-cluster pair are again independent and can be com-

puted concurrently. The transitions between processing steps are

synchronized to ensure the correctness of the �nal dendrogram.

Figure 6: DendroTime’s frontend visualizes the computa-

tional progress indicator (top), the unsupervised conver-

gence indicator (middle), and changes to the dendrogram

(bottom).

5 Communicating progress: The DendroTime
system

To enable the usage of PrAC in interactive clustering processes,

we combined it with the dissimilarity computation ordering

strategies and a practical user interface into a system called Den-

droTime. It consists of a reactive client-server architecture that

executes PrAC on a collection of time series in the backend and

visualizes dendrogram updates in the frontend, which is shown

in Figure 6.

To use DendroTime e�ectively, scientists need to be able to

stop it early. This decision is made based on the current result

quality and the expected remaining runtime. Existing progres-

sive algorithms, such as PSNM [44], use results per second as an

implicit progress indicator because they progressively produce

fewer results over time. In contrast, DendroTime is progressive

in the result quality and not in the result completeness; it pro-

duces a single approximated result, i. e. the stepwise dendrogram,

and re�nes it over time. Thus, in addition to visualizing the den-

drogram (and its changes), DendroTime shows two progress

indicators to communicate (i) the computational progress and

(ii) the convergence of the clustering.

Computational progress. Because DendroTime knows the

number of completed and pending tasks, it can simply display

the fraction of completed processing steps to visualize the com-

putational progress. For this, we split the clustering process into

four phases and display the percentage of completed processing

steps for each phase (cf. Figure 6). The necessary counters are

e�cient to compute.

Convergence. Visualizing the qualitative progress exactly is not

always possible because measuring the similarity between the

current and the exact dendrogram (using WHS) requires the exact

target dendrogram as ground-truth, which is usually not avail-

able. For this reason, we estimate the dendrogram convergence

in an unsupervised fashion: The approximated dendrogram from

a progressive algorithm approaches the exact dendrogram and

undergoes fewer and fewer changes towards the end of the algo-

rithm. We, thus, measure dendrogram changes over time, which

150



EDBT ’26, 24-27 March 2026, Tampere (Finland) Sebastian Schmidl, Ferdinand Rewicki, Felix Naumann, and Thorsten Papenbrock

we call #CumClusterChanges@k, as a proxy measure for the den-

drogram convergence, i. e., a visual proxy for WHS. To minimize

the computational overhead of the estimation, we count the num-

ber of time series that change cluster assignments at a single,

�xed cut point of the dendrogram and display the cumulative

sum scaled to [0, 1] over DendroTime’s runtime (cf. Figure 1).

The cut point is determined by a user-de�ned parameter : for

the number of distinct clusters (by default : = =/2). Figure 1 com-

pares the progression of the exact WHS quality measure and the

#CumClusterChanges@k convergence indicator for a progressive

and a non-progressive algorithm.

6 Evaluation

In this section, we empirically evaluate our heuristic-driven pro-

gressive clustering technique DendroTime to demonstrate the

expected convergence behavior in di�erent con�gurations on var-

ious datasets, as introduced in Section 6.1. We �rst compare the

runtime and quality of DendroTime to other exact and approxi-

mate hierarchical clustering approaches (Section 6.2). Afterward,

we analyze the convergence rate of our dissimilarity computa-

tion ordering strategies and demonstrate the e�ectiveness of ada

and precl (Section 6.3). Then, we analyze the limitations of our

progressive approach (Section 6.4).

6.1 Experimental setup

Hardware and software. We perform all experiments on a

server with an Intel Xeon E5-2630 v4 CPU (10 physical cores at

2.2 GHz) and 64GiB of memory. We do not enforce any time or

memory limits; swap is disabled. DendroTime is implemented in

Scala 3.3 and uses the Akka actor programming framework [29].

We run the system on the OpenJDK JVM version 21.0.5 LTS.

Baseline algorithms. We compare DendroTime with three

baseline algorithms: Parallel, JET, and HappieClust. Parallel

is a multithreaded Scala implementation of HAC. It computes the

pairwise time series dissimilarities in parallel and constructs the

�nal, exact stepwise dendrogram in the end. JET [61] and Hap-

pieClust [26] are approximate HAC algorithms for time series.

JET computes a pre-clustering using the BIRCH [67] algorithm

before applying the NN-chain algorithm with ward linkage to

build the stepwise dendrogram. We extended JET to support other

linkages as well. HappieClust computes pseudo-distances in a

low-dimensional pivot-space to estimate the time series dissimi-

larities and construct the stepwise dendrogram. Both algorithms

are implemented in Python, executed with Python version 3.9.21,

and compute the dissimilarities in parallel.

Metrics. DendroTime eventually produces the same stepwise

dendrogram as traditional HAC algorithms. Thus, we do not

evaluate the quality of the �nal dendrogram but DendroTime’s

progressive convergence using runtime measurements, WHS, and

WHS-R-AUC (cf. Section 3.3). We deliberately avoid traditional

clustering metrics because they consider only single dendrogram

cuts.

Datasets.We perform our experiments on 123 univariate datasets

without missing values taken from the UCR time series classi�-

cation archive [13], and 12 univariate anomaly datasets from the

EDENISS project [50]. In the UCR archive, there are 112 datasets

with equal-length time series and 11 datasets with variable-length

time series. Further characteristics are listed online1. The EDENISS

datasets contain between 105 and 2,429 time series with varying

1https://timeseriesclassi�cation.com

lengths between 5 and 576 points per time series – every dataset

corresponds to a set of extracted anomalies from a speci�c sub-

system and sensor type.

6.2 Comparison to baselines

In our �rst experiment, we compare the performance of Den-

droTime’s precl, ada, and fcfs dissimilarity computation ordering

strategies to the baselines Parallel, JET, and HappieClust. To

this end, we measure DendroTime’s WHS scores over time with

di�erent linkage methods (single, complete, average, andweighted)

and dissimilarity measures (LD, SBD, MSM, DTW, and KDTW),

and inspect its convergence behavior. We omit the tsla strategy

here because it behaves similarly (poorly) to the fcfs strategy (cf.

Section 6.3); fcfs is included as a reference for a non-progressive,

incremental algorithm. We use all 135 datasets, and record the

algorithms’ runtimes and WHS scores. For KDTW, we omit 2

datasets, for which Parallel took longer than 36 h to �nish. The

WHS calculation costs, i. e., the experiment overhead costs, are

measured separately and subtracted from the runtimes for a fair

assessment.

Figure 7 (top) plots the measured WHS scores (over time) for

all dissimilarities and single and complete linkage. The other link-

age methods behave similarly as complete linkage. Parallel, JET,

and HappieClust are represented as points because they produce

only one result at one speci�c time, whereas DendroTime out-

puts (updated) results continuously. Because the datasets in our

collection are very heterogeneous in their numbers and lengths

of time series, they cause drastically di�erent runtimes. To ef-

fectively aggregate the 135 results per setting in Figure 7, we

measure the runtime of DendroTime, JET, and HappieClust

relative to the runtime of the Parallel baseline. And because

the results of Parallel are exact, they also serve as the basis

for the quality comparison: For each dataset, we measure the

algorithms’ WHS scores w. r. t. Parallel’s exact dendrogram as

WHS(C̃, CParallel).
Figure 7 (bottom) compares the runtime improvement of Den-

droTime’s di�erent dissimilarity ordering strategies for all 20

con�gurations when they �rst exceed 80% quality measured

using WHS. Again, we measure the runtime of DendroTime

relative to the runtime of the Parallel baseline. If the relative

runtime is below 1.0, DendroTime could achieve 0.8WHS before

Parallel computed the exact result.

DendroTime vs. JET/HappieClust. Although JET and Hap-

pieClust are approximate algorithms for calculating fast HAC

sketches, they are on average slower than DendroTime and even

the exact Parallel baseline. This is due to the overhead of their

Python implementations on small datasets. For larger datasets

and excessively costly dissimilarity measures the overheads di-

minish: For KDTW, JET is indeed faster than the exact baseline,

while HappieClust is just 50% slower. Nevertheless, Dendro-

Time achieves a better quality after the same runtime for all

datasets.

DendroTime vs. Parallel. DendroTime eventually com-

putes the same result as Parallel, but with additional approxima-

tion and ordering steps in the process. Hence, it naturally takes

more time to �nish the exact dendrogram than the Parallel

baseline (up to 1.5× for expensive and up to 3× for cheap dissim-

ilarities). The measurements, furthermore, show that Dendro-

Time cannot o�er accurate early clusterings for fast to compute

dissimilarities, such as LD and SBD, before Parallel �nishes

the exact dendrogram, because the approximations are nearly as
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DendroTime ada 1.20 1.17 1.16 1.16 1.13 1.14 1.05 1.14 0.76 0.81 0.60 0.77 0.73 0.78 0.51 0.73 0.84 0.84 0.38 0.84
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Figure 7: (Top) Exemplary dendrogram convergence curves for DendroTime, Parallel, JET, andHappieClustwith single

and complete linkage and all �ve dissimilarity measures; other linkage methods show similar behavior as complete linkage.

The dashed gray lines indicate a WHS of 0.8 and the runtimes of Parallel, respectively. All runtimes were measured

relative to the runtime of Parallel and could, thus, be aggregated over all 135 datasets.

(Bottom) Mean relative runtime of DendroTime to reach 80 % quality measured using WHS for all 20 con�gurations.

costly as the exact computations. For the expensive MSM, DTW,

and KDTW dissimilarities, however, DendroTime’s ada and precl

strategies can achieve WHSs of above 80% in shorter runtimes

than Parallel despite the continuous calculations of approxi-

mate results (cf. Figure 7). This shows that DendroTime provides

e�ective early approximated dendrograms of computationally

expensive dissimilarity measures, which are the measures that

require these approximations most due to their long calculation

times. The measurements also show that the naive fcfs strategy

converges clearly slower than ada and precl, which demonstrates

the e�ectiveness of the two more advanced strategies.

DendroTime vs. DendroTime. The overall best progressive

dissimilarity ordering strategy is ada: It outperforms precl in

all con�gurations except with KDTW dissimilarities. Because

we later show in Section 6.3 that precl actually produces more

e�ective orderings, the advantage of ada is its much faster ini-

tialization time. For KDTW, precl clearly outperforms ada. It can

even achieve 0.8WHS below 60 % of Parallel’s runtime. Kernel

dissimilarities are exceptionally expensive to compute and, thus,

precl’s overheads are less pronounced and its superior orderings

lead to faster convergence. Therefore, we suggest using precl for

expensive kernel-based measures, such as KDTW, and ada for all

faster-to-compute dissimilarity measures. For single linkage, ada

converges particularly well because in single linkage the mini-

mum pairwise dissimilarity between two clusters determines the

clusters’ similarity and ada computes the (estimated) smallest

dissimilarities �rst. However, the runtime of precl with single

linkage is particularly long because single linkage often creates

hierarchies that merge single time series into an ever-growing

large cluster; the resulting size skew in the pre-clusters of precl

drastically reduce parallelism and batch sizes.

For datasets with many time series, measuring WHS for the

intermediate results of DendroTime becomes prohibitively ex-

pensive. Hence, we cannot measure the quality of their approx-

imate results fast enough to plot the convergence curves. As

an example, Figure 8 shows the convergence behavior and the

runtime breakdown of DendroTime with DTW and weighted

linkage for two worst-case datasets: Crop with 24,000 time se-

ries of size 46 and ElectricDevices with 16,637 time series of size

96. For these two datasets, we can compute the quality for only
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Figure 8: DendroTime’s convergence and runtime break-

down for the worst-case datasets Crop and ElectricDevices

with thousands of very short (< 100 points) time series.

two dendrograms, leading to a poor-looking, but not necessarily

poor-performing convergence behavior (and low WHS-R-AUC);

the user-facing dendrogram visualizations still converge progres-

sively. Although these con�gurations in�uence DendroTime’s

convergence curves negatively, we still included them in our

aggregated results in Figure 7.

From all strategies in this experiment, the ada strategy per-

forms the best. precl’s initialization overhead increases with the

number of time series in the dataset, leading to a worse conver-

gence rate compared to ada on average. Next, we analyze the

di�erences in the DendroTime strategies in more detail.

6.3 Progressive dissimilarity computation

In this experiment, we evaluate DendroTime’s convergence ef-

fectiveness for each of its dissimilarity computation ordering

strategies (fcfs, precl, ada, and tsla) and 1,000 random orderings,

demonstrating the di�culty of choosing e�ective orders for pro-

gressive dissimilarity computations and the strategies’ capabil-

ities. Because PrAC’s �rst phase behaves the same for all our

strategies, we consider only its second phase in this experiment,

and start with an existing approximated dissimilarity vector. For

a consistent and fair assessment, we uniformly sample for ev-

ery dataset a maximum of 10,000 steps, at which we construct

the stepwise dendrogram and record the runtime and WHS; in

this way, we can analyze the convergence behavior of the dif-

ferent strategies using WHS-R-AUC. Due to the many random
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Figure 9: DendroTime’s convergence rate measured us-

ing WHS-R-AUC for the fcfs, precl, ada, and tsla ordering

strategies and 1,000 random orderings, all with MSM and

average linkage for seven UCR datasets. Measurements

with other dissimilarity-linkage combinations yield simi-

lar results.

executions, this evaluation uses only the seven smallest UCR

datasets.

Figure 9 shows the WHS-R-AUC of fcfs, precl, ada, and tsla

as points and the WHS-R-AUC distribution of the 1,000 random

orderings as violin plots for each of the seven datasets. The ran-

dom orderings follow skewed normal distributions around 0.5

or lower, with even their max values being far away from pro-

gressive. The fact that none of the 7 × 1,000 random orders is

even close to being progressive demonstrates the di�culty of

�nding a progressive ordering for dissimilarity computations.

The simple fcfs and tsla ordering strategies also fall within the

random distributions and cannot be considered e�ective. The

precl and ada strategies, however, signi�cantly outperform the

other strategies: Their orders result in rapidly converging den-

drograms and, hence, high WHS-R-AUC scores. Overall, precl

has the best convergence over all selected datasets, but its initial-

ization is expensive to compute and does not scale to larger time

series collections (cf. Section 6.2). The ada strategy is slightly

less e�ective, but with its more light-weight initialization and

our e�ective optimizations, it scales better to larger time series

collections (cf. Section 6.2). Both ada and precl, though, clearly

provide progressive dissimilarity computation orders.

6.4 Limitations of DendroTime

For the progressive and interactive computation of the dendro-

gram, DendroTime requires three times more memory than a

one-o� computation for storing the extra dissimilarity vectors:

working set vector, computation ordering vector, and NN-chain

vector.

While many time series clustering approaches use expensive,

elastic dissimilarity measures, the usage of Euclidean distances

is still widespread. Euclidean distances can be computed very

e�ciently. In this experiment, we look at how DendroTime deals

with such e�cient dissimilarity measures, for which it was not

designed.

Figure 10 shows DendroTime’s convergence behavior with

runtime breakdowns for MSM dissimilarity (left) and Euclidean

distance (right) for a dataset with 4,478 time series of size 945.

DendroTime assumes that the dissimilarity computations domi-

nate its runtime and, hence, runs these comparisons progressively.

Here, with a cheap dissimilarity measure, such as the Euclidean

distance, DendroTime could �nish the clustering 607× faster

compared to MSM. Only with Euclidean distances, reading the

time series from disk (Initializing), computing the approxima-

tions ((1) Approx.), and constructing the �nal dendrogram (Final

dendrogram) could even be measured as overheads. The overall
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Figure 10: DendroTime’s convergence over time and run-

time breakdowns for the UWaveGestureLibraryAll dataset

with MSM or Euclidean dissimilarities, and average link-

age.

runtime of DendroTime with Euclidean distance is so short that

even the quality measure cannot be computed fast enough to vi-

sualize the progressive improvements, as discussed in Section 6.2.

The usage of Euclidean distances in DendroTime showed the

same e�ect also for other datasets. We conclude that for e�cient

time series dissimilarity measures, our two-phased approach is

ine�ective because initialization and approximation eat away

most progressive gains of a short exact calculation phase.

7 Anomaly clustering case study

Detecting anomalous subsequences in time series data is one of

the most important tasks in time series analytics for domains,

such as environmental monitoring [10], preventive healthcare [3],

or predictive maintenance [63]. Domain-specialized anomaly de-

tection algorithms have shown to detect the location, magnitude,

and length of anomalous subsequences accurately [40, 42, 66].

Semi- and unsupervised anomaly detection algorithms, however,

cannot distinguish or classify di�erent types of anomalies. For

this reason, anomaly detection pipelines often apply an additional

downstream classi�cation step to distinguish di�erent anomaly

types, such as sensor failures, environmental in�uences, false

predictions, or actual domain events. The anomaly classi�cation

step is usually implemented as unsupervised time series clus-

tering [23, 50, 56, 61] because labeled training data is often of

insu�cient quantity.

Clustering time series anomalies e�ciently is especially chal-

lenging because (i) the anomaly extraction process often extracts

similar anomalies with varying lengths and shifted positions,

(ii) the same anomaly type can appear with di�erent amplitudes

and frequencies, and (iii) the number of anomaly types (clusters)

is not known in advance. DendroTime is particularly useful in

this scenario because it can leverage elastic dissimilarity mea-

sures to cluster variable length input time series, does not require

users to specify the number of clusters upfront, and allows users

to inspect the approximate results and stop the clustering early.

In this section, we demonstrate the usage of DendroTime in a

real-world anomaly clustering scenario for bio-regenerative life

support system telemetry from the EDEN ISS project [65].

EDEN ISS project. EDEN ISS was a research greenhouse op-

erated by the German Aerospace Center in Antarctica between

2018 and 2021 to study plant growth in harsh environments. We

focus on the ICS subsystem that records temperatures around the

growing lamps above each growth tray. Rewicki et al. [50] iden-

ti�ed nine anomaly types in the temperature recordings using

an interactive analysis process: Anomaly detection and extrac-

tion were performed in an ensemble consisting of the algorithms

Maximally Divergent Intervals (MDI) [4] with an anomaly score
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Figure 11: DendroTime’s convergence using MSM dissimi-

larities (left) and DTW dissimilarities (right) with centroid

linkage on the EDENISS-ICS-full dataset.

threshold of 0.5 and Discord Aware Matrix Pro�le (DAMP) [30],

which have been shown to detect complementary anomalies

[49, 50]. All extracted temperature anomalies were subsequently

clustered using k-Means or HAC to identify recurring anomalous

behaviors.

Because larger data sizes could not be explored interactively,

Rewicki et al. [49] restricted their analysis to a single year (2020)

of the four-year mission and used a resolution of only 1/300 Hz.

This resulted in 1,303 anomalous subsequences with an aver-

age length of 162 points (ICS-restricted). For our experiment,

we use all available data ranging from 2018 to 2020 in its orig-

inal recorded frequency of 1/60 Hz. In this data, we �nd 2,103

anomalous subsequences with an average length of 954 points

(ICS-full).

DendroTime study. To demonstrate that DendroTime al-

lows the ICS-full dataset in the interactive clustering process, we

�rst execute the baseline algorithm Parallel on both datasets

and measure its runtimes. Then, we execute DendroTime’s ada

strategy on the datasets and stop the clustering process when

the convergence indicator signals a good convergence (indicated

by leveling out around 1.0). We use DTW and centroid linkage

for both algorithms because this was the con�guration used in

the original analysis.

Parallel can cluster the anomalies of the ICS-restricted dataset

in 18 s. For the ICS-full dataset, Parallel requires 31min, which

is too slow for an interactive process. DendroTime, however, can

achieve convergence after 6.8min and with 543,414 of 2,210,253

(exact) dissimilarities computed. This partial execution of Den-

droTime can achieve a WHS of 93.6%, as DendroTime’s con-

vergence curves for ICS-full in Figure 11 show. DendroTime

converges better with MSM than with DTW dissimilarities, con-

�rming our previous results in Section 6.2. However, to compare

DendroTime’s results to the original study [50], we need to exe-

cute it with DTW for this use case. While DendroTime’s partial

runtime on the full dataset is signi�cantly longer than the origi-

nal algorithm’s runtime on the restricted dataset, it is still short

enough to be used in an interactive analysis process.

The result of DendroTime’s partial execution allows us to

perform the same analysis as in [49] and to identify existing and

even some new anomaly types: As already pointed out in [50],

HAC algorithms produce unbalanced dendrograms on EDEN

ISS data, leading to few large clusters and many tiny clusters

for many cut points. This prevents us from selecting a good

number of clusters : and the respective cut point automatically

(too few clusters). After visual inspection of the dendrogram,

we manually select a cut point that results in 40 clusters, which

is not too many clusters with not too many instances. The 40

clusters (anomaly types) are shown in Figure 12. We can easily

N1
N1

#0 #3
N2 #4

#8
#2

#1

Figure 12: Anomaly types (clusters) found in ICS tempera-

tures using the partial execution of DendroTime. Named

anomaly types are annotated in the same color and with

the same number as in Rewicki et al. [50, Figure 5, Table

A3] (six out of nine), newly discovered anomaly types are

N1 and N2.

identify six out of the nine original anomaly types: Anomalous

Night Phase (#0), Long Peak (#1), Short Peak (#2), Near Flat Noisy

or Flat Signal (#3), Missing / Delayed Warmup (#4) and Flat and

Drop (#8). Additionally, we can identify two previously unknown

anomaly types: Long Daydrop (N1) and Interrupted Peak (N2). N1

was not detected previously, despite appearing on two di�erent

days in 2020. N2 can be observed only in 2019.

8 Related work

Time series clustering. DendroTime is the �rst progressive

HAC algorithm for time series. Many non-progressive algorithms

have been proposed to cluster time series, which can broadly

be categorized into two classes [1, 22]: sequence-based cluster-

ing methods that work directly with the time series using time

series-speci�c dissimilarity measures, and feature-based cluster-

ing methods that extract time series properties in a preprocessing

step and then apply standard (tabular) clustering algorithms on

these features.

Sequence-based clustering algorithms, such as k-Means [22],

k-Shapes [41], OPTICS [2], HAC [1, 24, 41], or DTCR [32], achieve

competitive performances only if they utilize a time series-speci�c

dissimilarity measure, such as SBD or MSM. Holder et al. [22] ana-

lyzed elastic dissimilarity measures for clustering time series with

k-Means and k-Medoids. Javed et al. [24] benchmarked partition-

based, density-based, and hierarchical time series clustering algo-

rithms, while Lafabregue et al. [27] benchmarked various deep

learning network architectures for time series clustering.

Feature-based approaches to time series clustering can utilize

any traditional tabular clustering algorithm, but rely on an ef-

fective set of time series features. Examples are using statistical

features with k-Means to cluster customer-speci�c electricity us-

age [52] or applying k-Medoids on time series bit representations

extracted with piecewise aggregate approximation (PAA) [28].

The tsfresh [11] and catch22 [31] libraries provide time series-

speci�c feature extraction methods that are based on statistical

characteristics. Time2Feat [8] uses learned time series features.

Hierarchical agglomerative clustering. HAC is a family of

bottom-up hierarchical clustering algorithms that is often used

to cluster time series for three reasons: It can leverage elastic

dissimilarities to cluster variable-length time series, it does not

require the user to specify the number of clusters upfront, and it

produces easy to visualize results [1, 14, 24, 41]. Most approaches

were proposed with the ED in mind. However, ED does not work

well for variable-length time series, and many popular time series

dissimilarity measures, such as DTW and SBD, do not satisfy
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metric properties. The widely adopted NN-chain algorithm [37]

for HAC still works as long as the chosen linkage method is

compatible with the dissimilarity measure.

Murtagh and Contreras [38] give a general overview of HAC

for ED. Schubert [54] proposes optimized versions of the NN-

chain algorithm for ED using an incremental nearest neighbor

search approach that can achieve sub-quadratic runtime. Un-

fortunately, these algorithms cannot be applied to non-metric

dissimilarities.

Existing parallel versions of HAC [15, 35, 58, 59, 64] focus on

parallelizing the clustering step that expects a complete distance

matrix as input. For sliding and elastic time series dissimilari-

ties, though, computing the distance matrix takes most of the

runtime and is, therefore, subject to our parallel and progressive

strategies. Existing approaches are, for this reason, orthogonal

to our approach, but they could be used to speed up the �nal

dendrogram construction.

Approximate hierarchical agglomerative clustering. To con-

trol HAC’s computational complexity, a few non-progressive,

approximate algorithms have been presented:

Wenig et al. [61] propose the unsupervised approximate algo-

rithm JET for clustering large collections of variable-length time

series. It �rst computes a coarse-grained pre-clustering using a

cheap feature-based dissimilarity measure before building a den-

drogram using the expensive elastic dissimilarity measure SBD,

similar to our precl strategy. We use JET as a non-progressive

baseline.

Kull and Vilo [26] propose the approximate HAC algorithm

HappieClust for clustering biological gene expressions. Hap-

pieClust uses pseudo-distances within a low-dimensional pivot-

space to identify pairs of similar objects. After computing the

exact dissimilarities between these similar objects, it utilizes the

triangle inequality principle to approximate the missing dissimi-

larities and perform agglomerative clustering. HappieClust is

another non-progressive baseline.

Cochez and Mou [12] combine the twister tries data structure

with locality-sensitive hashing to implement an approximate

HAC algorithm for average linkage. The algorithm places strict

requirements on the dissimilarity measure: It must be a distance

metric with a corresponding proportionally sensitive family of

locality-sensitive hash functions. Because many time series dis-

similarity measures do not even ful�ll the metric requirements,

twister tries are challenging to apply to time series clustering.

This also applies to Koga et al.’s LSH-Link algorithm [25], which

also uses locality-sensitive hashing but for single linkage. Den-

droTime’s approach is independent of the used dissimilarity

measure and linkage method.

9 Conclusion

DendroTime is a parallel, progressive clustering system for large

collections of time series. It creates and continuously improves

an approximate dendrogram, which eventually converges to the

exact solution. DendroTime’s two-phased approach and its dis-

similarity computation ordering strategies are most e�cient for

expensive dissimilarity measures, which are necessary (and popu-

lar) to e�ectively cluster time series. We compared DendroTime

to an exact and an approximate baseline algorithm with excellent

results. In future work, we aim to develop a strategy to calculate

the individual time series dissimilarities incrementally, so that

partial results from the approximation can be re-used by the

exact calculations to minimize DendroTime’s overhead.

Artifacts

The source code, data, and other artifacts have been made avail-

able at https://github.com/hpi-information-systems/dendrotime.
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