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Abstract

Many effective dissimilarity measures for variable-length time
series, such as DTW, MSM, or TWED, are expensive to compute
because their runtimes increase quadratically with the time se-
ries’ lengths. When used in hierarchical agglomerative clustering
algorithms that need to compute all pairwise time series dissimi-
larities, they cause slow runtimes and do not scale to large time
series collections. However, there are use cases, where fast, inter-
active hierarchical clustering is necessary. For these use cases,
progressive hierarchical clustering algorithms can improve run-
times and interactivity. Progressive algorithms are incremental
algorithms that produce and continuously improve an approxi-
mate solution, which eventually converges to the exact solution.

In this paper, we present DENDROTIME, the first (parallel) pro-
gressive clustering system for variable-length time series col-
lections. The system incrementally computes the pairwise dis-
similarities between the input time series and supports differ-
ent ordering strategies to achieve progressivity. Our evaluation
demonstrates that DENDROTIME’s progressive strategies are very
effective for clustering scenarios with expensive time series dis-
similarity computations.
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1 Clustering time series

Time series clustering is an active and popular research area
with hundreds of publications per year [1, 21, 22, 24]. The ob-
jective is to group similar time series, such that the time series
within a group are more similar to each other than time series
of different groups. Time series clustering is often the starting
point for exploratory analysis and, thus, applied in many ap-
plication domains, such as greenhouse monitoring [50], speech
recognition [18], environmental monitoring [9], healthcare [56],
and energy management [19]. A clustering can be calculated
in different ways, including feature-based (e. g., Time2Feat [8]),
partitional sequence-based (e. g., k-Means [22] or k-Shapes [41]),
or hierarchical sequence-based (e. g., hierarchical agglomerative
clustering (HAC) [1, 24, 41]).
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Figure 1: Dendrogram quality (WHS) and convergence in-
dicator (#CumClusterChanges @k) of DENDROTIME’s ada
(progressive) and fcfs (non-progressive) strategies for the
ACSF1 dataset with Move-Split-Merge [57] (MSM) and av-
erage-linkage. The vertical dashed line marks the switch
from the approximate to the exact dissimilarity computa-
tion phase.

In this paper, we propose a novel HAC technique because HAC
is particularly useful for the (interactive) clustering of time se-
ries [1, 14, 24, 41]: It can leverage elastic dissimilarity measures to
cluster variable length input time series, it does not require users
to specify the number of clusters upfront [1], and it achieves high
comparative qualities in benchmarks with elastic dissimilarity
measures [24, 61]. However, because HAC has to call a usually
costly (elastic) dissimilarity function for all pairs of time series,
it scales poorly and works for only small datasets [1].

To deal with the high computational complexity of HAC, re-
searchers have proposed approximate HAC algorithms [12, 25,
26, 61] that compute the dissimilarities for a small selection of
time series pairs and infer them for the remaining ones. Because
this strategy works only for certain dissimilarity measures and
linkage methods, existing approximate HAC algorithms are lim-
ited in their effectiveness and applicability. So to control the
computational complexity of HAC and integrate it into interac-
tive clustering processes, we propose to calculate a hierarchical
clustering progressively.

Progressive algorithms [5, 33, 44, 45, 55, 62, 68] are incremental
algorithms that try to achieve better early qualities than tradi-
tional incremental algorithms; they produce the same results as
exact algorithms when they terminate. Progressive algorithms
are different from online or streaming algorithms, in that they
process static datasets but intend to gradually improve the result
quality. A progressive clustering algorithm should, thus, quickly
compute an approximate dendrogram that rapidly converges to
the exact dendrogram. It allows scientists to monitor the dendro-
gram over time and stop the clustering process early, shortening
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the feedback cycle. This is visualized in Figure 1, which shows
the result quality (measured using WHS) of a progressive al-
gorithm (left) compared to a non-progressive algorithm (right)
over its runtime. Because measuring the result quality requires
knowledge of the ground truth dendrogram, which is unavail-
able in practice, a novel, unsupervised convergence indicator
(#CumClusterChanges@k in Figure 1) is used to communicate the
progress of the algorithm to the user. The progressive clustering
approximates the exact result relatively quickly, which allows
for early termination, but the non-progressive curve converges
only at the very end.

We present DENDROTIME, a parallel, progressive clustering
system that computes a hierarchical clustering for large collec-
tions of time series. The algorithm creates and continuously im-
proves an approximate dendrogram, and, thus, an approximate
solution of the time series clustering problem. The approximate
dendrogram converges to the exact solution when DENDROTIME
finishes. To achieve progressivity, the system sequentially com-
putes the pairwise dissimilarities between the input time series
and supports different ordering strategies. DENDROTIME is in-
dependent of the time series dissimilarity measure and the ag-
glomerative linkage method. While some progressive algorithms
can provide convergence guarantees [47, 68], heuristics-driven
progressive algorithms, such as algorithms for progressive data
cleaning [33, 44, 55, 62], progressive data mining [5, 45], and the
approach to progressive hierarchical clustering presented in this
paper, cannot provide these guarantees. Hence, we experimen-
tally evaluate DENDROTIME with the most effective dissimilarity
measures in their respective categories and four linkage meth-
ods. We start the paper with an introduction to time series and
hierarchical agglomerative clustering (Section 2). Then, we make
the following contributions:

(1) We propose PRAC, the first progressive HAC algorithm,
which is based on intelligent ordering strategies for dis-
similarity computations; and Area under the WHS-runtime-
curve, a novel convergence measure for HAC algorithms
(Section 3).

(2) We develop a task- and data-parallel execution strategy,
which separates dissimilarity computations from periodic
dendrogram constructions, and optimizes the progressive
dissimilarity ordering strategies for improved scalability
(Section 4).

(3) We introduce DENDROTIME, a practical clustering system
that combines the parallelized hierarchical clustering al-
gorithm PRAC with the novel unsupervised convergence
indicator #CumClusterChanges@k to enable interactive,
progressive HAC processes (Section 5).

(4) We conduct an evaluation of PRAC and DENDROTIME on
135 time series clustering datasets of various sizes (Sec-
tion 6) and demonstrate their applicability for time series
anomaly detection in the EDEN ISS case study (Section 7).

2 Hierarchical agglomerative clustering
(HAC) for time series

DENDROTIME is a progressive HAC system for time series. It
takes a collection of variable-length time series as input and
incrementally computes their pairwise dissimilarities. Using the
pairwise dissimilarities, DENDROTIME periodically constructs a
dendrogram by iteratively merging the two mutually closest
clusters.
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Time series. A time series is an ordered sequence of real-valued
data points, recorded in regular intervals over time. For illustra-
tions and experiments, we focus on univariate time series, in
which data points consist of a single variable.

Definition 2.1 (time series cf. [53]). A univariate time series T €
R™ is a sequence of real-valued points ¢; € R, where 1 < i < m.
The length of the time series T is denoted as m = |T|, and the
ith—point of the series as T[i] = t;. A subsequence T[i,1] of a time
series T is a continuous subset of the values in T starting from
index i with length I: {t;, tiy1,...,tjzj_1}, where 1 < i <m -1
Usually | <« m.

The input to DENDROTIME is a potentially large set of time
series with varying lengths:

Definition 2.2 (Dataset). A dataset T ={Ti,...,T,} is a set of
n time series T; with 1 < i < n, where n = |7| is the cardinality
of 7.

Time series dissimilarity measures. A dissimilarity measure
d(-,-) determines a numerical value that describes the distance
between two objects (in our case, two time series T;, Tj). A HAC
algorithm uses a dissimilarity matrix of all pairwise time series
to find similar and dissimilar time series pairs. Dissimilarity mea-
sures for HAC need not be metrics: they do not always satisfy the
triangle inequality, and the dissimilarity between two different
objects might be zero [20, 36].

Time series dissimilarity measures can be classified into five
categories [43]: lock-step, sliding, elastic, kernel, and embedding
measures. The most widely used dissimilarity measure, also for
HAC algorithms, is the Euclidean distance (ED). It is a lock-step
measure [43] that compares all points of two time series element-
wise. While lock-step measures can technically be applied to time
series, they are not well suited for this purpose because (i) they
ignore the ordering of the points, (ii) they are sensitive to shifts
in time or scaling differences, and (iii) they require truncation,
padding, or resampling to deal with unequal-length time series.

Sliding and elastic dissimilarity measures, on the other hand,
try to align two time series optimally by comparing one time
series with all shifted versions of the other or computing a warp-
ing/editing path between the two time series, respectively. This
allows these measures to accurately capture dissimilarities in
variable-length time series with shifted patterns. However, both
sliding and elastic measures are harder to compute than lock-step
measures.

Kernel measures use a mapping function to implicitly trans-
form the time series into a higher-dimensional space, in which
they compute the time series’ dissimilarity. The mapping function
can have lock-step, sliding, or elastic properties [43].

To cover the runtime-behaviors of all dissimilarity measure
categories, we use the best performing measure per category
as representative in our experiments, according to the evalua-
tion of Paparrizos et al. [43]: Lorentzian distance (LD) for lock-
step, Shape-based Distance [41] (SBD) for sliding, Move-Split-
Merge [57] (MSM) for elastic, and Dynamic Time Warping Ker-
nel [34] (KDTW) for kernel measures. We exclude embedding
measures because they perform significantly worse than the
other measures and require a learning step, which is not ap-
plicable in our clustering setting. We also include the popular
Dynamic Time Warping [6] (DTW) measure. Adding more dis-
similarity measures to DENDROTIME is easy but does not provide
further insights because DENDROTIME’s convergence behavior
mainly depends on the measures’ computational complexity. The
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(a) Graphical dendrogram. (b) Stepwise dendrogram.
Figure 2: Output of a HAC algorithm for n = 5 instances.
The implicit cluster identifiers (k,[,...) are displayed as
(<ID>).

computation of MSM, DTW, and KDTW is expensive, having
a time and space complexity in O(m?). SBD can be computed
in O(m - log(m)) time, and LD in O(m). We refer the interested
reader to Paparrizos et al. [43] and Holder et al. [22] for the de-
tailed definitions and analysis of these and further time series
dissimilarity measures. As suggested by Ratanamahatana and
Keogh [48] and confirmed by Holder et al. [22], DENDROTIME
uses Sakoe-Chiba bounding with a 5% window-size for MSM
and DTW by default; as recommended by Paparrizos et al. [43],
unit-length normalization for LD and z-normalization for KDTW;
and no standardization for SBD.

Hierarchical agglomerative clustering. HAC is an unsuper-
vised, well-established machine learning method for constructing
hierarchical partitionings of data instances. Agglomerative clus-
tering methods start with singleton clusters (clusters that contain
a single instance) and iteratively merge the two mutually closest
clusters until all instances of a dataset are part of a single cluster.
This sequential procedure creates a hierarchy of cluster merges,
which can be depicted as a dendrogram. Each level in the hier-
archy corresponds to a dataset partitioning. Figure 2a shows a
dendrogram for a dataset with n = 5 instances.

We denote the set of all (hierarchical) clusters of a HAC al-
gorithm as C = {Cy,...,C2n—1}. The clusters in C can have
different cardinalities, ranging from 1 for singletons to n for the
final cluster at the root containing all nodes.

HAC algorithms can use different linkage methods to calculate
the inter-cluster dissimilarities djjni (Ck, C;), which determine
the order of cluster merges. The most common linkage methods
are single, complete, average, weighted, ward, centroid, and me-
dian linkage [17, 36]. To compute the results for single linkage,
we use the MST algorithm [51], and to compute the results for
complete, average, and weighted linkage, we use the NN-cHAIN
algorithm [37], as recommended by Miillner [39]. Ward, centroid,
and median linkage are excluded because they assume Euclidean
distances [39].

The input to an HAC algorithm are the (3) = @ dissim-
ilarities d(T;, T;) for all pairs of time series T, Tj in the input
dataset 7°, where T; # T;. Because all hierarchical clustering
methods are sensitive to each input value [39], they need to
ultimately process all input values and their runtime is, thus,
bounded by Q(n?).

The output of a HAC algorithm is a series of cluster merges,
which we can parse into a tree-based graphical dendrogram. We
use the effective stepwise dendrogram data model [39] for storing
the cluster merges in memory and on disk. A stepwise dendro-
gram is a compact representation of the merging steps performed
by a HAC algorithm. Instead of storing all possible 2n — 1 clus-
ters of the dataset, it records the cluster merging steps. Figure 2

146

EDBT 26, 24-27 March 2026, Tampere (Finland)

displays a stepwise dendrogram for n = 5 instances with its cor-
responding graphical representation. In a stepwise dendrogram,
the order of merge steps matters and also needs to be chosen
for ties, i. e., two merges with the same dissimilarity. For the re-
mainder of the paper, we use the terms stepwise dendrogram and
dendrogram interchangeably; for the tree-based representation,
we use the term graphical dendrogram.

3 Progressive dissimilarity computation

Our goal is the design of a progressive HAC algorithm that can
be used for interactive variable-length time series clustering with
expensive dissimilarity measures on large collections of time
series. For this, we need an algorithm that (i) has a very fast
initialization time (time to first approximate result), (ii) continu-
ously updates the approximate result while new dissimilarities
become available, and (iii) converges to the exact dendrogram
upon completion.

Unlike other papers on improving HAC, e.g., [54, 64], we
consider the computation of the pairwise dissimilarities to be
part of the clustering algorithm: these computations make up
most of the runtime. The actual share of runtime depends on the
computational complexity of the used dissimilarity measure, but
ranges from 55 % (ED, LD) to 98 % (DTW, MSM, SBD, KDTW).

First, this section introduces our two-phased algorithm PRAC,
which continuously updates an approximate dendrogram until it
converges to the exact dendrogram (Section 3.1). Subsequently,
we discuss different strategies to order the computation of the
exact pairwise time series dissimilarities (Section 3.2). Finally, we
propose a convergence measure for PRAC that allows us to assess
the rate of convergence for different strategies (Section 3.3)

3.1 PRAC: Progressive agglomerative
clustering

The main intuition behind progressive clustering is that not all
pairwise dissimilarities are equally important for the clustering
process. For dense regions, the dissimilarities within the region
are crucial and must be accurate: small changes in the dissimi-
larity values can drastically change the order of cluster merges.
However, small changes in dissimilarities between time series
that are far apart do not affect the order of cluster merges much.
Thus, dissimilarities of close time series need to be exact, while
dissimilarities of distant time series can be approximated, and
a progressive clustering strategy should compute the exact dis-
similarities for close time series before those for distant time
series.

PRAC first approximates all pairwise dissimilarities and then
sequentially computes the exact dissimilarities, while continu-
ously updating the dendrogram. Using the MST or NN-cHAIN
algorithm, PRAC periodically constructs the dendrogram from
scratch based on the latest dissimilarity matrix. The periodicity
of the dendrogram updates could be defined based on the number
of dissimilarity computations, but since every modern machine
offers multicore support, PRAC simply runs the dendrogram
constructions continuously in parallel (Section 4.1). The dissim-
ilarities between time series are computed in two phases: The
first phase computes all approximated time series’ dissimilarities;
these are needed as hints for any progressive refinement strategy.
The second phase computes all exact dissimilarities according to
a heuristic ordering strategy that tries to maximize refinement
gains. This two-phased approach offers early approximate results
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Figure 3: PRAC consisting of two phases: (1) approximated
dissimilarity computation and (2) exact dissimilarity com-
putation; O unset dissimilarity (= ), O approximated dis-
similarity d (T;, Tj), ® exact dissimilarity d(T;, Tj).

(approximate dendrograms), gradual and possibly fast result im-
provements, and guarantees to eventually converge to the exact
result. Note that the exact dissimilarity calculations take signifi-
cantly longer to compute than the approximations, so that PRAC
spends most time in the second phase. While PRAC cannot guar-
antee a monotone or optimal convergence, we show empirically
in Section 6.2 that our heuristics provide fast convergence for
computationally expensive dissimilarity measures.

Figure 3 provides a visualization of the progressive clustering
approach: PRAC starts by loading all time series into memory
and initializing all elements of the dissimilarity vector to +co.
The initial dendrogram has all time series in the root cluster.

In the approximated dissimilarity computation phase (1), we
consecutively estimate the pairwise dissimilarities between time
series and periodically construct the dendrogram. To estimate
the dissimilarity between two time series, we extract a random
small subsequence of length mgy}, = 20 out of the time series and
pass it through our dissimilarity measure d. If a time series T; is
shorter than mgyy, we set mgy,, = |T;|. The estimated dissimilarity
d between two time series T; and Tj is calculated as
M -d (Tl [ci, msup ] T; [Cj: msub])

Msub

where 0 < ¢; < |T;| — mgyp and 0 < ¢j < |Tj| — mgyp

d(Ti, T)) =

and mgyp, < [T and mgyp, < [T

Because the approximation does not consider length differ-
ences, we need to extrapolate the approximated dissimilarity d(
Ti[ci, mgyp], Tj[cj, mgyp]), which is based on short random sub-
sequences of length my,,;, of T; and T;. Without the extrapolation,
the approximated dissimilarities would have a different value do-

main than the exact dissimilarities, and, thus, not estimate our de-
max(|Ti|,|T;1)
. . . . Msub
is efficient to compute and generalizes to all our time series dis-

similarity measures. Setting the subsequence length mg}, to a
small, constant value, i. e. to 20, drastically speeds up the dissimi-
larity computations (O(n?) < O(n? - m?)), but still results in a
good and distance-measure-specific estimation quality, as we can
observe in Figure 1 (the initial jump is due to the approximated
dissimilarities). In our experiments, we use a subsequence from
the middle of the time series. In practice, however, we did not ob-
serve significant differences in the approximation quality when
extracting the subsequence from other positions. While more and
more dissimilarities are estimated, the dendrogram takes shape
and time series are removed from the root cluster and put into

sired values well. The chosen extrapolation factor
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sub-clusters. When all dissimilarities have been estimated, the
approximated dendrogram is finished and the algorithm switches
into the second phase.

In the exact dissimilarity computation phase (2), we incremen-
tally compute the exact pairwise dissimilarities, update the dis-
similarities in the dissimilarity vector, and also periodically con-
struct the dendrogram. We use the approximated dissimilarities
and the approximate dendrogram to determine a “good” (cf. Sec-
tion 3.3) order for the computation of the expensive exact dissim-
ilarities, such that the stepwise dendrogram quickly converges
to the exact solution. Depending on the dissimilarity computa-
tion ordering strategy (cf. Section 3.2), we compute the exact
dissimilarities one after the other and update the dissimilarity
matrix and the dendrogram. The exact dissimilarities gradually,
but not necessarily monotonically, improve the order of cluster
merges, whereby the dendrogram progressively approaches the
exact solution. When all approximated dissimilarities have been
replaced by their exact value, we trigger the dendrogram con-
struction one last time. This ensures that, independent of the
periodic dendrogram update schedule, the algorithm terminates
with an exact dendrogram.

3.2 Dissimilarity computation ordering

Our progressive HAC algorithm PRAC incrementally computes
all approximated dissimilarities and then all exact dissimilarities.
The order of the approximated dissimilarity computations is
insignificant for the convergence rate of the algorithm because
Phase 1 constitutes only a small fraction of the overall runtime.
Hence, PRAC simply computes the approximated dissimilarities
in the order in which the time series are loaded from disk (cf. fefs
strategy below). Because the exact dissimilarity computations are
expensive to compute, their order needs to be optimized, such
that dissimilarities between close time series are computed before
dissimilarities between distant time series.

We now describe six dissimilarity computation ordering strate-
gies with the first two (fcfs and rand) being baseline strategies.

first-come-first-served. The fcfs baseline strategy simply or-
ders the dissimilarity computations in the order we load the time
series from disk. When loading time series T; (for 2 < i < n), it
generates the pairs (T}, T;) for all 1 < j < i. The time series in
our datasets are not stored in any specific order.

random. This baseline strategy takes the order of the fcfs strat-
egy and shuffles the time series pairs. In our experiments in
Section 6, we sample 1,000 random orders to demonstrate that
random orders lead to slow convergence.

time-series-length-ascending. The tsla strategy sorts the time
series pairs in ascending order by their average length. For
sliding and elastic dissimilarity measures, computing the dis-
similarity between two small time series is over-proportionally
faster than between two large time series because the dissim-
ilarity computations scale superlinearly with the time series’
lengths. Thus, PRAC maximizes the update rate at the beginning
of Phase 2 with decreasing update rates toward the end. This
strategy degrades to the fcfs strategy if all time series have the
same length.

approximate-dissimilarity-ascending. The ada strategy de-
fines an ordering heuristic based on the dissimilarities from the
approximation phase, from small to large. As motivated earlier,
approximation errors for close time series have a larger impact
on the clustering than approximation errors for distant time se-
ries. Hence, ada tries to fix the high-impact errors early, so that
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Figure 4: Dissimilarity matrix for the precl strategy for a
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cluster), updates at each step are highlighted with color.

the estimated dendrogram converges to the exact dendrogram
progressively.

pre-clustering. The precl strategy, which is visualized in Fig-
ure 4, follows a three-step approach inspired by the JET algo-
rithm [61]: (i) The intra-pre-cluster step partitions the approxi-
mated dendrogram into [3\/5] pre-clusters and computes the
exact dissimilarities for all time series pairs within these pre—
clusters. Figure 4 shows the dissimilarity matrix for a dataset
with six time series and three pre-clusters; the computed ex-
act dissimilarities of all pairs of time series within a cluster
are shown as colored, filled dots in each pre-cluster. (ii) The
medoids step determines the medoid (colored diamond) for each
pre-cluster and computes the dissimilarities of all medoid pairs
(colored, filled dots). The medoid dissimilarities are more pre-
cise than the approximated dissimilarities and are, therefore,
used to overwrite all inter-pre-cluster pairs of corresponding
pre-clusters to improve their dissimilarity estimations. (iii) The
inter-pre-cluster step computes the exact dissimilarities of all in-
ter-pre-cluster pairs that were set to the medoid dissimilarities
in the previous step (light gray dots).
We compute the dissimilarities between time series from close
pre-clusters before those between far-apart pre-clusters. The
final step covers the most dissimilarity computations and, thus,
takes most of the runtime. However, inter-cluster pairs also tend
to be farther apart than the previous pairs, so that updating
the medoid-estimated dissimilarities once more with the exact
dissimilarities causes fewer changes to the dendrogram than
the updates before, again causing updates to the dendrogram
to arrive progressively.

In our evaluation (Section 6.3), we demonstrate that our novel
ada and precl strategies significantly outperform the other strate-
gies and that ada scales better than precl to larger time series
collections.

3.3 Measuring progressiveness

To evaluate the effectiveness of our PRAC algorithm and its or-
dering strategies, some measure of progressiveness should capture
the speed of convergence for a gradually improving dendrogram
toward an exact solution. Because no such measure currently
exists for this setting, we propose a novel convergence measure
called Area under the WHS-runtime-curve (WHS-R-AUC). It peri-
odically assesses the similarity between the current approximate
dendrogram and the final exact dendrogram using our novel den-
drogram similarity measure weighted hierarchy similarity (WHS).
The faster the dendrogram similarity approaches 1.0, the better
the progressive algorithm and strategy are. Because the final
exact dendrogram is not available in practice, we additionally

148

EDBT 26, 24-27 March 2026, Tampere (Finland)

propose an unsupervised convergence indicator, called #Cum-
ClusterChanges@k, in Section 5 to communicate the convergence
to users. In the following, we first discuss a suitable similarity
measure for dendrograms, and then utilize it to formulate the
convergence measure WHS-R-AUC.

Similarity measure. Internal clustering evaluation measures [16],
such as the Silhouette coefficient or the Davies-Bouldin index,
are not applicable for measuring the similarity of two dendro-
grams by definition: These unsupervised measures assess the
cluster cohesion of a single flat clustering but cannot judge the
similarity between two clusterings. Traditional external cluster-
ing evaluation measures, such as (A)RI, (A)MI, or the Dice index,
compare two flat clusterings, which are just single cuts of the
dendrogram [46]. Because deciding where to cut the dendrogram
has a considerable impact on the measured similarity and the
desired number of clusters is problem-specific, our similarity
measure should consider all potential dendrogram cuts.

We propose the dendrogram similarity measure weighted hier-
archy similarity (WHS) to quantify the similarity of an approxi-
mated dendrogram to the exact dendrogram: For every cluster in
the approximated dendrogram, we find the most similar cluster
in the exact dendrogram; then, we take the average of all cluster
similarities as the dendrogram similarity. Searching for the most
similar cluster is necessary because dendrograms may vary in
their structure so that level-wise cluster matches are rather in-
accurate. Because we can represent clusters of the dendrogram
as sets of time series identifiers, we can define the most similar
cluster as the partner cluster with the highest Jaccard similarity.
For the comparison, we propose a greedy matching approach
because calculating all cluster similarities and finding a perfect
bi-partite matching is expensive. It exploits that larger clusters
are more indicative of the final clustering result than smaller
clusters; thus, we match clusters starting from the top of the
dendrogram.

To calculate the WHS between an approximated stepwise
dendrogram H and the target stepwise dendrogram H, we first
compute all clusters for both dendrograms: C for H and C for
H. Because the singleton clusters and the root cluster are always
identical, we average the best match similarity just for the clusters
2n — 2 to n+ 1 (from large clusters to small clusters):

2n—-2

~ 1 —
WHS(C.C) = — > (max {J(Gcp)1cj e}
i=n+1
|cinG;| . NP
where J(C;,Cj) = [C:0C)] is the Jaccard similarity of two clusters,
iYL

and C’ is C without the singleton clusters and the root cluster.
Once a cluster C; from the target dendrogram is matched, it is
removed from C’, so that every target cluster is matched once.

In addition to the greedy matching strategy, we further accel-
erated the Jaccard similarity calculation with the use of Bloom
filter representations for all clusters. Both performance optimiza-
tions of the similarity measure lead to approximate results. We
did not observe any (significant) differences in precision, but
can efficiently calculate the similarities after every dendrogram
construction.

Convergence measure. Convergence assesses the qualitative
progress of a progressive algorithm during its execution. Because
a progressive algorithm arrives at the exact solution when it
terminates, we are not interested in the final result quality but
rather in the time needed to get sufficiently close to the exact result.
Because sufficiently close is use-case dependent, we continuously
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measure the similarity of the approximated dendrogram to the
target dendrogram during the execution of PRAC with the WHS
similarity measure. The resulting list of similarities can be plotted
against the runtime of the algorithm, as shown in Figure 1. To
measure the convergence of the similarities in a single number
(WHS-R-AUC), we calculate the area under the curve (AUC) [7]:

tmax

WHS-R-AUC = WHS(Cy, C) dt

0
where tmax is the maximum runtime of the compared algorithms
and C; represents the clusters of the approximated dendrogram
at timestamp t. To calculate WHS-R-AUC, we use the trapezoidal
rule.

4 Scaling PRAC to large datasets

Time series HAC is easy to parallelize and scales almost linearly
with the number of cores because the runtime is dominated by
independent pairwise dissimilarity computations. So to make
PRAC competitive, the latter needs to be parallelized as well. We
present how to parallelize both the dissimilarity computations
and the dendrogram construction of PRAC (Section 4.1), and how
the different dissimilarity computation ordering strategies can
use the available resources efficiently. The baseline strategies (fcfs
and rand) and the tsla strategy do not perform any initial com-
putations and are, therefore, already very efficient. The ada and
precl strategies, however, require some preparation before candi-
dates for exact dissimilarity computations can be suggested. We
describe their implementations and optimizations in Sections 4.2
and 4.3, respectively.

4.1 Parallelizing dissimilarity computations

To process the dissimilarity computations as fast as possible, we
use data-parallelism for the dissimilarity computations: Follow-
ing the coordinator-worker pattern, one thread (coordinator) is
responsible for generating and tracking the dissimilarity compu-
tation jobs and the remaining threads (workers) pull the jobs from
the coordinator and perform the dissimilarity computations. The
coordinator, first, generates jobs for the approximation of the dis-
similarities following the fcfs strategy; then, it generates a second
wave of jobs for the computation of the exact dissimilarities fol-
lowing one of the dissimilarity computation ordering strategies.
For balanced resource utilization and reactivity, PRAC uses adap-
tive batch sizes. Batching groups x dissimilarity computations
into a single job (= batch) to be processed by the same worker.
The workers track how much time they take to process their jobs
and send the processing times back to the coordinator. The coor-
dinator keeps track of all processing times and adjusts the batch
size x, such that a certain target processing time (default: 500 ms)
is attained. This batching strategy minimizes communications
costs while keeping workloads balanced.

Even if the dissimilarity computations account for the majority
(up to 95 %) of the runtime, for larger collections, the construc-
tion of the dendrograms becomes relatively slow compared to
an individual dissimilarity computation. Thus, PRAC also needs
to balance the time spent on computing dissimilarities, which is
making progress, and the time spent on updating the dendrogram,
which is communicating progress. In the proposed solution, we use
task-parallelism for the dissimilarity computations and the dendro-
gram construction: We designate a specific thread to continuously
update the dendrogram and use all remaining threads for all
other activities. The maximum of dendrogram construction time
and dissimilarity computation time determines the dendrogram
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Figure 5: Distribution of dissimilarities for the BeetleFly
dataset and the DTW measure. We show a segmentation
with 10 segments. Each segment contains roughly the same
number of dissimilarities (bold numbers on top).

update periodicity; for larger input collections, this frequency
lowers naturally.

4.2 Optimizing the ada strategy

The ada strategy takes as input the approximate dissimilarity
vector and generates an order for all time series pairs, starting
from the pair with the smallest approximate dissimilarity to that
with the largest approximate dissimilarity.

A naive implementation of this strategy would simply create
and sort a vector of time series ID pairs and then iterate over
this vector. However, this approach requires a significant amount
of memory for the vector and a significant amount of time for
initialization, during which no dissimilarities are computed. For
example, a dataset with n = 25,000 time series would contain
() = 312.487.500 pairs and take up 11.6 GiB of memory. Sorting
this array takes a lot of time compared to the dissimilarity compu-
tations, especially if n > m. So to scale the ada strategy to large
datasets, we only approximate the ordering of the time series
pairs: the order is based on only approximated dissimilarities
anyway. More specifically, instead of sorting time series pairs, we
simply divide the dissimilarities into segments with roughly the
same cardinality. To minimize memory requirements, we avoid
materializing time series’ ID pairs and store only segment bound-
aries and a copy of the current dissimilarity vector (requiring
2.3 GiB in our example). We can then process one segment after
the other by generating the ID pairs on demand.

As shown in Figure 5, the (approximated) dissimilarities are
not evenly distributed in the value range, but roughly follow
a (skewed) normal distribution. Thus, equally spaced segment
boundaries would yield segments with diverging cardinalities.
With the observation that the dissimilarities usually follow a
normal distribution, we can efficiently estimate the parameters
of the distribution (1 and ¢?) in a single pass over the data using
Welford’s algorithm [60], and then use the inverse error function
(erf™1) to compute our segment boundaries.

We split the value range into k = 3 * log((};)) segments to
balance the quality of the approximated ordering (possibly large
k for smaller segments) with the time required to generate time
series pairs (possibly small k because we need to iterate over the
() pairs k times). Because the normal distribution is symmetric,
we always generate an even number of segments. The mean y
is our first segment boundary (pivot xi ;) separating segment
k/2 — 1 and k/2. The next two pivot values xx/,_; and xg /2.1
should enclose (together with i) p = 100/k % of the dissimilarities,
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on the left (for segment k/2 — 1) and right (for segment k/2) side
of the mean, respectively. We can estimate the x in y + xo°
for covering p % of the values using the inverse error function:
x = V2 - erf 1(2p). For the example in Figure 5, we have k = 10
segments. The first pair of pivots each enclose p = 10 % of the
values between themselves and the mean: x = V2- erfl (2-0.1) =
0.25. Thus, the pivots must be at y + 0.25¢2 and p — 0.25¢2. The
next pair of pivots each enclose p = 20 % between themselves
and the mean (x = V2 - erf'l(Z -0.2) = 0.52), and so forth. The
most outer boundaries are —co and +oc0.

Once we have computed the segment boundaries (in a single
pass!), we can generate the time series pairs segment-wise: For
each segment and starting with the segment with the smallest
dissimilarities, we iterate over the dissimilarity vector and check
for each current pair whether its approximate dissimilarity falls
into the segment boundaries. If yes, we schedule the pair’s exact
dissimilarity computation; otherwise, we skip the current pair.
When PrRAC reaches the end of the dissimilarity vector, we switch
to the next segment and re-start the iteration from the beginning.
Hence, PRAC scans the dissimilarity vector k times. The order
of pairs within one segment is arbitrary, but we ensure that the
pairs with the lowest 100/k % of dissimilarities are generated
first; then, the next 100/k % and so on. Even though we scan
the dissimilarity vector k times, we (i) allocate only minimal
additional memory, (ii) can generate comparison candidates after
only a very brief initialization time (®(n)), and (iii) can also hide
the scanning latency (amortized O(n/k)) by pre-computing a
batch of time series pairs in advance.

4.3 Optimizing the precl strategy

The precl strategy requires an assignment of time series to pre-
clusters before it can start scheduling any exact dissimilarity
computations. We use the existing hierarchical clustering process
(MST or NN-cHAIN algorithm) to generate a stepwise dendro-
gram and then cut the dendrogram, such that the precl strategy
receives the desired number of clusters. This process is triggered
once all approximate dissimilarities have been computed. Unfor-
tunately, constructing and cutting the dendrogram can take a
considerable amount of time, during which the workers would
not make progress in computing exact dissimilarities. To avoid
idle workers, the precl strategy instead uses the fcfs strategy to
schedule some exact dissimilarity computations while it waits
for the pre-cluster assignments.

Once the pre-cluster assignments have been received, the precl
strategy switches to its original three-step processing scheme,
starting with the exact intra-pre-cluster dissimilarity calculations.
For the first and second processing steps, all dissimilarity compu-
tations have the same priority and can be scheduled in any order.
For the final inter-pre-cluster step, which contains most of the
dissimilarity computations, precl creates a partial order for the
dissimilarity calculations: It creates pairs of pre-clusters and sorts
them in ascending order by their medoid dissimilarity. Sorting
the pre-clusters is only in O ((n — v/n) log(n — y/n)). The inter-
pre-cluster dissimilarities are then scheduled, one pre-cluster
pair after the other. The individual dissimilarity computations
within a pre-cluster pair are again independent and can be com-
puted concurrently. The transitions between processing steps are
synchronized to ensure the correctness of the final dendrogram.
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Figure 6: DENDROTIME’s frontend visualizes the computa-
tional progress indicator (top), the unsupervised conver-
gence indicator (middle), and changes to the dendrogram
(bottom).

5 Communicating progress: The DENDROTIME
system

To enable the usage of PRAC in interactive clustering processes,
we combined it with the dissimilarity computation ordering
strategies and a practical user interface into a system called DEN-
DROTIME. It consists of a reactive client-server architecture that
executes PRAC on a collection of time series in the backend and
visualizes dendrogram updates in the frontend, which is shown
in Figure 6.

To use DENDROTIME effectively, scientists need to be able to
stop it early. This decision is made based on the current result
quality and the expected remaining runtime. Existing progres-
sive algorithms, such as PSNM [44], use results per second as an
implicit progress indicator because they progressively produce
fewer results over time. In contrast, DENDROTIME is progressive
in the result quality and not in the result completeness; it pro-
duces a single approximated result, i. e. the stepwise dendrogram,
and refines it over time. Thus, in addition to visualizing the den-
drogram (and its changes), DENDROTIME shows two progress
indicators to communicate (i) the computational progress and
(ii) the convergence of the clustering.

Computational progress. Because DENDROTIME knows the
number of completed and pending tasks, it can simply display
the fraction of completed processing steps to visualize the com-
putational progress. For this, we split the clustering process into
four phases and display the percentage of completed processing
steps for each phase (cf. Figure 6). The necessary counters are
efficient to compute.

Convergence. Visualizing the qualitative progress exactly is not
always possible because measuring the similarity between the
current and the exact dendrogram (using WHS) requires the exact
target dendrogram as ground-truth, which is usually not avail-
able. For this reason, we estimate the dendrogram convergence
in an unsupervised fashion: The approximated dendrogram from
a progressive algorithm approaches the exact dendrogram and
undergoes fewer and fewer changes towards the end of the algo-
rithm. We, thus, measure dendrogram changes over time, which
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we call #CumClusterChanges@k, as a proxy measure for the den-
drogram convergence, i. e., a visual proxy for WHS. To minimize
the computational overhead of the estimation, we count the num-
ber of time series that change cluster assignments at a single,
fixed cut point of the dendrogram and display the cumulative
sum scaled to [0, 1] over DENDROTIME’s runtime (cf. Figure 1).
The cut point is determined by a user-defined parameter k for
the number of distinct clusters (by default k = n/2). Figure 1 com-
pares the progression of the exact WHS quality measure and the
#CumClusterChanges@k convergence indicator for a progressive
and a non-progressive algorithm.

6 Evaluation

In this section, we empirically evaluate our heuristic-driven pro-
gressive clustering technique DENDROTIME to demonstrate the
expected convergence behavior in different configurations on var-
ious datasets, as introduced in Section 6.1. We first compare the
runtime and quality of DENDROTIME to other exact and approxi-
mate hierarchical clustering approaches (Section 6.2). Afterward,
we analyze the convergence rate of our dissimilarity computa-
tion ordering strategies and demonstrate the effectiveness of ada
and precl (Section 6.3). Then, we analyze the limitations of our
progressive approach (Section 6.4).

6.1 Experimental setup

Hardware and software. We perform all experiments on a
server with an Intel Xeon E5-2630 v4 CPU (10 physical cores at
2.2 GHz) and 64 GiB of memory. We do not enforce any time or
memory limits; swap is disabled. DENDROTIME is implemented in
Scala 3.3 and uses the Akka actor programming framework [29].
We run the system on the OpenJDK JVM version 21.0.5 LTS.

Baseline algorithms. We compare DENDROTIME with three
baseline algorithms: PARALLEL, JET, and HAPPIECLUST. PARALLEL
is a multithreaded Scala implementation of HAC. It computes the
pairwise time series dissimilarities in parallel and constructs the
final, exact stepwise dendrogram in the end. JET [61] and Hap-
PIECLUST [26] are approximate HAC algorithms for time series.
JET computes a pre-clustering using the BIRCH [67] algorithm
before applying the NN-cHAIN algorithm with ward linkage to
build the stepwise dendrogram. We extended JET to support other
linkages as well. HAPPIECLUST computes pseudo-distances in a
low-dimensional pivot-space to estimate the time series dissimi-
larities and construct the stepwise dendrogram. Both algorithms
are implemented in Python, executed with Python version 3.9.21,
and compute the dissimilarities in parallel.

Metrics. DENDROTIME eventually produces the same stepwise
dendrogram as traditional HAC algorithms. Thus, we do not
evaluate the quality of the final dendrogram but DENDROTIME’s
progressive convergence using runtime measurements, WHS, and
WHS-R-AUC (cf. Section 3.3). We deliberately avoid traditional
clustering metrics because they consider only single dendrogram
cuts.

Datasets. We perform our experiments on 123 univariate datasets
without missing values taken from the UCR time series classifi-
cation archive [13], and 12 univariate anomaly datasets from the
EDENISS project [50]. In the UCR archive, there are 112 datasets
with equal-length time series and 11 datasets with variable-length
time series. Further characteristics are listed online!. The EDENISS
datasets contain between 105 and 2,429 time series with varying

Ihttps://timeseriesclassification.com
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lengths between 5 and 576 points per time series — every dataset
corresponds to a set of extracted anomalies from a specific sub-
system and sensor type.

6.2 Comparison to baselines

In our first experiment, we compare the performance of DEN-
DROTIME’s precl, ada, and fcfs dissimilarity computation ordering
strategies to the baselines PARALLEL, JET, and HapPIECLUST. To
this end, we measure DENDROTIME’s WHS scores over time with
different linkage methods (single, complete, average, and weighted)
and dissimilarity measures (LD, SBD, MSM, DTW, and KDTW),
and inspect its convergence behavior. We omit the tsla strategy
here because it behaves similarly (poorly) to the fcfs strategy (cf.
Section 6.3); fcfs is included as a reference for a non-progressive,
incremental algorithm. We use all 135 datasets, and record the
algorithms’ runtimes and WHS scores. For KDTW, we omit 2
datasets, for which PARALLEL took longer than 36 h to finish. The
WHS calculation costs, i. e., the experiment overhead costs, are
measured separately and subtracted from the runtimes for a fair
assessment.

Figure 7 (top) plots the measured WHS scores (over time) for
all dissimilarities and single and complete linkage. The other link-
age methods behave similarly as complete linkage. PARALLEL, JET,
and HapPIECLUST are represented as points because they produce
only one result at one specific time, whereas DENDROTIME out-
puts (updated) results continuously. Because the datasets in our
collection are very heterogeneous in their numbers and lengths
of time series, they cause drastically different runtimes. To ef-
fectively aggregate the 135 results per setting in Figure 7, we
measure the runtime of DENDROTIME, JET, and HAPPIECLUST
relative to the runtime of the PARALLEL baseline. And because
the results of PARALLEL are exact, they also serve as the basis
for the quality comparison: For each dataset, we measure the
algorithms’ WHS scores w. . t. PARALLEL’s exact dendrogram as
WHS(C, Cparatirs)-

Figure 7 (bottom) compares the runtime improvement of DEN-
DROTIME’s different dissimilarity ordering strategies for all 20
configurations when they first exceed 80 % quality measured
using WHS. Again, we measure the runtime of DENDROTIME
relative to the runtime of the PARALLEL baseline. If the relative
runtime is below 1.0, DENDROTIME could achieve 0.8 WHS before
PARALLEL computed the exact result.

DENDROTIME vs. JET/HapPPIECLUST. Although JET and Hap-
pIECLUST are approximate algorithms for calculating fast HAC
sketches, they are on average slower than DENDROTIME and even
the exact PARALLEL baseline. This is due to the overhead of their
Python implementations on small datasets. For larger datasets
and excessively costly dissimilarity measures the overheads di-
minish: For KDTW, JET is indeed faster than the exact baseline,
while HAPPIECLUST is just 50 % slower. Nevertheless, DENDRO-
TiME achieves a better quality after the same runtime for all
datasets.

DENDROTIME vs. PARALLEL. DENDROTIME eventually com-
putes the same result as PARALLEL, but with additional approxima-
tion and ordering steps in the process. Hence, it naturally takes
more time to finish the exact dendrogram than the PARALLEL
baseline (up to 1.5X for expensive and up to 3% for cheap dissim-
ilarities). The measurements, furthermore, show that DENDRO-
TiME cannot offer accurate early clusterings for fast to compute
dissimilarities, such as LD and SBD, before PARALLEL finishes
the exact dendrogram, because the approximations are nearly as
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Figure 7: (Top) Exemplary dendrogram convergence curves for DENDROTIME, PARALLEL, JET, and HaApPIECLUST with single
and complete linkage and all five dissimilarity measures; other linkage methods show similar behavior as complete linkage.
The dashed gray lines indicate a WHS of 0.8 and the runtimes of PARALLEL, respectively. All runtimes were measured
relative to the runtime of PARALLEL and could, thus, be aggregated over all 135 datasets.

(Bottom) Mean relative runtime of DENDROTIME to reach 80 % quality measured using WHS for all 20 configurations.

costly as the exact computations. For the expensive MSM, DTW,
and KDTW dissimilarities, however, DENDROTIME’s ada and precl
strategies can achieve WHSs of above 80 % in shorter runtimes
than PARALLEL despite the continuous calculations of approxi-
mate results (cf. Figure 7). This shows that DENDROTIME provides
effective early approximated dendrograms of computationally
expensive dissimilarity measures, which are the measures that
require these approximations most due to their long calculation
times. The measurements also show that the naive fcfs strategy
converges clearly slower than ada and precl, which demonstrates
the effectiveness of the two more advanced strategies.

DENDROTIME vs. DENDROTIME. The overall best progressive
dissimilarity ordering strategy is ada: It outperforms precl in
all configurations except with KDTW dissimilarities. Because
we later show in Section 6.3 that precl actually produces more
effective orderings, the advantage of ada is its much faster ini-
tialization time. For KDTW, precl clearly outperforms ada. It can
even achieve 0.8 WHS below 60 % of PARALLEL’s runtime. Kernel
dissimilarities are exceptionally expensive to compute and, thus,
precl’s overheads are less pronounced and its superior orderings
lead to faster convergence. Therefore, we suggest using precl for
expensive kernel-based measures, such as KDTW, and ada for all
faster-to-compute dissimilarity measures. For single linkage, ada
converges particularly well because in single linkage the mini-
mum pairwise dissimilarity between two clusters determines the
clusters’ similarity and ada computes the (estimated) smallest
dissimilarities first. However, the runtime of precl with single
linkage is particularly long because single linkage often creates
hierarchies that merge single time series into an ever-growing
large cluster; the resulting size skew in the pre-clusters of precl
drastically reduce parallelism and batch sizes.

For datasets with many time series, measuring WHS for the
intermediate results of DENDROTIME becomes prohibitively ex-
pensive. Hence, we cannot measure the quality of their approx-
imate results fast enough to plot the convergence curves. As
an example, Figure 8 shows the convergence behavior and the
runtime breakdown of DENDROTIME with DTW and weighted
linkage for two worst-case datasets: Crop with 24,000 time se-
ries of size 46 and ElectricDevices with 16,637 time series of size
96. For these two datasets, we can compute the quality for only
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Figure 8: DENDROTIME’s convergence and runtime break-
down for the worst-case datasets Crop and ElectricDevices
with thousands of very short (< 100 points) time series.

two dendrograms, leading to a poor-looking, but not necessarily
poor-performing convergence behavior (and low WHS-R-AUC);
the user-facing dendrogram visualizations still converge progres-
sively. Although these configurations influence DENDROTIME’s
convergence curves negatively, we still included them in our
aggregated results in Figure 7.

From all strategies in this experiment, the ada strategy per-
forms the best. precl’s initialization overhead increases with the
number of time series in the dataset, leading to a worse conver-
gence rate compared to ada on average. Next, we analyze the
differences in the DENDROTIME strategies in more detail.

6.3 Progressive dissimilarity computation

In this experiment, we evaluate DENDROTIME’s convergence ef-
fectiveness for each of its dissimilarity computation ordering
strategies (fcfs, precl, ada, and tsla) and 1,000 random orderings,
demonstrating the difficulty of choosing effective orders for pro-
gressive dissimilarity computations and the strategies’ capabil-
ities. Because PRAC’s first phase behaves the same for all our
strategies, we consider only its second phase in this experiment,
and start with an existing approximated dissimilarity vector. For
a consistent and fair assessment, we uniformly sample for ev-
ery dataset a maximum of 10,000 steps, at which we construct
the stepwise dendrogram and record the runtime and WHS; in
this way, we can analyze the convergence behavior of the dif-
ferent strategies using WHS-R-AUC. Due to the many random



EDBT 26, 24-27 March 2026, Tampere (Finland)

A ada o= precl ¥ fcfs tsla Random strategies
(S}
2075 & +* * *
goso M- R gp g g W
I -
= 0.25 T T T T T T T
gee& \)G\N/L 5@\“‘7’ \N\Y\e

AN et i
%ee‘\e A (dc(\\d\ Cpﬁ
X

Figure 9: DENDROTIME’s convergence rate measured us-
ing WHS-R-AUC for the fcfs, precl, ada, and tsla ordering
strategies and 1,000 random orderings, all with MSM and
average linkage for seven UCR datasets. Measurements
with other dissimilarity-linkage combinations yield simi-
lar results.

executions, this evaluation uses only the seven smallest UCR
datasets.

Figure 9 shows the WHS-R-AUC of fcfs, precl, ada, and tsla
as points and the WHS-R-AUC distribution of the 1,000 random
orderings as violin plots for each of the seven datasets. The ran-
dom orderings follow skewed normal distributions around 0.5
or lower, with even their max values being far away from pro-
gressive. The fact that none of the 7 X 1,000 random orders is
even close to being progressive demonstrates the difficulty of
finding a progressive ordering for dissimilarity computations.
The simple fcfs and tsla ordering strategies also fall within the
random distributions and cannot be considered effective. The
precl and ada strategies, however, significantly outperform the
other strategies: Their orders result in rapidly converging den-
drograms and, hence, high WHS-R-AUC scores. Overall, precl
has the best convergence over all selected datasets, but its initial-
ization is expensive to compute and does not scale to larger time
series collections (cf. Section 6.2). The ada strategy is slightly
less effective, but with its more light-weight initialization and
our effective optimizations, it scales better to larger time series
collections (cf. Section 6.2). Both ada and precl, though, clearly
provide progressive dissimilarity computation orders.

6.4 Limitations of DENDROTIME

For the progressive and interactive computation of the dendro-
gram, DENDROTIME requires three times more memory than a
one-off computation for storing the extra dissimilarity vectors:
working set vector, computation ordering vector, and NN-cHAIN
vector.

While many time series clustering approaches use expensive,
elastic dissimilarity measures, the usage of Euclidean distances
is still widespread. Euclidean distances can be computed very
efficiently. In this experiment, we look at how DENDROTIME deals
with such efficient dissimilarity measures, for which it was not
designed.

Figure 10 shows DENDROTIME’s convergence behavior with
runtime breakdowns for MSM dissimilarity (left) and Euclidean
distance (right) for a dataset with 4,478 time series of size 945.
DENDROTIME assumes that the dissimilarity computations domi-
nate its runtime and, hence, runs these comparisons progressively.
Here, with a cheap dissimilarity measure, such as the Euclidean
distance, DENDROTIME could finish the clustering 607 X faster
compared to MSM. Only with Euclidean distances, reading the
time series from disk (Initializing), computing the approxima-
tions ((1) Approx.), and constructing the final dendrogram (Final
dendrogram) could even be measured as overheads. The overall
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Figure 10: DENDROTIME’s convergence over time and run-
time breakdowns for the UWaveGestureLibraryAll dataset
with MSM or Euclidean dissimilarities, and average link-
age.

runtime of DENDROTIME with Euclidean distance is so short that
even the quality measure cannot be computed fast enough to vi-
sualize the progressive improvements, as discussed in Section 6.2.
The usage of Euclidean distances in DENDROTIME showed the
same effect also for other datasets. We conclude that for efficient
time series dissimilarity measures, our two-phased approach is
ineffective because initialization and approximation eat away
most progressive gains of a short exact calculation phase.

7 Anomaly clustering case study

Detecting anomalous subsequences in time series data is one of
the most important tasks in time series analytics for domains,
such as environmental monitoring [10], preventive healthcare [3],
or predictive maintenance [63]. Domain-specialized anomaly de-
tection algorithms have shown to detect the location, magnitude,
and length of anomalous subsequences accurately [40, 42, 66].
Semi- and unsupervised anomaly detection algorithms, however,
cannot distinguish or classify different types of anomalies. For
this reason, anomaly detection pipelines often apply an additional
downstream classification step to distinguish different anomaly
types, such as sensor failures, environmental influences, false
predictions, or actual domain events. The anomaly classification
step is usually implemented as unsupervised time series clus-
tering [23, 50, 56, 61] because labeled training data is often of
insufficient quantity.

Clustering time series anomalies efficiently is especially chal-
lenging because (i) the anomaly extraction process often extracts
similar anomalies with varying lengths and shifted positions,
(ii) the same anomaly type can appear with different amplitudes
and frequencies, and (iii) the number of anomaly types (clusters)
is not known in advance. DENDROTIME is particularly useful in
this scenario because it can leverage elastic dissimilarity mea-
sures to cluster variable length input time series, does not require
users to specify the number of clusters upfront, and allows users
to inspect the approximate results and stop the clustering early.

In this section, we demonstrate the usage of DENDROTIME in a
real-world anomaly clustering scenario for bio-regenerative life
support system telemetry from the EDEN ISS project [65].
EDEN ISS project. EDEN ISS was a research greenhouse op-
erated by the German Aerospace Center in Antarctica between
2018 and 2021 to study plant growth in harsh environments. We
focus on the ICS subsystem that records temperatures around the
growing lamps above each growth tray. Rewicki et al. [50] iden-
tified nine anomaly types in the temperature recordings using
an interactive analysis process: Anomaly detection and extrac-
tion were performed in an ensemble consisting of the algorithms
Maximally Divergent Intervals (MDI) [4] with an anomaly score
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Figure 11: DENDROTIME’s convergence using MSM dissimi-
larities (left) and DTW dissimilarities (right) with centroid
linkage on the EDENISS-ICS-full dataset.

threshold of 0.5 and Discord Aware Matrix Profile (DAMP) [30],
which have been shown to detect complementary anomalies
[49, 50]. All extracted temperature anomalies were subsequently
clustered using k-Means or HAC to identify recurring anomalous
behaviors.

Because larger data sizes could not be explored interactively,
Rewicki et al. [49] restricted their analysis to a single year (2020)
of the four-year mission and used a resolution of only 1/300 Hz.
This resulted in 1,303 anomalous subsequences with an aver-
age length of 162 points (ICS-restricted). For our experiment,
we use all available data ranging from 2018 to 2020 in its orig-
inal recorded frequency of 1/60 Hz. In this data, we find 2,103
anomalous subsequences with an average length of 954 points
(ICS-full).

DENDROTIME study. To demonstrate that DENDROTIME al-
lows the ICS-full dataset in the interactive clustering process, we
first execute the baseline algorithm PARALLEL on both datasets
and measure its runtimes. Then, we execute DENDROTIME’s ada
strategy on the datasets and stop the clustering process when
the convergence indicator signals a good convergence (indicated
by leveling out around 1.0). We use DTW and centroid linkage
for both algorithms because this was the configuration used in
the original analysis.

PARALLEL can cluster the anomalies of the ICS-restricted dataset
in 18s. For the ICS-full dataset, PARALLEL requires 31 min, which
is too slow for an interactive process. DENDROTIME, however, can
achieve convergence after 6.8 min and with 543,414 of 2,210,253
(exact) dissimilarities computed. This partial execution of DEN-
DROTIME can achieve a WHS of 93.6 %, as DENDROTIME’s con-
vergence curves for ICS-full in Figure 11 show. DENDROTIME
converges better with MSM than with DTW dissimilarities, con-
firming our previous results in Section 6.2. However, to compare
DENDROTIME’s results to the original study [50], we need to exe-
cute it with DTW for this use case. While DENDROTIME’s partial
runtime on the full dataset is significantly longer than the origi-
nal algorithm’s runtime on the restricted dataset, it is still short
enough to be used in an interactive analysis process.

The result of DENDROTIME’s partial execution allows us to
perform the same analysis as in [49] and to identify existing and
even some new anomaly types: As already pointed out in [50],
HAC algorithms produce unbalanced dendrograms on EDEN
ISS data, leading to few large clusters and many tiny clusters
for many cut points. This prevents us from selecting a good
number of clusters k and the respective cut point automatically
(too few clusters). After visual inspection of the dendrogram,
we manually select a cut point that results in 40 clusters, which
is not too many clusters with not too many instances. The 40
clusters (anomaly types) are shown in Figure 12. We can easily

154

EDBT 26, 24-27 March 2026, Tampere (Finland)

[ S A i 1Y il
=
LU S e AR
S ) wa L m =g

A<

Figure 12: Anomaly types (clusters) found in ICS tempera-
tures using the partial execution of DENDROTIME. Named
anomaly types are annotated in the same color and with
the same number as in Rewicki et al. [50, Figure 5, Table
A3] (six out of nine), newly discovered anomaly types are
N1 and N2.

identify six out of the nine original anomaly types: Anomalous
Night Phase (#0), Long Peak (#1), Short Peak (#2), Near Flat Noisy
or Flat Signal (#3), Missing / Delayed Warmup (#4) and Flat and
Drop (#8). Additionally, we can identify two previously unknown
anomaly types: Long Daydrop (N1) and Interrupted Peak (N2). N1
was not detected previously, despite appearing on two different
days in 2020. N2 can be observed only in 2019.

8 Related work

Time series clustering. DENDROTIME is the first progressive
HAC algorithm for time series. Many non-progressive algorithms
have been proposed to cluster time series, which can broadly
be categorized into two classes [1, 22]: sequence-based cluster-
ing methods that work directly with the time series using time
series-specific dissimilarity measures, and feature-based cluster-
ing methods that extract time series properties in a preprocessing
step and then apply standard (tabular) clustering algorithms on
these features.

Sequence-based clustering algorithms, such as k-Means [22],
k-Shapes [41], OPTICS [2], HAC [1, 24, 41], or DTCR [32], achieve
competitive performances only if they utilize a time series-specific
dissimilarity measure, such as SBD or MSM. Holder et al. [22] ana-
lyzed elastic dissimilarity measures for clustering time series with
k-Means and k-Medoids. Javed et al. [24] benchmarked partition-
based, density-based, and hierarchical time series clustering algo-
rithms, while Lafabregue et al. [27] benchmarked various deep
learning network architectures for time series clustering.

Feature-based approaches to time series clustering can utilize
any traditional tabular clustering algorithm, but rely on an ef-
fective set of time series features. Examples are using statistical
features with k-Means to cluster customer-specific electricity us-
age [52] or applying k-Medoids on time series bit representations
extracted with piecewise aggregate approximation (PAA) [28].
The tsfresh [11] and catch22 [31] libraries provide time series-
specific feature extraction methods that are based on statistical
characteristics. Time2Feat [8] uses learned time series features.

Hierarchical agglomerative clustering. HAC is a family of
bottom-up hierarchical clustering algorithms that is often used
to cluster time series for three reasons: It can leverage elastic
dissimilarities to cluster variable-length time series, it does not
require the user to specify the number of clusters upfront, and it
produces easy to visualize results [1, 14, 24, 41]. Most approaches
were proposed with the ED in mind. However, ED does not work
well for variable-length time series, and many popular time series
dissimilarity measures, such as DTW and SBD, do not satisfy
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metric properties. The widely adopted NN-cHAIN algorithm [37]
for HAC still works as long as the chosen linkage method is
compatible with the dissimilarity measure.

Murtagh and Contreras [38] give a general overview of HAC
for ED. Schubert [54] proposes optimized versions of the NN-
CHAIN algorithm for ED using an incremental nearest neighbor
search approach that can achieve sub-quadratic runtime. Un-
fortunately, these algorithms cannot be applied to non-metric
dissimilarities.

Existing parallel versions of HAC [15, 35, 58, 59, 64] focus on
parallelizing the clustering step that expects a complete distance
matrix as input. For sliding and elastic time series dissimilari-
ties, though, computing the distance matrix takes most of the
runtime and is, therefore, subject to our parallel and progressive
strategies. Existing approaches are, for this reason, orthogonal
to our approach, but they could be used to speed up the final
dendrogram construction.

Approximate hierarchical agglomerative clustering. To con-
trol HAC’s computational complexity, a few non-progressive,
approximate algorithms have been presented:

Wenig et al. [61] propose the unsupervised approximate algo-
rithm JET for clustering large collections of variable-length time
series. It first computes a coarse-grained pre-clustering using a
cheap feature-based dissimilarity measure before building a den-
drogram using the expensive elastic dissimilarity measure SBD,
similar to our precl strategy. We use JET as a non-progressive
baseline.

Kull and Vilo [26] propose the approximate HAC algorithm
HapPIECLUST for clustering biological gene expressions. Hap-
PIECLUST uses pseudo-distances within a low-dimensional pivot-
space to identify pairs of similar objects. After computing the
exact dissimilarities between these similar objects, it utilizes the
triangle inequality principle to approximate the missing dissimi-
larities and perform agglomerative clustering. HAPPIECLUST is
another non-progressive baseline.

Cochez and Mou [12] combine the twister tries data structure
with locality-sensitive hashing to implement an approximate
HAC algorithm for average linkage. The algorithm places strict
requirements on the dissimilarity measure: It must be a distance
metric with a corresponding proportionally sensitive family of
locality-sensitive hash functions. Because many time series dis-
similarity measures do not even fulfill the metric requirements,
twister tries are challenging to apply to time series clustering.
This also applies to Koga et al.’s LSH-LINK algorithm [25], which
also uses locality-sensitive hashing but for single linkage. DEN-
DROTIME’s approach is independent of the used dissimilarity
measure and linkage method.

9 Conclusion

DENDROTIME is a parallel, progressive clustering system for large
collections of time series. It creates and continuously improves
an approximate dendrogram, which eventually converges to the
exact solution. DENDROTIME’s two-phased approach and its dis-
similarity computation ordering strategies are most efficient for
expensive dissimilarity measures, which are necessary (and popu-
lar) to effectively cluster time series. We compared DENDROTIME
to an exact and an approximate baseline algorithm with excellent
results. In future work, we aim to develop a strategy to calculate
the individual time series dissimilarities incrementally, so that
partial results from the approximation can be re-used by the
exact calculations to minimize DENDROTIME’s overhead.
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Artifacts

The source code, data, and other artifacts have been made avail-
able at https://github.com/hpi-information-systems/dendrotime.
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