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Abstract

Pandas is widely used for data science applications, but users
often run into problems when datasets are larger than memory.
There are several frameworks based on lazy evaluation that han-
dle large datasets, but the programs have to be rewritten based on
the chosen framework. In this paper, we present an optimization
framework that allows programmers to code in plain Pandas, but
get the benefit of not only scalability, but also multiple optimiza-
tions based on a combination of “just-in-time” static analysis of
the program and lazy-evaluation based run-time-optimizations.
The programmer only needs to add a couple of lines of code to
use our framework, and to choose from any of several backend
engines (currently Pandas, Dask, Pandas On Spark, DuckDB
using Ibis, Polars using Ibis, and Modin). Performance results
on a variety of programs show the significant benefits of our
optimization framework compared not only to Pandas, but also
compared to the direct use of Dask, Modin, DuckDB using Ibis,
Polars using Ibis, and Pandas on Spark.
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1 Introduction

Python is widely used for data science applications, and in partic-
ular dataframe-based libraries and frameworks have become the
default model for many of these applications. Pandas is the most
popular framework among these and is the tool of choice for ap-
plications that use smaller datasets that fit in the available system
memory. To address the needs of applications that have larger
datasets that do not fit in memory, several scalable frameworks
have been created, such as Dask [1], Modin [2], PySpark/Pandas
on Spark [3], Magpie [4], among others. Some frameworks such
as Dask and Spark are lazy evaluation frameworks that create a
task graph lazily, optimize it, and then execute it when results
are needed. Others like Modin support eager evaluation.

Many users develop their applications using Pandas, and test
them on small datasets; performance issues, especially out-of-
memory issues, are not obvious until much larger datasets are
used. Even if production datasets fit in memory at a point in time,
an increase in data size often causes problems at a later point in
time.
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import pandas as pd
# other import stmts

import lazyfatpandas.pandas as pd
# other import stmts

pd.analyze()
pd.BACKEND=pd.Backends.DASK

# rest of program

=

# rest of program

Figure 1: Code changes to use Lazy Fat Pandas

While users can avoid these problems by using scalable frame-
works, there are several challenges. Frameworks based on lazy
evaluation can speed up evaluation by using optimizations of the
task graph, but require users to modify their code to work with
lazy evaluation, for example, by explicitly forcing of computa-
tion before any non-lazy operation (e.g. print()) is executed on
a dataframe. Which framework is optimal for an application
depends on factors such as data size. To use a framework, the
user needs to deal with variations in their APIs, including lack of
support for some Pandas features. Rewriting code to work on a
different framework is thus non-trivial. This makes it hard to use
the optimal backend if the application is coded against a different
backend.

In this paper, we describe a system, which we call Lazy Fat
Pandas (LaFP), which we have developed to address the above-
mentioned challenges faced by the data science user community.
Our system allows users to use plain Pandas as front-end, but
rewrites the program to optimize it and to execute it using any
one of the supported back-end systems. LaFP uses static analysis
along with a lazy API wrapper to perform a number of optimiza-
tions for efficient execution of these applications.

In order to benefit from LaFP, users can continue to write their
programs in Pandas and just need to perform a couple of lines of
code changes, as highlighted in Figure 1. Users must replace an
import of Pandas by an import of our LaFP library, and add a call
to pd.analyze(). Additionally, the users can specify the desired
backend (automated choice of backend is an area of ongoing
work). Users do not need to worry about the variations between
APIs and execution models of different back-end executors.! LaFP
uses a combination of program rewriting and a lazy wrapper to
introduce lazy evaluation and optimization, and to provide work-
arounds to deal with limitations of the chosen framework.

The specific technical contributions of this paper include the
following.

(1) We present a novel optimization architecture (Section 2)
based on static analysis, to perform source-to-source trans-
formation of Python programs.

Support for a few APIs such as apply() or get_dummies() on backends that do not
support them, is a work in progress, as discussed in Section 5.1.
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Figure 2: Overview of the Lazy Fat Pandas System

The Python source program is first converted to the SCIRPy
intermediate representation (IR), which we have created,
which is compatible with the Soot static analysis frame-
work [5].

Based on static analysis, the IR is rewritten to optimize exe-
cution, and then is converted back to Python for execution.
We discuss the optimizations shortly.

(2) We designed and implemented a novel just-in-time (JIT)
static analysis technique, which requires only the addition
of a single function call, pd.analyze(), to the program. Our
analyze() function uses reflection to find and rewrite the
source code of the program, and replace the execution of
the original program by the execution of the optimized
rewritten program. No changes are required to the outer-
level systems that invoke the Python programs, greatly
simplifying the task of deploying the optimizations.

(3) We have developed a runtime wrapper API which allows
easy substitution of invocations of Pandas API calls by
invocations of lazy versions of the same calls in LaFP. Lazy
evaluation allows the construction of a task graph, which
is a DAG of operators, which can be optimized before
execution, when results are needed.
The LaFP wrapper supports diverse back-ends, such as
Pandas, Dask, Modin, Pandas on Spark (formerly called
Koalas), DuckDB [6] using Ibis [7], and Polars [8] using
Ibis as backends. The programmer just adds one line of
code to specify the desired back-end. Lazy backends re-
quire computation to be forced at certain points; forcing of
computation is added automatically by our system, based
on static analysis.
The back-ends differ in the support for specific Pandas
API functionality. If a chosen back-end does not support a
specific Pandas API functionality, LaFP can convert data
from the back-end representation back to Pandas, to exe-
cute the original Pandas function. Thus, the user need not
worry about the differences between back-ends, or their
specific limitations (we note however that Dask, DuckDB,
and Polars do not preserve ordering of rows in a dataframe,
so users who choose any of these as the back-end should
be aware of this difference).

Our system supports lazy execution for Python functions

other than Pandas dataframe operations. For example,

LaFP provides a lazy print function, which is a wrapper

around normal print(), which becomes part of the lazy

task graph. Lazy print allows evaluation to be delayed to

4)
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a later point, increasing opportunities for performance
optimization. However, where such lazy evaluation is not
possible, our system rewrites the program to add forcing
of computation.

(5) We present a number of optimization techniques based

on static analysis (Sections 3). For example, static analy-
sis allows our optimizer to look ahead to predict which
dataframes are live, and what parts of the dataframe (based
on column selections) will get used later in the program,
and rewrite the program to avoid redundant fetches/com-
putation (Section 3.1). We also use static analysis to enable
other optimizations such as lazy print of dataframes (Sec-
tion 3.2), forced computation (Section 3.3), and common
computation reuse (Section 3.4).
We note that lazy runtimes optimize task graphs before
they are executed. However, programs often require multi-
ple task graphs to be created and executed, each of which is
independently optimized. Static analysis provides a global
view of the program, across multiple task graphs, support-
ing optimizations that examine later parts of the program.
For example, a task graph execution may materialize a
dataframe with multiple columns. Static analysis can de-
tect that only a few of the columns are used later in the
program, and optimize the computation by fetching only
the required columns. Purely run-time optimizers cannot
implement such optimizations.

(6) We have implemented the LaFP framework, along with
static and run-time optimizations. Our performance stud-
ies (Section 5) show that our optimization methodology
can significantly improve the performance of such pro-
grams, across all the backends (including those that have
their own optimizers), with up to 20x speedup of execu-
tion time. Memory usage is also substantially reduced, by
up to 95%.

2 Architecture

Users can run existing Pandas-based programs using our Lazy
Fat Pandas (LaFP) framework with minimal changes as shown in
Figure 1. LaFP currently supports 120 major Pandas API functions
out of around 240 APIs, including the bulk of the widely used
API functionality; adding support for further API calls, with the
goal of 100% compatibility with Pandas, is an ongoing activity.

Figure 2 shows an overview of our proposed framework. LaFP
first converts programs to a lower-level internal representation
(IR) using Just-in-Time (JIT) static analysis, and based on it,
rewrites the program to optimize evaluation.

The optimized program, where calls to Pandas dataframe oper-
ations have been replaced by their lazy wrapper versions, is then
executed. The lazy wrapper functions create a task-graph and
add each API call as a node to task graph. When computation
is forced, the task graph is optimized by the LaFP runtime, and
then executed. The runtime optimization makes use of metadata
and statistics to perform optimizations that cannot be done at
compile time. LaFP uses any one of multiple back-ends to execute
task graphs.

2.1 Intermediate Representation

We use the Soot [5] framework, originally developed for Java,
for static analysis of Python programs; Soot works on an inter-
mediate representation (IR) of the program. While IRs for JVM
bytecode are built in, Soot allows creation of new IRs.
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We developed an intermediate representation which we call
SCIRPy IR (short for Soot Compatible Intermediate Representa-
tion for Python) to support analysis. SCIRPy supports the Python
Abstract Syntax Tree (AST) representation, while being compati-
ble with Soot [5].

Most constructs in the SCIRPy IR, such as if statements, assign-
ment statements, etc., extend the Jimple IR of Soot, allowing us
to extend and use the built-in static analysis functionality of Soot.
SCIRPy further maintains compatibility with Soot by extending
Soot’s class, method, and body for Python.2

Python source is parsed into an abstract syntax tree (AST)
using an existing parser (written in Python), and the AST is
then translated into a JSON (JavaScript Object Notation) object.
This JSON object is passed to our static analysis code, which
transforms it into SCIRPy. For compatibility with Soot, our static
analysis code is written in Java.

We used Soot as it supports control flow graph construction
and data flow analyses, which we extend and use in our static
analysis. There are several static analysis tools for Python based
on ’ast’ module of Python or its derivatives, such as Pylint [9],
Pyflakes [10], Mypy [11], Prospector [12], and Bandit [13], among
others. However these do not support the static analysis tech-
niques used in our optimizations.

2.2 Static Analysis and Optimization

Static analysis is performed in SCIRPy by building Control Flow
Graphs (CFG) and performing data flow analysis (DFA).

Control Flow Graph (CFG): The CFG is a representation of
the flow of control within a program [14]. It represents various
paths that program execution may take. It is a directed graph in
which every node represents a Basic Block (BB). A basic block is
a sequential fragment of code without any branch or loop. CFGs
are generally constructed on intermediate representation (IR).
We construct a CFG from the SCIRPy IR using Soot.

Data Flow Analysis (DFA): DFA is a technique to identify
how a program or a method manipulates its data [15], and is
performed on CFG. We have currently defined and implemented
two data flow analyses: live attribute analysis (Section 3.1) and
live dataframe analysis (Section 3.4) to statically optimize data
science programs.

The results of static analysis are used to perform a variety of
optimizations. Static analysis provides information on precon-
ditions, as well as other information needed to carry out these
optimizations.

For example, consider the Pandas program in Figure 3 (taken
from [4]), which fetches data from files into in-memory data-
frames, and performs transformation operations such as data
filtering, feature addition, and aggregation, on the dataframes.
The optimized version (output of compile time optimization) of
the program is as shown in Figure 4 with highlighted comments
explaining the changes.

The original program fetches all 22 columns from the dataset.
Only 3 of these are used in the program, which is inferred by
a static analysis technique called live attribute analysis, as dis-
cussed in Section 3.1. The optimized program after applying
the column selection optimization fetches only the required 3
columns, by passing them in the usecols option to read_csv.

We also use compile time analysis to enable other optimiza-
tions such as lazy print (Section 3.2), forced computation (Sec-
tion 3.3), and common computation reuse (Section 3.4).

ZExtending the IR to handle exceptions is a part of future work.
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2.3 Rewriting to Python

In order to convert optimized SCIRPy back to Python source, we
first convert the CFG-based IR to an intermediate representation
based on program regions. Program regions represent the hier-
archical structure of block-structured programs. These regions
could be basic block regions, loop regions, branch (if-then-else)
regions, or sequential regions, each of which could hierarchically
contain other subregions. For example, a loop region may contain
a sequential region which in turn may be composed of a branch
region and another loop region.

Creating regions from the graph-based SCIRPy representation
is done using techniques described in [16], which are also used

n [17]. The region-based representation is then translated to
Python source code.

We note that static analysis cannot handle dynamically gen-
erated code that is executed using the exec() function. Static
analysis of Python has other challenges, such as not knowing
which overloaded function is being invoked when decorators are
used to implement overloading based on types, due to lack of
static typing. Further, we currently do not handle global variables
and closures. Also, we support a limited form of inter-procedural
static analysis. However, Pandas applications typically do not
use features that cause such issues, and our analysis is sound as
long as such features are not used. Soundiness, i.e. use of analysis
that are sound only as long as some rare constructs are not used,
is widely adopted in static analysis [18]. Transformations based
on static analysis are not performed when features that affect
soundness are used.

2.4 Just-in-Time Static Analysis

One of the novel contributions of our approach is the Just-in-
Time (JIT) static analysis, which performs static analysis at the
start of program execution. Other static analysis tools require
users to perform static analysis and program rewrite as a separate
phase, following which the rewritten program must be executed.
In contrast, our approach does not require any change in the flow
of code optimization/execution.

The process of JIT static analysis is described in Figure 5. The
pd.analyze() method transfers the control to LaFP. LaFP identifies
the source program code, parses it, converts it to SCIRPy, and
performs static analysis and compile time optimizations. Further,
code transformations are performed during this phase to enable
runtime/lazy optimizations discussed in Section 3. As discussed,
the optimized IR is converted back to Python and executed lazily
using our lazy runtime wrapper.

2.5 Task Graphs and Lazy Evaluation

A task graph is a directed acyclic graph (DAG) in which the
nodes represent a computational task or operation and the edges
denote the precedence constraints among these computational
tasks. In eager evaluation, an expression is evaluated as soon as
it is reached during the execution of a program. In contrast, in
lazy evaluation, when an expression is reached during program
execution, instead of evaluating it eagerly, an expression node
is created, and added to a task graph. The task graph is evalu-
ated only when it is needed, by calling a function that forces the
evaluation. Dask, Pandas on Spark, and Ibis with DuckDB/Polars
are examples of systems based on lazy evaluation of dataframes.
Evaluation is forced only when a function such as compute() is
called to actually execute the operations; Pandas on Spark inter-
nally forces computation when the contents of a dataframe are
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import lazyfatpandas.pandas as pd

pd.analyze() # transfer control to LaFP

df = pd.read_csv('data.csv', parse_dates=['
tpep_pickup_datetime']) #fetch data

df = df[df.fare_amount > @] # filter bad rows

df{'day'] = df.tpep_pickup_datetime.dt.dayofweek # add
features

df = df.groupby(['day']1)['passenger_count'].sum()

print(df) # use dataframe

Figure 3: Sample Program

function Pp.ANALYZE(())
source_file « get_source_code()
SCIRPy « python_to_SCIRPy(source_file)
opt_SCIRPy « static_analysis_opt(SCIRPy)
opt_code « SCIRPy_to_python_opt(opt_SCIRPy)
executor (opt_code)

end function

Figure 5: Just-in-Time Static Analysis
compute
v
{ print ]—»[ sum }
)

get_item
passenger_count

{groupby day

dayofweek

get_item
tpep_pickup_datetime

greater_t

han
get_item 0

fare_amount

get_item [filter]

read_csv

Figure 6: LaFP Task graph of the Program in Figure 3

used, but the other lazy frameworks require an explicit compute()
call.

Our Lazy Fat Pandas (LaFP) framework is a lazy framework,
which acts as a wrapper layer, allowing execution of dataframe
operations to be done using any of the supported backends, in-
cluding Pandas itself.

The task graph for the program in Figure 3 is shown in Figure 6.
An edge (A — B) represents that the task B depends on task A.
Such an edge may be created when the result of the operation at
node B is an input for the operation at node A3. This dependency
is also used to enforce output order for lazy print statements and
other output functions supported by the LaFP lazy wrapper.

The optimized source code generated by JIT static analysis and
rewriting has calls to lazy versions of the Pandas API calls, defined
in our Lazy Fat Pandas (LaFP) framework, which supports the
Pandas dataframe API, but using the LaFP’s lazy fat-dataframe.

3The direction of the edge follows the convention for task graphs and dependency
graphs, although the flow of data is in the opposite direction.
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import lazyfatpandas.pandas as pd

from lazyfatpandas.func import print # Use lazyPrint

SO_columns = ['pickup_datetime', 'passenger_count','
fare_amount'] #
Live columns passed to read_csv()

df = pd.read_csv('data.csv',usecols=SO_columns,
parse_dates=["'tpep_pickup_datetime'])

df = df[df.fare_amount > @]

df['day'] = df.tpep_pickup_datetime.dt.dayofweek

df = df.groupby(['day'])['passenger_count'].sum()

print(df)

pd.flush() # Forces computation and printing

Figure 4: Optimized Version of Sample Program

A call to the LaFP’s API function does not immediately execute
the operation. Instead, each operation creates a new lazy fat-
dataframe object, which is then linked to the task graph based on
its inputs. Most API operations operate on dataframes and output
other dataframes. The lowest level operations create dataframes,
typically by reading data from file representations such as CSV,
or Parquet, or from databases, although dataframes may also be
created from constants or random number generators.

The task graph is executed only when an operation result
needs to be passed to an operation that needs a materialized (non-
lazy) dataframe, or at the end of the program, when computation
can no longer be deferred. The task graph is optimized by LaFP
before it is executed using any of the back-ends supported by
LaFP.

LaFP allows the back-end to be chosen in the program. For
small datasets that fit in memory, Pandas is usually faster than
Dask or Pandas on Spark, or other scalable frameworks, and is
the preferred choice. In this case LaFP optimizations help speed
up the program compared to directly running it on Pandas. If the
back-end chosen is lazy, it may perform its own optimizations;
in that case the optimizations performed by LaFP complement
the back-end optimizations.

One of the distinctive features of our approach compared to
just using a lazy framework is that it is capable of utilizing infor-
mation generated using JIT static analysis phase. This informa-
tion provides look-ahead beyond points where lazy computation
cannot be deferred further, allowing us to detect for example that
some columns are not used later in the program and therefore
can be projected away, or not even computed earlier in the execu-
tion. Static-analysis based rewriting also allows our framework
to detect which API calls can handle LaFP dataframes; all other
API calls (like plotting) default to Pandas dataframes, and our
optimizer introduces calls to force computation before invoking
such APIs.

2.6 Run-Time Optimizations and Execution

LaFP allows the task graph to be executed on any one of the sup-
ported back-ends. LaFP currently supports Pandas, Dask, Pandas
on Spark (formerly known as Koalas), Modin, DuckDB using Ibis,
and Polars using Ibis, with the default being Dask. The user can
select the required back-end by just adding one line of code, for
example:
pd.BACKEND_ENGINE=pd.BackendEngines.PANDAS

The choice of the back-end significantly impacts execution
time and memory usage for a program. Pandas and Modin use an
eager evaluation approach with all data required to be in memory
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(or distributed memory in the case of Modin). In contrast, Dask,
Ibis (DuckDB/Polars), and Pandas on Spark employ lazy evalua-
tion, and support data sizes larger than memory. An appropriate
back-end should be chosen based on the system requirements;
automating this choice is an area of future work.

Irrespective of the back-end, LaFP utilizes static analysis and
the lazy runtime wrapper to perform its optimization, before
executing the task graph using the selected back-end. Lazy frame-
works such as Spark and Dask optimize the task graph further
before execution, which can reduce execution costs further. Ex-
amples of optimizations include removal of unused computations,
pushing selections and projections, and fusing of operators to
reduce data movement.

Similarly, the LaFP runtime module performs several optimiza-
tions in the task graph (DAG) at runtime. Two of these are done
without using any information from static analysis, namely Pred-
icate Pushdown within the task graph, and Metadata Analysis
which can change attribute types to reduce storage cost. Others
benefit from information collected by static analysis. Column
selection (i.e. projection pushing) benefits from live attribute
analysis. Common computation reuse can be done within a task
graph, but benefits from static analysis information about reuse
later in the program.

When a lazy back-end such as Dask or Pandas on Spark is
chosen, the optimizations performed in LaFP complement opti-
mizations in the lazy back-end. When an eager back-end such
as Pandas itself or Modin is chosen, the back-end cannot per-
form optimization across nodes, and thus LaFPs lazy evaluation
optimizations are more important.

The execution of the task graph in LaFP is done as follows,
for the case where the back-end is eager. The LaFP task graph
is executed in topological order. After evaluating a task graph
node, the result is stored in a field called result. This result
field is cleared once all its dependent nodes have been evaluated,
and the result is no longer needed, minimizing memory usage.
This is managed by counting the in-degree of each task graph
node before executing the task graph and decrementing the count
after a node is used to generate another node’s result. When the
count reaches zero, the result field is cleared, allowing Python’s
garbage collector to reclaim the memory. As the task graph is
executed from bottom to top, the results of lower nodes, which
have been evaluated and used, are deleted to keep memory usage
to a minimum.

For example, consider the task graph in Figure 6, read_csv is
executed first, and the result is stored in the node. This result is
cleared after its dependent nodes get_item fare_amount, and
get_item [filter], have been executed. Finally, the result of
the node on which compute was called is returned. If compute()
is called on a print node, then None is returned.

In case the back-end is a lazy framework such as Dask or Pan-
das on Spark, instead of executing the operation when traversing
the task graph, the API call is transformed to the compatible API
call for the selected lazy back-end. The execution of the opera-
tions on the lazy back-end is initiated when the root of the task
graph is reached, or when the results are required for an inter-
mediate operation such as an external API call which expects a
computed dataframe. Nodes whose results are used more than
once can be persisted using persist() on a Dask dataframe, avoid-
ing recomputation for subsequent uses. Pandas on Spark does not
support persist; persistence could be implemented by converting
Pandas on Spark dataframes to PySpark dataframes but there is a
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significant cost to conversion, so we do not currently implement
it.

API Comptability with Pandas: For back-ends other than Pan-
das, LaFP performs some transformations to deal with incompat-
ibilities between Pandas and the selected back-end. For example,
pandas ‘read_csv’ API call supports a keyword argument ’in-
dex_col’ to specify the column(s) to use as row labels for the
Dataframe. Dask Dataframe does not support this keyword argu-
ment. However, similar behavior can be obtained by making an-
other API call ’set_index’ on the Dask Dataframe after 'read_csv’.
Our framework is capable of identifying several such inconsis-
tencies across multiple frameworks and performing additional
operations transparently such that the end result is the same
after the execution of the API calls, irrespective of the back-end.

Further, the changes required to enable execution using lazy
frameworks are implemented by a combination of rewriting based
on static analysis, for example, to force computation, and via
wrapper functions in the LaFP API. The wrapper functions use
appropriate backend API calls to implement Pandas API function-
ality where possible, and in other cases (such as inplace updates,
column rename, shape changing operations, etc) convert the
backend dataframes to Pandas, applies the function in Pandas,
and converts the dataframe back to the backend.

3 Optimizations

In this section, we discuss a number of static and runtime opti-
mizations that are implemented in LaFP. These optimizations are
performed in two settings: (i) Rewriting of imperative programs
based on static analysis (ii) Optimizing the generated task graph
at runtime, before it is executed. As discussed, some of the opti-
mizations we describe exploit a combination of information from
static analysis and runtime information.

3.1 Column Selection

In many programs, not all the columns (attributes) from the input
dataset are used. Fetching such unused columns into the memory
leads to increased memory usage and extra IO operations. Col-
umn selection optimization identifies and fetches into memory
only those columns that are used later in the program.

Live variable analysis (LVA): A variable is live at a program

point if there exists a path from that point to the exit of the pro-
gram along which the current value of the variable may be used.
LVA [14], identifies which variables are live at any point in the
program.
Live attribute analysis (LAA): We define live attribute analy-
sis (LAA) based on LVA. LAA treats attributes (columns) of a
dataframe as variable and computes the liveness of individual at-
tributes (columns) of dataframes. Similar to a variable, a dataframe
column is live at a program point if there is a path to the program
exit along which it may be used. However, columns are different
from variables in that assignments or uses can happen at the
level of entire dataframes:

(1) If the whole dataframe is used at a program point, all
columns of that dataframe become live.

(2) Similarly, all columns of a dataframe are killed at the point
of definition of a dataframe.

(3) If a dataframe is derived from another dataframe, its live-
ness information is used to determine liveness information
for the source dataframe.

Live variable analysis is done by using dataflow analysis,
which is based on the Gen and Kill sets at each node in the
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control flow graph (CFG). The dataflow equations for live at-
tribute analysis, which are modified from those for live variable
analysis, are as below:

Gen,, = {d.i |i is a column of dataframe d, and either
d.i or all of d (without specifying any
column) is used in basic block n, prior to
any assignment to d.i or to d}.

(1)

Kill, = {d.i |i is a column of dataframe d, and either
d.i or all of d (without specifying any )
column is assigned in n}

)

Note that if a dataframe is passed as an attribute of a func-
tion called from n, we assume that all columns of the dataframe
are used in n. Global variables pose another challenge, and if a
dataframe is assigned to a global variable, we assume conserva-
tively that all its columns are used in any function called from n.
Further, aggregate operations kill all columns except those used
in the aggregate or in the groupby operation.

We next define sets In, and Out, which merge local informa-
tion provided by Geny, and Kill,, with information from succes-
sor nodes of n, to identify global liveness information.

Outy =
sesucc(n)
Iny = Geny U {Outy, — Killy} (4)

The above equations are solved to get the Gen, Kill, In and Out
sets for each basic block n (basic blocks are defined in Section 2.2).
The live attributes at the end of a basic block n are those that
are in the set Outy,. In, represents liveness information immedi-
ately before the block and Out,, represents liveness information
immediately after the block.

Once LAA is performed, liveness information is available for
all columns of all dataframes at all program points. The column se-
lection optimization modifies the IR to fetch only those dataframe
columns that are live (in Out,) of the program point n where the
dataframe is created from an input dataset, e.g. by a read_csv()
call.

We now consider how live attribute analysis works on the
program in Figure 3. This program has only one dataframe, i.e.,
df. The last statement of the program prints the dataframe, so
all columns are live at "In’ of this point. Line 8 results in only
columns day and passenger_count being live. At line 6, the col-
umn pickup_datetime becomes live, whereas column day is killed
as it is assigned and thus not alive before that. Line 4 makes
fare_amount live. The columns live at ’Out’ of the Line 3 are "pick-
up_datetime’, ’passenger_count’ and ’fare_amount’, and only
these need to be read from the csv file. The optimized version of
the program, which reads only the above columns, is shown in
Figure 4.

We also note that informative API functions df.head(), df.info()
and df.describe() are frequently used to get an idea of the dataset
contents and, their output does not affect the intended program
result. Treating these as using all attributes of df would result in
unnecessary column retrieval, so, as a heuristic, we ignore the
attribute usage of these functions.

(3)

Ing

3.2 Lazy Print

Dataframe computations in lazy frameworks are deferred un-
til computation is forced by a call to a compute() (or similar)
method. Computation needs to be forced when passing dataframes
to functions, for example print(), that cannot accept lazy data
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frames. If compute can be deferred, the task graph could include
later parts of the code, which can enable other optimizations that
may not be possible if compute has to be done earlier. Thus, post-
poning invocation of compute () can help to reduce the execution
cost.

Print is one of the most common functions that forces compu-
tation. We introduce a lazy version of the print operator, allowing
compute calls to be deferred beyond the (lazy) print calls. With
our novel approach, lazy print statements are treated as opera-
tions and added to the task graph. When the task graph is exe-
cuted, the print nodes are processed, and the data is printed. The
delay in computation enabled by lazy print can allow task graphs
that would otherwise be separately executed to be combined and
executed together, which can reduce the cost significantly com-
pared to separate executions. However, care must be taken to
ensure that outputs are generated in the correct order, and we
now describe how we enforce that.

Figure 7 presents an example with multiple print statements.
Its optimized version generated by our rewriting techniques is
shown in Figure 8, and the equivalent task graph is shown in Fig-
ure 9. The optimized program overrides the built-in print method
with LaFP’s lazy print method by importing print from lazyfat-
pandas.func. The library lazyfatpandas.func also provides lazy
versions of some other functions; for example the lazy version of
Python’s len() function, when applied to a lazy dataframe, returns
a lazy integer, else it behaves like the normal len() function.

When LaFP’s lazy print is called, the node representing the
print operation is added to the task graph, with the lazy dataframes
as the source nodes. A dependency edge is added to the previous
print operation (if any) to maintain the correct print order. All
the lazy dataframes used in the print statement are identified and
appropriate edges added to the task graph to ensure that these
dataframes are computed before the lazy print is (eventually)
executed.

At the end of the program, pd. flush is called, which internally
invokes compute on the last print node, forcing the computation
of the task graph. The print statements are processed in the
correct order due to the dependency edges between print nodes.
The statements to override print, as well as the call to pd. flush ()
are automatically inserted in the source program by program
rewriting, thus fully automating the process.

Python allows objects, including dataframes, to be used in
Python’s formatted strings (f-strings), for example:

print(f'Average fare: {avg_fare}')
in Figure 7, where avg_fare is a dataframe. Creation of the for-
matted string would require the dataframe to be computed.

To defer the computation of the formatted string, while retain-
ing the link to the correct dataframe (since the variable may get
assigned in a subsequent step before the print is executed) the
"lazyprint()" wrapper function replaces the dataframe variable by
the unique ID of the task graph node representing the dataframe,
along with an escape sequence to mark the unique ID.

When the constructed string is processed by the execution of
the deferred print function, the function checks for the escape
sequence to identify the unique ID of the task graph node. Further,
this node must be computed before the lazy print is processed at
the end of the program, which is ensured by the runtime.

3.3 Insertion of Forced Computation

When a program in a lazy framework calls a function that ex-
pects an evaluated Pandas dataframe, computation needs to be
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import lazyfatpandas.pandas as pd

pd.analyze()

df = pd.read_csv("data.csv")

print(df.head())

df["day"] = df.pickup_datetime.dt.dayofweek

p_per_day = df.groupby(["day"])["passenger_count"].sum
O

print (p_per_day)

avg_fare = df.fare_amount.mean()

print(f"Average fare: {avg_fare}")

Figure 7: Program with Multiple Print Statements

compute

mean

get_item
fare_amount

print
get_item
passenger_count

groupby day

set_item day

dayofweek

get_item
pickup_datetime

read_csv

Figure 9: Task Graph for Program in Figure 8

forced before the dataframe is passed to such a function call.
Commonly used functions include print() and plotting functions
from matplotlib. Programmers using lazy frameworks such as
Dask or Ibis with DuckDB or Polars have to manually insert code
to force computation before calling any such function. Pandas
on Spark internally forces computation when a dataframe is con-
verted to a string, which happens for example on a print() call,
and also provides wrappers for some other functions such as
plotting which force computation, but for other functions com-
putation needs to be forced by converting a Pandas on Spark
dataframe to a Pandas dataframe.

For some cases, like for print(), our framework provides a
lazy wrapper, allowing the function to be invoked when the
dataframe is eventually computed; we are currently implement-
ing lazy wrappers for some other functions. However such lazy
wrappers cannot be used in general, for example with functions
which return values that are used subsequently.

To deal with the above issue, the program rewriting phase
adds a compute() call to force computation before execution of
any function call for which a lazy implementation is not avail-
able; the materialized (computed) dataframe is then passed to the
function call. Static analysis allows us to automate the forcing of
materialization, which would have to be done manually if a lazy
framework is used directly.
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import ...

from lazyfatpandas.func import print # Use lazyPrint
...[ optimized read csv as in Figure 4 ]
print(df.head()) # lazy print

df['day'] = df.pickup_datetime.dt.dayofweek
p_per_day = df.groupby(['day'])['passenger_count'].sum
O

print(p_per_day) # lazy print

avg_fare = df.fare_amount.mean()

print(f'Average fare: {avg_fare}') # lazy print
pd.flush() # Force computation and printing

Figure 8: Optimized Program with Lazy Print

The program in Figure 10 and its optimized version in Fig-
ure 11 demonstrate forced computation. Our static analysis de-
tects when a dataframe is passed as an argument to a function that
is not known to support lazy dataframes. To handle such func-
tions, a call to compute is added; for example line 9 of Figure 10 is
rewritten as shown in Figure 11 line 10 to force computation be-
fore invocation of of the plt.plot() function. (We pass an argument
live_df=[df] to the compute() function, which is an optimization
that is discussed later).

To invoke compute on a dataframe, we need to figure out
which variables are dataframe variables. This information is in-
ferred from the types of the Pandas API calls. For example, Pandas
functions like read_csv() or read_parquet(), as well as most Pan-
das functions on dataframes return dataframes.

Further, function calls from external modules like matplotlib.
pyplot can generate output, which can conflict with lazy printing
since the output order may get changed. To solve this issue,
pending print operations are processed when a dataframe is
forced to compute, maintaining the correct output order.

In line 11 of Figure 11, when p_per_day.compute() is in-
voked, the task graph containing all the lazy calls up to that
point, including lazy prints, are executed, and the result of the
node sum (p_per_day) passed to plt.plot, generating a plot
image. Subsequently, when pd.flush is called in line 15, the
print in line 14 is processed, along with lazy operations that are
pending. Note that the shared subexpression corresponding to
the dataframe df computed in line 6 would get recomputed on
further execution in the program when pd.flush() is called. When
the shared subexpression is first computed, information related
to the future usage of the dataframe in the rest of the program is
unavailable to the lazy framework. We can use static analysis to
avoid recomputation, as discussed next in Section 3.4.

3.4 Common Computation Reuse

As discussed in the previous section, forced computation is needed
in some cases, but it can lead to recomputation of shared sub-
expressions. We can avoid recomputation of common subexpres-
sions by persisting dataframes that are used in more than one
place, before and after a force computation boundary. However,
in lazy evaluation frameworks, information about future reuse
beyond the current task graph is not available when the com-
putation is forced, so we do not know which dataframes will be
reused. Naively persisting every intermediate result just in case
it is reused is not practical since it would drastically increase
memory footprint and slow down computation.

Therefore, we make use of static analysis to identify useful
(live) sub-expressions to be cached when compute is invoked on a
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import lazyfatpandas.pandas as pd

import matplotlib.pyplot as plt #external module
pd.analyze()

df = pd.read_csv("data.csv")

print(df.head())

df["day"] = df.pickup_datetime.dt.dayofweek
p_per_day = df.groupby(["day"1)["passenger_count"].sum()
print (p_per_day)

plt.plot(p_per_day)

plt.savefig("fig.png")

avg_fare = df.fare_amount.mean()

print(f"Average fare: {avg_fare}")

Figure 10: Program with External Module Invocation

dataframe. We perform Live DataFrame Analysis (LDA) which is
similar to Live Attribute Analysis (discussed earlier in Section 3.1)
to identify live (useful) dataframes at each program point. When
we force computation, we check which dataframes are live after
the point when the computation is forced, and provide the list of
such dataframes to the compute method, which persists (caches)
any common sub-expressions between the expressions defining
the live dataframes, and the expressions in the task graph nodes
being computed.

When the task graph is executed, any node marked for per-
sistence has its result persisted on its first execution. In later
executions, the persisted result is reused, instead of being recom-
puted.

In Figure 11, the compute method is called on p_per_day, and
an argument named live_df is introduced, and static analysis is
used to generate the list of dataframes live after that program
point and pass it as the value for the live_df argument in line 11.
After line 11, df is the only live dataframe, and it is used later to
compute avg_fare. Since df is a shared sub-expression (common
node) between both p_per_day and avg_fare, the compute call
at line 11 includes the parameter “live_df = [df]”, which is
live and a common subexpression, so it will be cached during
computation.

Once all uses of a persisted dataframe have been completed, it
can be safely discarded to release memory. Our lazy computation
framework discards persisted dataframes after their last use when
they are no longer subexpressions of dataframes in live_df list
passed to the compute().

3.5 Predicate Push Down

Performing selection operation early in databases, also known as
predicate push down, reduces the size of relations and therefore
reduces the computation to be performed during other operations
like joins. In dataframe systems, filter operations reduce the size
of datafames. We identify the filter operations in the task graph,
and move them as close to the data source as possible.
Predicate pushdown on the task graph is a standard optimiza-
tion, which is already performed by lazy backends. However, we
implement it on our task graph to benefit non-lazy backends
such as Pandas itself, which lack this optimization. Unlike predi-
cate pushdown on relational expression trees, pushdown on task
graphs needs to take into account multiple uses of a result, and
also needs to take into account the variety of ways in which
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import lazyfatpandas.pandas as pd
import matplotlib.pyplot as plt #external module

from lazyfatpandas.func import print # lazy print

...[# optimized read csv as in Figure 4 ]
print(df.head()) # lazy print

df['day'] = df.pickup_datetime.dt.dayofweek

p_per_day = df.groupby(['day'])['passenger_count'].sum()
print(p_per_day) # lazy print

# call to compute() below forces computation & printing
plt.plot(p_per_day.compute(live_df=[df]))
plt.savefig('fig.png')

avg_fare = df.fare_amount.mean()

print(f'Average fare: {avg_fare}') # lazy print
pd.flush() # Force computation and printing

Figure 11: Optimized Version of Program From Figure 10

filtering can be expressed in Pandas, including boolean indexing,
loc/iloc, in addition to the filter() method.

Static analysis can allow predicate pushdown through the
control flow graph, across task graph computations, similar in
spirit to the predicate pushdown performed by MagicPush [19].
This can enable some cases of predicate pushdown beyond points
where computation is forced, which cannot be done by predicate
pushdown on task graphs. Implementing predicate pushdown as
part of static analysis is an area of ongoing work.

3.6 Using and Computing Metadata

Data type information and data statistics are both very important
for efficient computation. The widely used csv format does not
provide type information or statistics, although formats such as
Parquet provide type information, and some statistics. Where
metadata is not available, we compute metadata for each source
data file. Statistics can be computed from a sample of the values
in a collection. To get correct datatypes we have to scan the
entire file, although we can do it based on the first few rows or
a sample, at some risk. The metadata for a file is computed by
running a script on the file, and stored for later use. Information
like modified time, column names and types, approximate size
of each row, and approximate number of rows in the dataset are
currently maintained in the metadata.

Metadata is used during runtime optimization. The modified
time metadata is used to ensure that the metadata is up-to-date.

We implement a number of optimizations based on metadata,
such as using datatypes to reduce storage overhead when reading
data, and replacing a string type by a category type which is based
not only on metadata information, but also on static analysis
information to ensure that the column is read only. Metadata
is particularly important for Dask; for example, apply() in Dask
requires the output datatype to be specified. We omit details for
the sake of brevity.

4 Related Work

There has been a large body of work on optimized execution of
Pandas which we describe in this section. However, to the best
extent of our knowledge, none of the earlier systems support
optimizations based on static analysis, and are all restricted to
run-time optimization. The combination of static and run-time
optimization sets our system approach apart from all the earlier
work. All of the optimizations described in Section 3, except our
current implementations of metadata and predicate pushdown
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optimizations, make use of static analysis. As described earlier,
we are working on using static analysis to improve these two
optimizations as well.

Dask [1] allows dataframes to be partitioned, and operations
on dataframes to run in parallel, and to be larger than memory.
Moreover, Dask supports a lazy API which allows multiple op-
erations to be collected, and executed only when a compute()
function is executed. However, Dask requires changes to Pandas
programs to deal with lazy evaluation. Modin [20] supports eager
computation, and provides a "drop-in" replacement for Pandas,
while also supporting parallel/multi-core execution. Ray [21] is
another framework for distributed programs, which supports
scalable datasets (dataframes) among other features. Modin uses
Ray and Dask as its back-end options.

Pandas on Spark, formerly called Koalas, [3] supports the Pan-
das DataFrame API on top of Apache Spark; it supports lazy
computation in the back-end, while allowing the eager Pandas
API to continue to be used at the front end. Unlike Dask it pre-
serves ordering, but like Dask it does not support all of the Pandas
API. In contrast, PySpark, which supports access to the native
Spark API from Python, does not support the Pandas APL

PyFroid [22] supports a lazy back-end based on the embedded
relational database DuckDB, while providing an eager Pandas
API with many but not all Pandas functions. PyFroid works only
on a single system unlike Dask or Spark. Magpie [4] focuses on
pushing Pandas computation to back-end databases on the cloud;
internally it used an earlier version of the PyFroid engine. Ibis
[7] provides a dataframe interface to data stored in any of a large
number of back-end databases, including DuckDB and Polars,
but does support many Pandas API functions.

Multiple libraries use lazy evaluation to optimize data sci-
ence applications, such as Cunctator [23], DelayRepay [24], and
Weld [25].

None of the above systems support optimization based on
static analysis and rewriting, unlike our system. While several of
our run-time optimizations are also implemented by lazy evalua-
tion based frameworks, our wrappers allow these optimizations
to be used even with eager backends that do not natively support
optimization.

Our earlier short paper [26] briefly describes column selection
based on static analysis, but does not cover other optimizations
described in this paper such as JIT static analysis, lazy evaluation,
or forcing of computation based on static analysis.

Dias [27] optimizes Python notebook based Pandas programs
by program rewriting, based on a pattern matcher and rewriter
applied to one cell of a notebook at a time, after earlier cells have
been executed. However, it does not perform static analysis and
cannot benefit from look ahead at later parts of the program,
unlike our optimizations. Further Dias can only work with data
that (after optimization) fits in memory.

Magicpush [19] uses a program synthesis approach coupled
with verification based on symbolic execution to implement pred-
icate pushdown in data science applications. It is limited in its
applicability since it does not perform any other optimizations.
Our optimizer also performs predicate pushdown on the task
graph; pushdown based on static analysis is an area of future
work.

5 Performance Evaluation

In this section, we study the benefits of our optimization tech-
niques on a variety of programs, across different dataset sizes.
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We ran our single-node experiments on a hexa-core AMD Ryzen
5 3600 with base clock at 3.6 GHz with 32GB of DDR4 3200MHz
RAM. We use the following library versions for the performance
studies: Pandas 2.3.2, Dask 2025.1.0, Modin 0.31.0, Ibis-DuckDB
10.8.0, Ibis-Polars 10.8.0, and Pandas on Spark from PySpark 3.5.1.

5.1 Benchmark Programs and Datasets

To benchmark LaFP, we have taken 10 real workloads from a vari-
ety of sources, including programs used in Dias [27], Magpie [4],
and MagicPush [19]. These programs execute a variety of opera-
tions like data filter, data augmentation using feature addition,
data aggregation (like mean,max,sum), data merge and group-by,
and informational operations, analyzing data from domains such
as movie rating systems, taxi data, startup analysis etc. Each
program contained between 5 and 29 operators, with an average
of 13 operators per program. We have shared the benchmark pro-
grams and datasets at https://github.com/lazyfatpandas/public.

To test the impact of data size, for each program, we created
datasets of different sizes by replicating or pruning the original
datasets that were available with the programs. The datasets thus
created had on-disk (csv file) sizes of close to (within 5% of) 1.4
GB, 4.2 GB, and 12.6 GB respectively. When loaded into memory
as a Pandas dataframe the sizes expand by a factor of 3X to 8X
depending on the datatypes used in the different datasets. Thus
the 12.6 GB on disk datasets ranged from around 35 GB to 100
GB in memory, ensuring the dataset did not fit in-memory.

For each program, we compare the performance with and
without our optimizations (including both runtime and rewrite
optimizations), using Pandas, Dask, Modin, Pandas on Spark,
and DuckDB using Ibis and Polars using Ibis, as the back-ends.
For comparison with direct use of the back-end frameworks,
we manually transformed the programs to work on each of the
backends.

Executing Pandas programs on Modin is straightforward since
Modin is designed for Pandas compatibility. Rewriting for Dask
was more complicated due to the need for forcing of computation,
lack of support for some API methods, and lack of in-place up-
dates. Even though Pandas on Spark uses a lazy backend, rewrit-
ing Pandas programs to use it only requires a change to an import
statement; unlike Dask, Pandas on Spark hides lazy evaluation
from the programmer, with the Pandas on Spark dataframe forc-
ing computation automatically whenever its result is required.
Rewriting Pandas programs to run on DuckDB & Polars using
Ibis required a significant rewriting effort since forcing of com-
putation is required before using a dataframe result, and many of
the Pandas APIs are not supported. To ensure that these programs
run successfully using DuckDB and Polars, we commented two
API calls (apply() in programs stu and env, and get_dummies()
in program emp) which are not supported by Ibis. Support for
these in Polars is currently under implementation, while handling
DuckDB is harder since it uses an SQL backend. Conversion to
Pandas dataframes is an option, but would significantly increase
the cost, and be unfair to Polars.

In all other cases, LaFP automatically handles the API differ-
ences for whichever backend is chosen. Thus no manual rewriting
is required, making it very easy to switch between backends.

Modin can use different execution engines, such as Ray or
Dask. We use Ray as the default executor for Modin and LaFP
Modin programs. In all cases where a program/dataset combina-
tion could not be executed using Ray, we used Dask as executor
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Data Size| P|OP | M|[OM| D |OD |PoS |OPoS|MDu | ODu|MPo | OPo
1.4GB|10| 10{10| 10[10| 10| 10 10 10 10 10 10
4.2GB|10| 10| 9 9110| 10 9 9 10 10 10 10
12.6GB| 2| 7| 4 71 8 9 9 9 9 9 9 9

Table 12: Number of Programs Successfully Executed

for Modin. For such programs, Dask is used as executor for LaFP
Modin as well for uniform comparison.

5.2 Applicability of LaFP

A major goal of our optimizations was to ensure that Pandas
programs can run successfully even on large datasets. The first
set of experiments therefore checks how many programs could
complete successfully using the different frameworks, with and
without optimization.

Our framework allows any back-end to be used without any
manual program rewrite (barring an import of the lazyfatpandas
library, a configuration line to choose the back-end, and a call to
analyze()).

Users, however, need to be aware that using Dask, Polars or
DuckDB may affect the order of rows in dataframes, which may
potentially affect subsequent operations that are order-sensitive.
If the program has such order-sensitive operations, the user
should not choose these as the back-ends (with or without LaFP).*
Passing input/output types to apply() function is required in Dask.
Adding it automatically is under implementation; we manually
added the type for one program that needed it.

Table 12 shows how many of the 10 programs could execute
successfully on different back-ends with different data sizes. The
original versions and optimized versions with different backends
are denoted as: Pandas (P and OP), Modin (M and OM), Dask (D
and OD), Pandas on Spark (PoS and OPoS), DuckDB (MDu and
ODu), and Polars (MPo and OPo). Note that we use MDu and MPo
to denote that the original Pandas program required significant
manual rewriting to run on Ibis with DuckDB and Polars as
backends, while ODu and OPo were automatically rewritten.

For example, with Pandas and Modin only 2 and 4 programs,
respectively, run successfully with 12.6 GB dataset whereas 7 pro-
grams could run with our optimizations on Pandas and Modin.
The improvements were because our rewrites could reduce space
usage, whereas the un-optimized Pandas/ Modin programs ran
out of memory. Dask could execute 8 programs whereas opti-
mized Dask could handle 9 programs. The remaining backends,
i.e., Pandas on Spark, DuckDB using Ibis and Polars using Ibis,
could all execute 9 programs with both the original and optimized
versions, since these backends are designed to be scalable. The
one program where all backends failed was the ’emp’ program;
on inspection we found that there was a call to an external plot
function which required materializing a large dataframe as a Pan-
das dataframe, which resulted in out-of-memory error, regardless
of the backend used.

We also built a regression test framework to ensure that the
datasets computed with our optimizations were identical to the
results on Pandas without any optimization, by computing and
comparing (order independent) hashes of the dataset results,
computed by md5 hash of each row combined using exclusive or;
our optimized programs on different platforms all passed these
tests.

4 Automated detection of order-sensitivity is an area of future work.
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5.3 Execution Time

We first consider absolute execution times for different backends,
with and without optimization, on the 1.4 GB dataset. For this
dataset, all the configurations could run successfully. The results
are shown in Figure 13.

For programs labeled with “*, as well as overall average, la-
beled ‘Avg™, the programs for DuckDB and Polars are modified
as explained earlier, so only relative comparison across the op-
timized and unoptimzed programs on same platform should be
done. On programs that were the same across all platforms, Polars
gave the best performance, while DuckDB was second best.

Across all programs, the benefit of optimization for DuckDB
and Polars were 18% and 17%, while for Pandas and Modin were
27% and 28%, while Dask and Pandas on Spark gave 62% and 18%
respectively. On individual programs, the benefits on different
backends varied, with maximum benefits ranging from 49% to
94%, and minimum benefit ranging from -9% to 12%. We note also
that the scalable backends all have their own optimizers, yet our
optimized versions of the programs gave further improvements.

Next, we consider larger datasets, where Pandas and Modin
are not able to run successfully in several cases. Figure 14 shows
the execution time improvements using our optimizations, across
different back-ends for 4.2 and 12.6 GB datasets. Improvement is
defined as:

(3]

(Original Runtime — Optimized Runtime)

Improvement = — -
Original Runtime

In cases where the original program and dataset combination
could not execute successfully on the relevant back-end, we treat
the original execution time as infinity. This results in 100% im-
provement in performance provided the optimized program runs
successfully. Missing data points in Figure 14, such as for ’emp’
on 12.6GB, represent cases where neither the original program
nor its optimized version could not be executed using the relevant
back-end.

It can be seen that for Pandas and Modin, multiple programs
could not be executed on the 12.6 GB dataset, but several of
them could be executed successfully using our optimizations
in LaFP. For the remaining (scalable) backends, only the emp
program failed across all backends, for reasons described earlier
in Section 5.2.

Ignoring the cases where the original program did not execute
successfully, our optimizations give up to nearly 60% reduction
(2.5X speedup) in execution time on Pandas, up to 90% reduction
(10X speedup) with Modin, up to 94% reduction (20X speedup)
with Dask, up to 70% reduction (3X speedup) with Pandas on
Spark, up to 56% reduction (2.3x speedup) with DuckDB and up
to 57% reduction (2.3x speedup) with Polars.

We note also that the scalable backends all use lazy evaluation
with runtime optimization, yet our optimized versions of the
programs gave significant further improvements in many cases.

There were only a few cases where our optimizations increased
execution time, the worst case being approximately 15% more
time as compared to the original Pandas on Spark program, with
DuckDB and Polars also having a few cases which took up to 13%
more time. These numbers represent cases where the run-time
transformations, which are not cost-based, made wrong choices,
adding more overhead than any benefit gained. We are working
on reducing the overhead of certain transformations on specific
back-ends/optimizations. In most cases the optimizations did
make the right choice, but cost-based optimization is an area of
future work.
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ais cty dso emp* env* fdb mov nyt stu* zip Avg*

Figure 13: Execution Times on 1.4 GB Dataset
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Figure 14: Execution Time Improvement
Program | nyt |dsp|mov| ais| stu| env| fdb| zip| emp| -cty
Size(GB) | 1.3] 2.1| 1.1 0.6] 02| 02| 19| 22 0.3 0.2
Pandas |12.5| 2.2| 51.6| 15.4| 50.6| 22.4(29.0|109.3| 311.7| 37.6
OPandas| 3.1|1.1|50.6| 15.5| 49.8| 22.9] 29.4| 91.6| 332.2| 39.0
Dask 2.5(7.5]20.0(20.8|129.7| 27.4| 60.6| 226| 167.9|115.8
ODask 1.9| 1.7(13.9|14.4| 9.1/16.4| 81.8|117.6|130.6| 42.8

Table 15: Execution Time with Parquet on 4.2GB Data

Parquet Format. In order to validate performance of LaFP with
Parquet file format, which provides compression as well as type
information, we executed the benchmark programs using parquet
format by transforming 4.2GB csv files to Parquet. The time taken
(in seconds) is shown in the Table 15.

Compression done by Parquet reduces dataset sizes signifi-
cantly in many cases, as can be seen in the table. Due to this, data
could be loaded faster in the memory. Parquet allows fetching a
few columns much faster compared to a csv dataset, and therefore
the column selection optimization was more efficient. However,
the metadata optimization was not useful since Parquet already
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Benchmark nyt dso | mov env fdb
Dataset(GB) 130 | 128 | 132 107 116
Dask Time (secs) | 353.2 | 378.7 | 355.3 | Out of mem. | Out of mem.
ODask Time (secs) | 188.4 | 174.3 | 277.9 172.8 336.5

Table 16: Performance on Cluster With Large Data
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maintains metadata. Overall, when using Parquet datasets, our
optimizations continued to give significant benefits on Dask as
well as on Pandas.

Execution on Cluster. To verify the scalability of our approach,
we ran a sample of the benchmark programs on an AWS cluster
with 12 nodes (type: méi.xlarge with 16 GiB memory and 4vCPU)
with a total of 192 GiB memory and 48 cores. We use coiled.io to
run programs on a Dask cluster. Each program is executed using
native Dask and LaFP with Dask. Execution times (in seconds)
are shown in Table 16.

Despite Dask supporting out-of-memory dataframes, two of
the programs ran out of memory with Dask, but ran successfully
with our optimizations which inferred dtype as category for
some of the columns, reducing memory usage. It can be seen that
even on a cluster, ODask provided significant time and memory
benefits over native Dask; LaFP inserted column selection and/or
data type optimizations in several of these programs.

Optimization Overhead. We also measured the overhead due to
our static analysis and rewriting optimization techniques. The
time taken by JIT static analysis phase and rewriting for various
programs is in the range of 0.04 sec - 0.59 sec, which is a very small
fraction of the execution times of the programs. Collection of
metadata is done asynchronously, once per dataset/file, requiring
only a relatively inexpensive single scan or sample of the data,
and incurs no cost during program execution.


coiled.io
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P M D PoS Du Po
Only Static | 11% | 11% | 29% 24% | 14% 35%
All Opts 26% | 28% | 41% 18% | 16% 23%
Ratio 42% | 39% | 70% | 133% | 88% | 152%

Table 18: Impact of Static vs. All Optimizations

5.4 Maximum Memory Consumption

To get reliable memory size estimates despite multi-threaded
execution with Modin and Dask, we created a separate thread
that monitored the process memory usage every 200 milliseconds,
and we report the maximum memory usage. Figure 17 shows the
memory consumption improvements using our optimizations
on the 4.2 GB dataset. For lack of space we omit results on the
1.4 GB and 12.6 GB dataset, but note that the results are similar
except for the fact that with the 12.6 GB dataset the unoptimized
versions of many of the programs could not finish execution as
we saw earlier.
Missing values in Figure 17 represent cases where neither the
original nor the optimized program could execute successfully.
In case of Pandas, our optimizations significantly reduce mem-
ory consumption in most cases, with over 95% reduction in some
cases where column selection was particularly helpful. For the
programs that can be executed with Modin and Dask, our opti-
mizations reduced memory consumption by up to 60% and 55%
respectively, primarily due to column selection (projection push-
down) optimization. For Pandas on Spark and DuckDB using
Ibis, reduction in memory consumption is observed in most cases
with upto 35% reduction. In case of Polars using Ibis, significant
reduction in memory consumption is observed up to 95%.
However, there were some cases where our optimizations in-
creased memory consumption on Dask, with up ot 60% increase
in the worst case on 3 programs. These were due to common
computation reuse optimization which persists results and reuses
them. However, programs ais and cty, which had increased mem-
ory usage, correspondingly had 65% to 85% time improvements.
It may be noted that persisted dataframes are memory-resident
not only when using Pandas and Modin, but also with Dask when
using Dask’s persist() API function, which results in increased
memory usage. Persisting Dask dataframes on disk is an area of
future work.

5.5 Ablation Studies

We performed an ablation study of the execution time impact of
optimizations that we have proposed.

Effect of Static Analysis Based Optimizations: We first consider the
impact of optimizations that are based on static analysis, turning
off the other optimizations. All of our optimizations, except for
Predicate Pushdown (as currently implemented) and Metadata
Analysis, depend on static analysis.

The results are shown in Table 18, where the backend names
are abbreviated as done earlier in Table 12. It can be seen that
for Pandas and Modin, only static gave on average 11% improve-
ment, whereas all optimizations gave 26%and 28% improvement,
indicating the benefits of adding lazy computation based opti-
mizations to non-lazy backends. In contrast the benefits of only
static optimization are significant across all the lazy backends,
ranging from 16% to 35%, with only small or even negative im-
provements when only runtime optimizations are added. For
Pandas on Spark and Polars, only static resulted in better per-
formance than all optimizations, indicating some of our runtime
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Opt. C+F Cs LP ME PD
ODask | 2[1.2-9.9x] | 3[1.5-1.9x] | 6[1.7-6.5x] | 5[1.2-2.2x] | 1[1.2x]
OPandas | 2[1.2-9.0x] | 3[1.5-1.7x] | 5[1.8-7.5x] | 5[1.1-2.0x] | 1[1.2x]

Table 19: Ablation Study: Number of Affected Programs
and Regression Factor Ranges

optimizations made wrong choices; cost based choice is an area
of future work.

Effect of Individual Optimizations: In order to study the impact of
individual optimizations, we disable one optimization at a time
and find the increase in cost. We consider the following ablation
cases. C+F: common computation reuse+forced computation re-
moved, CS: column selection removed, LP: lazy print removed,
ME: metadata optimizations removed, PD: predicate push down
removed.

We run the programs with LaFP with Dask and Pandas as
back-ends on the 1.4 GB disk size dataset. The results are shown
in Table 19. The cells show the number of affected programs, and
the range of increase in costs due to the ablation, compared to
the baseline (all optimizations enabled), for these programs.

For example, with ODask there was a sharp slowdown of
around 9.9x on disabling common computation reuse on one of
the programs, cty. We also note that in this case there was also
an increase of 2.3X in memory consumption, which is a good
trade-off. Similarly, turning off column selection resulted in a
slowdown of 1.5X (ais) to 1.9X (dso).

Disabling lazyprint had an impact of up to 6.5X (stu), in pro-
grams with multiple print statements. Disabling metadata opti-
mization caused a slowdown of up to 2.2X. Both lazyprint and
metadata optimizations improve the performance for stu. Simi-
larly, multiple optimizations are applicable for other programs.
Predicate pushdown had only a 1.2X impact on one of the bench-
mark programs we considered, but we have observed much larger
benefits on other programs.

6 Conclusion and Future Work

We have described novel optimization techniques for Pandas
programs that combine static-analysis based rewriting and lazy
runtime frameworks. Our performance study shows the signifi-
cant benefits of our optimization approach not only compared to
Pandas but also compared to other frameworks.

Future work includes the addition of support for more Pandas
API calls, direct support for Polars (instead of via Ibis), implemen-
tation of automated choice of back-end, support for dataframe
attribute reference by position instead of name, completion of
read-only attribute analysis to ensure category type can be safely
used, and type inference for input/output parameters to be passed
to Dask apply() function. Implementation of more optimizations,
such as predicate pushdown based on static analysis, is another
area of future work.
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Artifacts

Supplementary material including benchmark programs, datasets,
and code is available at https://github.com/lazyfatpandas/public.
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