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Abstract
Pandas is widely used for data science applications, but users

often run into problems when datasets are larger than memory.

There are several frameworks based on lazy evaluation that han-

dle large datasets, but the programs have to be rewritten based on

the chosen framework. In this paper, we present an optimization

framework that allows programmers to code in plain Pandas, but

get the benefit of not only scalability, but also multiple optimiza-

tions based on a combination of “just-in-time” static analysis of

the program and lazy-evaluation based run-time-optimizations.

The programmer only needs to add a couple of lines of code to

use our framework, and to choose from any of several backend

engines (currently Pandas, Dask, Pandas On Spark, DuckDB

using Ibis, Polars using Ibis, and Modin). Performance results

on a variety of programs show the significant benefits of our

optimization framework compared not only to Pandas, but also

compared to the direct use of Dask, Modin, DuckDB using Ibis,

Polars using Ibis, and Pandas on Spark.
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1 Introduction
Python is widely used for data science applications, and in partic-

ular dataframe-based libraries and frameworks have become the

default model for many of these applications. Pandas is the most

popular framework among these and is the tool of choice for ap-

plications that use smaller datasets that fit in the available system

memory. To address the needs of applications that have larger

datasets that do not fit in memory, several scalable frameworks

have been created, such as Dask [1], Modin [2], PySpark/Pandas

on Spark [3], Magpie [4], among others. Some frameworks such

as Dask and Spark are lazy evaluation frameworks that create a

task graph lazily, optimize it, and then execute it when results

are needed. Others like Modin support eager evaluation.

Many users develop their applications using Pandas, and test

them on small datasets; performance issues, especially out-of-

memory issues, are not obvious until much larger datasets are

used. Even if production datasets fit in memory at a point in time,

an increase in data size often causes problems at a later point in

time.
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import pandas as pd import lazyfatpandas.pandas as pd

# other import stmts ⇒ # other import stmts

pd.analyze()

pd.BACKEND=pd.Backends.DASK

# rest of program # rest of program

Figure 1: Code changes to use Lazy Fat Pandas

While users can avoid these problems by using scalable frame-

works, there are several challenges. Frameworks based on lazy

evaluation can speed up evaluation by using optimizations of the

task graph, but require users to modify their code to work with

lazy evaluation, for example, by explicitly forcing of computa-

tion before any non-lazy operation (e.g. print()) is executed on

a dataframe. Which framework is optimal for an application

depends on factors such as data size. To use a framework, the

user needs to deal with variations in their APIs, including lack of

support for some Pandas features. Rewriting code to work on a

different framework is thus non-trivial. This makes it hard to use

the optimal backend if the application is coded against a different

backend.

In this paper, we describe a system, which we call Lazy Fat
Pandas (LaFP), which we have developed to address the above-

mentioned challenges faced by the data science user community.

Our system allows users to use plain Pandas as front-end, but

rewrites the program to optimize it and to execute it using any

one of the supported back-end systems. LaFP uses static analysis

along with a lazy API wrapper to perform a number of optimiza-

tions for efficient execution of these applications.

In order to benefit from LaFP, users can continue to write their

programs in Pandas and just need to perform a couple of lines of

code changes, as highlighted in Figure 1. Users must replace an

import of Pandas by an import of our LaFP library, and add a call

to pd.analyze(). Additionally, the users can specify the desired

backend (automated choice of backend is an area of ongoing

work). Users do not need to worry about the variations between

APIs and execution models of different back-end executors.
1

LaFP

uses a combination of program rewriting and a lazy wrapper to

introduce lazy evaluation and optimization, and to provide work-

arounds to deal with limitations of the chosen framework.

The specific technical contributions of this paper include the

following.

(1) We present a novel optimization architecture (Section 2)

based on static analysis, to perform source-to-source trans-

formation of Python programs.

1
Support for a few APIs such as apply() or get_dummies() on backends that do not

support them, is a work in progress, as discussed in Section 5.1.
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Figure 2: Overview of the Lazy Fat Pandas System

The Python source program is first converted to the SCIRPy

intermediate representation (IR), which we have created,

which is compatible with the Soot static analysis frame-

work [5].

Based on static analysis, the IR is rewritten to optimize exe-

cution, and then is converted back to Python for execution.

We discuss the optimizations shortly.

(2) We designed and implemented a novel just-in-time (JIT)
static analysis technique, which requires only the addition

of a single function call, pd.analyze(), to the program. Our

analyze() function uses reflection to find and rewrite the

source code of the program, and replace the execution of

the original program by the execution of the optimized

rewritten program. No changes are required to the outer-

level systems that invoke the Python programs, greatly

simplifying the task of deploying the optimizations.

(3) We have developed a runtime wrapper API which allows

easy substitution of invocations of Pandas API calls by

invocations of lazy versions of the same calls in LaFP. Lazy

evaluation allows the construction of a task graph, which

is a DAG of operators, which can be optimized before

execution, when results are needed.

The LaFP wrapper supports diverse back-ends, such as

Pandas, Dask, Modin, Pandas on Spark (formerly called

Koalas), DuckDB [6] using Ibis [7], and Polars [8] using

Ibis as backends. The programmer just adds one line of

code to specify the desired back-end. Lazy backends re-

quire computation to be forced at certain points; forcing of

computation is added automatically by our system, based

on static analysis.

The back-ends differ in the support for specific Pandas

API functionality. If a chosen back-end does not support a

specific Pandas API functionality, LaFP can convert data

from the back-end representation back to Pandas, to exe-

cute the original Pandas function. Thus, the user need not

worry about the differences between back-ends, or their

specific limitations (we note however that Dask, DuckDB,

and Polars do not preserve ordering of rows in a dataframe,

so users who choose any of these as the back-end should

be aware of this difference).

(4) Our system supports lazy execution for Python functions

other than Pandas dataframe operations. For example,

LaFP provides a lazy print function, which is a wrapper

around normal print(), which becomes part of the lazy

task graph. Lazy print allows evaluation to be delayed to

a later point, increasing opportunities for performance

optimization. However, where such lazy evaluation is not

possible, our system rewrites the program to add forcing

of computation.

(5) We present a number of optimization techniques based

on static analysis (Sections 3). For example, static analy-

sis allows our optimizer to look ahead to predict which

dataframes are live, and what parts of the dataframe (based

on column selections) will get used later in the program,

and rewrite the program to avoid redundant fetches/com-

putation (Section 3.1). We also use static analysis to enable

other optimizations such as lazy print of dataframes (Sec-

tion 3.2), forced computation (Section 3.3), and common

computation reuse (Section 3.4).

We note that lazy runtimes optimize task graphs before

they are executed. However, programs often require multi-

ple task graphs to be created and executed, each of which is

independently optimized. Static analysis provides a global

view of the program, across multiple task graphs, support-

ing optimizations that examine later parts of the program.

For example, a task graph execution may materialize a

dataframe with multiple columns. Static analysis can de-

tect that only a few of the columns are used later in the

program, and optimize the computation by fetching only

the required columns. Purely run-time optimizers cannot

implement such optimizations.

(6) We have implemented the LaFP framework, along with

static and run-time optimizations. Our performance stud-

ies (Section 5) show that our optimization methodology

can significantly improve the performance of such pro-

grams, across all the backends (including those that have

their own optimizers), with up to 20x speedup of execu-

tion time. Memory usage is also substantially reduced, by

up to 95%.

2 Architecture
Users can run existing Pandas-based programs using our Lazy

Fat Pandas (LaFP) framework with minimal changes as shown in

Figure 1. LaFP currently supports 120 major Pandas API functions

out of around 240 APIs, including the bulk of the widely used

API functionality; adding support for further API calls, with the

goal of 100% compatibility with Pandas, is an ongoing activity.

Figure 2 shows an overview of our proposed framework. LaFP

first converts programs to a lower-level internal representation

(IR) using Just-in-Time (JIT) static analysis, and based on it,

rewrites the program to optimize evaluation.

The optimized program, where calls to Pandas dataframe oper-

ations have been replaced by their lazy wrapper versions, is then

executed. The lazy wrapper functions create a task-graph and

add each API call as a node to task graph. When computation

is forced, the task graph is optimized by the LaFP runtime, and

then executed. The runtime optimization makes use of metadata

and statistics to perform optimizations that cannot be done at

compile time. LaFP uses any one of multiple back-ends to execute

task graphs.

2.1 Intermediate Representation
We use the Soot [5] framework, originally developed for Java,

for static analysis of Python programs; Soot works on an inter-

mediate representation (IR) of the program. While IRs for JVM

bytecode are built in, Soot allows creation of new IRs.
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We developed an intermediate representation which we call

SCIRPy IR (short for Soot Compatible Intermediate Representa-

tion for Python) to support analysis. SCIRPy supports the Python

Abstract Syntax Tree (AST) representation, while being compati-

ble with Soot [5].

Most constructs in the SCIRPy IR, such as if statements, assign-

ment statements, etc., extend the Jimple IR of Soot, allowing us

to extend and use the built-in static analysis functionality of Soot.

SCIRPy further maintains compatibility with Soot by extending

Soot’s class, method, and body for Python.
2

Python source is parsed into an abstract syntax tree (AST)

using an existing parser (written in Python), and the AST is

then translated into a JSON (JavaScript Object Notation) object.

This JSON object is passed to our static analysis code, which

transforms it into SCIRPy. For compatibility with Soot, our static

analysis code is written in Java.

We used Soot as it supports control flow graph construction

and data flow analyses, which we extend and use in our static

analysis. There are several static analysis tools for Python based

on ’ast’ module of Python or its derivatives, such as Pylint [9],

Pyflakes [10], Mypy [11], Prospector [12], and Bandit [13], among

others. However these do not support the static analysis tech-

niques used in our optimizations.

2.2 Static Analysis and Optimization
Static analysis is performed in SCIRPy by building Control Flow

Graphs (CFG) and performing data flow analysis (DFA).

Control Flow Graph (CFG): The CFG is a representation of

the flow of control within a program [14]. It represents various

paths that program execution may take. It is a directed graph in

which every node represents a Basic Block (BB). A basic block is

a sequential fragment of code without any branch or loop. CFGs

are generally constructed on intermediate representation (IR).

We construct a CFG from the SCIRPy IR using Soot.

Data Flow Analysis (DFA): DFA is a technique to identify

how a program or a method manipulates its data [15], and is

performed on CFG. We have currently defined and implemented

two data flow analyses: live attribute analysis (Section 3.1) and

live dataframe analysis (Section 3.4) to statically optimize data

science programs.

The results of static analysis are used to perform a variety of

optimizations. Static analysis provides information on precon-

ditions, as well as other information needed to carry out these

optimizations.

For example, consider the Pandas program in Figure 3 (taken

from [4]), which fetches data from files into in-memory data-

frames, and performs transformation operations such as data

filtering, feature addition, and aggregation, on the dataframes.

The optimized version (output of compile time optimization) of

the program is as shown in Figure 4 with highlighted comments

explaining the changes.

The original program fetches all 22 columns from the dataset.

Only 3 of these are used in the program, which is inferred by

a static analysis technique called live attribute analysis, as dis-

cussed in Section 3.1. The optimized program after applying

the column selection optimization fetches only the required 3

columns, by passing them in the usecols option to read_csv.

We also use compile time analysis to enable other optimiza-

tions such as lazy print (Section 3.2), forced computation (Sec-

tion 3.3), and common computation reuse (Section 3.4).

2
Extending the IR to handle exceptions is a part of future work.

2.3 Rewriting to Python
In order to convert optimized SCIRPy back to Python source, we

first convert the CFG-based IR to an intermediate representation

based on program regions. Program regions represent the hier-

archical structure of block-structured programs. These regions

could be basic block regions, loop regions, branch (if-then-else)

regions, or sequential regions, each of which could hierarchically

contain other subregions. For example, a loop region may contain

a sequential region which in turn may be composed of a branch

region and another loop region.

Creating regions from the graph-based SCIRPy representation

is done using techniques described in [16], which are also used

in [17]. The region-based representation is then translated to

Python source code.

We note that static analysis cannot handle dynamically gen-

erated code that is executed using the exec() function. Static

analysis of Python has other challenges, such as not knowing

which overloaded function is being invoked when decorators are

used to implement overloading based on types, due to lack of

static typing. Further, we currently do not handle global variables

and closures. Also, we support a limited form of inter-procedural

static analysis. However, Pandas applications typically do not

use features that cause such issues, and our analysis is sound as

long as such features are not used. Soundiness, i.e. use of analysis

that are sound only as long as some rare constructs are not used,

is widely adopted in static analysis [18]. Transformations based

on static analysis are not performed when features that affect

soundness are used.

2.4 Just-in-Time Static Analysis
One of the novel contributions of our approach is the Just-in-

Time (JIT) static analysis, which performs static analysis at the

start of program execution. Other static analysis tools require

users to perform static analysis and program rewrite as a separate

phase, following which the rewritten program must be executed.

In contrast, our approach does not require any change in the flow

of code optimization/execution.

The process of JIT static analysis is described in Figure 5. The

pd.analyze() method transfers the control to LaFP. LaFP identifies

the source program code, parses it, converts it to SCIRPy, and

performs static analysis and compile time optimizations. Further,

code transformations are performed during this phase to enable

runtime/lazy optimizations discussed in Section 3. As discussed,

the optimized IR is converted back to Python and executed lazily

using our lazy runtime wrapper.

2.5 Task Graphs and Lazy Evaluation
A task graph is a directed acyclic graph (DAG) in which the

nodes represent a computational task or operation and the edges

denote the precedence constraints among these computational

tasks. In eager evaluation, an expression is evaluated as soon as

it is reached during the execution of a program. In contrast, in

lazy evaluation, when an expression is reached during program

execution, instead of evaluating it eagerly, an expression node

is created, and added to a task graph. The task graph is evalu-

ated only when it is needed, by calling a function that forces the

evaluation. Dask, Pandas on Spark, and Ibis with DuckDB/Polars

are examples of systems based on lazy evaluation of dataframes.

Evaluation is forced only when a function such as compute() is

called to actually execute the operations; Pandas on Spark inter-

nally forces computation when the contents of a dataframe are
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import lazyfatpandas.pandas as pd
pd.analyze() # transfer control to LaFP
df = pd.read_csv('data.csv', parse_dates=['

tpep_pickup_datetime']) #fetch data
df = df[df.fare_amount > 0] # filter bad rows
df['day'] = df.tpep_pickup_datetime.dt.dayofweek # add

features
df = df.groupby(['day'])['passenger_count'].sum()
print(df) # use dataframe

Figure 3: Sample Program

import lazyfatpandas.pandas as pd

from lazyfatpandas.func import print # Use lazyPrint

SO_columns = ['pickup_datetime','passenger_count','
fare_amount'] #

Live columns passed to read_csv()

df = pd.read_csv('data.csv',usecols=SO_columns,
parse_dates=['tpep_pickup_datetime'])

df = df[df.fare_amount > 0]
df['day'] = df.tpep_pickup_datetime.dt.dayofweek
df = df.groupby(['day'])['passenger_count'].sum()
print(df)

pd.flush() # Forces computation and printing

Figure 4: Optimized Version of Sample Programfunction pd.analyze(())

source_file← get_source_code()

SCIRPy← python_to_SCIRPy(source_file)

opt_SCIRPy← static_analysis_opt(SCIRPy)

opt_code← SCIRPy_to_python_opt(opt_SCIRPy)

executor (opt_code)

end function

Figure 5: Just-in-Time Static Analysis

read_csv

get_item
tpep_pickup_datetime

dayofweek

set_item day

get_item
fare_amount

greater_than

0

get_item [filter]

groupby day get_item
passenger_count

sumprint

compute

Figure 6: LaFP Task graph of the Program in Figure 3

used, but the other lazy frameworks require an explicit compute()

call.

Our Lazy Fat Pandas (LaFP) framework is a lazy framework,

which acts as a wrapper layer, allowing execution of dataframe

operations to be done using any of the supported backends, in-

cluding Pandas itself.

The task graph for the program in Figure 3 is shown in Figure 6.

An edge (𝐴→ 𝐵) represents that the task 𝐵 depends on task 𝐴.

Such an edge may be created when the result of the operation at

node B is an input for the operation at node A
3
. This dependency

is also used to enforce output order for lazy print statements and

other output functions supported by the LaFP lazy wrapper.

The optimized source code generated by JIT static analysis and

rewriting has calls to lazy versions of the Pandas API calls, defined

in our Lazy Fat Pandas (LaFP) framework, which supports the

Pandas dataframe API, but using the LaFP’s lazy fat-dataframe.

3
The direction of the edge follows the convention for task graphs and dependency

graphs, although the flow of data is in the opposite direction.

A call to the LaFP’s API function does not immediately execute

the operation. Instead, each operation creates a new lazy fat-

dataframe object, which is then linked to the task graph based on

its inputs. Most API operations operate on dataframes and output

other dataframes. The lowest level operations create dataframes,

typically by reading data from file representations such as CSV,

or Parquet, or from databases, although dataframes may also be

created from constants or random number generators.

The task graph is executed only when an operation result

needs to be passed to an operation that needs a materialized (non-

lazy) dataframe, or at the end of the program, when computation

can no longer be deferred. The task graph is optimized by LaFP

before it is executed using any of the back-ends supported by

LaFP.

LaFP allows the back-end to be chosen in the program. For

small datasets that fit in memory, Pandas is usually faster than

Dask or Pandas on Spark, or other scalable frameworks, and is

the preferred choice. In this case LaFP optimizations help speed

up the program compared to directly running it on Pandas. If the

back-end chosen is lazy, it may perform its own optimizations;

in that case the optimizations performed by LaFP complement

the back-end optimizations.

One of the distinctive features of our approach compared to

just using a lazy framework is that it is capable of utilizing infor-

mation generated using JIT static analysis phase. This informa-

tion provides look-ahead beyond points where lazy computation

cannot be deferred further, allowing us to detect for example that

some columns are not used later in the program and therefore

can be projected away, or not even computed earlier in the execu-

tion. Static-analysis based rewriting also allows our framework

to detect which API calls can handle LaFP dataframes; all other

API calls (like plotting) default to Pandas dataframes, and our

optimizer introduces calls to force computation before invoking

such APIs.

2.6 Run-Time Optimizations and Execution
LaFP allows the task graph to be executed on any one of the sup-

ported back-ends. LaFP currently supports Pandas, Dask, Pandas

on Spark (formerly known as Koalas), Modin, DuckDB using Ibis,

and Polars using Ibis, with the default being Dask. The user can

select the required back-end by just adding one line of code, for

example:

pd.BACKEND_ENGINE=pd.BackendEngines.PANDAS
The choice of the back-end significantly impacts execution

time and memory usage for a program. Pandas and Modin use an

eager evaluation approach with all data required to be in memory
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(or distributed memory in the case of Modin). In contrast, Dask,

Ibis (DuckDB/Polars), and Pandas on Spark employ lazy evalua-

tion, and support data sizes larger than memory. An appropriate

back-end should be chosen based on the system requirements;

automating this choice is an area of future work.

Irrespective of the back-end, LaFP utilizes static analysis and

the lazy runtime wrapper to perform its optimization, before

executing the task graph using the selected back-end. Lazy frame-

works such as Spark and Dask optimize the task graph further

before execution, which can reduce execution costs further. Ex-

amples of optimizations include removal of unused computations,

pushing selections and projections, and fusing of operators to

reduce data movement.

Similarly, the LaFP runtime module performs several optimiza-

tions in the task graph (DAG) at runtime. Two of these are done

without using any information from static analysis, namely Pred-

icate Pushdown within the task graph, and Metadata Analysis

which can change attribute types to reduce storage cost. Others

benefit from information collected by static analysis. Column

selection (i.e. projection pushing) benefits from live attribute

analysis. Common computation reuse can be done within a task

graph, but benefits from static analysis information about reuse

later in the program.

When a lazy back-end such as Dask or Pandas on Spark is

chosen, the optimizations performed in LaFP complement opti-

mizations in the lazy back-end. When an eager back-end such

as Pandas itself or Modin is chosen, the back-end cannot per-

form optimization across nodes, and thus LaFPs lazy evaluation

optimizations are more important.

The execution of the task graph in LaFP is done as follows,

for the case where the back-end is eager. The LaFP task graph

is executed in topological order. After evaluating a task graph

node, the result is stored in a field called result. This result
field is cleared once all its dependent nodes have been evaluated,

and the result is no longer needed, minimizing memory usage.

This is managed by counting the in-degree of each task graph

node before executing the task graph and decrementing the count

after a node is used to generate another node’s result. When the

count reaches zero, the result field is cleared, allowing Python’s

garbage collector to reclaim the memory. As the task graph is

executed from bottom to top, the results of lower nodes, which

have been evaluated and used, are deleted to keep memory usage

to a minimum.

For example, consider the task graph in Figure 6, read_csv is

executed first, and the result is stored in the node. This result is

cleared after its dependent nodes get_item fare_amount, and

get_item [filter], have been executed. Finally, the result of

the node on which compute was called is returned. If compute()

is called on a print node, then None is returned.

In case the back-end is a lazy framework such as Dask or Pan-

das on Spark, instead of executing the operation when traversing

the task graph, the API call is transformed to the compatible API

call for the selected lazy back-end. The execution of the opera-

tions on the lazy back-end is initiated when the root of the task

graph is reached, or when the results are required for an inter-

mediate operation such as an external API call which expects a

computed dataframe. Nodes whose results are used more than

once can be persisted using persist() on a Dask dataframe, avoid-

ing recomputation for subsequent uses. Pandas on Spark does not

support persist; persistence could be implemented by converting

Pandas on Spark dataframes to PySpark dataframes but there is a

significant cost to conversion, so we do not currently implement

it.

API Comptability with Pandas: For back-ends other than Pan-

das, LaFP performs some transformations to deal with incompat-

ibilities between Pandas and the selected back-end. For example,

pandas ’read_csv’ API call supports a keyword argument ’in-

dex_col’ to specify the column(s) to use as row labels for the

Dataframe. Dask Dataframe does not support this keyword argu-

ment. However, similar behavior can be obtained by making an-

other API call ’set_index’ on the Dask Dataframe after ’read_csv’.

Our framework is capable of identifying several such inconsis-

tencies across multiple frameworks and performing additional

operations transparently such that the end result is the same

after the execution of the API calls, irrespective of the back-end.

Further, the changes required to enable execution using lazy

frameworks are implemented by a combination of rewriting based

on static analysis, for example, to force computation, and via

wrapper functions in the LaFP API. The wrapper functions use

appropriate backend API calls to implement Pandas API function-

ality where possible, and in other cases (such as inplace updates,

column rename, shape changing operations, etc) convert the

backend dataframes to Pandas, applies the function in Pandas,

and converts the dataframe back to the backend.

3 Optimizations
In this section, we discuss a number of static and runtime opti-

mizations that are implemented in LaFP. These optimizations are

performed in two settings: (i) Rewriting of imperative programs

based on static analysis (ii) Optimizing the generated task graph

at runtime, before it is executed. As discussed, some of the opti-

mizations we describe exploit a combination of information from

static analysis and runtime information.

3.1 Column Selection
In many programs, not all the columns (attributes) from the input

dataset are used. Fetching such unused columns into the memory

leads to increased memory usage and extra IO operations. Col-

umn selection optimization identifies and fetches into memory

only those columns that are used later in the program.

Live variable analysis (LVA): A variable is live at a program
point if there exists a path from that point to the exit of the pro-

gram along which the current value of the variable may be used.

LVA [14], identifies which variables are live at any point in the

program.

Live attribute analysis (LAA): We define live attribute analy-
sis (LAA) based on LVA. LAA treats attributes (columns) of a

dataframe as variable and computes the liveness of individual at-

tributes (columns) of dataframes. Similar to a variable, a dataframe

column is live at a program point if there is a path to the program

exit along which it may be used. However, columns are different

from variables in that assignments or uses can happen at the

level of entire dataframes:

(1) If the whole dataframe is used at a program point, all

columns of that dataframe become live.

(2) Similarly, all columns of a dataframe are killed at the point

of definition of a dataframe.

(3) If a dataframe is derived from another dataframe, its live-

ness information is used to determine liveness information

for the source dataframe.

Live variable analysis is done by using dataflow analysis,

which is based on the Gen and Kill sets at each node in the

161



EDBT ’26, 24-27 March 2026, Tampere (Finland) Bhushan Pal Singh et al.

control flow graph (CFG). The dataflow equations for live at-

tribute analysis, which are modified from those for live variable

analysis, are as below:

𝐺𝑒𝑛𝑛 = {𝑑.𝑖 |𝑖 is a column of dataframe 𝑑, and either

𝑑.𝑖 or all of 𝑑 (without specifying any

column) is used in basic block 𝑛, prior to

any assignment to 𝑑.𝑖 or to 𝑑}.
(1)

𝐾𝑖𝑙𝑙𝑛 = {𝑑.𝑖 |𝑖 is a column of dataframe 𝑑, and either

𝑑.𝑖 or all of 𝑑 (without specifying any )

column is assigned in 𝑛}
(2)

Note that if a dataframe is passed as an attribute of a func-

tion called from 𝑛, we assume that all columns of the dataframe

are used in 𝑛. Global variables pose another challenge, and if a

dataframe is assigned to a global variable, we assume conserva-

tively that all its columns are used in any function called from 𝑛.

Further, aggregate operations kill all columns except those used

in the aggregate or in the groupby operation.

We next define sets 𝐼𝑛𝑛 and 𝑂𝑢𝑡𝑛 which merge local informa-

tion provided by 𝐺𝑒𝑛𝑛 and 𝐾𝑖𝑙𝑙𝑛 , with information from succes-

sor nodes of 𝑛, to identify global liveness information.

𝑂𝑢𝑡n =
⋃

𝑠∈𝑠𝑢𝑐𝑐 (𝑛)
Ins (3)

𝐼𝑛n = 𝐺𝑒𝑛n ∪ {Outn − Killn} (4)

The above equations are solved to get the Gen, Kill, In and Out

sets for each basic block 𝑛 (basic blocks are defined in Section 2.2).

The live attributes at the end of a basic block 𝑛 are those that

are in the set 𝑂𝑢𝑡𝑛 . 𝐼𝑛𝑛 represents liveness information immedi-

ately before the block and 𝑂𝑢𝑡𝑛 represents liveness information

immediately after the block.

Once LAA is performed, liveness information is available for

all columns of all dataframes at all program points. The column se-

lection optimization modifies the IR to fetch only those dataframe

columns that are live (in Out𝑛) of the program point 𝑛 where the

dataframe is created from an input dataset, e.g. by a read_csv()

call.

We now consider how live attribute analysis works on the

program in Figure 3. This program has only one dataframe, i.e.,

df. The last statement of the program prints the dataframe, so

all columns are live at ’In’ of this point. Line 8 results in only

columns day and passenger_count being live. At line 6, the col-

umn pickup_datetime becomes live, whereas column day is killed

as it is assigned and thus not alive before that. Line 4 makes

fare_amount live. The columns live at ’Out’ of the Line 3 are ’pick-

up_datetime’, ’passenger_count’ and ’fare_amount’, and only

these need to be read from the csv file. The optimized version of

the program, which reads only the above columns, is shown in

Figure 4.

We also note that informative API functions df.head(), df.info()

and df.describe() are frequently used to get an idea of the dataset

contents and, their output does not affect the intended program

result. Treating these as using all attributes of df would result in

unnecessary column retrieval, so, as a heuristic, we ignore the

attribute usage of these functions.

3.2 Lazy Print
Dataframe computations in lazy frameworks are deferred un-

til computation is forced by a call to a compute() (or similar)

method. Computation needs to be forced when passing dataframes

to functions, for example print(), that cannot accept lazy data

frames. If compute can be deferred, the task graph could include

later parts of the code, which can enable other optimizations that

may not be possible if compute has to be done earlier. Thus, post-

poning invocation of compute() can help to reduce the execution

cost.

Print is one of the most common functions that forces compu-

tation. We introduce a lazy version of the print operator, allowing

compute calls to be deferred beyond the (lazy) print calls. With

our novel approach, lazy print statements are treated as opera-

tions and added to the task graph. When the task graph is exe-

cuted, the print nodes are processed, and the data is printed. The

delay in computation enabled by lazy print can allow task graphs

that would otherwise be separately executed to be combined and

executed together, which can reduce the cost significantly com-

pared to separate executions. However, care must be taken to

ensure that outputs are generated in the correct order, and we

now describe how we enforce that.

Figure 7 presents an example with multiple print statements.

Its optimized version generated by our rewriting techniques is

shown in Figure 8, and the equivalent task graph is shown in Fig-

ure 9. The optimized program overrides the built-in print method

with LaFP’s lazy print method by importing print from lazyfat-

pandas.func. The library lazyfatpandas.func also provides lazy

versions of some other functions; for example the lazy version of

Python’s len() function, when applied to a lazy dataframe, returns

a lazy integer, else it behaves like the normal len() function.

When LaFP’s lazy print is called, the node representing the

print operation is added to the task graph, with the lazy dataframes

as the source nodes. A dependency edge is added to the previous

print operation (if any) to maintain the correct print order. All

the lazy dataframes used in the print statement are identified and

appropriate edges added to the task graph to ensure that these

dataframes are computed before the lazy print is (eventually)

executed.

At the end of the program, pd.flush is called, which internally

invokes compute on the last print node, forcing the computation

of the task graph. The print statements are processed in the

correct order due to the dependency edges between print nodes.

The statements to override print, as well as the call to pd.flush()
are automatically inserted in the source program by program

rewriting, thus fully automating the process.

Python allows objects, including dataframes, to be used in

Python’s formatted strings (f-strings), for example:

print(f'Average fare: {avg_fare}')
in Figure 7, where avg_fare is a dataframe. Creation of the for-

matted string would require the dataframe to be computed.

To defer the computation of the formatted string, while retain-

ing the link to the correct dataframe (since the variable may get

assigned in a subsequent step before the print is executed) the

"lazyprint()" wrapper function replaces the dataframe variable by

the unique ID of the task graph node representing the dataframe,

along with an escape sequence to mark the unique ID.

When the constructed string is processed by the execution of

the deferred print function, the function checks for the escape

sequence to identify the unique ID of the task graph node. Further,

this node must be computed before the lazy print is processed at

the end of the program, which is ensured by the runtime.

3.3 Insertion of Forced Computation
When a program in a lazy framework calls a function that ex-

pects an evaluated Pandas dataframe, computation needs to be
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import lazyfatpandas.pandas as pd
pd.analyze()
df = pd.read_csv("data.csv")
print(df.head())
df["day"] = df.pickup_datetime.dt.dayofweek
p_per_day = df.groupby(["day"])["passenger_count"].sum

()
print (p_per_day)
avg_fare = df.fare_amount.mean()
print(f"Average fare: {avg_fare}")

Figure 7: Program with Multiple Print Statements

import ...

from lazyfatpandas.func import print # Use lazyPrint

...[ optimized read csv as in Figure 4 ]

print(df.head()) # lazy print
df['day'] = df.pickup_datetime.dt.dayofweek
p_per_day = df.groupby(['day'])['passenger_count'].sum

()
print(p_per_day) # lazy print
avg_fare = df.fare_amount.mean()
print(f'Average fare: {avg_fare}') # lazy print

pd.flush() # Force computation and printing

Figure 8: Optimized Program with Lazy Print

read_csv

get_item
pickup_datetime

dayofweek

set_item day

groupby day

sum

head

print

print

get_item
passenger_count

print

mean

get_item 
fare_amount

compute

Figure 9: Task Graph for Program in Figure 8

forced before the dataframe is passed to such a function call.

Commonly used functions include print() and plotting functions

from matplotlib. Programmers using lazy frameworks such as

Dask or Ibis with DuckDB or Polars have to manually insert code

to force computation before calling any such function. Pandas

on Spark internally forces computation when a dataframe is con-

verted to a string, which happens for example on a print() call,

and also provides wrappers for some other functions such as

plotting which force computation, but for other functions com-

putation needs to be forced by converting a Pandas on Spark

dataframe to a Pandas dataframe.

For some cases, like for print(), our framework provides a

lazy wrapper, allowing the function to be invoked when the

dataframe is eventually computed; we are currently implement-

ing lazy wrappers for some other functions. However such lazy

wrappers cannot be used in general, for example with functions

which return values that are used subsequently.

To deal with the above issue, the program rewriting phase

adds a compute() call to force computation before execution of

any function call for which a lazy implementation is not avail-

able; the materialized (computed) dataframe is then passed to the

function call. Static analysis allows us to automate the forcing of

materialization, which would have to be done manually if a lazy

framework is used directly.

The program in Figure 10 and its optimized version in Fig-

ure 11 demonstrate forced computation. Our static analysis de-

tects when a dataframe is passed as an argument to a function that

is not known to support lazy dataframes. To handle such func-

tions, a call to compute is added; for example line 9 of Figure 10 is

rewritten as shown in Figure 11 line 10 to force computation be-

fore invocation of of the plt.plot() function. (We pass an argument

live_df=[df] to the compute() function, which is an optimization

that is discussed later).

To invoke compute on a dataframe, we need to figure out

which variables are dataframe variables. This information is in-

ferred from the types of the Pandas API calls. For example, Pandas

functions like read_csv() or read_parquet(), as well as most Pan-

das functions on dataframes return dataframes.

Further, function calls from external modules like matplotlib.
pyplot can generate output, which can conflict with lazy printing

since the output order may get changed. To solve this issue,

pending print operations are processed when a dataframe is

forced to compute, maintaining the correct output order.

In line 11 of Figure 11, when p_per_day.compute() is in-

voked, the task graph containing all the lazy calls up to that

point, including lazy prints, are executed, and the result of the

node sum (p_per_day) passed to plt.plot, generating a plot

image. Subsequently, when pd.flush is called in line 15, the

print in line 14 is processed, along with lazy operations that are

pending. Note that the shared subexpression corresponding to

the dataframe df computed in line 6 would get recomputed on

further execution in the program when pd.flush() is called. When

the shared subexpression is first computed, information related

to the future usage of the dataframe in the rest of the program is

unavailable to the lazy framework. We can use static analysis to

avoid recomputation, as discussed next in Section 3.4.

3.4 Common Computation Reuse
As discussed in the previous section, forced computation is needed

in some cases, but it can lead to recomputation of shared sub-

expressions. We can avoid recomputation of common subexpres-

sions by persisting dataframes that are used in more than one

place, before and after a force computation boundary. However,

in lazy evaluation frameworks, information about future reuse

beyond the current task graph is not available when the com-

putation is forced, so we do not know which dataframes will be

reused. Naively persisting every intermediate result just in case

it is reused is not practical since it would drastically increase

memory footprint and slow down computation.

Therefore, we make use of static analysis to identify useful

(live) sub-expressions to be cached when compute is invoked on a
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import lazyfatpandas.pandas as pd
import matplotlib.pyplot as plt #external module
pd.analyze()
df = pd.read_csv("data.csv")
print(df.head())
df["day"] = df.pickup_datetime.dt.dayofweek
p_per_day = df.groupby(["day"])["passenger_count"].sum()
print (p_per_day)
plt.plot(p_per_day)
plt.savefig("fig.png")
avg_fare = df.fare_amount.mean()
print(f"Average fare: {avg_fare}")

Figure 10: Program with External Module Invocation

import lazyfatpandas.pandas as pd
import matplotlib.pyplot as plt #external module

from lazyfatpandas.func import print # lazy print

...[# optimized read csv as in Figure 4 ]

print(df.head()) # lazy print
df['day'] = df.pickup_datetime.dt.dayofweek
p_per_day = df.groupby(['day'])['passenger_count'].sum()
print(p_per_day) # lazy print

# call to compute() below forces computation & printing

plt.plot(p_per_day.compute(live_df=[df]))
plt.savefig('fig.png')
avg_fare = df.fare_amount.mean()
print(f'Average fare: {avg_fare}') # lazy print

pd.flush() # Force computation and printing

Figure 11: Optimized Version of Program From Figure 10

dataframe. We perform Live DataFrame Analysis (LDA) which is

similar to Live Attribute Analysis (discussed earlier in Section 3.1)

to identify live (useful) dataframes at each program point. When

we force computation, we check which dataframes are live after

the point when the computation is forced, and provide the list of

such dataframes to the compute method, which persists (caches)

any common sub-expressions between the expressions defining

the live dataframes, and the expressions in the task graph nodes

being computed.

When the task graph is executed, any node marked for per-

sistence has its result persisted on its first execution. In later

executions, the persisted result is reused, instead of being recom-

puted.

In Figure 11, the compute method is called on p_per_day, and

an argument named live_df is introduced, and static analysis is

used to generate the list of dataframes live after that program

point and pass it as the value for the live_df argument in line 11.

After line 11, df is the only live dataframe, and it is used later to

compute avg_fare. Since df is a shared sub-expression (common

node) between both p_per_day and avg_fare, the compute call

at line 11 includes the parameter “live_df = [df]”, which is

live and a common subexpression, so it will be cached during

computation.

Once all uses of a persisted dataframe have been completed, it

can be safely discarded to release memory. Our lazy computation

framework discards persisted dataframes after their last use when

they are no longer subexpressions of dataframes in live_df list

passed to the compute().

3.5 Predicate Push Down
Performing selection operation early in databases, also known as

predicate push down, reduces the size of relations and therefore

reduces the computation to be performed during other operations

like joins. In dataframe systems, filter operations reduce the size

of datafames. We identify the filter operations in the task graph,

and move them as close to the data source as possible.

Predicate pushdown on the task graph is a standard optimiza-

tion, which is already performed by lazy backends. However, we

implement it on our task graph to benefit non-lazy backends

such as Pandas itself, which lack this optimization. Unlike predi-

cate pushdown on relational expression trees, pushdown on task

graphs needs to take into account multiple uses of a result, and

also needs to take into account the variety of ways in which

filtering can be expressed in Pandas, including boolean indexing,

loc/iloc, in addition to the filter() method.

Static analysis can allow predicate pushdown through the

control flow graph, across task graph computations, similar in

spirit to the predicate pushdown performed by MagicPush [19].

This can enable some cases of predicate pushdown beyond points

where computation is forced, which cannot be done by predicate

pushdown on task graphs. Implementing predicate pushdown as

part of static analysis is an area of ongoing work.

3.6 Using and Computing Metadata
Data type information and data statistics are both very important

for efficient computation. The widely used csv format does not

provide type information or statistics, although formats such as

Parquet provide type information, and some statistics. Where

metadata is not available, we compute metadata for each source

data file. Statistics can be computed from a sample of the values

in a collection. To get correct datatypes we have to scan the

entire file, although we can do it based on the first few rows or

a sample, at some risk. The metadata for a file is computed by

running a script on the file, and stored for later use. Information

like modified time, column names and types, approximate size

of each row, and approximate number of rows in the dataset are

currently maintained in the metadata.

Metadata is used during runtime optimization. The modified

time metadata is used to ensure that the metadata is up-to-date.

We implement a number of optimizations based on metadata,

such as using datatypes to reduce storage overhead when reading

data, and replacing a string type by a category type which is based

not only on metadata information, but also on static analysis

information to ensure that the column is read only. Metadata

is particularly important for Dask; for example, apply() in Dask

requires the output datatype to be specified. We omit details for

the sake of brevity.

4 Related Work
There has been a large body of work on optimized execution of

Pandas which we describe in this section. However, to the best

extent of our knowledge, none of the earlier systems support

optimizations based on static analysis, and are all restricted to

run-time optimization. The combination of static and run-time

optimization sets our system approach apart from all the earlier

work. All of the optimizations described in Section 3, except our

current implementations of metadata and predicate pushdown
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optimizations, make use of static analysis. As described earlier,

we are working on using static analysis to improve these two

optimizations as well.

Dask [1] allows dataframes to be partitioned, and operations

on dataframes to run in parallel, and to be larger than memory.

Moreover, Dask supports a lazy API which allows multiple op-

erations to be collected, and executed only when a compute()

function is executed. However, Dask requires changes to Pandas

programs to deal with lazy evaluation. Modin [20] supports eager

computation, and provides a "drop-in" replacement for Pandas,

while also supporting parallel/multi-core execution. Ray [21] is

another framework for distributed programs, which supports

scalable datasets (dataframes) among other features. Modin uses

Ray and Dask as its back-end options.

Pandas on Spark, formerly called Koalas, [3] supports the Pan-

das DataFrame API on top of Apache Spark; it supports lazy

computation in the back-end, while allowing the eager Pandas

API to continue to be used at the front end. Unlike Dask it pre-

serves ordering, but like Dask it does not support all of the Pandas

API. In contrast, PySpark, which supports access to the native

Spark API from Python, does not support the Pandas API.

PyFroid [22] supports a lazy back-end based on the embedded

relational database DuckDB, while providing an eager Pandas

API with many but not all Pandas functions. PyFroid works only

on a single system unlike Dask or Spark. Magpie [4] focuses on

pushing Pandas computation to back-end databases on the cloud;

internally it used an earlier version of the PyFroid engine. Ibis

[7] provides a dataframe interface to data stored in any of a large

number of back-end databases, including DuckDB and Polars,

but does support many Pandas API functions.

Multiple libraries use lazy evaluation to optimize data sci-

ence applications, such as Cunctator [23], DelayRepay [24], and

Weld [25].

None of the above systems support optimization based on

static analysis and rewriting, unlike our system. While several of

our run-time optimizations are also implemented by lazy evalua-

tion based frameworks, our wrappers allow these optimizations

to be used even with eager backends that do not natively support

optimization.

Our earlier short paper [26] briefly describes column selection

based on static analysis, but does not cover other optimizations

described in this paper such as JIT static analysis, lazy evaluation,

or forcing of computation based on static analysis.

Dias [27] optimizes Python notebook based Pandas programs

by program rewriting, based on a pattern matcher and rewriter

applied to one cell of a notebook at a time, after earlier cells have

been executed. However, it does not perform static analysis and

cannot benefit from look ahead at later parts of the program,

unlike our optimizations. Further Dias can only work with data

that (after optimization) fits in memory.

Magicpush [19] uses a program synthesis approach coupled

with verification based on symbolic execution to implement pred-

icate pushdown in data science applications. It is limited in its

applicability since it does not perform any other optimizations.

Our optimizer also performs predicate pushdown on the task

graph; pushdown based on static analysis is an area of future

work.

5 Performance Evaluation
In this section, we study the benefits of our optimization tech-

niques on a variety of programs, across different dataset sizes.

We ran our single-node experiments on a hexa-core AMD Ryzen

5 3600 with base clock at 3.6 GHz with 32GB of DDR4 3200MHz

RAM. We use the following library versions for the performance

studies: Pandas 2.3.2, Dask 2025.1.0, Modin 0.31.0, Ibis-DuckDB

10.8.0, Ibis-Polars 10.8.0, and Pandas on Spark from PySpark 3.5.1.

5.1 Benchmark Programs and Datasets
To benchmark LaFP, we have taken 10 real workloads from a vari-

ety of sources, including programs used in Dias [27], Magpie [4],

and MagicPush [19]. These programs execute a variety of opera-

tions like data filter, data augmentation using feature addition,

data aggregation (like mean,max,sum), data merge and group-by,

and informational operations, analyzing data from domains such

as movie rating systems, taxi data, startup analysis etc. Each

program contained between 5 and 29 operators, with an average

of 13 operators per program. We have shared the benchmark pro-

grams and datasets at https://github.com/lazyfatpandas/public.

To test the impact of data size, for each program, we created

datasets of different sizes by replicating or pruning the original

datasets that were available with the programs. The datasets thus

created had on-disk (csv file) sizes of close to (within 5% of) 1.4

GB, 4.2 GB, and 12.6 GB respectively. When loaded into memory

as a Pandas dataframe the sizes expand by a factor of 3X to 8X

depending on the datatypes used in the different datasets. Thus

the 12.6 GB on disk datasets ranged from around 35 GB to 100

GB in memory, ensuring the dataset did not fit in-memory.

For each program, we compare the performance with and

without our optimizations (including both runtime and rewrite

optimizations), using Pandas, Dask, Modin, Pandas on Spark,

and DuckDB using Ibis and Polars using Ibis, as the back-ends.

For comparison with direct use of the back-end frameworks,

we manually transformed the programs to work on each of the

backends.

Executing Pandas programs on Modin is straightforward since

Modin is designed for Pandas compatibility. Rewriting for Dask

was more complicated due to the need for forcing of computation,

lack of support for some API methods, and lack of in-place up-

dates. Even though Pandas on Spark uses a lazy backend, rewrit-

ing Pandas programs to use it only requires a change to an import

statement; unlike Dask, Pandas on Spark hides lazy evaluation

from the programmer, with the Pandas on Spark dataframe forc-

ing computation automatically whenever its result is required.

Rewriting Pandas programs to run on DuckDB & Polars using

Ibis required a significant rewriting effort since forcing of com-

putation is required before using a dataframe result, and many of

the Pandas APIs are not supported. To ensure that these programs

run successfully using DuckDB and Polars, we commented two

API calls (apply() in programs stu and env, and get_dummies()

in program emp) which are not supported by Ibis. Support for

these in Polars is currently under implementation, while handling

DuckDB is harder since it uses an SQL backend. Conversion to

Pandas dataframes is an option, but would significantly increase

the cost, and be unfair to Polars.

In all other cases, LaFP automatically handles the API differ-

ences for whichever backend is chosen. Thus no manual rewriting

is required, making it very easy to switch between backends.

Modin can use different execution engines, such as Ray or

Dask. We use Ray as the default executor for Modin and LaFP

Modin programs. In all cases where a program/dataset combina-

tion could not be executed using Ray, we used Dask as executor
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Data Size P OP M OM D OD PoS OPoS MDu ODu MPo OPo

1.4GB 10 10 10 10 10 10 10 10 10 10 10 10

4.2GB 10 10 9 9 10 10 9 9 10 10 10 10

12.6GB 2 7 4 7 8 9 9 9 9 9 9 9

Table 12: Number of Programs Successfully Executed

for Modin. For such programs, Dask is used as executor for LaFP

Modin as well for uniform comparison.

5.2 Applicability of LaFP
A major goal of our optimizations was to ensure that Pandas

programs can run successfully even on large datasets. The first

set of experiments therefore checks how many programs could

complete successfully using the different frameworks, with and

without optimization.

Our framework allows any back-end to be used without any

manual program rewrite (barring an import of the lazyfatpandas

library, a configuration line to choose the back-end, and a call to

analyze()).

Users, however, need to be aware that using Dask, Polars or

DuckDB may affect the order of rows in dataframes, which may

potentially affect subsequent operations that are order-sensitive.

If the program has such order-sensitive operations, the user

should not choose these as the back-ends (with or without LaFP).
4

Passing input/output types to apply() function is required in Dask.

Adding it automatically is under implementation; we manually

added the type for one program that needed it.

Table 12 shows how many of the 10 programs could execute

successfully on different back-ends with different data sizes. The

original versions and optimized versions with different backends

are denoted as: Pandas (P and OP), Modin (M and OM), Dask (D

and OD), Pandas on Spark (PoS and OPoS), DuckDB (MDu and

ODu), and Polars (MPo and OPo). Note that we use MDu and MPo

to denote that the original Pandas program required significant

manual rewriting to run on Ibis with DuckDB and Polars as

backends, while ODu and OPo were automatically rewritten.

For example, with Pandas and Modin only 2 and 4 programs,

respectively, run successfully with 12.6 GB dataset whereas 7 pro-

grams could run with our optimizations on Pandas and Modin.

The improvements were because our rewrites could reduce space

usage, whereas the un-optimized Pandas/ Modin programs ran

out of memory. Dask could execute 8 programs whereas opti-

mized Dask could handle 9 programs. The remaining backends,

i.e., Pandas on Spark, DuckDB using Ibis and Polars using Ibis,

could all execute 9 programs with both the original and optimized

versions, since these backends are designed to be scalable. The

one program where all backends failed was the ’emp’ program;

on inspection we found that there was a call to an external plot

function which required materializing a large dataframe as a Pan-

das dataframe, which resulted in out-of-memory error, regardless

of the backend used.

We also built a regression test framework to ensure that the

datasets computed with our optimizations were identical to the

results on Pandas without any optimization, by computing and

comparing (order independent) hashes of the dataset results,

computed by md5 hash of each row combined using exclusive or;

our optimized programs on different platforms all passed these

tests.

4
Automated detection of order-sensitivity is an area of future work.

5.3 Execution Time
We first consider absolute execution times for different backends,

with and without optimization, on the 1.4 GB dataset. For this

dataset, all the configurations could run successfully. The results

are shown in Figure 13.

For programs labeled with ‘*’, as well as overall average, la-

beled ‘Avg*’, the programs for DuckDB and Polars are modified

as explained earlier, so only relative comparison across the op-

timized and unoptimzed programs on same platform should be

done. On programs that were the same across all platforms, Polars

gave the best performance, while DuckDB was second best.

Across all programs, the benefit of optimization for DuckDB

and Polars were 18% and 17%, while for Pandas and Modin were

27% and 28%, while Dask and Pandas on Spark gave 62% and 18%

respectively. On individual programs, the benefits on different

backends varied, with maximum benefits ranging from 49% to

94%, and minimum benefit ranging from -9% to 12%. We note also

that the scalable backends all have their own optimizers, yet our

optimized versions of the programs gave further improvements.

Next, we consider larger datasets, where Pandas and Modin

are not able to run successfully in several cases. Figure 14 shows

the execution time improvements using our optimizations, across

different back-ends for 4.2 and 12.6 GB datasets. Improvement is

defined as:

Improvement =
(Original Runtime − Optimized Runtime)

Original Runtime

In cases where the original program and dataset combination

could not execute successfully on the relevant back-end, we treat

the original execution time as infinity. This results in 100% im-

provement in performance provided the optimized program runs

successfully. Missing data points in Figure 14, such as for ’emp’

on 12.6GB, represent cases where neither the original program

nor its optimized version could not be executed using the relevant

back-end.

It can be seen that for Pandas and Modin, multiple programs

could not be executed on the 12.6 GB dataset, but several of

them could be executed successfully using our optimizations

in LaFP. For the remaining (scalable) backends, only the emp

program failed across all backends, for reasons described earlier

in Section 5.2.

Ignoring the cases where the original program did not execute

successfully, our optimizations give up to nearly 60% reduction

(2.5X speedup) in execution time on Pandas, up to 90% reduction

(10X speedup) with Modin, up to 94% reduction (20X speedup)

with Dask, up to 70% reduction (3X speedup) with Pandas on

Spark, up to 56% reduction (2.3x speedup) with DuckDB and up

to 57% reduction (2.3x speedup) with Polars.

We note also that the scalable backends all use lazy evaluation

with runtime optimization, yet our optimized versions of the

programs gave significant further improvements in many cases.

There were only a few cases where our optimizations increased

execution time, the worst case being approximately 15% more

time as compared to the original Pandas on Spark program, with

DuckDB and Polars also having a few cases which took up to 13%

more time. These numbers represent cases where the run-time

transformations, which are not cost-based, made wrong choices,

adding more overhead than any benefit gained. We are working

on reducing the overhead of certain transformations on specific

back-ends/optimizations. In most cases the optimizations did

make the right choice, but cost-based optimization is an area of

future work.
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Figure 14: Execution Time Improvement

Program nyt dsp mov ais stu env fdb zip emp cty

Size(GB) 1.3 2.1 1.1 0.6 0.2 0.2 1.9 2.2 0.3 0.2

Pandas 12.5 2.2 51.6 15.4 50.6 22.4 29.0 109.3 311.7 37.6
OPandas 3.1 1.1 50.6 15.5 49.8 22.9 29.4 91.6 332.2 39.0

Dask 2.5 7.5 20.0 20.8 129.7 27.4 60.6 226 167.9 115.8

ODask 1.9 1.7 13.9 14.4 9.1 16.4 81.8 117.6 130.6 42.8

Table 15: Execution Time with Parquet on 4.2GB Data

Parquet Format. In order to validate performance of LaFP with

Parquet file format, which provides compression as well as type

information, we executed the benchmark programs using parquet

format by transforming 4.2GB csv files to Parquet. The time taken

(in seconds) is shown in the Table 15.

Compression done by Parquet reduces dataset sizes signifi-

cantly in many cases, as can be seen in the table. Due to this, data

could be loaded faster in the memory. Parquet allows fetching a

few columns much faster compared to a csv dataset, and therefore

the column selection optimization was more efficient. However,

the metadata optimization was not useful since Parquet already

Benchmark nyt dso mov env fdb

Dataset(GB) 130 128 132 107 116

Dask Time (secs) 353.2 378.7 355.3 Out of mem. Out of mem.

ODask Time (secs) 188.4 174.3 277.9 172.8 336.5

Table 16: Performance on Cluster With Large Data
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Figure 17: Memory Consumption Reduction (4.2 GB
Dataset)

maintains metadata. Overall, when using Parquet datasets, our

optimizations continued to give significant benefits on Dask as

well as on Pandas.

Execution on Cluster. To verify the scalability of our approach,

we ran a sample of the benchmark programs on an AWS cluster

with 12 nodes (type: m6i.xlarge with 16 GiB memory and 4vCPU)

with a total of 192 GiB memory and 48 cores. We use coiled.io to

run programs on a Dask cluster. Each program is executed using

native Dask and LaFP with Dask. Execution times (in seconds)

are shown in Table 16.

Despite Dask supporting out-of-memory dataframes, two of

the programs ran out of memory with Dask, but ran successfully

with our optimizations which inferred dtype as category for

some of the columns, reducing memory usage. It can be seen that

even on a cluster, ODask provided significant time and memory

benefits over native Dask; LaFP inserted column selection and/or

data type optimizations in several of these programs.

Optimization Overhead. We also measured the overhead due to

our static analysis and rewriting optimization techniques. The

time taken by JIT static analysis phase and rewriting for various

programs is in the range of 0.04 sec - 0.59 sec, which is a very small

fraction of the execution times of the programs. Collection of

metadata is done asynchronously, once per dataset/file, requiring

only a relatively inexpensive single scan or sample of the data,

and incurs no cost during program execution.
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P M D PoS Du Po

Only Static 11% 11% 29% 24% 14% 35%

All Opts 26% 28% 41% 18% 16% 23%

Ratio 42% 39% 70% 133% 88% 152%

Table 18: Impact of Static vs. All Optimizations

5.4 MaximumMemory Consumption
To get reliable memory size estimates despite multi-threaded

execution with Modin and Dask, we created a separate thread

that monitored the process memory usage every 200 milliseconds,

and we report the maximum memory usage. Figure 17 shows the

memory consumption improvements using our optimizations

on the 4.2 GB dataset. For lack of space we omit results on the

1.4 GB and 12.6 GB dataset, but note that the results are similar

except for the fact that with the 12.6 GB dataset the unoptimized

versions of many of the programs could not finish execution as

we saw earlier.

Missing values in Figure 17 represent cases where neither the

original nor the optimized program could execute successfully.

In case of Pandas, our optimizations significantly reduce mem-

ory consumption in most cases, with over 95% reduction in some

cases where column selection was particularly helpful. For the

programs that can be executed with Modin and Dask, our opti-

mizations reduced memory consumption by up to 60% and 55%

respectively, primarily due to column selection (projection push-

down) optimization. For Pandas on Spark and DuckDB using

Ibis, reduction in memory consumption is observed in most cases

with upto 35% reduction. In case of Polars using Ibis, significant

reduction in memory consumption is observed up to 95%.

However, there were some cases where our optimizations in-

creased memory consumption on Dask, with up ot 60% increase

in the worst case on 3 programs. These were due to common

computation reuse optimization which persists results and reuses

them. However, programs ais and cty, which had increased mem-

ory usage, correspondingly had 65% to 85% time improvements.

It may be noted that persisted dataframes are memory-resident

not only when using Pandas and Modin, but also with Dask when

using Dask’s persist() API function, which results in increased

memory usage. Persisting Dask dataframes on disk is an area of

future work.

5.5 Ablation Studies
We performed an ablation study of the execution time impact of

optimizations that we have proposed.

Effect of Static Analysis Based Optimizations: We first consider the

impact of optimizations that are based on static analysis, turning

off the other optimizations. All of our optimizations, except for

Predicate Pushdown (as currently implemented) and Metadata

Analysis, depend on static analysis.

The results are shown in Table 18, where the backend names

are abbreviated as done earlier in Table 12. It can be seen that

for Pandas and Modin, only static gave on average 11% improve-

ment, whereas all optimizations gave 26%and 28% improvement,

indicating the benefits of adding lazy computation based opti-

mizations to non-lazy backends. In contrast the benefits of only

static optimization are significant across all the lazy backends,

ranging from 16% to 35%, with only small or even negative im-

provements when only runtime optimizations are added. For

Pandas on Spark and Polars, only static resulted in better per-

formance than all optimizations, indicating some of our runtime

Opt. C+F CS LP ME PD

ODask 2[1.2-9.9x] 3[1.5-1.9x] 6[1.7-6.5x] 5[1.2-2.2x] 1[1.2x]

OPandas 2[1.2-9.0x] 3[1.5-1.7x] 5[1.8-7.5x] 5[1.1-2.0x] 1[1.2x]

Table 19: Ablation Study: Number of Affected Programs
and Regression Factor Ranges

optimizations made wrong choices; cost based choice is an area

of future work.

Effect of Individual Optimizations: In order to study the impact of

individual optimizations, we disable one optimization at a time

and find the increase in cost. We consider the following ablation

cases. C+F : common computation reuse+forced computation re-

moved, CS: column selection removed, LP : lazy print removed,

ME: metadata optimizations removed, PD: predicate push down

removed.

We run the programs with LaFP with Dask and Pandas as

back-ends on the 1.4 GB disk size dataset. The results are shown

in Table 19. The cells show the number of affected programs, and

the range of increase in costs due to the ablation, compared to

the baseline (all optimizations enabled), for these programs.

For example, with ODask there was a sharp slowdown of

around 9.9x on disabling common computation reuse on one of

the programs, cty. We also note that in this case there was also

an increase of 2.3X in memory consumption, which is a good

trade-off. Similarly, turning off column selection resulted in a

slowdown of 1.5X (ais) to 1.9X (dso).

Disabling lazyprint had an impact of up to 6.5X (stu), in pro-

grams with multiple print statements. Disabling metadata opti-

mization caused a slowdown of up to 2.2X. Both lazyprint and

metadata optimizations improve the performance for stu. Simi-

larly, multiple optimizations are applicable for other programs.

Predicate pushdown had only a 1.2X impact on one of the bench-

mark programs we considered, but we have observed much larger

benefits on other programs.

6 Conclusion and Future Work
We have described novel optimization techniques for Pandas

programs that combine static-analysis based rewriting and lazy

runtime frameworks. Our performance study shows the signifi-

cant benefits of our optimization approach not only compared to

Pandas but also compared to other frameworks.

Future work includes the addition of support for more Pandas

API calls, direct support for Polars (instead of via Ibis), implemen-

tation of automated choice of back-end, support for dataframe

attribute reference by position instead of name, completion of

read-only attribute analysis to ensure category type can be safely

used, and type inference for input/output parameters to be passed

to Dask apply() function. Implementation of more optimizations,

such as predicate pushdown based on static analysis, is another

area of future work.

Acknowledgments
We would like acknowledge the contributions of Utkarsh Shetye

and Manish Kumar, who helped implement some parts of the

LaFP system, including support for Ibis with DuckDB and Polars

as backends, and Sayanti Bhattacharjee and Pranab Kumar Paul,

who helped implement some aspects of lazy computation.

168



Efficient Dataframe Systems: Lazy Fat Pandas on a Diet EDBT ’26, 24-27 March 2026, Tampere (Finland)

Artifacts
Supplementary material including benchmark programs, datasets,

and code is available at https://github.com/lazyfatpandas/public.
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