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Abstract
Hypergraphs, increasingly utilised to model diverse relationships
in modern networks, have gained significant attention for repre-
senting intricate higher-order interactions. Among various chal-
lenges, cohesive subgraph discovery is one of the fundamental
problems and offers deep insights into these structures, yet the
task of selecting appropriate parameters is an open question. To
address this question, we aim to design an efficient indexing struc-
ture to retrieve cohesive subgraphs in an online manner. The main
idea is to enable the discovery of corresponding structures within
a reasonable time without the need for exhaustive graph traversals.
Our method enables faster and more effective retrieval of cohe-
sive structures, which supports decision-making in applications
that require online analysis of large-scale hypergraphs. Through
extensive experiments on real-world networks, we demonstrate
the superiority of our proposed indexing technique.
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1 INTRODUCTION
Modelling relationships among multiple entities intuitively and
effectively is a fundamental challenge in network analysis. Hy-
pergraphs offer a powerful solution by capturing higher-order
relationships among groups of entities, overcoming the pairwise
restriction of traditional graphs. Many real-world networks nat-
urally fit into the hypergraph framework, such as co-authorship
networks [28, 35], co-purchase networks [39, 42], and location-
based social networks [27].

Since hypergraphs capture higher-order interactions, hyper-
graph mining has become an active area of research. In par-
ticular, cohesive subhypergraph discovery has been actively re-
searched, with various models being proposed. These include the
𝑘-hypercore [29], (𝑘, 𝑙)-hypercore [30], (𝑘, 𝑡)-hypercore [9], nbr-
𝑘-core [3], (𝑘, 𝑑)-core [3], and (𝑘,𝑔)-core [22]. The most recent
model, the (𝑘,𝑔)-core, defines a maximal subhypergraph where
each node has at least 𝑘 neighbours appearing together in at least
𝑔 hyperedges. Unlike previous models, which primarily focus on
hyperedge cardinality, the (𝑘,𝑔)-core captures direct cohesive-
ness among neighbouring nodes. Building on these properties, the
model offers deeper structural insight by enabling fine-grained
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distinctions in how nodes participate across various numbers of
hyperedges. Accordingly, it reveals subhypergraphs with more
expressive and cohesive structure.

Given the benefits, the (𝑘,𝑔)-core has broad applicability in
various domains: (1) Team formation: In scenarios of collabora-
tive work or developing marketing strategies, the (𝑘,𝑔)-core can
identify appropriate groups of participants that are closely con-
nected through multiple shared projects or interactions, helping to
form cohesive and effective teams. (2) Community Search: Query-
centric community discovery is a central task in social network
analysis [37]. It mainly relies on models specifically designed for
that purpose. Cohesive subgraph models like the (𝑘,𝑔)-core offer
a robust framework for identifying tightly-connected substruc-
tures within a network [2, 15, 23, 32, 41]. (3) Foundation for other
hypergraph mining tasks: The (𝑘,𝑔)-core can support tasks such
as identifying densest subhypergraphs [20], influence maximisa-
tion [3], and centrality measures [10]. Its robust structure enables
optimising information spread and quantifying node importance
in complex networks.

Despite its usefulness, selecting appropriate parameters for the
cohesive subgraphs remains a significant challenge [12], particu-
larly in the absence of prior knowledge about the network. The
difficulty is exacerbated in models such as the (𝑘,𝑔)-core, which
incorporate two independent parameters to characterise node-level
cohesion. As a result, users are often required to issue repeated
and tedious queries, which limits practicality of the model. This
issue is especially problematic since many real-world applications
require online query processing [18], where the ability to rapidly
adjust parameters based on user-specified criteria is critical.

To address this challenge, many cohesive subgraph models
employ a technique known as decomposition [6, 17, 38]. This
approach stores the network in terms of its core structure, en-
abling users to obtain query results immediately without redun-
dant computation. While decomposition has become a widely
used strategy for cohesive subgraph models, we propose a novel
index-based (𝑘,𝑔)-core decomposition method, extending prior
approaches with several key advantages. First, it enables efficient
query processing by eliminating the need for repeated subgraph
computations. Second, it constructs a memory-efficient data struc-
ture to represent decomposition results. We will show that this is
particularly beneficial for models like the (𝑘,𝑔)-core that exhibit
strong locality. Third, the proposed index structures capture la-
tent structural properties of node participation, thereby enhancing
interpretability of hypergraph topology. These advantages make
the index-based decomposition framework well-suited for a range
of applications, including the following: (1) Fraud Detection: In
domains such as e-commerce or financial networks, fraudsters
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Figure 1: An illustrative example of proposed framework

often operate within tightly knit groups that exhibit suspiciously
high levels of interaction [19, 36]. The (𝑘,𝑔)-core can be applied
to identify these densely connected groups of fraudulent actors,
based on the frequency and nature of their interactions. By lever-
aging the indexing-based structure, it becomes feasible to detect
such activities in online time, enhancing the ability to prevent
fraud before it escalates. (2) User Engagement Analysis: Social
networks are often analysed to understand user engagement at
multiple levels. By using the (𝑘,𝑔)-core and its index structure,
we can evaluate user interactions across various dimensions, help-
ing to identify which users are central to the network cohesion
at different levels of connectivity. This insight can be useful for
recognising influential users, understanding engagement trends,
or even detecting abnormal behaviours like bot activity or coor-
dinated misinformation campaigns. (3) Size-Bounded Cohesive
Subgraph Discovery: In scenarios like size-bounded team forma-
tion, conference planning, or social event organisation, it is crucial
to assemble groups of participants who are closely connected and
of appropriate community size [32, 41]. The index-based approach
can efficiently identify candidate groups that meet these criteria.

In this paper, we propose index-based (𝑘,𝑔)-core decompo-
sition techniques, along with efficient online query processing
algorithms that leverage these indexing structures. The overall
framework of our proposed approach is illustrated in Figure 1.
It has two main phases: (1) Indexing : the hypergraph is prepro-
cessed into a memory-efficient index structure; and (2) Query
Processing : users can perform online queries by dynamically
adjusting parameters based on the precomputed index.

Challenges. Constructing an efficient index for the (𝑘,𝑔)-core in
hypergraphs raises challenges that differ from graph-based core
indexing. In particular, the following issues must be addressed:

• Indexing under dual parameters: Unlike traditional graph
models such as the 𝑘-core or 𝑘-truss, hypergraphs impose si-
multaneous constraints on both node degree and group size. No
established indexing methods exist for such multi-parameter
settings. A straightforward approach based on clique reduc-
tion [21] leads to substantial size inflation, and high-cardinality
hyperedges exacerbate memory consumption and complicate
index maintenance.
• Space efficiency: The index must support queries for all (𝑘,𝑔)

combinations. Due to the hierarchical nature of the (𝑘,𝑔)-core,
cores with nearby parameter values often overlap substantially,
resulting in redundancy. A compact design that minimises du-
plication while preserving query capability is required.
• Scalable query processing: The peeling algorithm for (𝑘,𝑔)-

core discovery is prohibitively slow on large hypergraphs. The
index must thus guarantee query scalability, ensuring practical
query latency even at large scale.

Contributions. Index-based cohesive subgraph discovery has
been extensively studied in diverse graph settings [15, 31, 33,
43]. Our work leverages hierarchical compression from prior
indices while addressing several key distinctions. Specifically,
the (𝑘,𝑔)-core on hypergraphs introduces simultaneous param-
eter constraints on co-occurrence neighbourhoods; we design
structurally distinct indexing trees; and our index exploit non-
hierarchical locality between cores. The detailed contributions of
this work are as follows:

(1) Problem formulation: This study presents, to our knowledge,
the first index-based framework for efficient discovery of co-
occurrence based cohesive subgraphs in hypergraphs.

(2) Indexing algorithms: We propose three new indexing tech-
niques that mitigate excessive memory consumption by ex-
ploiting the inherent locality of hypergraph core structures,
and further incorporate cross-parameter locality beyond hier-
archical compression to enhance query efficiency.

(3) Experimental evaluation: We conduct extensive experiments
on multiple real-world datasets, demonstrating the effective-
ness of our proposed indexing structures and query algorithms.

Organisation. The following sections of this paper are structured
as follows: Section 2 introduces the key notations and definitions
related to the (𝑘,𝑔)-core model. Section 3 describes the proposed
index structures and research questions. In Section 4, we present
our indexing model and algorithms, along with theoretical anal-
ysis. Section 5 provides empirical results from experiments on
various real-world hypergraph datasets. Related work is discussed
in Section 6, and the conclusion and the future work are presented
in Section 7.

2 PRELIMINARIES
A hypergraph is formally represented as 𝐺 = (𝑉 , 𝐸), where 𝑉

denotes the set of nodes and 𝐸 denotes the set of hyperedges. In
this paper, we assume𝐺 to be undirected and unweighted. For any
subset 𝐻 ⊆ 𝑉 , we denote the induced subhypergraph as 𝐺 [𝐻 ] =
(𝐻, 𝐸 [𝐻 ]) where 𝐸 [𝐻 ] = {𝑒 ∩ 𝐻 | 𝑒 ∈ 𝐸 ∧ 𝑒 ∩ 𝐻 ≠ ∅}. We also
define 𝐵 =

∑
𝑒∈𝐸 |𝑒 | as the total cardinality of the hypergraph, and

|𝑒∗ | =max𝑒∈𝐸 |𝑒 | as the largest cardinality among all hyperedges.
Within hypergraph terminology, it is essential to understand the

definitions of fundamental terms such as “degree”, “neighbours”,
and “cardinality”, especially when contrasted with their traditional
graph-theoretic counterparts.

• Degree: The degree of a node is defined as the number of
hyperedges that include the node. This significantly differs
from a traditional graph, in which the degree simply refers to
the number of edges incident to the node.
• Neighbours: The neighbours of a node are all other nodes that

are connected to it via shared hyperedges. This contrasts with

171



Efficient Locality-based Indexing for Cohesive Subgraphs Discovery in Hypergraphs EDBT ’26, 24-27 March 2026, Tampere (Finland)

!!

!"
!#

!$

!%

!&

!'

"#

"'

"&

"!

"#

""

"( "%

"$

"!!

")

"'

"!*

(a) A hypergraph
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Figure 2: Illustrative example of core structure patterns in a hypergraph

traditional graphs, where neighbours are only the nodes directly
connected by an edge.
• Cardinality: The cardinality of a hyperedge indicates the num-

ber of nodes it contains. This concept is specific to hyper-
graphs, as edges in traditional graphs connect exactly two nodes,
thereby fixing their cardinality at two.

DEFINITION 1. ((𝑘,𝑔)-core [22]). Given a hypergraph 𝐺 , 𝑘,
and 𝑔, (𝑘,𝑔)-core is the maximal set of nodes in which each node
has at least 𝑘 neighbours appearing in at least 𝑔 hyperedges in an
induced subhypergraph by the set of nodes.

Based on this definition, we establish two fundamental proper-
ties of the (𝑘,𝑔)-core.

PROPERTY 1. For 𝑘 ′ ≤ 𝑘 and 𝑔′ ≤ 𝑔, (𝑘,𝑔)-core ⊆ (𝑘 ′, 𝑔′)-
core.

PROOF. Assume there exists 𝑣 ∈ (𝑘,𝑔)-core but 𝑣 ∉ (𝑘 ′, 𝑔′)-
core. Since 𝑣 satisfies the condition, and 𝑘 ′ ≤ 𝑘, 𝑔′ ≤ 𝑔, it must
satisfy the weaker (𝑘 ′, 𝑔′) condition. This contradicts the assump-
tion that 𝑣 ∉ (𝑘 ′, 𝑔′)-core. Hence, (𝑘,𝑔)-core ⊆ (𝑘 ′, 𝑔′)-core. □

PROPERTY 2. (𝑘,𝑔)-core is unique.

PROOF. Suppose that there exist two distinct (𝑘,𝑔)-cores 𝐻1
and 𝐻2. Based on the definition, both are maximal sets of nodes
satisfying the (𝑘,𝑔) condition. Now consider their union 𝐻 ′ =
𝐻1 ∪𝐻2. Every node in 𝐻 ′ satisfies the (𝑘,𝑔) condition within the
induced subhypergraph of 𝐻 ′. Since 𝐻1 ⊊ 𝐻 ′ and 𝐻2 ⊊ 𝐻 ′, this
contradicts the maximality requirement of 𝐻1 and 𝐻2. Therefore,
the (𝑘,𝑔)-core is unique. □

We next define several notions of coreness that are utilised to
build indexing structures.

DEFINITION 2. (𝑘-coreness / 𝑔-coreness). Given a hypergraph
𝐺 and a fixed 𝑘, the 𝑘-coreness of a node 𝑥 in 𝐺 , denoted as
𝑐𝑘 (𝑥,𝐺), is the maximum 𝑔′ such that 𝑥 belongs to the (𝑘,𝑔′)-
core but not to the (𝑘,𝑔′ + 1)-core. Similarly, for a given 𝑔, the
𝑔-coreness of 𝑥 , denoted as 𝑐𝑔 (𝑥,𝐺), is the maximum 𝑘 ′ such that
𝑥 is in the (𝑘 ′, 𝑔)-core but not in the (𝑘 ′ + 1, 𝑔)-core.

These single-parameter coreness capture the maximal partic-
ipation of a node along one parameter side. However, to fully
characterise a node position within the hierarchical structure of
(𝑘,𝑔)-cores, we require a more comprehensive measure that ac-
counts for both parameters simultaneously. It motivates the in-
troduction of a joint coreness concept that captures the whole
structural role of each node.

DEFINITION 3. ((𝑘,𝑔)-coreness). Given a hypergraph 𝐺 =

(𝑉 , 𝐸) and a node 𝑥 ∈ 𝐺 , the (𝑘,𝑔)-coreness of 𝑥 refers to the
pairs of (𝑘,𝑔) values such that 𝑥 belongs to the (𝑘,𝑔)-core but not
to any (𝑘 ′, 𝑔)-core or (𝑘,𝑔′)-core where 𝑘 ′ > 𝑘 and 𝑔′ > 𝑔.

The 𝑘-coreness of a node 𝑥 indicates the maximum number
of hyperedges in which 𝑥 co-occurs with at least 𝑘 neighbours.
Conversely, the 𝑔-coreness of a node 𝑥 captures the maximum
number of neighbours that co-occur with 𝑥 in at least 𝑔 hyperedges.
Furthermore, the (𝑘,𝑔)-coreness jointly characterises the impor-
tance of a node by incorporating both its local connectivity and
its interaction strength. Note that, unlike 𝑘-coreness or 𝑔-coreness
where a node has a unique value for a given 𝑔 or 𝑘, a node may
possess multiple (𝑘,𝑔)-coreness values such as (1, 3), (2, 2), and
(3, 1) simultaneously.

EXAMPLE 1. Figure 2 illustrates an example hypergraph, its
shell structures, and the corresponding hyperedge-node bipartite
representation. Figure 2b shows the shell structure of the hyper-
graph𝐺 from Figure 2a when𝑔 = 2. The set of nodes {𝑣1, 𝑣2, 𝑣3, 𝑣6}
(in red line) is included in all of the (1, 2), (2, 2), and (3, 2)-cores.
Hence, by the aforementioned definition, their 𝑔-coreness value
with respect to 𝑔 = 2, denoted as 𝑐2 (𝑣𝑖 ,𝐺) for 𝑖 ∈ {1, 2, 3, 6}, is 3.
Furthermore, in Figure 2c, the nodes {𝑣1, . . . , 𝑣5} (in red line) form
the (1, 3)-core. Each node in this set has at least 1 neighbour with
whom it co-occurs in at least 3 hyperedges. For instance, nodes
𝑣1, 𝑣2, 𝑣3 appear together in 𝑒1, 𝑒2, and 𝑒3, while 𝑣4, 𝑣5 co-occur in
𝑒4, 𝑒5, and 𝑒6.

Peeling algorithm for (𝑘,𝑔)-core. The peeling algorithm in [22]
identifies the (𝑘,𝑔)-core by first computing all neighbours and
then iteratively removing nodes that violate the core condition.
While computing all neighbours initially can improve efficiency,
this method requires 𝑂 ( |𝑉 |2) memory to store neighbour struc-
tures. To address this, we propose a memory-efficient variant that
computes neighbours on the fly, reducing space to 𝑂 ( |𝑉 |) with an
increased time complexity of 𝑂 ( |𝑉 | · 𝐵 · |𝑒∗ |) where 𝐵 =

∑
𝑒∈𝐸 |𝑒 |

and |𝑒∗ | =max𝑒∈𝐸 |𝑒 |. Since hyperedge sizes often follow a power-
law distribution [16, 26], this trade-off is effective in practice. We
denote the runtime of the peeling algorithm as 𝑂 (𝑃) to reflect its
adaptiveness. Detailed analysis on the algorithm can be checked
in the online appendix [24].

3 PROBLEM STATEMENT
While certain structural properties of the (𝑘,𝑔)-core have been
identified and studied in prior work, selecting appropriate user-
defined parameters 𝑘 and 𝑔 remains a challenging and unresolved
problem, as discussed earlier in Section 1. Therefore, in this paper,
we aim to address this practical challenge by enabling end-users to
adjust these parameters dynamically within online time in order to
obtain the desired cohesive subgraph interactively and efficiently.
The central research question and our solution are as follows:
Research Question. Given a hypergraph𝐺 , is it feasible for a user
to dynamically change the 𝑘 and 𝑔 values and promptly obtain the
corresponding (𝑘,𝑔)-core without recomputation?
Answer. To address above question, we aim to develop two ap-
proaches, each designed with a different strategic focus: (1) fast
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Figure 3: Naiv̈e indexing tree structure

query processing time for responsiveness, and (2) compact space
usage for scalability.

(1) Naïve Indexing Approach (Naiv̈e): This method directly
stores the results of the (𝑘,𝑔)-core for every possible valid
combination of 𝑘 and 𝑔 in advance. As a result, end-users
can access the desired (𝑘,𝑔)-core almost instantly without
performing any complex query operations. This approach is
particularly effective for handling small-sized datasets, where
memory cost is not a critical constraint.

(2) Locality-based Space Efficient Approach: This method pri-
oritises memory efficiency while maintaining flexible query
access. To achieve this, we introduce several indexing strate-
gies based on structural locality principles:
• Horizontal Locality-based Indexing (LSE𝐻 ): Leverages the

inherent hierarchical relationships among (𝑘,𝑔)-cores with
fixed 𝑔 values to minimise redundant data storage.
• Vertical Locality-based Indexing (LSE𝐻𝑉 ): Exploits the

vertical core hierarchy across increasing 𝑔 values to reduce
duplication of node inclusion information.
• Diagonal Locality-based Indexing (LSE𝐻𝑉𝐷 ): Captures la-

tent structural similarities among non-hierarchically related
(𝑘,𝑔)-cores—particularly diagonally adjacent ones—by in-
troducing and maintaining hidden auxiliary nodes.

4 INDEXING TREE AND QUERY
PROCESSING

In this section, we present indexing algorithms designed for effi-
ciently querying all (𝑘,𝑔)-cores in a flexible and scalable manner.
We first introduce the Naïve Indexing Approach (Naiv̈e), which
prioritises query processing performance over memory efficiency
by storing precomputed results. Due to its excessive memory us-
age, we then introduce Locality-based Space-Efficient Indexing
approaches (LSEs), which focus on optimising memory usage
while still maintaining reasonably efficient query processing times.

Indexing tree structure. Figure 3 illustrates the layered and hier-
archical design of the proposed indexing structure. This structure
is represented as a rooted tree of height 2 with three layers. At the
root, the edges correspond to different values of 𝑔, forming the
first layer of categorisation. At the 𝑔-level, the edges that connect
nodes from this level to the 𝑘-level represent a specific 𝑘 value,
enabling efficient traversal for given parameter combinations. This
structure provides an organised and compact representation of the
various valid combinations of the (𝑘,𝑔) values. The 𝑘-level con-
sists of (𝑘,𝑔)-leaf nodes, which store the actual node sets that are
part of the corresponding (𝑘,𝑔)-core. The order of 𝑔 and 𝑘 in the
tree structure is configurable—it can be determined by application
context or user preference, and notably, it can be easily reversed
without additional structural cost.

4.1 Naïve Indexing Approach (Naiv̈e)
To support fast retrieval of any (𝑘,𝑔)-core, we propose a straight-
forward method called the Naïve Indexing Approach. It constructs
an indexing tree that enables direct access to all (𝑘,𝑔)-cores.

4.1.1 Indexing framework.
Indexing tree construction. The construction of the Naiv̈e index-
ing tree involves computing all possible (𝑘,𝑔)-cores in the given
hypergraph. Each computed core is stored in its corresponding
(𝑘,𝑔)-leaf node within the tree structure.
Leaf node. Each (𝑘,𝑔)-leaf node contains the set of nodes that
belong to the associated (𝑘,𝑔)-core. These leaf nodes serve as the
terminal storage units for the precomputed core information.
Query processing. Querying the Naiv̈e indexing tree simply
involves locating the appropriate (𝑘,𝑔)-leaf by traversing the root
to the 𝑔-level and then to the 𝑘-level. The target leaf node directly
provides all nodes in the specified (𝑘,𝑔)-core.

4.1.2 Complexity analysis.
Construction time complexity. Let 𝑂 (𝑃)1 denotes the time com-
plexity of the (𝑘,𝑔)-core peeling algorithm. For a specific value
of 𝑔′, let 𝑘∗

𝑔′ denote the maximum 𝑘 for that given 𝑔′, implying
that there is no (𝑘∗

𝑔′ + 1, 𝑔
′)-core. To enumerate all leaf nodes of

a branch corresponding to 𝑔′, it is sufficient to compute only the
(𝑘∗

𝑔′ , 𝑔
′)-core since the computation of the (𝑘 ′

𝑔′ , 𝑔
′)-core, where

𝑘 ′
𝑔′ < 𝑘∗

𝑔′ , is inherently part of the intermediate results obtained
during the peeling procedure to get the (𝑘∗

𝑔′ , 𝑔
′)-core. Thus, the

time complexity to construct a Naiv̈e indexing tree is 𝑂 (𝑔∗ · 𝑃),
where 𝑔∗ is the maximum value of 𝑔 in the hypergraph.
Query processing time complexity. Since each (𝑘,𝑔)-leaf node
directly stores the nodes of the corresponding (𝑘,𝑔)-core, a query
can be answered in 𝑂 (1) time using the Naiv̈e indexing tree.
Space complexity. In the worst case, each (𝑘,𝑔)-leaf node may
include all nodes in𝑉 , resulting in a total space usage of𝑂 (𝑘∗ ·𝑔∗ ·
|𝑉 |), where 𝑘∗, 𝑔∗ are the maximum 𝑘,𝑔 value in the hypergraph.

EXAMPLE 2. Consider the Naiv̈e indexing tree illustrated
in Figure 3, which is constructed from the hypergraph shown in
Figure 2a. This indexing tree consists of eight (𝑘,𝑔)-leaf nodes,
each corresponding to a unique combination of 𝑘 and 𝑔 values.
Each leaf node stores the nodes in the associated (𝑘,𝑔)-core.
Notably, some nodes appear frequently across multiple leaf nodes;
for example, node 𝑣1 appears in all of them.

This observation highlights a key trade-off in the Naiv̈e index-
ing technique: it offers optimal query processing time, i.e., 𝑂 (1),
by directly storing all (𝑘,𝑔)-cores. However, it incurs a space
complexity of 𝑂 (𝑘∗ · 𝑔∗ · |𝑉 |), which becomes impractical to han-
dle large-scale real-world hypergraphs due to excessive memory
consumption. To mitigate this space overhead while preserving
reasonable query performance, we next introduce three indexing
techniques that encode core information by leveraging different
types of locality observed in the (𝑘,𝑔)-core structure.

4.2 Horizontal Locality-based Indexing(LSE𝐻 )
In this section, we present Horizontal Locality-based Indexing,
which aims to reduce space complexity by utilising the hierarchi-
cal characteristics of the (𝑘,𝑔)-core structure. The term “horizon-
tal” refers to the use of the 𝑘-level hierarchy within each 𝑔-branch
in the indexing tree.
1The (𝑘,𝑔)-core peeling algorithm forms the basis of index technique. For simplicity
and to facilitate analysis, we represent the complexity of the algorithm as 𝑂 (𝑃 ) .
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Algorithm 1: enum_h: Enum shell structures by fixing 𝑔

Input: Hypergraph 𝐺 = (𝑉 , 𝐸 ) , parameter 𝑔
Output: { (𝑘,𝑔)-core | 𝑘 ≥ 1 and (𝑘,𝑔)-core ≠ ∅}

1 𝑝𝑟𝑒𝑣 ← ∅ , 𝐻 ← 𝑉 ;
2 for 𝑘 ′ ← 1 to |𝑉 | do
3 if |𝐻 | ≤ 𝑘 ′ then
4 break;
5 while true do
6 changed← false;
7 foreach 𝑣 ∈ 𝐻 do
8 𝑁 (𝑣) ← { (𝑤,𝑐 (𝑣, 𝑤 ) ) |𝑤 ∈ 𝑉 , and 𝑐 (𝑣, 𝑤 ) ≥ 𝑔};
9 if |𝑁 (𝑣) | < 𝑘 ′ then

10 𝐻 ← 𝐻 \ {𝑣};
11 changed← true;
12 if changed = false then
13 if 𝑝𝑟𝑒𝑣 ≠ ∅ then
14 𝑆.add(𝑝𝑟𝑒𝑣 \𝐻 );
15 prev← 𝐻 ;
16 break;
17 if prev ≠ ∅ then
18 𝑆.add(𝑝𝑟𝑒𝑣);
19 return 𝑆

4.2.1 Indexing framework.
Indexing tree construction. The construction process for the
LSE𝐻 indexing tree is described in Algorithm 1 and Algorithm 2.
The enumeration process (Algorithm 1) iteratively increases 𝑘 ′

for a fixed value of 𝑔 to identify the corresponding (𝑘 ′, 𝑔)-cores.
If the number of remaining nodes becomes less than 𝑘 ′, no further
(𝑘 ′, 𝑔)-cores can be obtained for that 𝑔, and the search termi-
nates (Lines 1–4). Otherwise, for each node 𝑣 ∈ 𝑉 , the algorithm
identifies neighbour nodes 𝑤 such that 𝑣 and 𝑤 appear together
in at least 𝑔 hyperedges, and checks whether the number of such
neighbours is at least 𝑘 ′. Nodes that do not satisfy this condition
are removed through peeling process (Lines 5-11). In addition, it
removes redundancies between subsequent (𝑘,𝑔)-cores, such as
the (𝑘 ′, 𝑔)-core and the (𝑘 ′+1, 𝑔)-core (Lines 13-15). Based on this
process, in Algorithm 2, we iterate over 𝑔′ from 1 to the maximum
value 𝑔∗ and compute the shell structure for each 𝑔′ (Lines 1-4).
Since the enumeration identifies the 𝑔-coreness for all nodes, only
the nodes satisfying 𝑐𝑔

′ (𝑣,𝐺) = 𝑘 ′ are stored in the corresponding
(𝑘 ′, 𝑔′)-leaf node (Lines 8-9). These leaf nodes are connected via
"next links" (Lines 10-12). As a result, the leaf nodes sharing the
same parent in the 𝑔-level do not contain redundant nodes.

Leaf node. Each leaf node contains both a specific value and a
link to the next leaf node in the sequence. The composition of a
leaf node in this structure is detailed as follows:

• Value: Each (𝑘,𝑔)-leaf node in the indexing tree contains a set
of nodes, all of which share the same 𝑔-coreness, denoted by
the value 𝑘 . This implies that nodes having identical 𝑔-coreness
are stored in the same leaf node.
• Link: Given a specific 𝑔 value, a leaf node representing a certain
𝑔-coreness of exactly 𝑘 is linked to the subsequent leaf node
that represents 𝑔-coreness of exactly 𝑘 + 1. This edge is referred
to as the next link, and this linked-list structure is consistently
repeated across every branch corresponding to different 𝑔 val-
ues, thereby maintaining a uniform and systematic connection
pattern within the indexing tree.

Query processing. To process a query 𝑄 = (𝑘,𝑔) with the in-
dexing tree, the following procedure is employed to retrieve the

Algorithm 2: Horizontal Locality-based indexing
Input: Hypergraph 𝐺 = (𝑉 , 𝐸 )
Output: Indexing tree𝑇

1 𝑇 ← treeInit();
2 for 𝑔′ ← 1 to 𝑔∗ do
3 𝑘 ′ ← 1;
4 𝑆 ← enum_h(𝐺 , 𝑔′);
5 if |𝑆 | = ∅ then
6 break;
7 𝑝𝑟𝑒𝑣 ← ∅;
8 for 𝑠 ∈ 𝑆 do
9 𝑢 ← insertLeafNode(𝑇 , 𝑘 ′++, 𝑔′, 𝑠);

10 if 𝑝𝑟𝑒𝑣 ≠ ∅ then
11 𝑝𝑟𝑒𝑣.next← 𝑢;
12 𝑝𝑟𝑒𝑣 ← 𝑢;
13 return𝑇

(𝑘,𝑔)-core: Initially, we find the (𝑘,𝑔)-leaf node. From this leaf
node, it iteratively traverses subsequent leaf nodes through next
link until reaching the terminal leaf node, which is not pointing to
a further leaf node. The (𝑘,𝑔)-core is retrieved by aggregating all
nodes encountered across these traversed leaf nodes.

4.2.2 Complexity analysis.
Construction time complexity. The time complexity for con-
structing the LSE𝐻 indexing tree is 𝑂 (𝑔∗ · (𝑃 + 𝑘∗ · |𝑉 |)), where
𝑂 (𝑃) denotes the time complexity of the (𝑘,𝑔)-core peeling al-
gorithm. Compared to the Naiv̈e indexing tree construction, this
process includes an additional step: performing a set difference
operation between pairs of linked leaf nodes, which takes 𝑂 ( |𝑉 |)
time in the worst case for each pair. Since at most 𝑘∗ such opera-
tions can occur for each 𝑔 > 1, the additional overhead across all
𝑔 layers remains bounded by 𝑂 (𝑔∗ · 𝑘∗ · |𝑉 |).
Query processing time complexity. Query processing involves
traversing the leaf nodes in the indexing tree 𝑇 , starting from
the (𝑘,𝑔)-leaf node and continuing until the terminal leaf node is
reached. Thus, the overall time complexity for retrieving the (𝑘,𝑔)-
core is 𝑂 (𝑘∗ · |𝑉 |), which clearly reflects the linear dependency
on the number of nodes and the maximum 𝑘 value.
Space complexity. The LSE𝐻 indexing technique can signifi-
cantly reduce space complexity by storing each node in the hy-
pergraph only once for each 𝑔 value, unlike the Naiv̈e indexing
approach which may store redundant node information. This effi-
ciency is achieved through a horizontal connection of leaf nodes
and the removal of redundancies across different 𝑘 values for the
same 𝑔. Consequently, the space complexity is primarily deter-
mined by the number of distinct nodes for each 𝑔 value, leading
to a complexity of 𝑂 (𝑔∗ · |𝑉 |).

EXAMPLE 3. Figure 4 presents the LSE𝐻 indexing tree ap-
plied to the hypergraph 𝐺 presented in Figure 2a. In this repre-
sentation, nodes {𝑣1, . . . , 𝑣9} are categorised within the (3, 1)-leaf.
This indicates that these nodes are included in both the (1, 1)-core
and (2, 1)-core, i.e., {𝑣1, . . . , 𝑣9} = (3, 1)-core ⊆ (2, 1)-core ⊆
(1, 1)-core. When processing a query 𝑄 = (2, 1), the method
involves traversing from the (2, 1)-leaf node to (3, 1)-leaf node
through the next link, subsequently aggregating the nodes from
these leaf nodes to obtain the (2, 1)-core. Note that a node 𝑣 may
appear in multiple leaf nodes across different 𝑔 branches if its
𝑘-coreness is greater than 1. For example, nodes 𝑣1, 𝑣2, and 𝑣3 are
present in all 𝑔 branches.
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Figure 4: LSE𝐻 indexing tree structure

4.3 Vertical Locality-based Indexing(LSE𝐻𝑉 )
In this section, we introduce the Vertical Locality-based Indexing
technique, developed to improve space complexity by simultane-
ously considering both 𝑘 and 𝑔 parameters. Unlike LSE𝐻 , which
focuses on overlaps within the same 𝑔 value, LSE𝐻𝑉 handles over-
laps across different 𝑘 and 𝑔 values at the same time. For instance,
while LSE𝐻 eliminates duplicate nodes between (1, 2)-core, (2, 2)-
core, and (3, 2)-core, it does not consider overlaps between cores
like (3, 1)-core and (3, 2)-core. The LSE𝐻𝑉 indexing technique,
therefore, has additional links between leaf nodes of the same
𝑘 value, preserving efficient query processing by accounting for
duplicate relationships across both 𝑘 and 𝑔 values.

4.3.1 Indexing framework.
Indexing tree construction. The construction process for the
LSE𝐻𝑉 indexing tree is described in Algorithm 3. It begins based
on the LSE𝐻 indexing tree as a preliminary step (Lines 1–12).
Then, for each 𝑔′ from 1 to 𝑔∗ − 1, where 𝑔∗ is the maximum
𝑔 value in the hypergraph (Line 13), the algorithm performs set
difference operations between the (𝑘 ′, 𝑔′)- and (𝑘 ′, 𝑔′ + 1)-leaf
nodes for all 𝑘 ′ up to 𝑘∗(𝑔′+1) , where 𝑘∗𝑔 denotes the maximum
𝑘 value for a given 𝑔 (Lines 14–17). These operations establish
"jump links" between adjacent leaf nodes across 𝑔-level layers,
as illustrated in Figure 5. As with the LSE𝐻 indexing tree, the
number of nodes in each 𝑔-layer branch remains bounded by |𝑉 |.
Leaf node. In the Vertical Locality-based Indexing (LSE𝐻𝑉 ),
each leaf node contains a specific value and two distinct links. The
components of a leaf node are as follows:
• Value: In the LSE𝐻𝑉 indexing tree, each (𝑘,𝑔)-leaf node com-

prises a unique set of nodes. These nodes are characterised by
having a 𝑘-coreness of exactly 𝑔 and a 𝑔-coreness of exactly 𝑘 .
This means that the (𝑘,𝑔)-coreness of any node in a (𝑘,𝑔)-leaf
node includes the pair of values (𝑘,𝑔).
• Link: In the LSE𝐻𝑉 indexing tree, links are categorised into

two distinct types: next link and jump link.
(1) Next Link: The next link, the same as in the LSE𝐻 indexing

tree, connects to the subsequent leaf node in the sequence.
Specifically, a (𝑘,𝑔)-leaf node is linked to the (𝑘 +1, 𝑔)-leaf
node. This link is based on the 𝑔-coreness, determining the
exact position of a node within the indexing tree.

(2) Jump Link: The jump link connects to the next leaf node
fixing the 𝑘 value. For instance, a (𝑘,𝑔)-leaf node is linked
to the (𝑘,𝑔+1)-leaf node. Based on the 𝑘-coreness, it guides
the location of a node within the indexing tree.

Query processing. To process a query 𝑄 = (𝑘,𝑔) using the
LSE𝐻𝑉 indexing tree, we employ a specific procedure to accu-
rately find the (𝑘,𝑔)-core. The first step is to find the corresponding
(𝑘,𝑔)-leaf node in the indexing tree. Starting from this node, the
process involves iterative traversal of subsequent leaf nodes along
the jump link until the terminal leaf node is reached. Subsequently,
for each of these leaf nodes, traversal continues along the next

Algorithm 3: Vertical Locality-based indexing
Input: Hypergraph 𝐺 = (𝑉 , 𝐸 )
Output: Indexing tree𝑇
/* Lines 1-12 in Algorithm 2 */

13 for 𝑔′ ← 1 to 𝑔∗ − 1 do
14 for 𝑘 ′ ← 1 to 𝑘∗(𝑔′+1) do
15 Leaf(𝑘 ′,𝑔′).jump← Leaf(𝑘 ′,𝑔′ + 1);
16 𝑠 ← Leaf(𝑘 ′,𝑔′) \ Leaf(𝑘 ′,𝑔′ + 1);
17 updateLeafNode(𝑇 ,𝑘 ′,𝑔′,𝑠);
18 return𝑇
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Figure 5: LSE𝐻𝑉 indexing tree structure

link until the terminal leaf node is encountered. The (𝑘,𝑔)-core
is then obtained by aggregating all nodes during these traversals
across the respective leaf nodes.

4.3.2 Complexity analysis.
Construction time complexity. The LSE𝐻𝑉 algorithm extends
the LSE𝐻 approach by visiting the (𝑔∗ − 1) children of the root
node and performing additional set difference operations between
𝑘∗𝑔 leaf nodes, where 𝑘∗𝑔 denotes the maximum 𝑘 value for a given
𝑔. The complexity of these operations is bounded by 𝑂 (𝑘∗ · |𝑉 |).
Therefore, the overall time complexity for constructing the LSE𝐻𝑉

indexing tree is 𝑂 (𝑔∗ · (𝑃 + 𝑘∗ · |𝑉 |)), where 𝑂 (𝑃) denotes the
time complexity of the (𝑘,𝑔)-core peeling algorithm.
Query processing complexity. In the worst case, LSE𝐻𝑉 requires
traversing all leaf nodes while aggregating the nodes. Hence, the
time complexity for query processing is 𝑂 (𝑘∗ · 𝑔∗ · |𝑉 |).
Space complexity. The space complexity of LSE𝐻𝑉 indexing
tree is equivalent to that of the LSE𝐻 indexing tree, which is
𝑂 (𝑔∗ · |𝑉 |). This is because, in the worst case, nodes may not
be stored adjacently within the indexing tree. For instance, if a
node 𝑣𝑖 is present in the (𝑘,𝑔)-leaf node and also belongs to the
(𝑘 − 1, 𝑔 + 1)-core, duplication of nodes within the indexing tree
is inevitable.

EXAMPLE 4. Figure 5 shows the LSE𝐻𝑉 indexing tree for the
hypergraph 𝐺 from Figure 2a. It shows that the LSE𝐻𝑉 indexing
tree reduces redundancy by compressing vertical overlaps. For
example, the (3, 1)-leaf in the LSE𝐻𝑉 indexing tree contains only
{𝑣4, 𝑣5, 𝑣7, 𝑣8, 𝑣9}, as LSE𝐻𝑉 removes duplicate nodes from the
same 𝑘-level branches. To process the query𝑄 = (2, 2), it finds the
(2, 2)-leaf and uses the next links to aggregate nodes from leaves
such as (3, 2). Then, it follows the jump links to include nodes
from leaves like (2, 3). As a result, it retrieves nodes {𝑣1, . . . , 𝑣7},
corresponding to the (2, 2)-core.

4.4 Diagonal Locality-based Indexing(LSE𝐻𝑉𝐷 )
In this section, we present the Diagonal Locality-based Indexing
technique. Beyond removing redundancies in hierarchical (𝑘,𝑔)-
cores, it captures the locality among non-hierarchical (𝑘,𝑔)-cores,
focusing on the relationships between diagonally placed leaf nodes
such as (𝑘 − 1, 𝑔)-leaf node and (𝑘,𝑔 − 1)-leaf node.
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Rationale of LSE𝐻𝑉𝐷 approach. The LSE𝐻𝑉𝐷 technique is mo-
tivated by the observation that strong locality exists even among
non-hierarchical cores within the Naiv̈e indexing tree. To validate
this, we analysed the Contact dataset [3], measuring the number
of common nodes between diagonally adjacent leaf nodes (e.g.,
(𝑘 − 1, 𝑔) and (𝑘,𝑔 − 1)). Using Jaccard similarity, we quantified
the overlap and averaged it across cases where a leaf node has
two diagonally adjacent nodes. Figure 6 illustrates that a signifi-
cant overlap exists between these diagonally adjacent leaf nodes,
indicating strong diagonal locality in real-world networks. This
finding supports the design of the LSE𝐻𝑉𝐷 technique, which re-
duces redundancy by identifying and relocating overlapping nodes
into auxiliary nodes. These auxiliary nodes may themselves be
diagonally adjacent and recursively optimised. To achieve this,
the LSE𝐻𝑉𝐷 indexing tree is built atop the LSE𝐻𝑉 indexing tree,
further compressing the structure by exploiting diagonal locality.
Auxiliary nodes. Auxiliary nodes serve a key role in the LSE𝐻𝑉𝐷

indexing tree. For each (𝑘,𝑔)-leaf node where 𝑘 > 1 and 𝑔 > 1, a
corresponding auxiliary node—denoted as the (𝑘,𝑔)-aux node—is
defined. Each auxiliary node consists of key-value pairs: the key
represents a depth level, and the value is a set of nodes. Depth
indicates the degree of hierarchical commonality. At depth 𝑑 =

1, the value represents nodes shared between the (𝑘 − 1, 𝑔) and
(𝑘,𝑔 − 1) leaf nodes of the LSE𝐻𝑉 indexing tree. At depth 𝑑 = 2,
the value includes nodes that appear at depth 1 in both (𝑘 − 1, 𝑔)
and (𝑘,𝑔 − 1)-aux nodes—implying shared presence in (𝑘 − 2, 𝑔),
(𝑘−1, 𝑔−1), and (𝑘,𝑔−2)-leaf nodes. This depth-aware key-value
design enables layered redundancy elimination while maintaining
a compact representation.

LEMMA 1. If a node 𝑦 exists in a (𝑘,𝑔)-leaf node, then it
cannot coexist in the corresponding (𝑘,𝑔)-aux node.

PROOF. The existence of node 𝑦 in a (𝑘,𝑔)-leaf node implies
that the 𝑘-coreness of the node is 𝑔 and its 𝑔-coreness is 𝑘. How-
ever, if the same node𝑦 also exists in the (𝑘,𝑔)-aux node, it implies
that the 𝑘-coreness of 𝑦 is less than 𝑔, or its 𝑔-coreness is less than
𝑘. This contradicts the conditions for belonging to the (𝑘,𝑔)-leaf
node. Therefore, it is not possible for a node to coexist in both a
(𝑘,𝑔)-leaf node and its corresponding (𝑘,𝑔)-aux node. □

THEOREM 1. In any (𝑘,𝑔)-aux node, no node appears at more
than one depth.

PROOF. Suppose that in a (𝑘,𝑔)-aux node of the LSE𝐻𝑉𝐷

indexing tree, where 𝑘 > 1 and 𝑔 > 1, there exist sets of nodes at
depths 𝑑 ′ and 𝑑 ′′, and a node 𝑦 appears in both sets. For simplicity,
we assume 𝑑 ′ < 𝑑 ′′. First, let consider the existence of node
𝑦 at depth 𝑑 ′′. This necessitates its existence in the leaf nodes
(𝑘−𝑑 ′′, 𝑔)-leaf node, (𝑘− (𝑑 ′′−1), 𝑔−1)-leaf, · · · , (𝑘,𝑔−𝑑 ′′)-leaf
node. Consequently, node 𝑦 must also be present in the auxiliary
nodes (𝑘 − 𝑑∗, 𝑔)-aux node, (𝑘 − (𝑑∗ − 1), 𝑔 − 1)-aux node, · · · ,
and (𝑘,𝑔 − 𝑑∗)-aux node where 𝑑∗ = 𝑑 ′′ − 1. Since node 𝑦 is

Algorithm 4: Diagonal Locality-based indexing
Input: Hypergrpah 𝐺 = (𝑉 , 𝐸 )
Output: Indexing tree𝑇
/* Lines 1-17 in Algorithm 3 */

18 𝐴← ∅;
19 for 𝑔← 1 to 𝑔∗ do
20 cur← Leaf(1, 𝑔);
21 while cur.next do
22 if exist(Leaf(cur.𝑘, 𝑔 + 1)) &

exist(Leaf(cur.𝑘 + 1, 𝑔)) then
23 𝑐 𝑗 ← cur.jump;
24 𝑐𝑛 ← cur.next;
25 𝐼 ← 𝑐 𝑗 ∩ 𝑐𝑛;
26 if exist(Leaf(cur.𝑘 + 1, 𝑔 + 1)) then
27 𝐴← Leaf(𝑘 + 1, 𝑔 + 1);
28 else
29 𝐴← emptyLeaf();
30 𝑐 𝑗 .next, 𝑐𝑛.jump← 𝐴;
31 𝐴.put(makeAux(𝑑 = 1, 𝐼));
32 𝑐𝑛.removeAll(𝐼);
33 for 𝑑 ′ ∈ dep(Aux(𝑐𝑛)) ∩ dep(Aux(𝑐 𝑗)) do
34 𝐼 ′ ← Aux(𝑐𝑛).get(𝑑 ′) ∩

Aux(𝑐 𝑗).get(𝑑 ′);
35 𝐴.put(makeAux(𝑑 = 𝑑 ′ + 1, 𝐼 ′));
36 Aux(𝑐𝑛).get(𝑑 ′).removeAll(𝐼 ′);
37 𝑐𝑛.removeAll(Aux(𝑐𝑛.next).get(1));
38 else
39 while exist(𝑐𝑛.next) do
40 for 𝑑 ′ ∈ dep(Aux(𝑐𝑛)) do
41 𝑠 ← Aux(𝑐𝑛).get(𝑑 ′) \

Aux(𝑐𝑛.next).get(𝑑 ′ + 1);
42 Aux(𝑐𝑛).get(𝑑 ′).removeAll(𝑠);
43 𝑐𝑛← 𝑐𝑛.next;
44 cur← 𝑐𝑛.next;
45 return𝑇

in (𝑘,𝑔)-aux node, it indicates that node 𝑦 iteratively appears
in all the intermediate auxiliary nodes, and finally compressed
in (𝑘,𝑔)-aux node. Since node 𝑦 is at depth 𝑑 ′, it indicates that
node 𝑦 appears in the leaf nodes (𝑘 − 𝑑 ′, 𝑔)-leaf node, (𝑘 − (𝑑 ′ −
1), 𝑔 − 1)-leaf node, · · · , (𝑘,𝑔 − 𝑑 ′)-leaf node. This is clearly
contradictory, since node 𝑦 cannot appear at (𝑘,𝑔)-leaf node and
(𝑘,𝑔)-aux node simultaneously as we have checked in Lemma 1.
Thus, it is proven that in a (𝑘,𝑔)-aux node, There cannot be a node
stored redundantly at two different depths. □

COROLLARY 1. In any auxiliary node (𝑘,𝑔)-aux, a node 𝑣

appears at most once, at a single depth.

This ensures that the use of auxiliary nodes does not increase
the total number of stored nodes, resulting in a more compact
structure than the LSE𝐻𝑉 indexing tree.

4.4.1 Indexing framework.
Indexing tree construction. Algorithm 4 outlines the construc-
tion process. It begins by creating the LSE𝐻𝑉 indexing tree (Lines
1–17). Next, starting from the (1, 1)-leaf node, it checks for diago-
nal adjacency. If a pair of diagonally adjacent leaf nodes is found
(e.g., (𝑘 ′ + 1, 𝑔′) and (𝑘 ′, 𝑔′ + 1)), overlapping nodes are stored in
the (𝑘 ′ + 1, 𝑔′ + 1)-aux node at depth 1 (Lines 22–31). If the aux
node does not exist, it is created. These redundant nodes are then
removed from the original leaf nodes. Further, overlapping nodes
at the same depth in auxiliary nodes are handled (Lines 32–36),
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Figure 7: LSE𝐻𝑉𝐷 indexing tree structure

followed by the elimination of any remaining redundancy between
leaves and their auxiliary nodes (Line 37). If no further diagonally
placed nodes exist, the algorithm traverses the next links for the
current 𝑔 value to eliminate redundancies between auxiliary nodes
(Lines 39–43).
Leaf node. Each leaf node in the LSE𝐻𝑉𝐷 indexing tree contains
a set of nodes and links (next and jump). A distinctive feature is
the auxiliary node structure, which stores overlapping nodes that
appear in diagonally adjacent leaf nodes. As a result, these over-
lapping nodes are removed from the leaf nodes and maintained
centrally in the appropriate auxiliary node.
Query processing. Given a query 𝑄 = (𝑘,𝑔), the process first
retrieves the corresponding leaf node. It then traverses all reach-
able leaf nodes using both jump and next links, aggregating their
contents in an orderly manner. Unlike in the LSE𝐻𝑉 tree, the
LSE𝐻𝑉𝐷 variant also requires incorporating auxiliary nodes. Im-
portantly, auxiliary nodes attached to the starting leaf are excluded.
If an auxiliary node is encountered along a path, its values are
aggregated using the path distance as a key. For example, if the
(𝑘,𝑔) leaf node connects to (𝑘,𝑔 + 1) via a next link, the aggrega-
tion key is depth 1; if a jump link leads to (𝑘 + 1, 𝑔 + 1)-aux, then
both depths 1 and 2 are used. In other words, each (𝑘,𝑔)-leaf node
only considers depths up to the minimum hops required to reach
each reachable (𝑘 ′, 𝑔′)-leaf or aux node.

4.4.2 Complexity analysis.
Construction time complexity. The LSE𝐻𝑉𝐷 tree is constructed
atop the LSE𝐻𝑉 indexing tree, with additional steps to identify
and extract overlaps among diagonally adjacent nodes. This results
in time complexity 𝑂 (𝑔∗ · (𝑃 + 𝑘∗ · |𝑉 |)), where 𝑃 denotes the
peeling procedure complexity.
Query processing time complexity. The time complexity for
query processing in the LSE𝐻𝑉𝐷 indexing tree is comparable to
that of the LSE𝐻𝑉 indexing tree. While the presence of auxiliary
nodes may incur additional operations, these do not impact the
overall time complexity. Thus, the time complexity for query
processing in the LSE𝐻𝑉𝐷 indexing tree is still bounded by that
of the LSE𝐻𝑉 indexing tree, specifically 𝑂 (𝑘∗ · 𝑔∗ · |𝑉 |).
Space complexity. The space complexity of the LSE𝐻𝑉𝐷 index-
ing tree is equivalent to that of the LSE𝐻 indexing tree. However,
in practice, it offers improved space efficiency when diagonal
locality is prevalent in real-world graphs.

EXAMPLE 5. Figure 7 illustrates the LSE𝐻𝑉𝐷 indexing tree
with auxiliary nodes, constructed based on the hypergraph in
Figure 2a. Compared to the LSE𝐻𝑉 indexing tree shown in Fig-
ure 5, the LSE𝐻𝑉𝐷 indexing tree effectively reduces redundancy
by storing shared nodes between diagonally adjacent leaf nodes
only once in appropriate auxiliary nodes. For example, the nodes
𝑣4 and 𝑣5, which appear in multiple leaf nodes—specifically (1, 3),
(2, 2), and (3, 1)—are consolidated into a single auxiliary, the

(3, 3)-aux node at depth 2. As a result, redundant storage of nodes
across leaf layers is significantly reduced. For querying, for in-
stance, 𝑄 = (3, 2), we start at the (3, 2)-leaf node, skip auxiliary
nodes of the starting leaf node, and move through the jump nodes
to the terminal auxiliary node. After one move through the jump
link, in the (3, 3)-aux node, we store only the nodes with depth 1,
resulting in the nodes {𝑣1, 𝑣2, 𝑣3, 𝑣6}.

Summary of Algorithms. Each indexing technique is carefully
designed to minimise memory usage while ensuring efficient query
processing. Table 1 provides a comprehensive efficiency analysis
of the algorithms, including their time and space complexities. The
table also further details the leaf node structures, types of links,
and the presence of auxiliary nodes for each resulting index from
the algorithm. We use a star notation (★) to indicate efficiency
levels, where a higher number of stars represents greater efficiency.
Overall, the table clearly highlights a practical trade-off between
query processing efficiency and space efficiency. It is also worth
noting that even with identical complexity, the actual performance
can vary significantly, as complexity analysis considers extreme
scenarios that may not fully reflect the diverse characteristics of
real-world hypergraphs.

Beyond efficiency, our indexing structures also provide struc-
tural insights into hypergraphs. Leaf nodes in LSE𝐻 and LSE𝐻𝑉

trees correspond to 𝑔-coreness and (𝑘,𝑔)-coreness, offering quanti-
tative measures of node cohesion [4, 25, 34]. Moreover, LSE𝐻𝑉𝐷

indexing captures non-hierarchical relations overlooked by previ-
ous methods: its auxiliary nodes consolidate common nodes across
diagonally related cores. Nodes placed at deeper auxiliary levels
frequently occur in multiple strong cores and thus act as bridges
between them, whose removal may compromise network stabil-
ity [40, 44]. This demonstrates that our indexing structures are
not only memory-efficient but also support meaningful structural
interpretation of hypergraph topology.

5 EXPERIMENTS
5.1 Experiment Setup
We conducted extensive experiments to evaluate the performance
of our indexing techniques, guided by a set of key evaluation
questions (EQs) across diverse scenarios.

• EQ1. Efficiency of index construction and query processing:
How efficient are the proposed algorithms in terms of index
construction and query processing time?
• EQ2. Scalability: How well does the proposed method scale

on benchmark hypergraphs with increasing sizes?
• EQ3. Effectiveness of the indexing technique: To what extent

does our indexing method reduce node duplication?
• EQ4. Structural insights from the indexing tree: What struc-

tural patterns can be observed from the constructed indexing
trees?
• EQ5. Effect on 𝑘∗ and 𝑔∗: How do the maximum values 𝑘∗ and
𝑔∗ influence the index construction time and memory usage?
• EQ6. (𝑘,𝑔)-core effectiveness: How effective is the (𝑘,𝑔)-core

in identifying cohesive and structurally significant subgraphs?
• EQ7. Case study on real data: How effective is the proposed

indexing framework in real-world scenarios?

5.2 Experimental Setting
Dataset. We used eight real-world datasets, along with four syn-
thetic hypergraphs generated by HyperFF [26], using a burning
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Table 1: Summary of the algorithms

Algorithms Querying efficiency Space efficiency Value of (𝒌, 𝒈)-leaf Links Aux
LSE𝐻 ★★★★ 𝑂 (𝑘∗ |𝑉 | ) ★★★ 𝑂 (𝑔∗ |𝑉 | ) Nodes with same 𝑔-coreness Next link ×

LSE𝐻𝑉 ★★★ 𝑂 (𝑘∗𝑔∗ |𝑉 | ) ★★★★ 𝑂 (𝑔∗ |𝑉 | ) Nodes with same (𝑘,𝑔)-coreness Next link Jump link ×

LSE𝐻𝑉𝐷 ★★★ 𝑂 (𝑘∗𝑔∗ |𝑉 | ) ★★★★★ 𝑂 (𝑔∗ |𝑉 | ) Aux : diagonally adjacent common nodes
Leaf: LSE𝐻𝑉 (𝑘,𝑔)-leaf \ Aux

Next link Jump link ⃝

Table 2: Real-world dataset

Dataset |𝑽 | |𝑬 | 𝝁 (𝑵 (.) ) 𝒌∗ 𝒈∗

Contact (CT) 242 12,704 68.74 47 54
Congress (CG) 1,718 83,105 494.68 368 1003

Enron (E) 4,423 5,734 25.35 40 392
Meetup (M) 24,115 11,027 65.27 121 250
Walmart (W) 88,860 69,906 5.18 127 729
Trivago (T) 172,738 233,202 12.68 84 63
DBLP (D) 1,836,596 2,170,260 9.05 279 221

AMiner (A) 27,850,748 17,120,546 8.38 610 730

HF1K 1,000 2,233 4.564 7 4
HF10K 10,000 22,395 4.601 8 4

HF100K 100,000 221,111 4.542 9 5
HF1M 1,000,000 2,210,517 4.541 11 6

parameter 𝑝 = 0.4 and an expanding parameter 𝑞 = 0.05, to com-
prehensively evaluate scalability. The statistics of the datasets
are summarised in Table 2, where 𝜇 (𝑁 (.)) denotes the average
neighbour size of all nodes, and 𝑘∗ and 𝑔∗ indicate the maximum
observed values of 𝑘 and 𝑔, respectively. All real-world datasets
used in this study are publicly available [3, 7, 11].

Algorithms. As no prior work directly addresses (𝑘,𝑔)-core de-
composition with indexing, we include Bi-core index [31] as a
comparative baseline, despite its different structural assumptions.

Experimental environment. We implemented the indexing tree
construction and query processing algorithms in C++. All experi-
ments were performed on a server equipped with an Intel Xeon
6248R processor and 256GB of RAM, running Ubuntu 20.04.

5.3 Experimental Result

Table 3: Index construction time (seconds)

Dataset Naiv̈e LSE𝐻 LSE𝐻𝑉 LSE𝐻𝑉𝐷

Contact 0.9775 1.2386 1.2388 1.2389
Congress 3869.56 5679.26 5679.27 5679.29

Enron 16.7516 17.4130 17.4146 17.4148
Meetup 145.685 289.034 289.040 289.048
Walmart 785.593 868.832 868.845 868.856
Trivago 70.868 163.813 163.845 163.871
DBLP 2218.23 2573.91 2574.52 2575.04

AMiner 38258.5 108,542 108,560 108,570

EQ1. Efficiency of index construction and query processing.
We analysed the index construction and query processing times
for each indexing technique. As shown in Table 3, the construc-
tion time increases slightly from LSE𝐻 to LSE𝐻𝑉 , and then to
LSE𝐻𝑉𝐷 , due to the additional structural dependencies across
indexing schemes. The Naiv̈e indexing tree requires consistently

Table 4: Query processing time (seconds)

Dataset Naiv̈e LSE𝐻 LSE𝐻𝑉 LSE𝐻𝑉𝐷 Peeling
Contact 0.0003 0.0010 0.0015 0.0016 0.6970

Congress 0.0009 0.0112 0.0288 0.0774 108.43
Enron 0.0003 0.0011 0.0041 0.0085 2.0878

Meetup 0.0004 0.0100 0.0119 0.0159 50.382
Walmart 0.0003 0.0109 0.0128 0.0253 91.047
Trivago 0.0004 0.0327 0.0350 0.0431 82.783
DBLP 0.0004 0.3570 0.4653 0.4806 538.04

AMiner 0.0007 0.9210 1.2730 1.3795 17994.5

less construction time. For query processing, we sorted all (𝑘,𝑔)-
cores by size using the Naiv̈e indexing tree and selected 100
queries corresponding to the 1𝑠𝑡 to 100𝑡ℎ percentiles to report
the total processing time. As presented in Table 4, while Naiv̈e
achieves constant query time by avoiding indexing tree traversal,
query times gradually increase from LSE𝐻 to LSE𝐻𝑉𝐷 . On aver-
age, query processing on LSE𝐻𝑉 is 1.74× slower than LSE𝐻 , and
LSE𝐻𝑉𝐷 is 1.56× slower than LSE𝐻𝑉 . Nevertheless, although
LSE𝐻𝑉𝐷 exhibits the longest query time among our indexing
strategies, it still provides up to 3, 600× speedup compared with
the baseline peeling algorithm. These findings demonstrate that
the proposed indexing strategies achieve efficient construction and
querying, ensuring practical online query processing.
EQ2. Scalability. Figure 8 presents the scalability results of our
algorithms on the synthetic hypergraphs introduced in Section 5.2.
As shown in Figure 8a, for small-sized hypergraphs, the construc-
tion times across all index types remain comparable. The Naiv̈e
indexing tree requires slightly longer construction time than LSE
because of the overhead of storing redundant nodes. As the data
size increases, the differences in time complexity become more
evident, with LSE indexing trees requiring more construction
time. Nevertheless, all index construction methods demonstrate
approximately linear scalability. For query evaluation, the 𝑘 and 𝑔

parameters were selected from (𝑘,𝑔)-cores corresponding to the
1𝑠𝑡 to 10𝑡ℎ percentiles of core sizes, and we report the total time
for all queries. Figure 8b shows that the query time of the Naiv̈e
indexing tree remains constant regardless of data size, which is
explained by its 𝑂 (1) complexity. In contrast, all LSE indexing
trees present nearly linear scalability. Regarding byte-memory
usage, as presented in Figure 8c, memory efficiency follows the
order of Naiv̈e, LSE𝐻 , LSE𝐻𝑉 , and LSE𝐻𝑉𝐷 , with all methods
exhibiting nearly linear growth patterns for similar network struc-
tures. These results indicate that our indexing techniques provide
scalable indexing construction and query processing times with
efficient memory utilisation.
EQ3. Effectiveness of indexing technique. To evaluate the ef-
fectiveness of our indexing techniques, we compared the memory
usage and the number of nodes across four indexing trees with
real-world datasets. As presented in Figure 9, we first observe that
the Naiv̈e indexing tree uses more memory than the actual data

178



EDBT ’26, 24-27 March 2026, Tampere (Finland) Song Kim et al.

T
im

e 
(s

e
co

nd
s)

Naïve𝐿𝑆𝐸𝐻𝑉 𝐿𝑆𝐸𝐻𝐿𝑆𝐸𝐻𝑉𝐷Peeling

103

101

10−1

10−3

103 104 105 106

10𝑀

1𝑀

100𝐾

10𝐾

103 104 105 106|𝑉|

In
d
ex

 c
o
n
st

ru
c
ti

o
n

 t
im

e

102

101

100

10−1

103 104 105 106|𝑉|

(a) Index construction time
Query Processing Time Comparison

0. 001

0. 01

0. 1

1

10

100

1000

1K 10K 100K 1M

Numbe r of Nodes

T
im

e 
(s

e
co

nd
s)

Algorithm

peeling

naive

hori zont al

verti cal

diagonal

Query Processing Time (100 queries)

103

101

10−1

10−3

103 104 105 106|𝑉|

T
o

ta
l 

q
u

er
y

in
g
 t
im

e
(s

ec
) 

103

101

10−1

10−3

103 104 105 106

|𝑉|

T
o
ta

l 
q
u
er

y
in

g
 t
im

e
(s

ec
) 

T
o
ta

l 
q
u
e
ry

in
g
 t

im
e 103

101

10−1

10−3

103 104 105 106

T
o
ta

l 
q
u
e
ry

in
g
 t

im
e 103

101

10−1

10−3

103 104 105 106

(b) Total querying time

Index Type

naive

hori zont al

verti cal

diagonal

T
im

e 
(s

e
co

nd
s)

Al gorit hm

peeling

naive

hori zont al

verti cal

diagonal

0. 001

0. 01

0. 1

1

10

100

1000

1K 10K 100K 1M

Numbe r of Nodes

T
im

e 
(s

e
co

nd
s)

Query Processing Time (100 queries)

103

101

10−1

10−3

103 104 105 106

M
em

o
ry

 c
o
n
su

m
p
ti

o
n
(b

y
te

)

10𝑀

1𝑀

100𝐾

10𝐾

103 104 105 106|𝑉|

10𝑀

1𝑀

100𝐾

10𝐾

103 104 105 106|𝑉|

Naïve𝐿𝑆𝐸𝐻𝑉 𝐿𝑆𝐸𝐻𝐿𝑆𝐸𝐻𝑉𝐷Peeling

10𝑀

1𝑀

100𝐾

10𝐾

103 104 105 106|𝑉|M
em

o
ry

 c
o

n
su

m
p

ti
o

n
(b

y
te

)

10𝑀

1𝑀

100𝐾

10𝐾

103 104 105 106|𝑉|M
em

o
ry

 c
o

n
su

m
p

ti
o
n

(c) Memory usage

Figure 8: Scalability test

M
em

o
ry

 (
M

B
)

M
e
m

o
ry

 (
M

B
)

Contact

0

0.05

0.10

0.15

0

16K

32K

0

10

20

0

2.3M

4.6M

0

0.25

0.50

0.75

1.00

0

70K

140K

0

1

2

3

4

5

0

0.5M

1M

0

2

4

6

8

10

0

1M

2M

0

3

6

0

1.4M

0.7M

0

20

40

60

0

6M

12M

0

400

800

0

56M

112M

200

600

1,000

28M

84M

0

10

20

0

2.3M

4.6M

0
1
2
3
4
5

0

0.5M

1M

0

3

6

0

1.4M

0.7M

0

20

40

60

0

6M

12M

0

400

800

0

56M

112M

200

600

1,000

28M

84M

0
0.25
0.50
0.75
1.00

0

70K

140K

0

0.05

0.10

0.15

0

16K

32K

(a) Contact

Congress

0

10

20

0

2.3M

4.6M

0

10

20

0

2.3M

4.6M

(b) Congress

N
o

d
e co

u
n
t

0

400

800

0

56M

112M

200

600

1,000

28M

84M

M
em

o
ry

 (
M

B
)

M
em

o
ry

 (
M

B
)

Enron

0

0.25

0.50

0.75

1.00

0

70K

140K

0

70K

140K

0

0.50

1.00

(c) Enron

Meetup

0

1

2

3

4

5

0

0.5M

1M

N
o
d
e co

u
n
t

0

2

4

0

0.5M

1M

0

0.5M

1M

0

2

4

(d) Meetup

N
o

d
e co

u
n
t

0

400

800

0

56M

112M

200

600

1,000

28M

84M

M
em

o
ry

 (
M

B
)

M
em

o
ry

 (
M

B
)

Walmart

0

2

4

6

8

10

0

1M

2M

0

2

4

6

8

10

0

1M

2M

0
2
4
6
8
10

0

1M

2M

0

4

8

0

1M

2M

(e) Walmart

Trivago

0

3

6

0

1.4M

0.7M

0

3

6

0

1.4M

0.7M

0

3

6

0

1.4M

0.7M

(f) Trivago

N
o

d
e co

u
n
t

0

400

800

0

56M

112M

200

600

1,000

28M

84M

M
em

o
ry

 (
M

B
)

M
em

o
ry

 (
M

B
)

DBLP

0

20

40

60

0

6M

12M

0

20

40

60

0

6M

12M

0

20

40

60

0

6M

12M

(g) DBLP

N
o
d
e co

u
n
t

Aminer

0

400

800

0

56M

112M

200

600

1,000

28M

84M

0

400

800

0

56M

112M

0

400

800

0

56M

112M

(h) AMiner

N
o

d
e co

u
n
t

0

400

800

0

56M

112M

200

600

1,000

28M

84M

M
em

o
ry

 (
M

B
)

Figure 9: Memory usage & node size comparison

across all datasets and stores more nodes than those belonging to
the actual data for all datasets except Contact data. This indicates
that the Naiv̈e indexing tree inefficiently stores a large number of
redundant nodes. We also found that there is a significant decrease
in node count when moving from the Naiv̈e indexing tree to
the LSE𝐻 indexing tree, indicating that incorporating 𝑔-coreness
effectively eliminates redundancy. The LSE𝐻𝑉 indexing tree ex-
ploits 𝑘-coreness to reduce both memory usage and node count
retained in the LSE𝐻 structure. Additionally, the LSE𝐻𝑉𝐷 con-
tributes an additional reduction. These results demonstrate that
our indexing performs efficient compression with only a slight
additional construction and querying time.

EQ4. Structural insights from the indexing tree. Figure 10
presents detailed statistics on leaf and auxiliary nodes after LSE𝐻𝑉𝐷

indexing, including four metrics computed as follows:

• Empty leaf node ratio (Figure 10a) is calculated as the number
of empty leaf nodes divided by the total number of leaf nodes,
i.e., # empty leaf nodes

# total leaf nodes . On average, this ratio is around 19%. This
result confirms that the proposed compression method effec-
tively removes structural redundancies by exploiting horizontal,
vertical, and diagonal localities.
• Auxiliary node ratio (Figure 10b) is the number of auxiliary

nodes divided by the total number of leaf nodes, i.e., #,auxiliary nodes
#,total leaf nodes .
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Figure 10: Leaf & aux node statistics

In most datasets, this ratio exceeds 20%, which indicates that
numerous structurally relevant nodes are shared across multiple
non-nested (𝑘,𝑔)-cores. This clearly reflects the strong ability
of our indexing tree in capturing diagonal locality that was
largely overlooked by previous approaches.
• Average depth of auxiliary nodes (Figure 10c) measures the

average of the maximum depths of all auxiliary nodes. Most
datasets exhibit an average depth close to 2, which implies that
localities between distant cores are frequently captured within
the indexing tree. This result further suggests that our index-
ing tree effectively captures subtle non-hierarchical localities
beyond directly adjacent cores.
• Average size of auxiliary nodes (Figure 10d) is defined as the

total number of stored nodes in each auxiliary node divided by
the number of auxiliary nodes. A large auxiliary node indicates
strong locality across non-hierarchical cores, suggesting that
dense interactions frequently occur around the node. These aux-
iliary nodes can thus serve as local hubs where such interactions
are concentrated. For instance, in the Trivago dataset, relatively
large auxiliary nodes further hint at the presence of particularly
influential hub nodes that facilitate local connections.
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EQ5. Effect on 𝑘∗ and 𝑔∗. To analyse the impact of maximum 𝑘

and 𝑔 values (𝑘∗ and 𝑔∗) on the performance and memory usage of
our algorithm, we generated 20 hypergraphs of size 1, 000 using
HyperFF [26], varying 𝑘∗ from 4 to 7 and 𝑔∗ from 5 to 9. We
measured the running time and memory usage of constructing the
LSE𝐻𝑉𝐷 indexing tree on each dataset. As shown in Figure 11,
both 𝑘∗ and 𝑔∗ exhibit a clear increasing trend in memory usage
and runtime. The growth patterns are non-linear, and in our exper-
imental setting, 𝑔∗ increments tended to produce slightly steeper
increases than 𝑘∗ increments. Overall, these results indicate that al-
gorithm performance is affected not only by network size but also
its level of hierarchy, as larger 𝑘∗ or 𝑔∗ values naturally introduce
heavier computational and memory demands.
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EQ6. (𝑘,𝑔)-core effectiveness. To evaluate the effectiveness of
the (𝑘,𝑔)-core model beyond index efficiency, we compared it
with three representative cohesive subgraph models in bipartite,
and hypergraph: the 𝑘-hypercore [29], the (𝛼, 𝛽)-core [14], and the
(𝑘, 𝑑)-core [3]. For a fair comparison, all parameters were fixed at
5, and the evaluation was conducted on four real-world datasets.
The results in Figure 12 present that the (𝑘,𝑔)-core consistently
outperforms the other models in terms of clustering coefficient
and node density. In particular, it achieves markedly higher values
in both metrics, reflecting its stronger ability to identify dense
subgraphs and capture frequent co-occurrence patterns. These
findings indicate that incorporating both neighbour size and co-
occurrence enables the (𝑘,𝑔)-core to uncover structurally signifi-
cant patterns in hypergraphs.
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EQ7-1. Case study: LSE𝐻𝑉𝐷 for network resilience analysis.
Unlike earlier indexing trees that consider only hierarchical core
structures, LSE𝐻𝑉𝐷 approach organises non-hierarchical relation-
ships through auxiliary nodes, where larger depths correspond
to nodes distributed across multiple cores. To evaluate insights

beyond memory efficiency, we conduct a follower analysis to
examine network stability. Followers of a node 𝑣 are nodes that
drop out of their original cores once 𝑣 is deleted, a metric used
to measure stability [44]. We sampled 50 nodes from each depth
level across four networks and compared their average follower
counts against three baselines: (C) top 50 nodes by coreness, (D)
top 50 nodes by degree, and (L) 50 random nodes only in leaf node.
As shown in Figure 13, follower counts increase with depth, and
the highest-depth nodes consistently yield more followers than
all baselines. These findings demonstrate that LSE𝐻𝑉𝐷 uncov-
ers structural patterns overlooked by purely hierarchical analyses,
extending its utility from memory optimisation to understanding
network resilience.
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EQ7-2. Case study: Size-based query processing. As a demon-
stration of applicability, we conduct a case study to explore how
our algorithm performs in real-world scenarios. We explore identi-
fying cohesive subgraphs within a specific size range without pre-
determined 𝑘 and 𝑔 using the Enron, Meetup, and DBLP datasets,
comparing methods with and without indexing. The LSE𝐻𝑉𝐷

indexing technique is used for the index-based method.
To simulate real-world scenarios, size lower bounds are ran-

domly set between 30 and 100, and 𝑡 , representing the range be-
tween the lower and upper bounds, is also randomly chosen be-
tween 10 and 100 to generate 10 queries for two methods.
• Without indexing tree: The algorithm starts from 𝑔 = 1 and,

for each 𝑔, incrementally increases 𝑘 to identify valid (𝑘,𝑔)
pairs via the peeling algorithm. If the size of the resulting node
set falls below the lower bound for a given 𝑔, the algorithm
increments 𝑔 and repeats the search with a fresh (𝑘,𝑔) pair.
• With indexing tree: For each increasing value of 𝑔, the algo-

rithm utilises the hierarchical structure of the indexing tree to
perform two binary searches along the 𝑘-side for each fixed
𝑔, thereby locating the smallest and largest (𝑘,𝑔)-cores whose
sizes satisfy the specified range. All valid cores are collected,
and the process continues until no such cores remain.
Figure 14 presents the running times of the two approaches. We

observe that the index-based approach is significantly faster than
the peeling algorithm. Note that to find all pairs of indices satisfy-
ing the size constraint, the algorithm must be executed multiple
times. This highlights a core advantage of index-based search:
the ability to efficiently explore multiple (𝑘,𝑔)-core candidates
under dynamic size constraints. For the Enron dataset, we found
an average of 17 pairs, while for the Meetup and DBLP datasets,
we found 30 and 36 pairs, respectively. These pairs enable efficient
and effective querying within the given size constraints, demon-
strating the practical advantages of our index-based approach in
real-world applications.
EQ7-3. Case study: Frequent set mining. We evaluate the practi-
cality of the (𝑘,𝑔)-core for frequent set mining by comparing three
approaches—Apriori, the (𝑘, 𝑑)-core, and the (𝑘,𝑔)-core—on the
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Table 5: Summary of frequent set mining

Method # of items Avg. neighbour(𝑔 ≥ 500) Avg. degree
Apriori [1] 5 4.0 244,384
(𝑘,𝑔)-core 1,234 47.548 14,865
(𝑘,𝑑 )-core [3] 8,746 7.255 3,412
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Instacart shopping dataset [8], which contains 49, 000 items and
3.3M transactions. Using Apriori with a support threshold of
𝑔 = 500, the longest frequent itemset has length 5. We then set
𝑘 = 5 and 𝑑 = 𝑔 = 500 to compute both cores for comparison.

The results reveal clear subset relationships: all frequent sets
identified by Apriori are contained within the (𝑘,𝑔)-core, which it-
self is fully contained within the (𝑘, 𝑑)-core. Table 5 and Figure 15
summarise the outcomes:
• Apriori: It produces only small itemsets (maximum length 5),

as it requires all items to co-occur in the same transaction. The
resulting nodes have very high degrees and strong connectivity,
but the coverage remains narrow.
• (𝑘, 𝑑)-core: It returns 8, 746 items. The relaxed constraint ad-

mits many items with weak co-occurrence: nodes have an aver-
age of only 7.2 neighbours with support ≥ 500, and an average
degree of 3, 412. Approximately 70.7% of the nodes have no
frequent items at the given support threshold, indicating their
limited connectivity.
• (𝑘,𝑔)-core: It identifies 1, 234 items with markedly stronger

co-occurrence structure. Nodes average 47.5 neighbours co-
occurring at least 500 times, and achieve a substantially higher
average degree of 14, 865.

Overall, the (𝑘,𝑔)-core provides a balanced trade-off: it identi-
fies a broader set of items than Apriori while maintaining strong
co-occurrence, in contrast to the (𝑘, 𝑑)-core which admits many
weakly connected items.

6 RELATED WORK
6.1 Cohesive Subgraphs Discovery in

Hypergraphs
Cohesive subhypergraph discovery has been an active research
area, focusing on identifying tightly connected substructures within
hypergraphs. Early models, such as the (𝑘, 𝑙)-hypercore [30] de-
fined a maximal cohesive subgraph where each node has at least
𝑘 degree and each hyperedge includes at least 𝑙 nodes, ensur-
ing node density and edge-richness. To enhance adaptability, the
(𝑘, 𝑡)-hypercore [9] was introduced, requiring each node to have
at least 𝑘 degree and each hyperedge to contain a certain pro-
portion 𝑡 of nodes, offering more flexibility in defining cohesive
structure. Another significant model, the (𝑘, 𝑑)-core [3], focuses
on creating a maximal strongly induced subhypergraph, which is
a subhypergraph composed of original hyperedges entirely con-
tained within given nodes [5, 13]. In this model, each node has

at least 𝑘 neighbours and is connected to 𝑑 edges. In contrast, the
(𝑘,𝑔)-core model [22] incorporates second-order interactions by
requiring each node to have at least 𝑘 neighbours that co-occur in
at least 𝑔 hyperedges, offering a finer-grained structural perspec-
tive. Thus, it allows for a more comprehensive understanding of a
core structure within a hypergraph.

6.2 Index-based Cohesive Subgraph Discovery
Index-based approaches for cohesive subgraph discovery have
been widely studied in various graph settings, but remain unex-
plored in hypergraphs. For the (𝑘, 𝑝)-core in simple graphs, array-
based indices have been designed to support efficient queries [43],
while in directed graphs, tabular indices are used for (𝑘, 𝑙)-core
discovery [15]. In multi-layer graphs, lattice- and tree-based 𝑘-
core indices have been proposed to enable parallel query process-
ing [33]. For bipartite graphs, the (𝛼, 𝛽)-core [14] is effectively
managed by the Bi-core index [31], which employs a tree-based
structure to maintain results and facilitate queries. These studies
demonstrate the utility of indexing for diverse cohesive subgraph
models, yet none address the challenges posed by multi-parameter
settings in hypergraphs. Our LSE𝐻 index shares the idea of single-
parameter compression with the Bi-core index but introduces key
innovations tailored to hypergraphs: unlike the Bi-core index,
which stores all nodes of each core in a single array, our frame-
work employs leaf nodes for more flexible storage management.
Furthermore, we extend beyond single-parameter compression by
proposing two additional schemes: the LSE𝐻𝑉 index, which cap-
tures multi-dimensional hierarchical relationships, and LSE𝐻𝑉𝐷 ,
which incorporates relationships across non-hierarchical cores.

7 CONCLUSION
This work presents efficient indexing structures for (𝑘,𝑔)-core
decomposition in hypergraphs, supporting scalable and adaptive
query processing. Recognising the significant challenge of se-
lecting appropriate user parameters, our method enables users to
dynamically adjust the values of 𝑘 and 𝑔 through the constructed
indexing structure. We introduce two indexing approaches: the
Naiv̈e indexing approach and the Locality based Space Efficient
indexing approach. Additionally, we propose three indexing tech-
niques aimed at mitigating space complexity. Extensive experi-
ments on both real and synthetic hypergraphs validate the effective-
ness of the proposed indexing structures in terms of space usage
and query latency. Future work includes extending our frame-
work to support dynamic hypergraphs by developing maintenance
algorithms that incrementally update the index in response to hy-
pergraph modifications, thereby enabling adaptive and real-time
query support in evolving settings.
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