
␣

␣

In-Database Text Classification with BornSQL
Emanuele Guidotti
University of Lugano
Lugano, Switzerland

emanuele.guidotti@usi.ch

Darya Shlyk
University of Milan

Milan, Italy
darya.shlyk@unimi.it

Stefano Montanelli
University of Milan

Milan, Italy
stefano.montanelli@unimi.it

Alfio Ferrara
University of Milan

Milan, Italy
alfio.ferrara@unimi.it

Abstract
The integration of databases and machine learning promises to
enhance various aspects of data management, analysis, and appli-
cation. However, in-database machine learning (In-DB ML) is not
easily portable to different database management systems and
current approaches are typically limited to training and inference,
while modern machine learning pipelines often involve aspects
such as continuous learning, unlearning, and explainability.

This paper presents BornSQL, a In-DB ML algorithm based
on the Born Classifier [7], and exclusively implemented through
standard SQL queries. BornSQL can handle categorical data, and
it is particularly appropriate for classification of textual data.
Further contributions of BornSQL are i) incremental learning
to efficiently enforce model updates when new data become
available in the db, ii) unlearning when selected data needs to be
excluded due to privacy issues, and iii) global/local explainability
to associate the importance of a feature/attribute in determining
the classification result.

We illustrate the usage and scalability of the algorithm using
a benchmark database consisting of 2,359,828 scientific publica-
tions divided into three classes and composed of 3,942,559 fea-
tures. The training time is linear in the number of publications
and the average inference time for a publication is 1 millisecond
on our experimental environment. We discuss potential appli-
cations such as cost-effective model serving, exploratory data
analysis, and data privacy.

Keywords
In-database machine learning, text classification

1 Introduction
In-Database Machine Learning (In-DB ML) is the practice of
making Machine Learning (ML) pipelines executable from in-
side Relational Database Management Systems (RDBMS). There
are several key arguments supporting the adoption of In-DB
ML. In particular, bringing computations close to the data re-
duces data transfer, enforces query integration, and addresses
security-related issues on sensitive data. Moreover, In-DB ML
can benefit from data and model scalability, declarative program-
ming interface, and efficient processing with optimized execution
planning [12, 18].

Major database vendors, including Oracle, IBM, Microsoft, and
Google, have recognized these benefits and are increasingly incor-
porating In-DB ML functionalities into their products. Existing
solutions are designed as packages to use inside a DBMS, and

EDBT ’26, Tampere (Finland)
© 2025 Copyright held by the owner/author(s). Published on OpenProceedings.org
under ISBN 978-3-98318-103-2, series ISSN 2367-2005. Distribution of this paper is
permitted under the terms of the Creative Commons license CC-by-nc-nd 4.0.

characterized by SQL-based implementations of state-of-the-art
ML algorithms.

A common solution is to provide User-Defined Functions
(UDFs) in SQL to be integrated in the RDBMS for supporting
ML operations like model training and prediction. For instance,
this is the approach followed by Apache MADlib that relies on
PostgreSQL’s UDFs and additional Python drivers to enforce ML
iterations according to either supervised and unsupervised meth-
ods [8]. A limitation of this kind of solutions is the security risk
due to possible vulnerable code in UDFs. A further limitation is
the portability of UDFs, since a solution developed (and maybe
optimized) for a RDBMS by relying on a specific SQL dialect
cannot be fully compatible with other platforms without code
adaptations that can be complex. Furthermore, the portability
of a solution from one implementation to another cannot be en-
sured in all the possible cases, limiting its applicability to specific
RDBMS products (e.g., GaussML [13]).

An alternative to UDFs is the use of “hybrid” approaches like
MASQ [3], where trained models and ML pipelines implemented
in scikit-learn are compiled in standard SQL statements for com-
patibility with any RDBMS. Although data movements from/to
the database are still limited, part of the computation is performed
outside the DBMS with consequent latencies and scalability chal-
lenges.

Databases (dbs) are able to store any kind of data format in
structured/tabular form, spanning from textual to numerical ones
with several extensions and customization with respect to stan-
dard SQL. Textual data types, like character, character varying,
and CLOB (Character Large OBject), are massively used and tex-
tual values/fields represent rich, informative datasources stored
inside dbs. Surprisingly, none of the above families of In-DB
solutions are currently supporting a ML approach/algorithm
specifically focused on text analysis and classification. We argue
that this is probably due to the need of dedicated libraries for
text processing that are required for text preparation in many
ML algorithms. Such a need represents an additional challenge
for solutions based on UDFs or hybrid approaches, since it can
further reduce code portability, by also shifting the computa-
tion outside the DBMS with consequent security, latency, and
scalability issues.

As a final remark, we note that ML pipelines have grown in
complexity. Besides training and inference, they include learning
incrementally as new data become available, unlearning specific
training data to meet privacy regulations, and explaining the
reasons behind predictions. All this facets are not fully supported
by current In-DB ML implementations.

This paper presents BornSQL, that is, to the best of our knowl-
edge, the first text classification algorithm implemented in stan-
dard SQL that can learn, unlearn, make predictions, and explain.

10.48786/edbt.2026.19221

https://OpenProceedings.org/
https://orcid.org/0000-0002-8961-6623
https://orcid.org/0000-0002-6594-6644
https://orcid.org/0000-0002-4991-4984
OpenProceedings.org
https://dx.doi.org/10.48786/edbt.2026.19

EDBT ’26, 24-27 March 2026, Tampere (Finland) Guidotti et al.

BornSQL is an implementation of the Born Classifier originally
introduced in [7] that is exclusively based on SQL queries. As
such, BornSQL can be easily implemented in any RDBMS; it is
highly portable, and immediately benefits from the query opti-
mizer, data privacy and security, and scalability of the DBMS.

BornSQL is suitable for databases with categorical attributes
or where continuous values can be discretized in a natural way.
As such, BornSQL is particularly appropriate for classification
of textual data. In BornSQL, attributes are treated as words in a
text, and a database entity is considered as a superposition of at-
tributes like text can be regarded as a superposition of words. For
each entity, BornSQL generates its feature vector by computing
the probability distribution over its attributes directly from the
normalized structure of the database. Operations on the feature
vectors are performed via SQL queries that operate on tables
representing sparse tensors, and common table expressions are
employed to avoid materializing intermediate results.

For the sake of usage, BornSQL is released as a Python package
generating the SQL queries and implementing all routines in a
specified RDBMS, as illustrated in this paper. 1

This paper is organized as follows. Section 2 summarizes the
Born Classifier proposed in [7] and constructs an exact incre-
mental learning and unlearning process. Section 3 describes our
implementation that exploits SQL tables to represent sparse ten-
sors and SQL queries to perform mathematical operations upon
them. Section 4 illustrates the usage of BornSQL and its scalability
on a benchmark database of scientific publications. Section 5 dis-
cusses the comparison against MADlib, a potential competitor of
our BornSQL. Section 6 reviews related works. Section 7 discusses
potential applications. Finally, Section 8 gives our concluding
remarks.

2 The Born Classifier
Let x be a feature vector with elements 𝑥 𝑗 ≥ 0 for 𝑗 = 1, 2, ...
that represents an unnormalized probability distribution over the
features. Let y be a target vector with elements 𝑦𝑘 ≥ 0 for 𝑘 =

1, 2, ... that represents an unnormalized probability distribution
over the classes. The goal is to predict the probability distribution
over the classes from the feature vector and select the class with
maximum probability for classification.

2.1 Training
Let D = {(x, y,𝑤)𝑛 : 𝑛 = 1, 2, ...} be a training set containing,
for each element 𝑛 = 1, 2, ..., the corresponding feature vector
x𝑛 , target vector y𝑛 , and a sample weight 𝑤𝑛 ≥ 0. The Born
Classifier B trained on the dataset D produces the parameters
𝑃 = B(D) with elements:

𝑃 𝑗𝑘 =
∑︁
𝑛

𝑤𝑛𝑥𝑛𝑗𝑦𝑛𝑘∑
𝑗𝑘 𝑥𝑛𝑗𝑦𝑛𝑘

=
∑︁
D

𝑤
x ⊗ y

| x | | y | , (1)

which represent the unnormalized joint probability of features
and classes, with the addition of arbitrary sample weights.

2.1.1 Incremental learning. As new data become available, the
parameters can be updated with an exact incremental learning
process.

Definition 2.1 (Exact incremental learning). Given a learning
algorithm A(·), a dataset D, and a new dataset D𝑖 , we say the
process L is an exact incremental learning process for A if and

1The package is available at https://github.com/eguidotti/bornrule.

only if:
L(A(D),D𝑖) = A(D ∪ D𝑖) . (2)

In other words, an exact incremental learning process ensures
that the model is the same whether trained on the full dataset at
once or in batches. An exact incremental learning process for B
is:

L(B(D),D𝑖) = B(D) + B(D𝑖) . (3)
Indeed:

B(D) + B(D𝑖) =
∑︁

D∪D𝑖

𝑤
x ⊗ y

| x | | y | = B(D ∪ D𝑖) . (4)

2.1.2 Unlearning. As training data are required to be deleted, the
parameters can be updated using an exact unlearning process.

Definition 2.2 (Exact unlearning). Given a learning algorithm
A(·), a dataset D, and a forget set D𝑓 ⊆ D, we say the process
U is an exact unlearning process for A if and only if:

U(A(D),D𝑓) = A(D \ D𝑓) . (5)

In other words, an exact unlearning process ensures that the
unlearned model is equivalent to a model re-trained on the re-
maining data. Note that our definition is a special case of, e.g.,
[29] because the learning algorithm A is not randomized, and the
unlearning process U is allowed to depend on D only through
A. An exact unlearning process for B is:

U(B(D),D𝑓) = L(B(D),−D𝑓) . (6)

where L is given in (3) and −D𝑓 = {(x, y,−𝑤) : (x, y,𝑤) ∈ D𝑓 }.
Indeed:

L(B(D),−D𝑓) =
∑︁

D\D𝑓

𝑤
x ⊗ y

| x | | y | = B(D \ D𝑓) . (7)

2.2 Inference
The Born Classifier predicts the probability distribution over the
classes from the feature vector x of a test item and the hyper-
parameters 𝑎 > 0, 𝑏 ≥ 0, and ℎ ≥ 0. First, it normalizes the joint
probability 𝑃 𝑗𝑘 :

𝑊𝑗𝑘 =
𝑃 𝑗𝑘

(∑𝑗 𝑃 𝑗𝑘)𝑏 (
∑
𝑘 𝑃 𝑗𝑘)1−𝑏

. (8)

Then, it computes the conditional probability of the 𝑘-th class
given the 𝑗-th feature:

H𝑗𝑘 =
𝑊𝑗𝑘∑
𝑘𝑊𝑗𝑘

. (9)

Next, it calculates the entropy for each feature and scales it so
that it ranges between zero and one:

𝐻 𝑗 = 1 +
∑
𝑘 H𝑗𝑘 ln(H𝑗𝑘)
ln(∑𝑘 1)

. (10)

Finally, it computes the unnormalized probability of the 𝑘-th
class:

𝑢𝑘 =

(∑︁
𝑗

𝐻ℎ
𝑗𝑊

𝑎
𝑗𝑘
𝑥𝑎𝑗

) 1
𝑎
, (11)

and the normalized probability 𝑢𝑘/
∑
𝑘 𝑢𝑘 , or directly selects the

class 𝑘∗ = argmax𝑘 𝑢𝑎𝑘 for classification.

2.2.1 Hyper-parameters. Hyper-parameter tuning can be per-
formed without retraining the model because the training phase
does not depend on the model’s hyper-parameters. Moreover,
for a given choice of (𝑎, 𝑏, ℎ), the weights 𝐻ℎ

𝑗
𝑊 𝑎

𝑗𝑘
can be precom-

puted and cached to speed up inference time.

222

https://github.com/eguidotti/bornrule

In-Database Text Classification with BornSQL EDBT ’26, 24-27 March 2026, Tampere (Finland)

2.3 Explainability
The contribution of the 𝑗-th feature to the probability 𝑢𝑘 (local
explanation) is given by the addend 𝐻ℎ

𝑗
𝑊 𝑎

𝑗𝑘
𝑥𝑎
𝑗

in (11), while the
contribution at the class level (global explanation) is obtained
from the product 𝐻ℎ

𝑗
𝑊 𝑎

𝑗𝑘
regardless of the feature vector x. For

more details, the reader is referred to [7].

3 The Born Classifier in SQL
Here, we present our SQL implementation of the Born Classifier
described in Section 2, namely BornSQL. Starting from normal-
ized data in a relational database, we discuss how to transform
the data, fit the classifier, deploy the model, make predictions,
and explain them. An illustration is given in Figure 1.

Our implementation design consists of representing mathemat-
ical objects with Common Table Expressions (CTEs) and perform-
ing mathematical operations with standard SQL. Throughout the
paper, we use the following notation. A tensor 𝑇𝑛𝑗𝑘... is imple-
mented as a table T_njk... with columns (n, j, k, ..., w) where
the columns n, j, k, ... are the indices of the tensor and w is the
corresponding value. We use the index 𝑛 for the data items, 𝑗 for
the features, and 𝑘 for the classes.

3.1 Preprocessing
The feature vectors x𝑛 for 𝑛 = 1, 2, ... are represented with a table
X_nj. We let the user provide a custom query 𝑞𝑥 that transforms
the original data Ω into such format.

X_nj : 𝑞𝑥 (Ω) (12)

01 | SELECT n, j, w FROM ...

Similarly, the target vectors y𝑛 for 𝑛 = 1, 2, ... are represented
with a table Y_nk that is specified arbitrarily by the user with a
query 𝑞𝑦 .

Y_nk : 𝑞𝑦 (Ω) (13)

01 | SELECT n, k, w FROM ...

Optionally, the user may also provide a query𝑞𝑤 to construct a
table W_n giving the sample weights𝑤𝑛 for 𝑛 = 1, 2, Otherwise,
the default 𝑤𝑛 = 1 is used.

W_n : 𝑞𝑤 (Ω) (14)

01 | SELECT n, w FROM ...

Finally, the user specifies which items to use in the previous
queries by providing a query 𝑞𝑛 that returns a table N_n contain-
ing the identifiers of the selected items:

N_n : 𝑞𝑛 (Ω) (15)

01 | SELECT n FROM ... WHERE ...

Tables X_nj, Y_nk and W_n are filtered to include only the
items in N_n. To improve the computational efficiency in case
the query 𝑞𝑥 uses UNION commands to combine the result set of
two or more SELECT statements, our implementation allows the
user to pass each SELECT statement individually so that they are
filtered before combining their result sets.

3.2 Training
We train the classifier by computing the weights 𝑃 𝑗𝑘 in (1) with
the following queries.

XY_njk : 𝑥𝑛𝑗𝑦𝑛𝑘 (16)

01 | SELECT
02 | X_nj.n AS n,
03 | X_nj.j AS j,
04 | Y_nk.k AS k,
05 | X_nj.w * Y_nk.w AS w
06 | FROM
07 | X_nj , Y_nk
08 | WHERE
09 | X_nj.n = Y_nk.n

XY_n :
∑

𝑗𝑘 𝑥𝑛𝑗𝑦𝑛𝑘 (17)

01 | SELECT n, SUM(w) AS w FROM XY_njk GROUP BY n

P_jk : 𝑃 𝑗𝑘 in (1) (18)

01 | SELECT
02 | XY_njk.j AS j,
03 | XY_njk.k AS k,
04 | SUM(W_n.w * XY_njk.w / XY_n.w) AS w
05 | FROM
06 | XY_njk , XY_n , W_n
07 | WHERE
08 | XY_njk.n = XY_n.n AND
09 | XY_njk.n = W_n.n
10 | GROUP BY
11 | XY_njk.j,
12 | XY_njk.k

Finally, the weights 𝑃 𝑗𝑘 are stored in the table {model}_corpus,
where {model} is a custom prefix used to identify the model. This
identifier is introduced to allow the creation of multiple models
on the same database. The incremental learning in (3) is imple-
mented by incrementing the weights in the corpus:

01 | INSERT INTO {model}_corpus (j, k, w)
02 | SELECT j, k, w FROM P_jk
03 | ON CONFLICT (j, k)
04 | DO UPDATE SET w = {model}_corpus.w + excluded.w

and the unlearning in (6) is implemented by using −𝑤𝑛 instead
of the original 𝑤𝑛 .

3.3 Deployment
To deploy a model, we retrieve its hyper-parameters from the ta-
ble params. This table contains the columns (model, a, b, h) where
model is the primary key identifying the model, and the remain-
ing columns are the corresponding hyper-parameters 𝑎, 𝑏, ℎ.

ABH : 𝑎, 𝑏, ℎ (19)

01 | SELECT a, b, h FROM params WHERE model = '{model}
'

Then, the following queries compute the weights 𝐻ℎ
𝑗
𝑊 𝑎

𝑗𝑘
in

(11) from the weights 𝑃 𝑗𝑘 that are stored in the table P_jk =
{model}_corpus.

P_j :
∑
𝑘 𝑃 𝑗𝑘 (20)

01 | SELECT j, SUM(w) AS w FROM P_jk GROUP BY j

223

EDBT ’26, 24-27 March 2026, Tampere (Finland) Guidotti et al.

FIT

PREDICT
LOCAL
EXPLAIN

GLOBAL
EXPLAIN

DEPLOY

Figure 1: Implementation design of BornSQL.

P_k :
∑

𝑗 𝑃 𝑗𝑘 (21)

01 | SELECT k, SUM(w) AS w FROM P_jk GROUP BY k

W_jk : 𝑊𝑗𝑘 in (8) (22)

01 | SELECT
02 | P_jk.j AS j,
03 | P_jk.k AS k,
04 | P_jk.w * POW(P_k.w, -b) * POW(P_j.w, b-1) AS

w
05 | FROM
06 | P_jk , P_j , P_k , ABH
07 | WHERE
08 | P_jk.j = P_j.j AND
09 | P_jk.k = P_k.k

W_j :
∑
𝑘𝑊𝑗𝑘 (23)

01 | SELECT j, SUM(w) AS w FROM W_jk GROUP BY j

H_jk : H𝑗𝑘 in (9) (24)

01 | SELECT
02 | W_jk.j AS j,
03 | W_jk.k AS k,
04 | W_jk.w / W_j.w AS w
05 | FROM
06 | W_jk , W_j
07 | WHERE
08 | W_jk.j = W_j.j

H_j : 𝐻 𝑗 in (10) (25)

01 | SELECT
02 | H_jk.j AS j,
03 | 1 + SUM(H_jk.w * LOG(H_jk.w)) / (
04 | SELECT LOG(COUNT (*)) FROM P_k
05 |) AS w
06 | FROM
07 | H_jk
08 | GROUP BY
09 | H_jk.j

HW_jk : 𝐻ℎ
𝑗
𝑊 𝑎

𝑗𝑘 (26)

01 | SELECT
02 | W_jk.j AS j,
03 | W_jk.k AS k,
04 | POW(H_j.w, h) * POW(W_jk.w, a) AS w
05 | FROM
06 | W_jk , H_j , ABH

224

In-Database Text Classification with BornSQL EDBT ’26, 24-27 March 2026, Tampere (Finland)

07 | WHERE
08 | W_jk.j = H_j.j

Finally, the table HW_jk can be materialized and stored as the
table {model}_weights to speed up inference times.

3.4 Inference
We compute 𝑢𝑎

𝑘
in (11) for each item:

HWX_nk :
∑

𝑗 𝐻
ℎ
𝑗
𝑊 𝑎

𝑗𝑘
𝑥𝑎
𝑛𝑗 (27)

01 | SELECT
02 | X_nj.n AS n,
03 | HW_jk.k AS k,
04 | SUM(HW_jk.w * POW(X_nj.w, a)) AS w
05 | FROM
06 | HW_jk , X_nj , ABH
07 | WHERE
08 | HW_jk.j = X_nj.j
09 | GROUP BY
10 | X_nj.n,
11 | HW_jk.k

and select the class 𝑘∗ = argmax𝑘 𝑢𝑎𝑘 for classification.

01 | SELECT
02 | R_nk.n,
03 | R_nk.k
04 | FROM (
05 | SELECT
06 | n,
07 | k,
08 | ROW_NUMBER () OVER(
09 | PARTITION BY n ORDER BY w DESC
10 |) AS w
11 | FROM
12 | HWX_nk
13 |) AS R_nk
14 | WHERE
15 | R_nk.w = 1

If classification probabilities are requested, we compute the
unnormalized probabilities:

U_nk :
(∑

𝑗 𝐻
ℎ
𝑗
𝑊 𝑎

𝑗𝑘
𝑥𝑎
𝑛𝑗

) 1
𝑎 (28)

01 | SELECT n, k, POW(w, 1/a) AS w FROM HWX_nk , ABH

and their normalization factors:

U_n :
∑
𝑘 𝑈𝑛𝑘 (29)

01 | SELECT n, SUM(w) AS w FROM U_nk GROUP BY n

and return the normalized probabilities 𝑢𝑛𝑘/
∑
𝑘 𝑢𝑛𝑘 ∈ [0, 1].

01 | SELECT
02 | U_nk.n AS n,
03 | U_nk.k AS k,
04 | U_nk.w / U_n.w AS w
05 | FROM
06 | U_nk , U_n
07 | WHERE
08 | U_nk.n = U_n.n

3.5 Explainability
The global weights 𝐻ℎ

𝑗
𝑊 𝑎

𝑗𝑘
are obtained by reading the table

HW_jk. These weights provide the feature importance for each
class unconditionally from any test item.

01 | SELECT j, k, w FROM HW_jk

The local weights 𝐻ℎ
𝑗
𝑊 𝑎

𝑗𝑘
𝑥𝑎
𝑛𝑗

for the 𝑛-th test item provide the
feature importance for each class conditional on that item. For
multiple items, we first compute their (weighted) average feature
vector:

z =
∑︁
𝑛

𝑤𝑛
x𝑛

| x𝑛 | (30)

and then provide the local weights𝐻ℎ
𝑗
𝑊 𝑎

𝑗𝑘
𝑧𝑎
𝑗

for that vector. Such
weights provide the feature importance for each class conditional
on the average test item. We start by computing the normalization
factor for each item.

X_n :
∑

𝑗 𝑥𝑛𝑗 (31)

01 | SELECT
02 | X_nj.n AS n,
03 | SUM(X_nj.w) AS w
04 | FROM
05 | X_nj
06 | GROUP BY
07 | X_nj.n

Then, we calculate the average vector z in (30).

Z_j :
∑
𝑛

𝑤𝑛𝑥𝑛𝑗∑
𝑗 𝑥𝑛𝑗

(32)

01 | SELECT
02 | X_nj.j,
03 | SUM(W_n.w * X_nj.w / X_n.w) AS w
04 | FROM
05 | X_nj , X_n , W_n
06 | WHERE
07 | X_nj.n = X_n.n AND
08 | X_nj.n = W_n.n
09 | GROUP BY
10 | X_nj.j

Finally, we return the local weights 𝐻ℎ
𝑗
𝑊 𝑎

𝑗𝑘
𝑧𝑎
𝑗
.

01 | SELECT
02 | HW_jk.j,
03 | HW_jk.k,
04 | HW_jk.w * POW(Z_j.w, a) AS w
05 | FROM
06 | HW_jk , Z_j , ABH
07 | WHERE
08 | HW_jk.j = Z_j.j

4 Experimental Evaluation
Here, we illustrate the usage of BornSQL and evaluate its scala-
bility using a benchmark dataset of scientific publications. All re-
sults are obtained using Python 3.11.5 and PostgreSQL 12, MySQL
9.4.0, and SQLite 3.50.2 on a Ubuntu 20.04.6 LTS VM server with
32GB RAM and 20 assigned CPU cores. To demonstrate that Born-
SQL can also operate under constrained resources, we verified
that all experiments can be replicated on a MacBook Air with an
M2 chip and 8 GB RAM.

225

EDBT ’26, 24-27 March 2026, Tampere (Finland) Guidotti et al.

4.1 Data
The database used in the experiments contains metadata about
scientific publications sourced from the Elsevier Scopus data-
base. 2 It covers citations from 1990 to 2022 in three major sub-
ject categories in the field of data science, including Artificial
Intelligence, Statistics and Probability, and Decision Sciences. In
the database, the subject categories are represented with a 4-digit
code (ASJC) assigned by the Scopus classification system, where
the first two digits denote the macro subject area and the last
two refer to related sub-fields. The distribution of macro subject
areas is detailed in Table 1 below.

Table 1: Distribution of subject areas.

ASJC Subject area Count

1702 Artificial Intelligence 1,024,703
2613 Statistics and Probability 426,341
18XX Decision Sciences 908,784

Total: 2,359,828

The version of the database used in the experiments is con-
structed as follows. We start with a set of four tables extracted
from the Scopus database containing information about publi-
cations, corresponding keywords, authors, and abstracts. First,
we remove unnecessary fields as well as duplicate rows in all ta-
bles. Then, we order publications chronologically based on their
publication date and create a sequential identifier, replacing the
original Scopus IDs. Finally, we vectorize the abstract of each
publication and cast all numerical fields to the integer data type.

The final database is stored as a relational database with three
tables. The database schema is depicted in Figure 2. The table
publication is the fact table with 2,359,828 rows and four columns:
unique publication identifier (id), name of the publication venue
(pubname), ASJC code assigned by Scopus (asjc), and the vector-
ized abstract (abstract). The tables pub_author (7,048,668 rows)
and pub_keyword (8,301,637 rows) are dimension tables storing
one-to-many associations of publications with corresponding
author identifiers and keywords, respectively.

* *
has_keywordhas_author

Figure 2: Database schema.

4.2 Preprocessing
The classification task consists of predicting the first two digits
of the asjc code from the attributes pubname, authid, keyword, and
abstract. Here we exemplify the queries 𝑞𝑥 in (12), 𝑞𝑦 in (13), and
𝑞𝑤 in (14) that we use to set up this task.

First, we notice that the attributes pubname, authid, and keyword
are categorical, and we use a one-hot encoding scheme for them.
Specifically, we give unitary weight to each attribute associated
with the items using the following queries.

2https://www.elsevier.com/products/scopus.

01 | SELECT
02 | id as n,
03 | 'pubname:'|| pubname as j,
04 | 1.0 as w
05 | FROM publication

01 | SELECT
02 | pubid as n,
03 | 'authid:'|| authid as j,
04 | 1.0 as w
05 | FROM pub_author

01 | SELECT
02 | pubid as n,
03 | 'keyword:'|| keyword as j,
04 | 1.0 as w
05 | FROM pub_keyword

Then, we vectorize the abstract by counting how many times
each lexeme appears in the text. The following query uses the
tsvector data type, which is efficient but specific to PostgreSQL.
For MySQL and SQLite we treat the abstract as text and vector-
ize it with similar queries using the functions json_table and
json_each, respectively.

01 | SELECT
02 | id as n,
03 | 'abstract:'|| lexeme as j,
04 | array_length(positions , 1) as w
05 | FROM publication , unnest(abstract)

Finally, the query 𝑞𝑥 is the UNION ALL of the previous queries,
and it concatenates all the result sets. Notice that we prepend
each feature with a prefix to avoid collisions between different
attributes with the same value. An illustration is provided in
Table 2.

Table 2: Example of a transformed item.

n j w

13 pubname:communications in statistics - ... 1.0
13 authid:7004218793 1.0
13 keyword:sampling efficiency 1.0
13 keyword:renewal 2.0
13 abstract:binomial 1.0
13 abstract:sample 7.0
13 abstract:sampling 7.0
13 abstract:variance 3.0
13

The query 𝑞𝑦 selects the target category by selecting the first
two digits of the asjc code, and each category is given a unitary
weight. In our case, each item is associated with exactly one
category. However, the same query would also be valid when an
item is associated with multiple categories, and we want to give
the same weight to all categories.

01 | SELECT
02 | id as n,
03 | asjc / 100 AS k,
04 | 1.0 AS w
05 | FROM publication

226

https://www.elsevier.com/products/scopus

In-Database Text Classification with BornSQL EDBT ’26, 24-27 March 2026, Tampere (Finland)

Finally, to use unitary sample weights, the query 𝑞𝑤 selects a
weight equal to 1 for all items in the database. Our implementa-
tion is optimized to skip this step and uses unitary weights by
default.

01 | SELECT id as n, 1.0 AS w FROM publication

4.3 Training
To train the model, we specify the query 𝑞𝑛 in (15) that selects
the identifiers of the training items from the database. This query
is used to filter the queries 𝑞𝑥 , 𝑞𝑦 , and 𝑞𝑤 and build the tables
X_nj, Y_nk and W_n that are used to train the model as described
in Section 3.2. For instance, the model can be trained on the first
100 items using the following query for 𝑞𝑛 , or it can be trained
on the entire database by omitting the WHERE clause.

01 | SELECT id as n FROM publication WHERE id <= 100

Figure 3 reports the training time as a function of the items
used for training. To maintain a stationary distribution of the data
across subsamples, we proceed as follows. The first subsample
uses 10% of items by selecting the first every 10th item with the
query:

01 | SELECT id as n FROM publication WHERE id % 10 <=
0

Similarly, the second subsample uses 20% of items by selecting
the first two for every 10th item with the query:

01 | SELECT id as n FROM publication WHERE id % 10 <=
1

We continue by incrementing the subsamples until all items are
considered. Figure 3 shows that, while the training time (fit)
can vary depending on the specific DBMS, it is linear in the
number of items, suggesting that model training is scalable to
large databases.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fraction of items used for training

0

1000

2000

3000

4000

5000

6000

7000

Ru
nt

im
e

(s
ec

on
ds

)

PostgreSQL - Fit
PostgreSQL - Partial Fit

MySQL - Fit
MySQL - Partial Fit

SQLite - Fit
SQLite - Partial Fit

Figure 3: Training time.

4.3.1 Incremental learning. Instead of fitting from scratch every
subsample, we can use the exact incremental learning process
in (3) to update the model using only the new items. Figure 3
reports the incremental leaning (partial fit) runtime as new items
are added to the training set. For all DBMSs, the runtime is ap-
proximately constant for equally-sized batches of new items,

suggesting that the learning algorithm is suitable for dynamic
settings where efficient model updates are needed as new data
becomes available.

4.3.2 Unlearning. The incremental fit can also be employed to
unlearn selected training items using negative sample weights as
in (6). In this case, it is sufficient to multiply by −1 the weights
in the query 𝑞𝑤 in (14) that was used for training. For example,
to unlearn items previously employed for training with default
unitary weights, it is sufficient to specify the following query 𝑞𝑤
and select the items to unlearn with 𝑞𝑛 .

01 | SELECT id AS n, -1.0 AS w FROM publication

4.4 Deployment
After training, the model can be deployed to accelerate inference
time in production. The deployment involves computing the
weights discussed in Section 3.3 and storing them in a table,
which can be readily used to multiply the feature vectors of the
test items during inference. The deployment operation does not
depend on the number of training items. Instead, it depends on
the number of classes and features.

0 500 1000 1500 2000 2500 3000 3500 4000
N. features (thousands)

0.0

0.2

0.4

0.6

0.8

1.0

Ru
nt

im
e

/ M
ax

 ru
nt

im
e

PostgreSQL MySQL SQLite

Figure 4: Deployment time and number of features.

As the number of classes is fixed to three, Figure 4 reports
the normalized deployment time as a function of the number
of features. The time to deploy the model trained on the entire
database, consisting of 3,942,559 features, is 123s in PostgreSQL,
580s in MySQL, and 109s in SQLite. The deployment time is
approximately linear in the number of features in agreement with
the complexity analysis in [7]. The same scalability applies to the
classes as the roles of classes and features are interchangeable.

While the deployment time does not directly depend on the
number of training items, the number of features may depend on
the number of items seen during training. Thus, the deployment
time may indirectly depend on the number of training items.
To investigate such dependence, we report three examples that
proxy for three scenarios.

First, we split publications into batches as described in Sec-
tion 4.3 to maintain a stationary distribution of the data across
different subsamples. This scenario proxies for the case when
the distribution of the data is stationary, and thus, it is expected
that the probability of observing a new feature decreases as the
training set increases. We count the number of features seen dur-
ing training as the fraction of training items increases from 0%
to 100% and measure the corresponding deployment times. The

227

EDBT ’26, 24-27 March 2026, Tampere (Finland) Guidotti et al.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fraction of items used for training

0

2000

4000

6000

8000

N.
 fe

at
ur

es
 (t

ho
us

an
ds

)

Number of features Interpolation

(a) Default.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fraction of items used for training

0

500

1000

1500

2000

2500

3000

3500

4000

N.
 fe

at
ur

es
 (t

ho
us

an
ds

)

Number of features Interpolation

(b) Chronological order.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fraction of items used for training

0

50

100

150

200

250

N.
 fe

at
ur

es
 (t

ho
us

an
ds

)

Number of features Interpolation

(c) Abstract only.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fraction of items used for training

0.0

0.2

0.4

0.6

0.8

1.0

Ru
nt

im
e

/ M
ax

 ru
nt

im
e

PostgreSQL MySQL SQLite

(d) Default.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fraction of items used for training

0.0

0.2

0.4

0.6

0.8

1.0

Ru
nt

im
e

/ M
ax

 ru
nt

im
e

PostgreSQL MySQL SQLite

(e) Chronological order.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.00.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fraction of items used for training

0.0

0.2

0.4

0.6

0.8

1.0

Ru
nt

im
e

/ M
ax

 ru
nt

im
e

PostgreSQL MySQL SQLite

(f) Abstract only.

Figure 5: Number of features (a-b-c) and normalized deployment time (d-e-f) for the three scenarios described in Section 4.4.
The dotted line is the interpolation line passing through the first two points.

results are displayed in Figure 5, Panels (a) and (d), respectively.
The increase in the number of features is sublinear in the number
of training items, corresponding to a (sub)linear increase in the
deployment time.

Second, we split publications in chronological order. Here, the
first batch of data corresponds to the oldest publications, and the
last batch contains the most recent ones. This scenario proxies
for the case where the distribution of the data is non-stationary,
and the total number of features is potentially unbounded. We
count the number of features seen during training as the fraction
of training items increases from 0% to 100% and measure the
corresponding deployment times. The results are displayed in
Figure 5, Panels (b) and (e), respectively. We find that the number
of features grows (super)linearly with the number of training
items. Indeed, most recent publications are typically associated
with a larger number of authors, more keywords, and longer
abstracts, bringing in an increasing number of new features per
item. In this case, the deployment time also grows (super)linearly.

Third, we split publications to maintain a stationary distribu-
tion of the data as in the first case. However, we only use the
abstract to construct the feature vector this time. This scenario
proxies cases where the total number of features is finite, and
most features are seen with a small training set. The number of
features and the corresponding deployment times are displayed
in Figure 5, Panels (c) and (d), respectively. In this scenario, the
number of features and the deployment times stabilize quickly,
and they are essentially constant regardless of the number of
training items.

Overall, we conclude that unless new training items bring
in an ever-increasing number of features, the deployment time
is (sub)linear in the number of items and scalable to very large
datasets, especially when the number of possible features is finite.

4.5 Inference
To predict a test instance, we specify the query 𝑞𝑛 in (15) that
selects its identifier. This query filters the query 𝑞𝑥 and builds the

table X_nj that is used for inference as described in Section 3.4.
For example, we use the following query 𝑞𝑛 to predict the publi-
cation number 13.

01 | SELECT 13 as n

We analyze the time needed to classify a single item depend-
ing on the model size. First, we split publications into batches to
maintain a stationary distribution of the data as described in Sec-
tion 3.2. Then, we fit the model with an amount of training data
ranging from 10% to 100% of the total dataset size. Finally, we pre-
dict the test publication number 13 and report the corresponding
inference times in Figure 6. Using 10% of data, the inference time
is 7 seconds, and it grows to 38 seconds when the model is trained
on the entire database. We notice the following. On the one hand,
the inference time is less than the deployment time in Section 4.4,
showing that the query optimizer is correctly optimizing the
query by computing only the weights needed for the classifica-
tion of the test instance. On the other hand, by pre-computing all
weights, the prediction step would essentially reduce to a JOIN
of the weights with the input data and a GROUP BY operation,
and the inference time may reduce dramatically, as we analyze
next.

4.5.1 Deployment. Instead of predicting a test instance by com-
puting the weights on the fly each time, we can first deploy the
model by pre-computing all weights described in Section 3.3 and
then perform inference with such weights. Figure 6 shows that,
after deployment, the inference time drops significantly, below
one second, across all DBMSs. To better assess the actual infer-
ence time per single item, we predict the first 1000 items with
the following query.

01 | SELECT id as n FROM publication WHERE id <= 1000

The total inference time is 0.91s in PostgreSQL, 1.02s in MySQL,
and 0.62s in SQLite, corresponding to an average inference time
of about one millisecond per item.

228

In-Database Text Classification with BornSQL EDBT ’26, 24-27 March 2026, Tampere (Finland)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Fraction of items used for training

0

50

100

150

200

250

300

Ru
nt

im
e

(s
ec

on
ds

)

PostgreSQL - Undeployed
PostgreSQL - Deployed

MySQL - Undeployed
MySQL - Deployed

SQLite - Undeployed
SQLite - Deployed

Figure 6: Inference time for a single item.

4.6 Explainability
In this section, we illustrate the global and local explanations
discussed in Section 3.5.

4.6.1 Global explanation. The global explanation provides the
feature importance for each class unconditional from any test
item. In Table 3, we report the first three features with the highest
weights for each of the three classes Artificial Intelligence (𝑘 =

17), Statistics and Probability (𝑘 = 26), and Decision Sciences
(𝑘 = 18). As a general remark, we note that the publication venue
is the most important feature to predict the subject area. Not
surprisingly, the journals in Table 3 represent publication venues
that are frequently occurring in the respective classes within our
dataset. We also find that the word “robot” used in the abstract
indicates a publication in the field of Artificial Intelligence.

Table 3: Global explanation.

k j w

17 abstract:robot 0.033
17 pubname:studies in computational intelligence 0.027
17 pubname:physics of life reviews 0.020
17
18 pubname:quality progress 0.040

18 pubname:international series in operations
research and management science 0.033

18 pubname:zwf zeitschrift fuer wirtschaftlichen
fabrikbetrieb 0.028

18

26 pubname:physical review - statistical,
nonlinear, and soft matter physics 0.040

26 pubname:statistics in medicine 0.038
26 pubname:journal of mathematical sciences 0.037
26

4.6.2 Local explanation. The local explanation provides the fea-
ture importance for each class conditional on a test item. In Table
4, we report the top ten features with the highest weight for
the example publication number 13. The predicted and actual
class is Statistics and Probability (𝑘 = 26), and, according to the
first row of Table 4, the first reason for this prediction is that
the article is published in “Communications in Statistics - The-
ory and Methods”. To further support this prediction, the terms
“random”, “sample”, and “variance” in the abstract have a larger

weight for Statistics and Probability (𝑘 = 26) than for Decision
Sciences (𝑘 = 18) and Artificial Intelligence (𝑘 = 17).

Table 4: Local explanation.

k j w

26 pubname:communications in statistics - theory
and methods 0.0024

26 abstract:random 0.0019
26 abstract:sample 0.0015
26 abstract:variance 0.0014
18 abstract:random 0.0012
18 abstract:sample 0.0010
18 abstract:variance 0.0009
26 abstract:poisson 0.0009
17 abstract:sample 0.0008
17 abstract:random 0.0008
...

5 Comparison with MADlib
Here we compare BornSQL with popular classification algorithms
implemented in MADlib [8], namely logistic regression, sup-
ported vector machines, and decision trees, using PostgreSQL.
We will comment on the impossibility of using large datasets
with high-dimensional features with MADlib, such as the Sco-
pus dataset illustrated in the previous section, and we will use
two complementary datasets: Adult [1] and RLCP [25]. The task
of the Adult dataset is to predict whether annual income of an
individual exceeds $50K/yr based on census data. There are a
total of 11,687 positive and 37,155 negative examples. The dataset
is split into 32,561 instances belonging to the training set and
16,281 instances belonging to the test set. We use the categor-
ical variables in the census data, which consist of 102 one-hot
encoded features. The task of the RLCP dataset is to decide from
comparison patterns whether the underlying records belong to
one person. We convert all columns into match or non-match
and one-hot encode them, for a total of 18 features. The dataset
contains 5,749,132 instances (20,931 positive and 5,728,201 neg-
ative). We use the first 4,600,000 instances for training and the
remaining ones for testing.

5.1 Data handling
One of the main differences between our implementation of
BornSQL and other algorithms implemented by MADlib is the
way the data are handled.

BornSQL acts directly on the normalized structure of the data-
base, without requiring the materialization of any intermediate
result, and natively supports sparse computations in standard
SQL with the queries introduced in Section 3.

On the contrary, MADlib requires to prepare the input data,
and materialize them, in one of the following three formats. The
first format is a classical tidy-data format [28] where rows are
observations and each column is a feature. However, the DBMS
typically limits the maximum number of columns in a table and
thus this format cannot be used when the number of features is
above this limit. To overcome this limitation, the second format
stores all the features in a single column that contains an array of
values with arbitrary fixed length. However, all the elements in

229

EDBT ’26, 24-27 March 2026, Tampere (Finland) Guidotti et al.

each array must be stored explicitly and this is inefficient when
most of the elements are zero, as it is typically the case with text
data. The last option is to use a sparse format that only stores the
non-zero elements. Unfortunately, this format is only provided
for storage purposes and the current version of MADlib (2.1.0)
does not support training algorithms or performing inference
with sparse input. This is an important limitation, as it essentially
prevents from using high-dimensional categorical data with any
algorithm. For instance, consider the Scopus dataset in the pre-
vious section with approximately 2 million rows and 4 million
features. Assuming 4 bytes for an integer, storing these data in
a non-sparse format requires 2 × 4 × 4 = 32 terabytes, which is
thousands times larger than the original database size, and pre-
vented us from training any algorithm in MADlib. We thus report
below a comparison on the Adult and RLCP datasets, which have
a small set of features that MADlib can handle efficiently.

5.2 Runtimes
On the Adult and RLCP datasets, the training and inference times
of BornSQL are of the same order of magnitude of the classifiers
implemented in MADlib. On the adult dataset, BornSQL requires
3.25s to train, 0.01s to deploy, and 0.86s to predict all the test
instances. The data preprocessing step in MADlib requires 1.45s
and the training time for Decision Trees (DT), Supported Vector
Machines (SVM), and Logistic Regression (LR) are 57.73s, 25.89s,
and 19.69s, respectively. The corresponding inference times are
0.73s, 0.27s, and 0.29s. On the RLCP dataset, BornSQL requires
184.10s to train, 0.01s to deploy, and 58.05s for inference. The data
preprocessing step in MADlib requires 52.88s, and the training
(inference) times are 306.67s (21.41s) for DT, 1,425.45s (10.29s)
for SVM, and 265.22s (5.63s) for LR.

5.3 Evaluation metrics
We execute all the algorithms with default hyper-parameters and
report the evaluation metrics on the test set in Table 5. Over-
all, BornSQL is comparable with the popular algorithms imple-
mented in MADlib. Specifically, it achieves lower precision and
higher recall than the other algorithms on the Adult dataset,
which is expected, as the Born Classifier natively normalizes by
the class imbalance [7]. In the RCLP dataset, BornSQL matches
the precision of the other classifiers, while also achieving higher
recall.

The supplementary code also adds the 20 Newsgroup (20NG)
and Reuters (R8 and R52) datasets to the benchmark. BornSQL
achieves an accuracy of 87.3% on 20NG, 95.4% on R8, and 88.0%
on R52, which fully replicate the original results in [7]. As the
classification performance is independent from our SQL imple-
mentation, benchmarking against other state-of-the-art classi-
fiers is outside the scope of our evaluation and we refer the reader
to [7] for additional comparative tests in this regard.

5.4 Explainability
It is worth noting that BornSQL natively provides explanations
alongside its predictions, a feature that is completely missing in
MADlib. For instance, by inspecting the global explanation on the
Adult dataset, we find that the features “native_country: Outlying-
US(Guam-USVI-etc)” and “native_country: Holand-Netherlands”
have positive weight for the negative class but zero weight for
the positive class. This means that these nationalities have never
been seen in the positive class and suggests that the data may not
contain a representative sample for these nationalities, creating

Table 5: Macro-averaged precision (Prc.), recall (Rec.), and
F1-score for BornSQL, Decision Tree (DT), Supported Vec-
tor Machines (SVM), and Logistic Regression (LR) on the
Adult and RLCP datasets.

Adult RLCP
Prc. Rec. F1 Score Prc. Rec. F1 Score

BornSQL 0.70 0.78 0.70 0.99 1.00 0.99
DT 0.77 0.71 0.73 0.99 0.97 0.98
SVM 0.78 0.72 0.74 0.99 0.97 0.98
LR 0.78 0.73 0.75 0.99 0.97 0.98

potential biases in the predictions. By querying the database, we
confirm that the training data only contain 14 instances with “na-
tive_country” equal to “Outlying-US(Guam-USVI-etc)” and only
1 instance with “native_country” equal to “Holand-Netherlands”.
Overall, this example illustrates how BornSQL may be used to
spot potential biases in the training data before feeding them to
machine-learning algorithms that may otherwise start discrimi-
nating based on under-represented characteristics.

6 Related Work
To our knowledge, BornSQL is the first classifier for in-database
machine learning that supports learning, unlearning, inference,
and explainability with standard SQL. Since no direct benchmarks
exist that support all these features simultaneously, we review
related works in several dimensions relevant to its capabilities.

MADlib. MADlib [8] provides a comprehensive framework for
in-database analytics. Developed for PostgreSQL and Greenplum
databases, it offers a high-level interface for training and deploy-
ing machine learning models. The library features an extensive
collection of ML algorithms designed to harness optimized in-
database processing capabilities. However, unlike BornSQL, ML
pipelines in MADlib cannot directly run on the normalized data
typical of relational databases. For training ML models using
MADlib, the data must be denormalized and materialized into
an input table, introducing several inefficiencies due to the ma-
terialization of the join results and extensive data manipulation
required to convert the data into formats suitable for ML pro-
cessing. A significant limitation is the inability to use sparse data
for training and inference, which makes it impossible to process
large datasets with high-dimensional features.

Overall, the main differences between MADlib and BornSQL
are that i) BornSQL is a classification algorithm particularly suit-
able for high-dimensional categorical features while MADlib of-
fers an extensive choice of ML algorithms for both classification
and regression tasks particularly suitable for low-dimensional
categorical and numerical features, ii) MADlib is an SQL wrapper
for routines implemented in C++ for PostgreSQL and Green-
plum databases while BornSQL relies exclusively on standard
SQL queries and it is portable to any relational database, and
iii) BornSQL offers additional routines for incremental learning,
unlearning, and explainability.

In-DB ML. Machine learning over relational data can be cast
as a database problem [18]. Considerable work on enabling ma-
chine learning workflow inside database systems adopt SQL-
based approaches that reuse existing database capabilities and
often extend the DBMS with custom data structures and query

230

In-Database Text Classification with BornSQL EDBT ’26, 24-27 March 2026, Tampere (Finland)

operators [2, 5, 14, 16]. Despite being less efficient than the SQL-
only solutions, approaches based on User Defined Functions
(UDFs) provide a viable alternative, where a more familiar proce-
dural programming framework can be used to embed existing
machine learning algorithms into SQL code [4, 6, 8]. Sandha et
al. [24] realize distributed learning using parallel model training
and implement C-based ML primitives for model training and
validation inside the Teradata SQL engine. Following a line of
work on large-scale statistical computation in RDBMS, Jankov et
al. [10] apply targeted changes to SimSQL, a distributed RDBMS
on Hadoop MapReduce, to allow for concise declarative specifica-
tion and efficient execution of complex recursive computations.
Building on their work, Schüle et al. [26] deploy machine learn-
ing pipelines in standard SQL, integrating gradient descent as
a native operator for efficient automatic differentiation inside
the Umbra database engine and accelerating in-database model
training by off-loading the processing to GPU kernels. Steffen
Kläbe et al. [12] evaluate several approaches for in-database in-
ference on deep neural models. Overall, the above works present
approaches to implement machine learning models into DBMSs
using UDFs, C-APIs, or SQL translations for simple models. This
work adopts the latter approach and implements the classifica-
tion algorithm in [7] using standard SQL without any external
runtime, in a similar way to JoinBoost [9], which rewrites tree
training algorithms over normalized databases into pure SQL.

In-DB Inference. MASQ [3, 19] provides an automatic frame-
work for compiling scikit-learn [20] predictive pipelines into SQL
queries that get executed in SQL-compliant engines. ML models
are trained outside the DBMS and pushed into the database to
run the inference step. InferDB [23] approximates end-to-end
inference pipelines using a light-weight embedding to improves
inference times while maintaining similar prediction accuracy
compared to the pipeline it approximates. Compared to these
solutions, BornSQL supports both the training and the inference
steps in SQL.

In-DB XAI. Explainable Artificial Intelligence (XAI) studies
the explainability and interpretability of machine learning mod-
els [27]. Several frameworks, such as LIME [21] and SHAP [15],
produce model-agnostic explanations by approximating the de-
cision process of black-box models. However, it is argued that
trying to explain black-box models, rather than creating models
that are interpretable in the first place, is likely to perpetuate bad
practice [22]. In this context, BornSQL is not a black-box model
that needs to be explained with methods such as LIME and SHAP.
Indeed, it is inherently interpretable and directly yields both local
and global explanations with perfect fidelity and faithfulness to
the model’s actual behavior, entirely within standard SQL.

In-DB Unlearning. Machine unlearning [11, 29, 30] refers to
the process of removing the influence of specific training data
from a trained model’s weights, ensuring compliance with pri-
vacy regulations like the GDPR’s “right to be forgotten” [17].
Unlearning in-database has the potential to enhance data privacy
by allowing seamless data removal directly within the database,
improving compliance with privacy regulations, and ensuring
data consistency between the database and the model by syn-
chronizing the data removal process with the model’s weights.
To our knowledge, the field of in-database unlearning is largely
underexplored, and this work represents a first step in this direc-
tion.

7 Discussion
In this section, we outline potential application areas in which
BornSQL could offer unique advantages and finally discuss its
main limitations.

Cost-effective model serving. A fitted instance of BornSQL only
requires storing a tuple of hyper-parameters, a table containing
the model’s weights, and an optional table to speed up inference
times. The storage cost of the model is that of creating one or
two tables with three columns and a number of rows equal to the
number of unique pairs of features and classes. Moreover, only
the table used for inference may be retained to reduce storage
costs further if the model is not planned to be updated. Inference
is implemented by querying the database. As such, the model
may be served by implementing an Application Programming
Interface (API) that runs SQL queries, leveraging the concurrency
and scalability of the database without the need of any additional
resource.

External data. In some application contexts, it may be neces-
sary to train the model with data external to the database without
incurring the cost of storing the training set. In such a situation,
instead of specifying SQL queries that select and transform data
stored in the database, training samples can be processed exter-
nally to compute the weights 𝑃 𝑗𝑘 in Section 3.2 and update the
table {model}_corpus accordingly, without the need to import
the data into the database. We also mention that inference is not
limited to items stored in the database. Indeed, the table X_nj
used for inference does not necessarily need to be created by the
queries 𝑞𝑛 and 𝑞𝑥 using data from the database, but it may also
be constructed externally and written to a temporary table when
needed.

Explainable predictions and exploratory data analysis. Along-
side its predictions, BornSQL returns local and global explana-
tions. Such explanations may be used to understand the reasons
behind predictions and validate the model. They may also be used
to spot potential biases in the training data before feeding them
to other machine-learning pipelines. Generally, BornSQL may
be used not only as a classifier but also as a tool for exploratory
data analysis.

Continuous learning and privacy regulations. Some applica-
tions require continuous model updates as new training data
become available. Other applications require models to unlearn
subsets of training data to meet privacy regulations. BornSQL
may be helpful in these applications as it can be trained with
exact incremental learning and an exact unlearning process. For
instance, when a user withdraws consent to data processing, a
trigger may run the query to unlearn the corresponding data
and ensure that the model is always consistent with the user’s
consent.

Limitations. Although BornSQL demonstrates robust capabili-
ties in categorical data classification, its primary limitation lies
in its inability to directly handle continuous attributes or regres-
sion tasks. Indeed, continuous variables should first undergo
discretization, which might restrict the effective use of BornSQL
primarily to databases with mostly categorical attributes. Conse-
quently, the functionalities presented in this paper might not be
universally applicable across all types of datasets.

231

EDBT ’26, 24-27 March 2026, Tampere (Finland) Guidotti et al.

8 Conclusion
This paper addresses the challenge of executing machine learn-
ing workflows entirely inside a relational database management
system. We present BornSQL, an implementation of the Born
classifier [7] that only requires standard SQL, without any ex-
ternal procedural code. The key capabilities of BornSQL include:
(i) training a text classification model using only SQL queries;
(ii) incremental learning, updating the model efficiently as new
data arrives; (iii) unlearning, removing or “forgetting” specific
training data upon request (e.g., for privacy compliance); and (iv)
explainability, providing both global and local explanations. The
paper’s central idea is to treat relational data attributes (especially
categorical or text attributes) as features analogous to words in a
document, enabling native text classification within the DB. Over-
all, BornSQL is the first in-DB ML solution to support training,
inference, incremental updates, unlearning, and explainability
all within SQL, offering a portable and secure approach to ML
on data within relational databases.

Artifacts
All code and data to reproduce our results are available at https:
//github.com/eguidotti/bornrule.

References
[1] Barry Becker and Ronny Kohavi. 1996. Adult. UCI Machine Learning Reposi-

tory. DOI: https://doi.org/10.24432/C5XW20.
[2] Mark Blacher, Joachim Giesen, Sören Laue, Julien Klaus, and Viktor Leis. 2022.

Machine Learning, Linear Algebra, and More: Is SQL All You Need?. In 12th
Conference on Innovative Data Systems Research, CIDR 2022,Chaminade, CA,
USA, January 9-12, 2022. www.cidrdb.org, Chaminade, CA, USA, 6 pages.

[3] Francesco Del Buono, Matteo Paganelli, Paolo Sottovia, Matteo Interlandi, and
Francesco Guerra. 2021. Transforming ML Predictive Pipelines into SQL with
MASQ. In Proc. of the Int. Conference on Management of Data SIGMOD2021.
Association for Computing Machinery, Virtual Event, China, 2696–2700.

[4] Joseph Vinish D’silva, Florestan De Moor, and Bettina Kemme. 2018. AIDA:
Abstraction for advanced in-database analytics. Proceedings of the VLDB
Endowment 11, 11 (2018), 1400–1413.

[5] Len Du. 2020. In-Machine-Learning Database: Reimagining Deep Learning
with Old-School SQL. CoRR abs/2004.05366 (2020).

[6] Christian Duta, Denis Hirn, and Torsten Grust. 2020. Compiling PL/SQL Away.
In 10th Conference on Innovative Data Systems Research, CIDR 2020, Amsterdam,
The Netherlands, January 12-15, 2020, Online Proceedings. www.cidrdb.org,
Amsterdam, The Netherlands, 6 pages.

[7] Emanuele Guidotti and Alfio Ferrara. 2022. Text Classification with Born's
Rule. In Advances in Neural Information Processing Systems, Vol. 35. Curran
Associates, Inc., New Orleans, LA, USA, 30990–31001.

[8] Joseph M. Hellerstein, Christopher Ré, Florian Schoppmann, Daisy Zhe Wang,
Eugene Fratkin, Aleksander Gorajek, Kee Siong Ng, Caleb Welton, Xixuan
Feng, Kun Li, and Arun Kumar. 2012. The MADlib Analytics Library or MAD
Skills, the SQL. Proc. VLDB Endow. 5, 12 (2012), 1700–1711.

[9] Zezhou Huang, Rathijit Sen, Jiaxiang Liu, and Eugene Wu. 2023. JoinBoost:
Grow Trees over Normalized Data Using Only SQL. Proc. VLDB Endow. 16, 11
(jul 2023), 3071–3084.

[10] Dimitrije Jankov, Shangyu Luo, Binhang Yuan, Zhuhua Cai, Jia Zou, Chris
Jermaine, and Zekai J Gao. 2020. Declarative recursive computation on an
RDBMS: or, why you should use a database for distributed machine learning.
ACM SIGMOD Record 49, 1 (2020), 43–50.

[11] Yiwen Jiang, Shenglong Liu, Tao Zhao, Wei Li, and Xianzhou Gao. 2022. Ma-
chine unlearning survey. In Fifth International Conference on Mechatronics and

Computer Technology Engineering (MCTE 2022), Dalin Zhang (Ed.), Vol. 12500.
SPIE, Chongqing, China, 125006J.

[12] Steffen Kläbe, Stefan Hagedorn, and Kai-Uwe Sattler. 2023. Exploration of
Approaches for In-Database ML. In Proceedings 26th International Conference
on Extending Database Technology, EDBT 2023, Ioannina, Greece, March 28-31,
2023, Julia Stoyanovich, Jens Teubner, Nikos Mamoulis, Evaggelia Pitoura,
Jan Mühlig, Katja Hose, Sourav S. Bhowmick, and Matteo Lissandrini (Eds.).
OpenProceedings.org, Ioannina, Greece, 311–323.

[13] Guoliang Li, Ji Sun, Lijie Xu, Shifu Li, Jiang Wang, and Wen Nie. 2024. GaussML:
An End-to-End In-Database Machine Learning System. In Proc. of the IEEE 40th
Int. Conference on Data Engineering (ICDE). Utrecht, Netherlands, 5198–5210.

[14] Xupeng Li, Bin Cui, Yiru Chen, Wentao Wu, and Ce Zhang. 2017. Mlog:
Towards declarative in-database machine learning. Proceedings of the VLDB
Endowment 10, 12 (2017), 1933–1936.

[15] Scott M. Lundberg and Su-In Lee. 2017. A Unified Approach to Interpreting
Model Predictions. In Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017, December
4-9, 2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg, Samy
Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (Eds.). Curran Associates, Inc., Long Beach, CA, USA, 4765–4774.

[16] Shangyu Luo, Zekai J Gao, Michael Gubanov, Luis L Perez, and Christopher
Jermaine. 2018. Scalable linear algebra on a relational database system. ACM
SIGMOD Record 47, 1 (2018), 24–31.

[17] Alessandro Mantelero. 2013. The EU Proposal for a General Data Protection
Regulation and the roots of the ‘right to be forgotten’. Computer Law &
Security Review 29, 3 (2013), 229–235.

[18] Dan Olteanu. 2020. The relational data borg is learning. Proc. VLDB Endow.
13, 12 (aug 2020), 3502–3515.

[19] Matteo Paganelli, Paolo Sottovia, Kwanghyun Park, Matteo Interlandi, and
Francesco Guerra. 2023. Pushing ML Predictions Into DBMSs. IEEE Transac-
tions on Knowledge and Data Engineering 35, 10 (2023), 10295–10308.

[20] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn:
Machine Learning in Python. Journal of Machine Learning Research 12 (2011),
2825–2830.

[21] Marco Túlio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. "Why Should I
Trust You?": Explaining the Predictions of Any Classifier. In Proceedings of the
Demonstrations Session, NAACL HLT 2016, The 2016 Conference of the North
American Chapter of the Association for Computational Linguistics: Human
Language Technologies, San Diego California, USA, June 12-17, 2016. The Asso-
ciation for Computational Linguistics, San Diego, California, USA, 97–101.

[22] Cynthia Rudin. 2019. Stop explaining black box machine learning models for
high stakes decisions and use interpretable models instead. Nature machine
intelligence 1, 5 (2019), 206–215.

[23] Ricardo Salazar-Díaz, Boris Glavic, and Tilmann Rabl. 2024. InferDB: In-
Database Machine Learning Inference Using Indexes. Proceedings of the VLDB
Endowment 17, 8 (2024), 1830–1842.

[24] Sandeep Singh Sandha, Wellington Cabrera, Mohammed Al-Kateb, Sanjay
Nair, and Mani B. Srivastava. 2019. In-database Distributed Machine Learning:
Demonstration using Teradata SQL Engine. Proc. VLDB Endow. 12, 12 (2019),
1854–1857.

[25] Irene Schmidtmann, Gael Hammer, Murat Sariyar, and Aslihan Gerhold-Ay.
2009. Record Linkage Comparison Patterns. UCI Machine Learning Repository.
DOI: https://doi.org/10.24432/C51K6B.

[26] Maximilian E. Schüle, Harald Lang, Maximilian Springer, Alfons Kemper,
Thomas Neumann, and Stephan Günnemann. 2021. In-Database Machine
Learning with SQL on GPUs. In SSDBM 2021: 33rd International Conference on
Scientific and Statistical Database Management, Tampa, FL, USA, July 6-7, 2021,
Qiang Zhu, Xingquan Zhu, Yicheng Tu, Zichen Xu, and Anand Kumar (Eds.).
ACM, Tampa, FL, USA, 25–36.

[27] Erico Tjoa and Cuntai Guan. 2020. A survey on explainable artificial intel-
ligence (xai): Toward medical xai. IEEE transactions on neural networks and
learning systems 32, 11 (2020), 4793–4813.

[28] Hadley Wickham. 2014. Tidy data. Journal of statistical software 59 (2014),
1–23.

[29] Heng Xu, Tianqing Zhu, Lefeng Zhang, Wanlei Zhou, and Philip S. Yu. 2023.
Machine Unlearning: A Survey. ACM Comput. Surv. 56, 1 (aug 2023), 36 pages.

[30] Haibo Zhang, Toru Nakamura, Takamasa Isohara, and Kouichi Sakurai. 2023.
A review on machine unlearning. SN Computer Science 4, 4 (2023), 337.

232

https://github.com/eguidotti/bornrule
https://github.com/eguidotti/bornrule

	Abstract
	1 Introduction
	2 The Born Classifier
	2.1 Training
	2.2 Inference
	2.3 Explainability

	3 The Born Classifier in SQL
	3.1 Preprocessing
	3.2 Training
	3.3 Deployment
	3.4 Inference
	3.5 Explainability

	4 Experimental Evaluation
	4.1 Data
	4.2 Preprocessing
	4.3 Training
	4.4 Deployment
	4.5 Inference
	4.6 Explainability

	5 Comparison with MADlib
	5.1 Data handling
	5.2 Runtimes
	5.3 Evaluation metrics
	5.4 Explainability

	6 Related Work
	7 Discussion
	8 Conclusion
	References

