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Abstract
Unionable table search techniques input a query table from a
user and search for data lake tables that can contribute additional
rows to the query table. The definition of unionability is gener-
ally based on similarity measures which may include similarity
between columns (e.g., value overlap or semantic similarity of the
values in the columns) or tables (e.g., similarity of table embed-
dings). Due to this and the large redundancy in many data lakes
(which can contain many copies and versions of the same table),
the most unionable tables may be identical or nearly identical to
the query table and may contain little new information. Hence,
we introduce the problem of identifying unionable tuples from
a data lake that are diverse with respect to the tuples already
present in a query table. We perform an extensive experimen-
tal analysis of well-known diversity algorithms applied to this
novel problem and identify a gap that we address with a novel,
clustering-based tuple diversity algorithm called DUST. DUST
uses a novel embedding model to represent unionable tuples that
outperforms other tuple representation models by at least 15%
when representing unionable tuples. Using real data lake bench-
marks, we show that our diversification algorithm is more than
six times faster than the most efficient diversification baseline.
We also show that it is more effective in diversifying unionable
tuples than existing diversification algorithms.
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1 Introduction
Content-based table search (or table as a query) has become the
dominant paradigm for table discovery in data lakes [8, 10, 18, 20],
particularly when metadata may be missing, ambiguous, incon-
sistent, or incomplete [27, 36]. In this paradigm, users input a
table as a query, and the table search system uses the data avail-
able within the query table to retrieve relevant tables. Among
different types of relevance search [10, 18, 25], we focus on Table
Union Search [37], where the objective is to search for additional
"unionable" tables. Note that an important end goal of searching
for the unionable tables is to add new rows to a given query ta-
ble. However, table union search techniques return the data lake
tables that are most unionable to the query table [2, 24, 37]. They
measure unionability between tables based on different similarity
measures including value overlap between the columns [2, 37],
knowledge graphs concept similarity [24, 37], word embedding
similarity [37], similarity of table representations [11, 20], and
so on. But such similarity-based techniques tend to return tables
containing similar or even redundant tuples (with respect to the
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query table) in the top rankings. In fact, a table is most similar to
itself.

Example 1. Consider Query Table (a) and Data Lake Tables
(b), (c) and (d) in Fig. 1. Tables (a), (b) and (d) are about parks
and their different properties, and both Tables (b) and (d) are
unionable with the query table. Table (c) is about paintings and
as it shares only the country attribute with (a), it is determined to
be not unionable with the query table. Since table union search
techniques [11, 20, 24, 37] measure similarity between query and
data lake tables to infer unionability, they return Table (b) as the
most unionable table (Table (d) while unionable is less similar to
the query). However, Table (b) is mostly a copy of the query table
with a single new tuple and thus does not extend the user’s analysis
much (we illustrate this in Table (e) which is "most unionable").
In contrast, Table (d) is both unionable and contains tuples with
new information.

If the data lake contains tables with overlapping tuples, these
are likely to be returned by a union search method. Others have
documented the tremendous redundancy in real data lakes [57],
noting that almost 90% of the data found in newly created datasets
duplicates information already present in existing datasets in a
lake [45]. So, the top-ranked tables returned by a similarity-based
union search technique may not offer much new information.
An example of the impact of such redundancy could be if one
were trying to integrate the discovered tables to achieve a fair-
ness goal [35, 47, 53] where most approaches assume that the
discovered tables have enough tuples available to satisfy fairness
constraints [35]. However, if redundancy is high, this may not be
the case. Table search is used to find training data for machine
learning models [14, 19] and redundancy in the discovered data
may hamper the model’s ability to generalize. A user study on
diversifying information retrieval (IR) search results reflects that
when looking for new information, users are interested in find-
ing more information within their specific subtopics of interest,
rather than arbitrarily looking for any new information [52]. In
our case, for instance, a user is looking for information on new
parks that are not present in the query table. In this paper, we
present a novel evaluation of the ability of existing diversity al-
gorithm to diversify the tuples returned by unionability methods.
We further offer DUST, a method designed to address gaps iden-
tified in existing algorithms and scalably provide a diverse set of
unionable tuples. Referring to Example 1 (Fig. 1), our proposed
approach will find unionable tuples from a set of unionable tables
where the tuples add new and diverse information to the query
table as illustrated by Table (f).

Tuple vs. Table Diversity. Our important design decision is
to return a set of diverse, unionable tuples (which may come from
different tables), rather than a set of diverse, unionable tables.
Fig. 2 provides a motivation for this decision. Using any tuple
or table embedding technique, we can plot (using PCA) a two-
dimensional representation of the embedding similarity among
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Painting Medium Dimensions Date Country
Northern Lake Oil on canvas 91.4 x 121.9 cm 2006 Canada

Memory Landscape 2 Mixed media 33 x 324 cm 2018 USA
----- ------ ---- ------- ----

Painting Medium Dimensions Date Country
Northern Lake Oil on canvas 91.4 x 121.9 cm 2006 Canada

Memory Landscape 2 Mixed media 33 x 324 cm 2018 USA
----- ------ ---- ------- ----

(a)

(d)

Park Name Supervisor Country
River Park Vera Onate USA

West Lawn Park Paul Veliotis USA
Hyde Park Jenny Rishi UK

------- ------ --------
(b)

(c)

Painting Medium Dimensions Date Country
Northern Lake Oil on canvas 91.4 x 121.9 cm 2006 Canada

Memory Landscape 2 Mixed media 33 x 324 cm 2018 USA
----- ------ ---- ------- ----

Park Name Supervisor City Country
River Park Vera Onate Fresno USA

West Lawn Park Paul Veliotis Chicago USA
------- ------ ------- --------

Data Lake TablesQuery Table

River Park Vera Onate USA
West Lawn Park Paul Veliotis USA

Hyde Park Jenny Rishi UK
------- ------ --------

Hyde Park Jenny Rishi UK
Chippewa Park Tim Erickson Brandon, MN USA

Lawler Park Enrique Garcia Chicago, IL USA
------- ------ ------- --------

(e)

(f)

Existing Work (most unionable)

Our Work (most diverse)

Park Name Park City Park Country Park Phone Supervised by
Chippewa Park Brandon, MN USA 773 731-0380 Tim Erickson

Lawler Park Chicago, IL USA 773 284-7328 Enrique Garcia
----- ---- ------- ------ ----

Figure 1: Table (a) is a Query Table (left) and Tables (b)-(d) are Data Lake Tables (right). Existing Work will add the tuples in
Table (e) (most unionable) while our work will return the ones in Table (f), which are also the most diverse.
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Figure 2: Table (left) and Tuple (right) embedding distri-
butions of unionable tables (tuples) from Open Data [24].
Each color/marker represents a distinct set of unionable
tuples/tables. Tables from different sets are non-unionable.

unionable and non-unionable tuples or tables. Fig. 2 does this
using embeddings we will introduce in Sec. 4. On the left, we plot
embeddings of five sets (each set in a different color/marker) of
unionable tables from the SANTOS benchmark which contains
tables from Open Data [24]. Tables from different sets are non-
unionable. While there is some clustering structure in the plot,
the unionable tables are not terribly diverse in the embedding
space and even some non-unionable tables have quite similar
representations. This shows that the diversity of the tables is
limited. The right side contains the same plot for unionable and
non-unionable tuples. Tuples are spread around the space much
more, and even unionable tuples (with same color/marker) can
appear very far apart in the embedding space. This suggests that
diversifying unionable tables may have limited effect whereas
selecting a diverse set of tuples from a set of unionable tables may
well achieve our goal of providing new and diverse search results.
In addition, directly searching for diverse unionable tuples may
be infeasible since it requires an index over all tuples in a lake
(rather than tables).

Extensive IR research, particularly in recommendation sys-
tems and web search, has also focused on the diversification of
search results [1, 15, 50]. While IR solutions, at large, address
very large repositories of data (e.g., documents), when it comes
to diversification, they typically focus on smaller sets [5, 15, 50].
Diversification, in this case, is applied as a second step over
human-consumable sets of information such as web pages or
items on an e-commerce website. Accordingly, they experiment
with relatively small sets (e.g., a prior work considers relevance
item set size up to 5000 and diverse output result size up to
35 [51]; and a popularly used web search dataset has a set of

queries each with 100 relevant google web search results among
which a small (typically, 5 or 10 items out of the 100) diverse
set can be extracted [15]). In our scenario, the challenge lies in
diversifying large sets (tens of thousands) of unionable tuples,
which are intended to be processed in automated pipelines for
downstream tasks [14].

Our method DUST (Diverse Unionable Tuple Search), which
given a query table, searches for unionable tables from a data
lake, and post-processes them to output k-diverse tuples that are
diverse with respect to the query table and each other. We do
not assume a small set of retrieved items and we do not assume
a small 𝑘 as in information retrieval, rather DUST considers
outputting (a potentially large) set of diverse tuples from a larger
set of unionable tuples. We further fine-tune a transformer-based
model that represents the unionable tuples in an embedding space.
We evaluate unionable table search techniques, emphasizing their
effectiveness in achieving diversification. We further adopt and
combine ideas from diversification and table union search to
present a new algorithm. Specifically, our contributions are:
• Diverse Unionable Tuple Search. We identify and address
the new problem of searching for diverse tuples from a data lake
that can be unioned with the given query table.
• Tuple Diversification Algorithm. We present DUST, a new
algorithm to diversify unionable data lake tuples with respect
to the query table. The algorithm also uses a transformer-based
fine-tuned model for tuple representation.
• Extensive Empirical Evaluation. We run experiments to
show the effectiveness and efficiency of DUST in searching for
diverse unionable tuples. Specifically, our novel DUST model
outperforms baseline tuple embedding models by at least 15% in
terms of accuracy, when used to represent unionable tuples.

Furthermore, we show that DUST’s tuple diversification algo-
rithm is over six times faster than the most effective baseline [51].
Nevertheless, in most cases, our algorithm is more effective than
all the baselines when diversifying tuples from existing table
union search benchmarks [24, 39]. We further provide a case-
study intuitively illustrating the practical benefits of the pre-
sented algorithm.
• Open-source Code and Data. We make all our resources
open-source: https://github.com/northeastern-datalab/dust
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2 Related Work
To the best of our knowledge, no prior work searches for a diverse
set of unionable tuples from a data lake. So, we cover related work
on finding unionable tables and on diversifying search results.

Table Union Search. Nargesian et al. [37] introduced the
problem of searching for top-k unionable tables from a data
lake, given a query table. They consider a data lake table to be
unionable with a query table if they share unionable columns. To
determine unionable columns, they defined three statistical tests
based on value overlap, knowledge graph class overlap, and word
embedding similarity between the columns. Zhu et al. [58] intro-
duced the joinable table search problem with numerous exten-
sions [8, 57] and Bogatu et al. [2] presented D3L that searches for
data lake tables that are related (meaning either unionable or join-
able). Khatiwada et al. [24] introduced SANTOS that improves
table union search accuracy by considering column semantics
as well as the semantics of binary relationships between column
pairs. In Starmie, Fan et al. [11] proposed a contrastive-learning
framework that instead of looking at columns individually or
looking at the binary relationships between the column pairs,
captures the context of the entire table in the form of contextual-
ized column embeddings and uses such embeddings to improve
table union search accuracy. Hu et al. [20] proposed AutoTUS
where they contextualized relationships between the column
pairs to capture table contexts and use them to find unionable
tables from the data lakes. Mirzaei and Rafiei [32] explore the
search for similar data lake tables based on user preferences, in-
corporating diversity among their four major preference criteria.
While their primary focus is on finding tables with new sets of
columns, we concentrate on the addition of new tuples. Never-
theless, they utilize an existing diversification algorithm from
prior work [51] that we use as a baseline. In summary, existing
techniques return top-k unionable tables whereas, we output k
unionable and diverse tuples for a given query table.

Search result diversification. The information retrieval
literature considers diversifying search results (aka novelty
search) [1, 4, 50]. They generally input a relevant item set to
a query and output a subset of items that maximize a diversity
score given by a diversification function [55]. The diversifica-
tion function is defined by considering a trade-off between rel-
evance and diversity that is controlled using a user-provided
parameter, where increasing relevance decreases diversity and
vice-versa. Furthermore, they are based on different objectives
such as maximizing the sum of distances between the selected
items (max-sum diversification) [3, 4, 22, 51], maximizing the
minimum distance between the selected items (max-min di-
versification) [33], retrieving items in a diverse set having dis-
tances greater than a given threshold (threshold-based diversifi-
cation) [9], and more. Note that selecting k-diverse items from
a given set is an expensive problem [6, 51]. Therefore, various
greedy algorithms are proposed to compute an approximate so-
lution. For instance, Yu et al. [54] proposed the SWAP algorithm
considering max-diversification of the items that a recommender
system may suggest. SWAP starts by generating a candidate
set and then greedily exchanges items in the candidate set to
enhance the diversity score. Other work selects diverse sets by ap-
proximating diversity scores using different strategies [16, 22, 49].
Noticeably, Vieira et al. [51] developed GNE and GMC algorithms
using a Maximum Marginal Relevance (MMR) scoring function
that approximates the max-diversification score to give better
diversification results than prior work. We use these algorithms

in the experiments. Allan et al. [3] provide theoretical guarantees
and approximation bounds for the computation of MMR, which is
central to Max-Sum diversification algorithms. Moreover, Drosou
and Pitoura [9] proposed a threshold-based definition of diversity
where they consider two items to be similar if they are within
a given threshold. They develop an approximate algorithm to
select a set of diverse items from a given set of relevant items
such that each relevant item is represented in the diverse set by
a similar item and each item in the result set is dissimilar to each
other. Note that the diverse set could be empty if no items satisfy
the given threshold. Hence, we develop a diversity algorithm
to output k-diverse items instead of using a threshold-based ap-
proach. Note that all of this work considers diversification of
image search, web search, and product recommendations. The
diversification of tuples, specifically a set of unionable tuples, has
not yet been studied. These prior IR diversification works assume
relatively small sets of relevant items to diversify and consider
effectiveness over efficiency as their use case is to display a small
number of diverse search results or recommend a small number
of diverse items for human consumption [5, 15, 50]. However,
since we may need to yield hundreds of diversified tuples from
tens of thousands of unionable tuples, we consider how to scale
diversification algorithms.

Recently, Large Language Models (LLMs) have shown promis-
ing performance in different tabular tasks that need semantic
understanding such as column type annotation [29], understand-
ing table unionability [39] and entity matching [34]. For tuple
diversification, we may prompt an LLM [13] with a list of tuples
and ask it to return k-diverse tuples. However, as we have to
consider thousands of tuples, the current LLMs’ input token lim-
its may prohibit their use for this task. Nevertheless, we adopt
an LLM baseline [12] for an effectiveness experiment in a small
dataset.

3 Problem Definition and Overview
We denote a query table using 𝑄 and a set of data lake tables
using D where 𝑇 ∈ D represents a data lake table. A tuple from
any data lake table is called a data lake tuple (𝑡 ) and a tuple from
a query table is called a query tuple (𝑞). We use 𝑐 to represent a
column and accordingly, for Table𝑇 containing a tuple 𝑡𝑖 , we use
𝑇 .𝑐 𝑗 and 𝑡𝑖 [𝑐 𝑗 ] to represent its 𝑗𝑡ℎ column and the corresponding
value of tuple 𝑡𝑖 in column 𝑐 𝑗 respectively. Furthermore, let 𝐸 (𝑡𝑖 )
be an embedding (representation) of tuple 𝑡𝑖 in an embedding
space.

3.1 Tuple Diversity Score
Let 𝛿 (.) be a tuple distance function that inputs embeddings of
two tuples and outputs a distance between them such that the
distance between embeddings of a tuple and itself is 0. Let, 𝑑𝑖𝑣 (.)
be a diversity scoring function that maps embeddings of a set
of tuples to their diversity score. We consider 𝑑𝑖𝑣 (.) to be the
maximum for the optimal set of diverse tuples. In our evalua-
tion, we will use common diversity functions from the literature
that include maximizing the embedding distance between all tu-
ples (Max-sum diversification) [51] or maximizing the minimum
distance between tuples (Max-min diversification) [33].

3.2 Problem Definition
Given a set of 𝑛 query tuples, the Diverse Unionable Tuple Search
Problem aims to find a set of 𝑘 unionable tuples in a data lake that
are also diverse. We adopt the existing unionability definition that
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two tuples are unionable if they are either from the same table or
two unionable tables, i.e., tables sharing unionable columns [11,
37].

Definition 2 (Diverse Unionable Tuple Search Problem).
Given a Query Table 𝑄 having a set of tuples {𝑞1, 𝑞2, . . . 𝑞𝑛}, a
set of unionable Data Lake Tuples {𝑡1, 𝑡2, . . . 𝑡𝑠 }, a positive integer
𝑘 < 𝑠 , and a diversity scoring function 𝑑𝑖𝑣 (.), the diverse unionable
Tuple Search Problem is: find a set of k unionable tuples such that
𝑑𝑖𝑣 ({𝑞1, 𝑞2 . . . 𝑞𝑛} ∪ {𝑡1, 𝑡2 . . . 𝑡𝑘 }) is maximized.

3.3 Solution Overview
Now, we present a high-level overview of DUST, our solution
to the Diverse Unionable Tuple Search Problem (shown in Fig. 3
and Algorithm 1). Given a query table, DUST first obtains a set
of unionable tables from the data lake, aligns their columns, and
outer-unions the tables. A tuple embedding model is applied to
encode each tuple. Then, DUST diversifies the tuples to select
k-diverse tuples. Fig. 3 summarizes DUST pipeline which consists
of three main steps and we now briefly introduce each step.

Algorithm 1: DUST

1 Input: Query Table 𝑄 , set of Data Lake Tables D, Number of
output tuples 𝑘

2 //Discover data lake tables unionable with the query table.
3 D′ ←SearchTables(𝑄 , D)
4 //Align matching columns of the discovered tables and union

them.
5 T ← AlignColumns(𝑄 , D′)
6 //Embed each query and data lake tuple.
7 𝐸Q , 𝐸T ← EmbedTuples(Q, T)
8 F ← DiversifyTuples(𝐸𝑄 , 𝐸T , 𝑘)

Creating Unionable Tuples. We first explain the top half
of Fig. 3, where we are provided with a Query Table𝑄 . We search
for unionable tables from the data lake using any table union
search technique [11, 20, 24, 37]. To union these tables (to form
unionable tuples), we perform column alignment. As part of
the union search, many search algorithms will align each data
lake table individually with the query table, e.g., Starmie uses
maximum-weight bipartite matching between each column in a
unionable table and the query table [11]. However, most methods
do not output column alignments. Rather than recomputing pair-
wise matches, DUST uses a holistic column matcher [41] inspired
by a recent data integration approach [26]. Holistic matching
allows a collective alignment of all the columns in the set of
unionable tables and the query table. Unlike in pure integration
however [26] (where the goal is to integrate a set of tables), in
our setting we want to do a targeted alignment to the query
table. We are not interested in columns from data lake tables that
align with each other if there is no query column to which they
align. Our objective is to get a disjoint set of columns from the
unionable tables such that the columns in each set are aligned
together and to a single query column.

Similar to Khatiwada et al. [26], we first embed all query and
data lake columns using the set of column values. Over such
embeddings, we apply hierarchical clustering to generate a den-
drogram that models all possible clusters of columns. Note that
no two columns from the same table should be aligned together.
Therefore, we enforce a constraint during clustering that pro-
hibits clustering columns from the same table together. Then, an
important decision is to select the number of clusters. For that,

we compute a cluster quality score for each number of clusters
and select the one that maximizes the quality. We measure quality
using Silhouette’s coefficient [26, 44].

Note that we only need values from those data lake columns
that align with at least one column of the query table. So, after
getting the clusters, we discard those that do not contain a col-
umn from the query table. This leaves us with a set of clusters,
each with a query column and data lake columns that are aligned.
If a query column has no match with one or more of the union-
able tables, outer-union will pad the unionable table with a null
placeholder (e.g., nan) to create tuples that can be unioned with
the query table. Using this alignment, we can outer-union all
unionable tables to form a set of unionable tuples. We provide
further details and a block diagram of column alignment phase
in the technical report [28].

Example 3. Consider Tables in Fig. 1 such that Table (a) is a
query table and Tables (b), (c), and (d) reside in the data lake. Sup-
pose we use a union search technique to find the top-2 unionable
tables from the data lake. Then Tables (b) and (d) will be returned
as the two most unionable tables with Table (a). Next, we input
columns of Tables (a), (b), and (d) into the column alignment
phase where we get five clusters of columns. Specifically, the first
cluster contains three Park Name columns from Tables (a), (b),
and (d). The second cluster contains two Supervisor columns
from Tables (a) and (b), and Supervised By column from Table
(d). The third cluster contains City column from Table (a) and
Park City column from Table (d). The fourth cluster contains two
Country columns from Tables (a) and (b), and Park Country
column from Table (d). We also get a singleton cluster with Park
Phone column from Table (d). Since the last cluster contains no
columns from the query table, it is discarded. Then we are left
with the first four clusters of columns that are assigned with query
columns’ headers Park Name, Supervisor, City, and Country
respectively.

Tuple Representation. After forming unionable tuples, we
embed them into a high-dimensional space (bottom right of Fig. 3).
We use a novel embedding model (described in Sec. 4) that maps
a tuple to its fixed-dimension embedding. We embed the query
table’s tuples using the same model and column ordering.

Tuple Diversification. Finally, we use the tuple embeddings
to find k-diverse tuples. Along with the embeddings, we are given
a diversity scoring function 𝑑𝑖𝑣 (.), and positive integer 𝑘 . We
input them to a tuple diversification algorithm that return a set of
k-diverse data lake tuples. For the most diverse set, the diversity
score measured using 𝑑𝑖𝑣 (.) is maximized. In our experiments,
we will use existing diversification algorithms from the literature
along with a new scalable alternative that we introduce in Sec. 5.

4 Unionable Tuple Representation
While diversification is a well-studied topic, diversifying union-
able tuples is not. To apply the solution overviewed in the last
section, we need to be able to compute a meaningful distance
measure that models diversity (more distant means more di-
verse). Thus, we now create an embedding space to represent
tuples, allowing the computation of distances. The diversity lit-
erature [51, 52] considers relevance and diversity as opposite
dimensions, i.e., increasing relevance is considered to reduce
diversity and vice-versa. Using this lens, two similar unionable
tuples should be closer to each other in the embedding space and
less diverse than two different unionable tuples. For example,
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Figure 3: Block diagram of Diverse Unionable Tuple Search (DUST)

the tuple referring to River Park in Fig. 1 (a) should be much
closer to the tuple referring to River Park in Fig. 1 (b) than the
tuple referring to Chippewa Park in Fig. 1 (d). Now, since in this
step we already assume the tuples are unionable, our goal would
be to utilize this embedding space to position more distant, yet
unionable tuples on the top of the diversity list. For example,
given the aforementioned River Park tuple in Fig. 1 (a), we will
use the embedding space to consider Chippewa Park in Fig. 1
(d) more diverse from the query table than the River Park tuple
in Fig. 1 (b). In this case, both tuples are unionable, but as the
latter is identical to a query tuple, the former should be preferred,
being both unionable and more diverse.

To represent a tuple, it is important to consider what columns it
contains and the context in which it appears. In related tasks such
as entity matching [30], column annotation [48] and even table
union search [11], pre-trained language models (e.g., BERT [7])
have been shown to correctly capture context. It would be reason-
able to use them to capture an intuitive notion of similarity that
comes from natural language (tuples using similar words will be
closer in the embedding space). If we want to use an embedding
model to embed unionable tuples for diversification, the model
must understand if two tuples are unionable so that it can encode
their distances accordingly. As our experiments indicate (Sec-
tion 6), without proper fine-tuning, existing embedding models
do not work well for capturing unionability. In what follows,
we formulate a new fine-tuning technique aiming at classifying
unionable tuples. Such a fine-tuned model could provide better
performance by measuring how similar or diverse unionable tu-
ples are. In addition to using an annotated table union search
benchmark [37], we also use, in a self-supervision fashion, the
fact the tuples originating from the same table are unionable. To
that end, we create fine-tuned tuple embeddings, described next.

Dataset Preparation. We used a table union search bench-
mark [37] to create our training data. The benchmark contains
labels indicating if two tables are unionable. Based on our classifi-
cation task, we devise a fine-tuning dataset where each data point
contains a pair of tuples and a binary label (0 if they originate

from non-unionable tables or 1 if they are from the same table or
a pair of unionable tables). So for comprehensive fine-tuning, we
create data points of similar tuples by selecting a pair of tuples
from the same table or from two unionable tables. Furthermore,
two tuples from a pair of non-unionable tables in the benchmark
are about different topics and hence, diverse from each other. So,
for the diverse tuple data points, we create tuple pairs by selecting
a tuple each from two non-unionable tables. The data points are
then divided into train, test, and validation sets without leakage.

Serialization. Here, we describe how we input the tuples to the
pre-trained model for fine-tuning. Pre-trained language models
are built over textual data and they take natural language sen-
tences as input. In comparison to text, tabular data has different
semantics and information encoding principles [8, 11, 48]. So, we
serialize tuples into sentences to input them in the pre-trained
model by retaining tabular properties. Specifically, two tuples
may not have the same columns but may still be unioned on a
subset of their columns. Hence, to help the model learn unionabil-
ity on different numbers of columns, we serialize each tuple by
separating each column and its value.1 Precisely, let us consider
a tuple 𝑡 having 𝑛 columns. Let 𝑐𝑖 and 𝑣𝑖 represent the column’s
header and value respectively of column 𝑖 [7]. Also, [CLS] and
[SEP] are the special BERT-based model tokens that represent
the start of a sequence and a separation between the tokens in
the sequence respectively. We feed the serialized tuple 𝑡 to the
input layer of the BERT-based model as: 𝑆𝑒𝑟 (𝑡) :- [CLS] 𝑐1 𝑣1
[SEP] 𝑐2 𝑣2 . . . [SEP] 𝑐𝑛 𝑣𝑛 [SEP]

Example 4. Consider Tuples in Tables of Fig. 1. Recall from
Example 3 that we assigned Park Name, Supervisor, City, and
Country as column headers to the columns aligned with respec-
tive Query Columns (Table (a)’s columns). So, we serialize Tuple
(River Park, Vera Onate, Fresno, USA) in Table (a) as: [CLS] Park
Name River Park [SEP] Supervisor Vera Onate [SEP] City Fresno
[SEP] Country USA [SEP]. Moreover, for Tuple (Chippewa Park,
"Brandon, MN", USA, 773 731-0380, Tim Erickson) in Table (d), we

1We have experimented with other serializations offline, which were less effective.
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use those columns (and order) for serialization that aligned with
the Query Table, i.e., all but Park Phone. So, it is serialized as:
[CLS] Park Name Chippewa Park [SEP] City Brandon, MN [SEP]
Country USA [SEP].

Fine-tuning Architecture. We want to create a Tuple Embed-
ding Space such that a pair of diverse tuples are farther from
each other than a pair of similar tuples. Our empirical evaluation
shows that the pre-trained models as-is are not good at this task
(see Sec. 6.3). Therefore, as shown in Fig. 3 (bottom-right corner),
we append a fine-tuning layer to the pre-trained transformer
model and train it to embed the tuples such that the diverse tu-
ples are far from each other and vice-versa. For fine-tuning, we
test combinations of different layers and parameters empirically
and use the best architecture. Specifically, in the DUST model, we
append a dropout layer to the regular transformer model which
possibly helps us avoid overfitting during training. Then, we
pass the dropout output through two linear layers such that the
outcome of the last linear layer is a fixed-dimension embedding
of the tuple.

Note that we use the fine-tuned model to embed each tu-
ple individually for diversification in the later phase (Sec. 5).
So, during the training process, given a data point with a pair
of tuples and a binary label, we pass each serialized tuple one
after another through the model to represent them indepen-
dently. As shown in Fig. 3 (bottom right) for tuples 𝑡1 and
𝑡2, we pass 𝑆𝑒𝑟 (𝑡1) and 𝑆𝑒𝑟 (𝑡2) one after another to get their
representations 𝐸 (𝑡1) and 𝐸 (𝑡2) respectively. Then, we com-
pute loss by comparing the distance between two represen-
tations against the ground truth labels. The loss is fed back
to update the model parameters. Our architecture is flexible
to use any distance function. For our experiments, we use co-
sine distance, and accordingly, measure cosine embedding loss,

L(𝐸 (𝑡1), 𝐸 (𝑡2)) =

{
1 − cos(𝐸 (𝑡1), 𝐸 (𝑡2)) if label = 1
max(0, cos(𝐸 (𝑡1), 𝐸 (𝑡2))) if label = 0

,

where cos(𝐸 (𝑡1), 𝐸 (𝑡2)) = 𝐸 (𝑡1 ) ·𝐸 (𝑡2 )
∥𝐸 (𝑡1 ) ∥ ∥𝐸 (𝑡2 ) ∥ . 2

5 Scalable Tuple Diversification
As we discussed, tuple diversification is computationally
hard [51] and has traditionally been applied in IR to smallish sets
(which have less than a few hundred of elements). Because we
wish to consider in our experiments larger sets (with thousands
of elements), here we propose a clustering-based approach that
efficiently computes an approximate solution. We also propose a
pruning method that controls the number of candidate diverse
tuples input to the clustering algorithm. Our algorithm (Algo-
rithm 2) takes as input two separate sets of embeddings for the
unionable data lake tuples and query tuples, along with a posi-
tive integer k, and it returns k-diverse unionable data lake tuples.
Recall that we want those data lake tuples that provide poten-
tially new information to the query table. We consider two things
when selecting the diverse tuples. First, we want to select a set
of unionable data lake tuples such that the selected tuples are
diverse among themselves. This helps us to ensure that the newly
added tuples do not bring redundancy among themselves. Sec-
ond, we ensure that the selected tuples are diverse from the set
of tuples present in the query table. Algorithm 2 first prunes the
set of unionable tuples (Line 2 and Sec. 5.1). Then, we compute

2In our experiments, we use PyTorch’s implementation (https://pytorch.org/docs/
stable/generated/torch.nn.CosineEmbeddingLoss.html).

Algorithm 2: DiversifyTuples

1 Input: set of query tuples embeddings 𝐸Q , set of unionable data
lake tuples embeddings 𝐸T , positive integer 𝑝 , Number of
output tuples 𝑘 , Number of unionable tuples 𝑠

2 𝐸T′ ← PruneTuples(𝐸T , 𝑠)
3 //Cluster data lake tuples and select candidates.
4 𝐸T′ ← ClusterTuples(𝐸T′ , 𝑘 · 𝑝)
5 //Compute ranking score for each candidate data lake tuples
6 𝑟𝑎𝑛𝑘_𝑠𝑐𝑜𝑟𝑒𝑠 ← ()
7 for 𝑡 ∈ T′ do
8 𝑟𝑎𝑛𝑘_𝑠𝑐𝑜𝑟𝑒𝑠 [𝑡 ] .𝑖𝑛𝑠𝑒𝑟𝑡 (0)
9 for 𝑡 ∈ T′ do

10 for 𝑞 ∈ Q do
11 𝑟𝑎𝑛𝑘_𝑠𝑐𝑜𝑟𝑒𝑠 [𝑡 ] .𝑢𝑝𝑑𝑎𝑡𝑒 (min(𝑟𝑎𝑛𝑘_𝑠𝑐𝑜𝑟𝑒𝑠 [𝑡 ], 𝛿 (𝑡, 𝑞) ) )
12 //Return top-k data lake tuples
13 F ← FindTopK(𝑟𝑎𝑛𝑘_𝑠𝑐𝑜𝑟𝑒𝑠 , 𝑘)

candidate unionable tuples that are diverse among themselves us-
ing clustering(Line 4 and Sec. 5.2). We compare these candidates
against the query tuples and re-rank them such that the selected
unionable tuples are diverse from the query tuples (Line 13 and
Sec. 5.3).

5.1 Pruning Candidate Data Lake Tuples
Each unionable data lake table can have a large number of tuples
and the step of clustering them within our diversification algo-
rithm can be time-consuming. So, we begin by pruning and re-
stricting the number of tuples before initiating clustering (Line 2).
Note that we want to output data lake tuples that are diverse from
each other. Specifically, when a tuple’s embedding is significantly
distant from others in the table, it signifies greater diversity than
its counterparts. We initially compute the mean embedding of
all eligible data lake tuples within each table for diversification.
Then, for every tuple, we compute its distance from this mean em-
bedding and rank them accordingly. Mathematically, for a tuple 𝑡
from Table 𝑇 having 𝐸 (𝑡𝑚) as the mean embedding of its tuples,
the rank score of 𝑡 is computed as 𝑆𝑐𝑜𝑟𝑒 (𝑡) = 𝛿 (𝐸 (𝑡𝑚), 𝐸 (𝑡)). The
top-𝑠 tuples based on this ranking are then selected for cluster-
ing. As our pruning method prioritizes tuples with the highest
distances from each other, it ensures the retention of the most
diverse candidates for further processing.

5.2 Clustering Candidate Data Lake Tuples
To select a set of diverse candidate unionable tuples, we want to
select candidates that are far from each other in the embedding
space. For this, we apply clustering over the set of unionable
data lake tuples. Precisely, we use hierarchical clustering as it
can scale well for a reasonable number of clusters (in our case
the number of output diverse tuples, k). To ensure that we select
enough candidates, we use a parameter 𝑝 to control the number
of clusters such that there are more than k candidate tuples.
In Algorithm 2, the number of clusters (size of candidate tuple
set) T ′ = 𝑘 · 𝑝 (see Line 4). As each cluster contains similar
tuples and the tuples in different clusters are diverse, we select
a representative diverse tuple from each cluster. Specifically, to
increase the distance between candidate tuples, we select each
cluster’s medoid, which is the central-most element of the cluster.
The medoids then form a candidate tuple set containing data lake
tuples that are diverse among themselves. Selecting the medoid
of each cluster as a candidate diverse tuple makes the approach
more robust to outliers and this could also be augmented with
an outlier detection phase before the clustering [46].
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5.3 Re-ranking Candidate Diverse Tuples
Among the candidate data lake tuples that are diverse among
themselves, now we want to select tuples that are most diverse
with respect to the query tuples. A candidate unionable data
lake tuple can be diverse with one query tuple but not with other
query tuple. Hence, we want to ensure that a selected unionable
tuple is not redundant with any query tuples. For each candidate
unionable tuple, we compute its distance from each query tuple
and then assign a score which is its minimum distance from all
the query tuples (Line 6-11 of Algorithm 2). We then sort the
candidate tuples in descending order such that the best-ranked
tuple has the maximum minimal distance from the query tuples.
In case of a tie, we prioritize the tuple with the highest average
distance from all query tuples. Finally, the set of top-ranked k
unionable tuples in the ranking is returned as output (Line 13).

q1 q2 q3 Rank Score Tie-breaking Score Rank

t1 0.3 0.1 0.9 0.1 0.43 4

t2 0.5 0.4 0.6 0.4 0.5 1

t3 0.75 0.5 0.1 0.1 0.45 3

t4 0.4 0.55 0.5 0.4 0.48 2

t5 0.9 0.75 0.01 0.01 0.55 5

t6 0 0.99 0.2 0 0.39 6

Figure 4: Ranking candidate diverse unionable tuples.

Example 5. Consider query tuples 𝑞1, 𝑞2 and 𝑞3 and data lake
tuples 𝑡1, 𝑡2 . . . 𝑡6. Fig. 4 shows the tuple distance between each
query and data lake tuple, and we want to rank the candidate
tuples. First, we compute the Rank Score for each candidate tuple
which is the minimum of its distance to all the query tuples. We
also compute the average distance between each candidate tuple
and query tuples to break ties (Tie-breaking Score). Tuples
𝑡2 and 𝑡4 have the highest Rank Score i.e. 0.4. Since both tuples
have equal score, we look at Tie-breaking Score and rank 𝑡2 (score
of 0.5) above 𝑡4 (score of 0.48). Similarly, Tuple 𝑡3 is ranked before
Tuple 𝑡4. Tuples 𝑡5 and 𝑡6 with the least Rank Scores (0.01 and 0)
are ranked at the bottom.

5.4 Tuple Diversification Evaluation
In the literature, the objective of diversification is to simply maxi-
mize diversity among all results. Hence, algorithms are evaluated
mainly on two criteria: Max-sum diversification where the sum
of distances between items (tuples) in the diverse set is maxi-
mized [3], and Max-min diversification where the minimum dis-
tance between the diverse items in the set is maximized [33, 53].
However, for diverse unionable tuple search, we have a different
objective: select unionable tuples that are as diverse as possible
with query tuples and as diverse as possible to each other. So, based
on those criteria, we present two adapted metrics to evaluate
tuple diversification.

(i) Average Diversity. To evaluate if the distance between tu-
ples is maximized (Max-sum diversification criteria), we compute
the average distance between tuples in a diverse set. Precisely,
we compute the average distance between query table tuples and
the data lake table tuples, and between data lake table tuples. An
optimal algorithm maximizes the distance between the tuples
and hence gives the highest average diversity score. Given a set of
Query Tuples {𝑞1, 𝑞2 . . . 𝑞𝑛} and a set of k-diverse unionable data
lake tuples {𝑡1, 𝑡2 . . . 𝑡𝑘 } returned by a method, then the Average
Diversity is computed as:

Average Diversity =
∑𝑛
𝑖=1

∑𝑘
𝑗=1,𝑖≠𝑗 𝛿 (𝑞𝑖 ,𝑡 𝑗 )+

∑𝑘−1
𝑖=1

∑𝑘
𝑗=𝑖+1 𝛿 (𝑡𝑖 ,𝑡 𝑗 )

𝑛+𝑘 (1)

As query tuples are given and the distance between them is
constant for all algorithms, we exclude their distance from the
evaluation.

(ii) Min Diversity. Based on the Max-min Diversification
criteria, i.e., maximizing the minimum distance between the items
in the diverse set, we also compare the minimum distance among
the tuples selected in a k-diverse set. An optimal algorithm gives
the highest Min Diversity score. Mathematically, for query tuples
{𝑞1, 𝑞2 . . . 𝑞𝑛} and a set of k-diverse unionable data lake tuples
{𝑡1, 𝑡2 . . . 𝑡𝑘 } returned by a method, then 𝑆𝑄 = {𝛿 (𝑞𝑖 , 𝑡 𝑗 ) | 𝑖 ∈
[1, 𝑛], 𝑗 ∈ [1, 𝑘]}, 𝑆𝑇 = {𝛿 (𝑡𝑖 , 𝑡 𝑗 ) | 𝑖 ∈ [1, 𝑘 − 1], 𝑗 ∈ [𝑖 + 1, 𝑘]},

Min Diversity = min{𝑆𝑄 ∪ 𝑆𝑇 } (2)
Prior work [51] also considers the trade-off between relevance

and diversity controlled by a user-defined parameter. Accordingly,
they formulate a diversity scoring function that inputs a set of
k-diverse items and returns their diversity score. The optimal
set of k-diverse items gives the maximum diversity score. As
determining such an optimal set is computationally hard, they
created ground truth considering 𝑘 = 5, by using a brute force
approach over 5 different queries each having 200 candidate
relevant items. They report precision and the gap between the
diversification scores of the diverse set returned by an algorithm
and the ground truth set. In our case, we are looking to rank
thousands of tuples and thus such an evaluation framework is
not feasible.

6 Experiments
We now empirically evaluate DUST against different baselines.3
We run all our experiments using Python 3.8 on a server with
Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz processor and 4 × 8
GB Tesla GPUs. We start by describing the benchmarks that
we use for our evaluation (Sec. 6.1). Next, we investigate col-
umn alignment (Sec. 6.2) using several different existing column
embeddings and comparing our holistic approach to a state-of-
the-art pairwise matcher from Starmie [11]. Then, we aim to
answer the following: RQ1. As a sanity check, we first consider
how effective is DUST in distinguishing unionable tuples against
existing tuple embedding techniques (Sec. 6.3)? RQ2. How well
do existing diversification algorithms perform when diversifying
unionable tuples? Do the new more scalable DUST diversifica-
tion algorithm achieve the goal of scaling diversification to larger
numbers of tuples and if so, what is the impact on effectivness
(Sec. 6.4)? RQ3. How effective and efficient is DUST in the end-
to-end task of finding diverse unionable tuples in comparison
with existing unionable table search techniques (Sec. 6.5)? RQ4.
Does DUST provide practical and intuitive benefit over existing
unionable table search techniques (Sec. 6.6)?

As each experimental setup and baselines differ across re-
search questions, they are discussed within the corresponding
subsections.

6.1 Benchmarks
We experiment using table union search benchmarks from the
literature [24, 37, 39], each comes with a set of query tables and a
labeled set of unionable data lake tables. Fig. 5 details the number
of tables, columns, and tuples in each benchmark.

6.1.1 TUS Benchmark [37]. The TUS benchmark contains
over 5,000 tables generated by selecting and projecting rows and
columns from 32 non-unionable base tables. The generated tables
3https://github.com/northeastern-datalab/dust
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Benchmark
Query Data Lake # Average 

Unionable Tables 
Per Query

# 
Tables

# 
Columns

# 
Tuples

# 
Tables

# 
Columns

# 
Tuples

TUS 125 1.6K 557K 5044 55.5K 9.6M 188

TUS-Sampled 30 355 134K 233 3.1K 1M 10

SANTOS 50 615 1.07M 550 6.3K 3.8M 14

UGEN-V1 50 400 550 1000 8K 10K 10

Figure 5: Benchmarks used in the experiments.

originating from the same base table are unionable, those from
different base tables are non-unionable.4 We create two variations
of the TUS Benchmark based on our experimental requirements.

TUS-Sampled Benchmark. On average, the TUS Benchmark
has over 188 unionable data lake tables per query table, signifi-
cantly higher than other benchmarks. So to test effectiveness of
some non-scalable methods, we created TUS-Sampled by select-
ing 30 query tables and sampling 10 unionable tables per query
table.

TUS Fine-tuning Benchmark. To build the DUST tuple rep-
resentation model (see Sec. 4), we create a fine-tuning benchmark
using tables and unionability ground truth from TUS bench-
mark [37]. The created benchmark consists of 60K data points
where each data point consists of a tuple pair and a unionabil-
ity label (0 or 1) representing whether the tuples are unionable.
The benchmark is balanced, i.e., it contains 30K unionable and
non-unionable tuple pairs each. The tuple pairs selected from
the same table or two unionable tables are considered unionable
and the tuples from two non-unionable tables are considered
non-unionable. We divide data points into train/test/validation
sets in a popularly used ratio of 70:15:15 (42K, 9K, and 9K data
points respectively). We ensure all three sets are balanced regard-
ing the number of unionable and non-unionable tuple pairs. We
also ensure that there is no data leakage between train, test, and
validation sets.

6.1.2 SANTOS Benchmark [24]. This benchmark contains
550 data lake tables and 50 query tables created by projecting and
selecting rows and columns of 297 base tables from Canada, US,
UK, and Australian Open Data.5 The tables are created following
the TUS benchmark creation approach. But unlike TUS, when
creating the tables, SANTOS also considers the binary relation-
ships between the column pairs such that the unionable tables
not only contain unionable columns, but also share at least one
binary relationship.

6.1.3 UGEN-V1 Benchmark [39]. The UGEN-V1 benchmark
is a table union search benchmark that is generated using a Large
Language Model [12]. It contains 50 query tables generated from
different topics and each table has 10 unionable data lake tables
and 10 non-unionable tables on the same topic. As LLMs are not
always accurate, the authors also provide a manually verified
ground truth which we use in our experiments.6

Finally, we remove the columns having all null values and
query tables that have less than 3 rows from our experiments.

6.2 Column Alignment Evaluation
For column alignment, we use existing embedding models to
embed the columns. So, we empirically evaluate different embed-
dings for aligning unionable data lake columns with the query
table columns.

4https://github.com/RJMillerLab/table-union-search-benchmark
5https://zenodo.org/records/7758091
6https://github.com/northeastern-datalab/gen

6.2.1 Experimental Setup. Recall that to align columns, we first
represent each column in an embedding space using pre-trained
embedding models. Then, based on their embeddings, we cluster
them into disjoint set of columns. So, we evaluate the perfor-
mance of different embedding methods when they are used to
represent the columns and align them. For clustering, we use
the Agglomerative Clustering module available in Scikit-learn’s
library.7 We report results using average linkage and Euclidean
distance based on empirical effectiveness. Following the litera-
ture [26], we use Silhouette’s Coefficient to measure the cluster
quality [44].

6.2.2 Evaluation Metrics. Similar to the prior work [26], we re-
port Precision (P), Recall (R), and F1-Score (F1) using different
embeddings for column alignment. Recall that we discard clusters
without a query column (see Sec. 3). Accordingly, we want to eval-
uate if the data lake columns are assigned to clusters with their
correct aligning query column. The ground truth contains all true
column alignments in the form of column pairs. This includes
column pairs formed by each query column with its aligning data
lake columns, and column pairs formed by two data lake columns
that have the same matching query column. Furthermore, it is
important to distinguish the query columns having no matching
data lake columns. So, we also include each query column with
no match in the ground truth. In the same way, we form a set of
column alignments using the clusters produced by a method. Let,
𝐴𝐺 be the set of true column alignments in the ground truth. Let,
𝐴𝑀 be the set of column alignments given by a method. Then, we
compute P, R and F1 as: 𝑃 = 𝐴𝐺∩𝐴𝑀

𝐴𝑀
, 𝑅 = 𝐴𝐺∩𝐴𝑀

𝐴𝐺
, 𝐹1 = 2·𝑃 ·𝑅

𝑃+𝑅 .

6.2.3 Baselines. Now, we describe different embedding models
that we test for the column alignment task. We use two word
embedding models: FastText [23] and Glove [40] for our ex-
periments. Furthermore, we also experiment using three lan-
guage models: BERT [7], RoBERTa [31] and Sentence BERT
(sBERT) [43]. For all models, we create a Cell-level variation
where we embed a column by first representing each cell value in-
dependently and then averaging the representation of all the val-
ues within a column. Furthermore, for language model baselines,
we also create a Column-level variation. Specifically, rather
than treating each cell independently, the Column-level vari-
ation concatenates all cell values into a sentence and inputs it
into the model. The model then returns a representation for the
column. Note that all three language models have a token limit of
512. Therefore, using all the column values in the input may not
be possible. Hence, we follow the literature [8, 11, 48] and select
at most 512 most representative tokens for each column based
on their TF-IDF scores [42]. Moreover, table union search tech-
niques such as Starmie [11], assess table unionability based on
the maximum-weight bipartite matching between query and can-
didate data lake tables’ columns. Starmie embeds each column to
capture the entireTable context. So, we use Starmie as a baseline,
implementing two versions: Starmie (B), by applying bipartite
matching between the columns embedded using Starmie. Next,
we also implement Starmie (H) that uses our holistic column
alignment approach on Starmie’s column embeddings.

6.2.4 Effectiveness. We now evaluate the effectiveness of differ-
ent embedding methods on the column alignment task. Specif-
ically, we report precision, recall, and F1-Score using each em-
bedding method in Table 1. For our discussion, we focus on the

7https://scikit-learn.org/stable/modules/classes.html#module-sklearn.cluster
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Table 1: Column Alignment effectiveness. Best score along each column is in bold; the second best score is underlined.

Serialization Model TUS-Sampled SANTOS UGEN-V1
P R F1 P R F1 P R F1

Cell-level

FastText 0.86 0.60 0.66 0.64 0.86 0.70 0.36 0.78 0.43
Glove 0.59 0.83 0.63 0.65 0.84 0.71 0.40 0.76 0.43
BERT 0.60 0.60 0.59 0.57 0.68 0.60 0.41 0.61 0.44
RoBERTa 0.61 0.80 0.69 0.57 0.84 0.66 0.52 0.68 0.53
sBERT 0.67 0.77 0.70 0.60 0.86 0.69 0.50 0.71 0.52

Column-level
BERT 0.80 0.57 0.64 0.68 0.68 0.66 0.49 0.57 0.47
RoBERTa 0.81 0.72 0.74 0.71 0.87 0.76 0.58 0.66 0.58
sBERT 0.74 0.72 0.68 0.71 0.86 0.76 0.54 0.71 0.58

Table context Starmie (B) 0.30 0.67 0.41 0.23 0.53 0.32 0.15 0.76 0.24
Starmie (H) 0.83 0.43 0.55 0.43 0.33 0.18 0.64 0.62 0.57

combined metric i.e., F1-Score (highlighted in gray). We observe
that the Column-level RoBERTa performs the best in aligning
the columns as it has the highest F1-score in all the benchmarks.
Specifically, RoBERTa outperforms the second-best method, the
Column-level variation of sBERT, by around 8% in TUS-Sampled.
In SANTOS and UGEN-V1 benchmarks, sBERT also performs
as well as RoBERTa. BERT, possibly because it is the smallest
among the three language models, has the lowest F1-score among
them. Further, we observe that for all three language models, the
Column-level variation is more effective than the Cell-level vari-
ation in terms of F1-score in almost all cases; the only exception
is sBERT in TUS-Sampled by a small margin. A possible rea-
son for Column-level variation’s better performance is that the
Column-level variation gets more tokens as input at once, and
accordingly, it becomes easier for them to understand the column
than for Cell-level variation where they receive tokens only from
one cell at a time to understand the context. Moreover, the word
embedding baselines (FastText and Glove) give comparative per-
formance to cell-level language models in all the benchmarks in
terms of F1-score, but they are comprehensively outperformed
by column-level RoBERTa and column-level sBERT. This also
shows that larger language models can contextualize the columns
better to align them. Additionally, both variations of Starmie are
mostly outperformed by other models. This may be attributed to
Starmie embedding each column with the context of the entire
table, resulting in columns from the same table having closer
representations. However, column alignment requires contextual
understanding specific to the column itself, which differs from
other columns within a table. Worth noting, Starmie (bipartite),
which matches columns of a table pair, is generally outperformed
by Starmie (holistic). Our holistic matching approach considers
a broader context by aligning a set of tables together, resulting
in improved performance. The SANTOS benchmark contains
a higher proportion of numerical columns compared to other
benchmarks, which are not effectively embedded by Starmie.
As a result, the holistic approach tends to create distinct clus-
ters for numerical columns, leading to a decrease in recall and
subsequently, the F1 score. In conclusion, our holistic approach
consistently achieves superior column alignments than bipartite
matching with well-embedded columns. Accordingly, DUST uses
the best-performing Column-level RoBERTa model.

6.2.5 Efficiency. Next, we report runtime to align the columns
in each benchmark. Note that this time depends on the time
taken by the model to embed the columns and run the clus-
tering algorithm. Since the embedding time for each model is

significantly fast (on average, less than a second per column in
our benchmarks) and they are insignificantly different, Column
Alignment time is dominated by the clustering time. On average,
the column alignment time per query is reasonable (35, 46, and 24
seconds in TUS-Sampled, SANTOS, and UGEN-V1 Benchmarks
respectively).

6.3 Tuple Representation Evaluation
Now, we compare the performance of DUST tuple representation
against state-of-the-art baselines.

BERT RoBERTa sBERT Ditto DUST (BERT) DUST (RoBERTa)

0.50 0.50 0.56 0.66 0.84 0.85

Figure 6: Unionable tuple representation Accuracy. Best
score is bolded and the second best is underlined.

6.3.1 Experimental Setup and Evaluation Metric. To evaluate
DUST’s embedding model against other embedding models, we
report Accuracy computed over the test set of TUS Fine-tuning
Benchmark (Sec. 6.1). Each data point is a pair of tuples and an
embedding model returns embeddings for each of them. We then
compute their cosine distance. If the cosine distance is less than a
threshold, we consider the tuple pairs predicted to be unionable.
Otherwise, the tuple pairs are predicted to be non-unionable.
Based on empirical evaluation, we use a threshold of 0.7 which
gives the best accuracy in the validation set. We compute Accu-
racy using Scikit-learn’s implementation.8 Mathematically, let
𝑇𝑃 , 𝐹𝑃 ,𝑇𝑁 , 𝐹𝑁 be the number of true positives (unionable tuple
pairs predicted as unionable), false positives (non-unionable tu-
ple pairs predicated as unionable), true negative (non-unionable
tuple pairs predicted as non-unionable) and false negative (non-
unionable tuple pairs predicated as non-unionable). Then,

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁 (3)

6.3.2 Baselines. We now explain the baselines that we use for the
experiments. Since there are no models for embedding unionable
tuples, we adapt transformer-based embedding models that are
successful in other semantic tasks. Specifically, we use pre-trained
BERT [7] and RoBERTa [31] models available in huggingface
package.9 Furthermore, Sentence BERT (sBERT) [43] is a recent
state-of-the-art transformer-based model that is fine-tuned to
closely embed sentences having similar meanings. We use sBERT
8https://scikit-learn.org/stable/modules/model_evaluation.html
9https://huggingface.co/models
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as another baseline to test if it can be fine-tuned to understand
unionable tuples.9 For consistency, we use the same serialization
for all the models as we explained in Sec. 4. Furthermore, entity
matching is also a similar classification task where the objec-
tive is to test whether the two input tuples are about the same
real-world entity. So, to evaluate if entity matching techniques
can understand tuple unionability, we also compare the DUST
model against Ditto, a transformer-based model fine-tuned for
the entity matching task [30]. We implement Ditto using their
public code.10

6.3.3 DUST models. We build two variations of DUST. First
we fine-tune BERT [7] (DUST (BERT)). Next, we fine-tune
RoBERTa [31] (DUST (RoBERTa)). Note that both variations
use the same serialization and the same fine-tuning architecture
as described in Sec. 4. We keep embedding dimension equal to
768 which is consistent with the pre-trained models. We train
each model for at most 100 epochs. However, to avoid model
overfitting, we apply an early-stopping strategy [56] with a pa-
tience of 10. Specifically, we compute the validation loss after
each epoch and if the loss does not improve for 10 epochs, we
terminate the training process and consider the model to be con-
verged. It took around 30 hours to fine-tune both DUST (BERT)
and DUST (RoBERTa)) using our experimental setup (four 8 GB
GPUs). Note that for dynamic data lakes, this fine-tuning can be
optimized using more modern hardware and applied periodically
when a lake has changed significantly. We share our fine-tuned
models and training parameters.3

6.3.4 Effectiveness. We report the accuracy of each baseline and
the two variations of DUST in Fig. 6. DUST (RoBERTa) performs
slightly better than its BERT-based variation. A possible reason
for this is that it is pre-trained over a larger number of parameters
than BERT and has larger prior knowledge. Consequently, we
use DUST (RoBERTa) for all our experiments and to compare
against other baselines. Next, we compare DUST’s performance
against the baselines. It is seen that DUST outperforms the best
baseline, Ditto, by over 15% showing that embedding tuples to
understand unionability is different than embedding them for
entity matching. Moreover, DUST outperforms sBERT by over
28% indicating that models that are good at detecting similar
sentences can not capture intrinsic tabular properties and hence,
they are not effective in determining tuple unionability. Further,
we observe that both the pre-trained models, BERT and RoBERTa,
perform as well as only tossing a coin, and are not able to under-
stand tuple unionability. So, the low effectiveness of pre-trained
models and fine-tuned models for embedding tuples for other
tasks empirically validate the need to build DUST model to embed
unionable tuples. Also, DUST embeddings are robust towards
the change in column position within tuples, which we validate
empirically in the technical report [28].

6.4 Tuple Diversification Experiments
Next, we evaluate the performance of our novel tuple diversifica-
tion algorithm against state-of-the-art baselines (RQ2).

6.4.1 Experimental Setup and Evaluation Metrics. As we high-
lighted in Sec. 5.4, we use two tuple diversification measures,
namely, Average Diversity and Min Diversity. To keep the dis-
tance function consistent with the distance function that we use
in the Tuple Representation Model (see Sec. 4 and Sec. 6.3), we

10https://github.com/megagonlabs/ditto

Table 2: Reporting (i) the number of query tables for which
each diversification algorithm gives the best Average and
Min diversity scores and (ii) Average Time taken per Query
by each algorithm in each benchmark.

Method SANTOS UGEN-V1
# Average # Min Time (s) # Average # Min Time (s)

GMC 23 1 556 3 2 <1
GNE - - - 0 0 81
CLT 0 0 82 18 12 <1
DUST 27 49 85 27 34 <1

use cosine distance11 to measure the distance between the tuples
throughout the experiments. Note that experiments with other
distances such as Manhattan distance and Euclidean Distance are
available in the DUST github. With both distances, the relative
performance of all the baselines is similar to using the cosine dis-
tance. In addition, we run an analysis to select 𝑝 in Algorithm 2.
We measure the improvement in the diversity metrics (Sec. 5.4)
when we increase the value of p, i.e., when we increase the num-
ber of candidate data lake tuples. Since, the improvement in the
diversity metrics is either negative or insignificant for 𝑝 more
than 2, we select 𝑝 = 2 in our experiments. We provide further
details in the technical report [28].

6.4.2 Baselines. We compare theDUST diversification algorithm
with several state-of-the-art baselines from IR. Specifically, Vieira
et al. [51] proposed different diversification algorithms and they
have been adopted by a recent work [32] to search for tables
having diverse sets of columns. So, we compare with the best-
performing algorithms presented by Vieira et al. [51]. For each
baseline, we use the default parameters suggested in the respec-
tive papers. We reproduced all algorithms following the original
papers.

GMC [51]. GMC (Greedy Marginal Contribution) is used to
diversify search results. It considers a trade-off between rele-
vance and diversity based on a user’s preference and formulates
a diversity scoring function. Then, it greedily selects items one
after another to add to the result set. An item is selected if it
increases the diversity score computed using the items currently
in the result set.

GNE [51]. GNE (Greedy Randomized with Neighborhood
Expansion) is a randomized version of GMC algorithm. It starts
by creating a candidate diverse set following the same diversity
scoring function as GMC. Then it iterates over the candidate set
to replace a random item with other items not included in the
candidate set.

CLT [49]. Since we use a clustering approach in our algorithm
to retrieve candidate diverse data lake tuples, we also compare
against a simple clustering-based baseline that was used to select
diverse images. CLT generates k clusters and selects an item
from each cluster using different strategies. To keep experiments
consistent, we select each cluster’s medoid in the diverse set.
Further, we use the same clustering technique as ours with the
same parameters.

6.4.3 Effectiveness. We run experiments with k = 100 in the
SANTOS benchmark, and k = 30 in the UGEN-V1 benchmark.
For each benchmark, we experiment with 𝑠 (number of candidate
unionable tuples) equal to at most 2500. This selection is based
11https://scikit-learn.org/stable/modules/generated/sklearn.metrics.pairwise.
cosine_distances.html
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Figure 7: DUST Diversification Runtime against baselines

on the number of unionable tuples per query available in the
data lake of each benchmark and also to accommodate baselines
that do not scale for large k and s. Nevertheless, for efficiency
experiments, we will report results for larger k using a synthetic
dataset (Sec. 6.4.4). Note that the TUS benchmark is not used in
this experiment as it was used to build the DUST model.

Our benchmarks have multiple query tables and experiments
on each query are independent of one another. So, following the
literature [51], we report Average Diversity and Min Diversity
Scores by each baseline on each query table separately. Specifi-
cally, we report the number of queries for which each technique
gives the highest Average Diversity and the highest Min Diver-
sity Scores in comparison to other baselines (Table 2). The actual
scores are provided in the github.3

We first run an experiment using a simple random baseline,
sampling k tuples for each query and calculating their diversity
scores. For a comprehensive analysis, we generated five random
sets for each query using different random seeds and selected the
highest-performing random set for each metric for comparison
against DUST. In the SANTOS benchmark, DUST outperformed
the random baseline in 46 out of 50 queries for Average Diver-
sity and in all but one query for Min Diversity. In the UGEN
benchmark (smaller tables), random is better than DUST only for
less than 25% of queries for Average Diversity and in no queries
for Min Diversity. These results show that random sampling is
ineffective for tuple diversification. We now compare against the
baselines from the literature.

DUST achieves the best Average Diversity scores for over 54
% of the queries in the SANTOS benchmark, outperforming the
second best method, GMC, by 8 % (Table 2). DUST is the best
method for more than half queries in UGEN-V1 benchmark as
well, where the second-best method, CLT achieves the best per-
formance for around 36% of queries. Interestingly, for all queries
in the SANTOS benchmark where GMC performs the best, and
for over 88 % of queries in the UGEN-V1 benchmark where CLT
performs the best, DUST is the second-best method which shows
that DUST is more effective than the baselines in diversifying the
tuples. As GNE does not scale to large datasets, we evaluate it
only in the UGEN-V1 benchmark where it is outperformed by all
the baselines. In terms of Min Diversity, DUST gives the best per-
formance for almost all queries in the SANTOS benchmark and
around 70% of queries in the UGEN-V1 benchmark. This shows
that first selecting candidate data lake tuples and then ranking
them based on their distance from the query tuples improves
diversification.

6.4.4 Efficiency. Now we compare DUST’s scalability against
the baselines. In the SANTOS benchmark, DUST is over 7 times
faster than GMC and almost as fast as CLT on average (Table 2).
In the UGEN-V1 benchmark, which has fewer unionable tuples

per query than SANTOS, all but the GNE method diversify tu-
ples within a second per query on average. The GNE algorithm,
which first generates a candidate diverse set and then improves
it iteratively, is much slower than all the baselines. Hence, in all
the benchmarks, DUST gives the best effectiveness being much
faster than the second-best baseline (GMC) and as fast as other
baseline (CLT).

To understand how the number of input unionable tuples (s)
and the number of output tuples (k) impacts the runtime, we
experiment with a query table and a variable number of tuples
that are unionable with the query table. Specifically, we first
vary s for constant k (k = 100) and report the runtime (Fig. 7
(a)). We saw that the increase in the number of input tuples in-
creases the runtime for GMC quadratically whereas DUST is the
fastest for which the runtime is linear to s with a very small
slope. Also, when we vary k for s = 5000, and observe its impact
on the runtime (Fig. 7 (b)), it is seen that DUST is not impacted
by the increase in k. Furthermore, although DUST has an addi-
tional step after clustering where it selects the unionable data
lake tuples based on their distance from each query tuple, it has
a similar runtime as a clustering baseline (CLT). Hence, DUST’s
post-clustering phase is scalable practically. An analysis of prun-
ing, showing its importance in reducing runtime, is provided in
the report [28].

6.5 DUST Against Table Search Techniques
We now compare DUST against two state-of-the-art table union
search techniques, along with an LLM approach to this prob-
lem. We report diversity scores (see Sec. 6.4.1) of k-tuples that
DUST outputs against that of k-tuples returned by table search
technique.

6.5.1 Baselines. We now describe our baselines.
D3L [2].𝐷3𝐿 aggregates different column unionability signals,

such as value match, word embedding match, regular expressions,
and so on, to search for the top-k unionable tables from a data
lake. We implement D3L using its public code .12

Starmie [11]. Starmie is the state-of-the-art table union search
technique that returns a set of top-k unionable tables, given a
query table. To adopt Starmie for searching k unionable tuples,
we index each tuple in the data lake as a separate table and search
for the top-k tables. As each data lake contains a single tuple, the
tuples from the top-k searched tables are the k output tuples.

LLM [12]. We use a Large Language Model (GPT-3) as a base-
line to generate diverse unionable tuples. We input query table
tuples to GPT-3 and ask it to generate a set of k diverse unionable
tuples with the given query table. The robustness and effective-
ness of LLMs is impacted by the selected prompt and thus we
have evaluated several prompts (the prompt is provided in the
github).3

For a fair comparison with DUST, we embed the output tuples
by each baseline using DUST embeddings and compute diversity
scores over them. We implement Starmie using its public code
with the default parameters.13 We implement GPT-3 using its
API [38]. Additionally, we implemented Ver [17], a Query-By-
Example system that takes a small number of tuples as input and
adds new data lake tuples to it. 14 However, due to the creation
of large indexes, the experiment for VER could not be scaled
across any benchmarks. For instance, in UGEN-V1 Benchmark

12https://github.com/alex-bogatu/d3l
13https://github.com/megagonlabs/starmie
14https://github.com/TheDataStation/ver
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Table 3: Number of query tables for which each diversifi-
cation algorithm performs the best.

Method SANTOS UGEN-V1
# Average # Min # Average # Min

Starmie 5 1 11 2
LLM - - 14 21
DUST 45 49 23 25

with 1000 data lake tables with a total of 8K columns and 10k
rows (Fig. 5), Ver was automatically terminated after two days.

6.5.2 Effectiveness. We now report DUST’s diversification effec-
tiveness against baselines in SANTOS and UGEN-V1 benchmarks.
We exclude LLM from the analysis in SANTOS benchmark as
it was not scalable for the query tables with a large number of
tuples. Table 3 reports the number of queries in each benchmark
where each method performs the best. The actual diversity scores
are provided in the github.3 In the SANTOS benchmark, DUST
achieves the highest Average Diversity score for around 90% of
queries and achieves the highest Min Diversity across almost
all queries. This can be attributed to the baseline’s (Starmie’s)
inclination to favor similar tuples, resulting in the retrieval of
tuples already present in the query table. Further, in the UGEN-
V1 benchmark, DUST consistently yields the most diverse tuples
for the highest number of queries, outperforming the LLM, the
second best baseline, by around 18% in terms of Average Diver-
sity. Interestingly, for a given query, the LLM generates a few
diverse tuples but subsequently, it produces redundant ones. Nev-
ertheless, DUST could be scalable to search for 100s of tuples
whereas LLM could not do so currently due to its token lim-
its. Also, Starmie, whose Mean Average Precision (MAP) [24] of
searching for unionable tuples in UGEN-V1 is 64%, shows better
diversity performance than it does on the SANTOS Benchmark
where its MAP is 78%. Starmie finds more non-unionable tuples
in UGEN-V1 (lower MAP), and such tuples are generally more
diverse with each other. These results support DUST’s necessity
for diversifying unionable tuples to improve their usability.

6.6 Case Study
Finally, we show a case study, providing intuitive evidence of the
benefits of diversification. We have created a small benchmark
consisting of a query table and 20 unionable tables derived from
an IMDB movie dataset [21]. The original IMDB table contains
information on nearly 500 recent movies, including title, director,
genre, budget, filming location, language, and more. We sample
its rows to create a query table and unionable tables. On average,
the tables in this benchmark have 97 tuples and 13 columns (see
repository)3. Please note that this case study only aims to examine
the diversity and thus only contains unionable tables/tuples.Adding D3L to IMDB Case Study for DUST
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(a) Unique values in Title Column (b) Unique values in Languages Column (c) Unique values in filming_locations Column

Figure 8: Number of novel values added to the different
columns of query table by each method.

Using DUST, we search for a set of 𝑘 diverse tuples from this
small data lake. We compare this to D3L and Starmie’s result.

Since both of the baselines output the top-N unionable tables,
we (bag) union the output tables based on their ranking with the
query table until we have a bag with at least 𝑘 tuples. From the
resulting unioned table, we select 𝑘 tuples (using SQL LIMIT k)
and compare to the 𝑘 tuples produced by DUST. Starmie, D3L
and other unionablity methods [20, 24, 37] may find tables that
overlap with the query table (and each other). So we also examine
a duplicates-free version of D3L and Starmie (dubbed D3L-D and
Starmie-D, respectively, in Fig. 8), in which we exclude duplicated
tuples. Here, we take the set union of the top tables until this
set contains at least 𝑘 tuples and again if there are more than
𝑘 we use the SQL LIMIT k on this set. Then, we measure and
report how many new values each method adds across different
columns of the query table in IMDB Benchmark. We refrain from
comparing to an LLM baseline here as we aim to examine only
movies from the given data lake.

In Fig. 8, we plot the number of output tuples (k) on the X-axis
and the number of unique values added by D3L, D3L-D, Starmie,
Starmie-D, and DUST to the query table’s (a) Title, (b) Languages,
and (c) Filming_locations columns on the Y-axis. Statistics for
other columns are similar and available in the repository.3 Our
results show that DUST retrieves tuples with nearly 25% more
unique movie titles from the data lake than Starmie even when re-
moving the duplicate tuples (Starmie-D). Interestingly, both D3L
and Starmie add a similar number of unique values. This is be-
cause our evaluation focuses on a data lake composed exclusively
of unionable tables. Since both baselines rely on table similarity
to identify unionable candidates, their results tend to overlap
as we discussed in Ex. 1. To illustrate DUST’s practical benefit
even further, we also provide an anecdotal example showing the
tuples it suggests against Starmie in the report [28].

7 Conclusion
We introduced the problem of finding diverse unionable tuples
from a data lake and presented DUST as a first solution. We
compared each component of DUST with relevant baselines and
demonstrated its superior performance. We illustrated that DUST
outperforms two state-of-the-art table union search techniques
and a Large Language Model in terms of effectiveness and effi-
ciency in discovering diverse unionable tuples. Our work suggests
the need for human-in-the-loop discovery techniques that allow
a user to interactively select diverse tuples of interest to them. We
continue to explore augmenting our tuple embeddings together
with additional "unembedded" tabular features such as column
values and relationship between column pairs .
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