
␣

␣

Fuzzy Integration of Data Lake Tables
Aamod Khatiwada

Northeastern University
Boston, USA

khatiwadaaamod@gmail.com

Roee Shraga
Worcester Polytechnic Institute

Worcester, USA
rshraga@wpi.edu

Renée J. Miller
Northeastern U. & U. of Waterloo

Waterloo, Canada
rjmiller@uwaterloo.ca

Abstract
Data integration is an important step in any data science pipeline
where the objective is to unify the information available in differ-
ent datasets for comprehensive analysis. Full Disjunction, which
is an associative extension of the outer join operator, has been
shown to be an effective operator for integrating datasets. It
fully preserves and combines the available information. Existing
Full Disjunction algorithms only consider the equi-join scenario
where only tuples having the same value on joining columns are
integrated. This, however, does not realistically represent many
realistic scenarios where datasets come from diverse sources with
inconsistent values (e.g., synonyms, abbreviations, etc.) and with
limited metadata. So, joining just on equal values severely limits
the ability of Full Disjunction to fully combine datasets. Thus, in
this work, we propose an extension of Full Disjunction to also
account for “fuzzy” matches among tuples. We present a novel
data-driven approach to enable the joining of approximate or
fuzzy matches within Full Disjunction. Experimentally, we show
that fuzzy Full Disjunction does not add significant time over-
head over a state-of-the-art Full Disjunction implementation and
also that it enhances the accuracy of a downstream data quality
task.

Keywords
Data Integration, Fuzzy Matching, Data Lakes, Full Disjunction

1 Introduction
Data lakes may store an enormous amount of heterogeneous
data. Within data lakes, tables are one of the most prevalent
data formats [14, 33], and tables are useful for data scientists
running complex analyses and making decisions [12, 27]. How-
ever, the tables may represent information from different topics,
may use inconsistent values (e.g., synonyms or abbreviations)
and may have unreliable, incomplete or inconsistent metadata
(e.g., table names and column headers) making it difficult for data
scientists to find data lake tables that are relevant for their anal-
ysis. Consequently, different semantic table search techniques
have been proposed [11, 19, 28]. Such techniques generally al-
low users to search using keyword queries [3, 11, 29] for tables
related to the keywords. Alternatively, in the table-as-query par-
adigm, an existing table is the query [37] and the search is for
tables that are related [2], most unionable [10, 15, 18, 28], or most
joinable [2, 9, 35, 37]) to the query table.

After discovery, the required information for analysis could be
scattered among query and searched tables. So, the next natural
step is integration and the generation of a unified view of rele-
vant data [1, 20, 21]. Two major challenges have been considered
for integrating a set of discovered tables. The first is to determine
which columns should be aligned together in the integrated ta-
ble. A possible solution could be to align the columns having

EDBT ’26, Tampere (Finland)
© 2025 Copyright held by the owner/author(s). Published on OpenProceedings.org
under ISBN 978-3-98318-102-5, series ISSN 2367-2005. Distribution of this paper is
permitted under the terms of the Creative Commons license CC-by-nc-nd 4.0.

TID City Country
t1 Berlinn Germany
t2 Toronto Canada
t3 Barcelona Spain
t4 New Delhi India

T2 T3 T1

TID Country City Vac. Rate
(1+ dose)

t5 CA Toronto 83%
t6 US Boston 62%
t7 DE Berlin 63%
t8 ES Barcelona 82%

TID City Total
Cases

Death Rate
(per 100k)

t9 Berlin 1.4M 147
t10 barcelona 2.68M 275
t11 Boston 263K 335

OID TIDs City Country Vac. Rate
(1+ dose) Total Cases Death Rate

(per 100k)
f1 {t1} Berlinn Germany Ʇ Ʇ Ʇ
f2 {t2} Toronto Canada Ʇ Ʇ Ʇ
f3 {t3} Barcelona Spain Ʇ Ʇ Ʇ
f4 {t4} New Dehli India Ʇ Ʇ Ʇ
f5 {t5} Toronto CA 83% Ʇ Ʇ
f6 {t6, t11} Boston US 62% 263K 335
f7 {t7, t9} Berlin DE 63% 1.4M 147
f8 {t8} Barcelona ES 82% Ʇ Ʇ
f9 {t10} barcelona Ʇ Ʇ 2.68M 275

FD(T1, T2, T3)

OID TIDs City Country Vac. Rate
(1+ dose) Total Cases Death Rate

(per 100k)
f10 {t1, t7, t9} Berlin Germany 63% 1.4M 147
f11 {t2, t5} Toronto Canada 83% Ʇ Ʇ
f12 {t3, t8, t10} Barcelona ES 82% 2.68M 275
f13 {t4} New Delhi India Ʇ Ʇ Ʇ
f14 {t6, t11} Boston US 62% 263K 335

Fuzzy FD(T1, T2, T3)

Figure 1: Tables about COVID-19 cases in different cities.
The columnheaders are given only for easy reference. How-
ever, they may not be available in practice.

the same column headers. However, since data lake tables may
have missing, inconsistent, and unreliable column headers, this
becomes challenging. Hence, we cannot rely on them for com-
prehensive integration and to make them consistent, techniques
such as schema matching are applied [1, 22].

After determining the aligned columns, the second challenge
is to find an integration operator (or query) to merge the tuples
and generate an integrated table. Basic integration operators
such as inner join, union, outer join, and so on, may not be
effective as they may not retain all the information during inte-
gration [13, 17, 30]. For instance, the inner join operator, when
integrating a set of tables (an integration set), does not retain a tu-
ple if it has no joining partner tuple even in a single table. This can
be problematic, particularly when we have a large integration set.
Outer join solves the inner join problem by retaining tuples with-
out join partners. However, the outer join is not an associative
operator and different orders of applying outer join over a set of
tables generate different sets of partially integrated tuples [5, 32].
Note that it is possible that no order of applying outer join can
produce complete tuples [5]. Consequently, Galindo-Legaria [13]
introduced the Full Disjunction (FD) operator, which is an associa-
tive version of the outer join operator. Importantly, FD joins each
tuple in the tables to be integrated in a maximal way such that
no information is lost (even if there is no joining tuple) and the
incompleteness in tuples is minimized [32]. Hence, FD has been
considered an optimal way of integrating information present in
different tables [32] for decades. We refer to the literature for fur-
ther details on Full Disjunction [5, 32], including its scalable [20]
and parallelized implementations [30].

Short Paper

Series ISSN: 2367-2005 96 10.48786/edbt.2026.08

http://dx.doi.org/10.48786/edbt.2026.08

EDBT ’26, 24-27 March 2026, Tampere (Finland) Khatiwada et al.

Notice however that the existing Full Disjunction defini-
tion and algorithms only consider joining tuples on equal val-
ues [5, 13, 20]. In reality, data lake tables come with inconsis-
tencies such as abbreviations, synonyms, and more. So, relying
on equi-joins impacts Full Disjunction’s ability to integrate the
tables well and also impacts the usage of integrated tables for
downstream tasks. Instead, we need "fuzzy" matching between
the values. Fuzzy Join [8], also known as similarity join, is an
extension of the traditional equi-join operator to produce record
pairs that approximately match. In this paper, we address the
aforementioned generalization of the join operator within Full
Disjunction and show that this extension addresses the noise and
inconsistencies that data lakes exhibit [27].

We adopt an existing table integration method (ALITE) [20]
that implements Full Disjunction and propose an extension that
accounts for fuzzy matches between the values. Our solution
first resolves the inconsistencies between the column cells repre-
senting the same values. After making the values consistent, it
applies the FD operator to integrate the tuples. We selected to
extend ALITE rather than other Full Disjunction algorithms be-
cause ALITE allows the input tables to be incomplete (something
that occurs often in data lakes), it handles arbitrary join patterns
(even cyclic joins), and it has been shown to outperform other
algorithms on large tables (and large integration sets).

Example 1. Consider the three tables about COVID-19 cases
in Fig. 1. (simplified versions of data taken from COVID-19 open
datasets). a b The columns 𝑇 𝐼𝐷 and 𝑂𝐼𝐷 are used for illustration
to clearly indicate which tuples (in 𝑇 𝐼𝐷 column) were integrated
to produce this new tuple (𝑂𝐼𝐷 column). For simplicity, columns
that align are given the same name in the three tables and are
highlighted in the same colors. Table 𝐹𝐷 (𝑇1,𝑇2,𝑇3) shows the
Full Disjunction result using an equi-join. Since 𝑇1 has a typo in
Tuple 𝑡1 (Berlinn), Full Disjunction does not integrate it with other
tuples about Berlin (𝑡7 and 𝑡9) forming separate tuples 𝑓1 and 𝑓7.
Furthermore, as two aligned Country Columns in Tables 𝑇1 and
𝑇2 contain the full names and codes of countries respectively, FD
does not integrate Tuples 𝑡2 and 𝑡5 and Tuples 𝑡3 and 𝑡8. Moreover,
Tuples 𝑡3 and 𝑡10 are both about Barcelona but they are not inte-
grated by FD as they are represented in different cases (Barcelona
in 𝑡3 and barcelona in 𝑡10). On the other hand, Fuzzy FD(𝑇1, 𝑇2,
𝑇3) shows tuples integrated using our proposed algorithm where
the tuples are integrated maximally without redundancy.
ahttps://catalog.data.gov/dataset/covid-19-outcomes-by-vaccination-status,
https://catalog.data.gov/dataset/provisional-covid-19-death-counts-rates-and-
percent-of-total-deaths-by-jurisdiction-of-res
b Please note that open data is not a sole use case and our method also works for
relational and web tables.

Next, we summarize our contributions.

• Fuzzy Full Disjunction:To the best of our knowledge, we
are the first to propose fuzzy integration of tuples using
the Full Disjunction Operator. Specifically, our method
first identifies fuzzy matches, makes them consistent, and
then applies Full Disjunction.

• Empirical Evaluation: We show experimentally that our
novel Fuzzy Full Disjunction method, without significantly
increasing runtime, enhances integration effectiveness in
a down-stream data quality task.

• Open Source Code and Benchmark: Our code, models,
and datasets are publicly available: https://github.com/
northeastern-datalab/fuzzy_fd

2 Related Work
Galindo-Legaria [13] introduced FD as an associative alternative
to the outer join operator which is computed by applying outer
join in all possible orders of the input tables. Next, the results are
outer unioned to generate all possible FD tuples. A subsumption
operator is then applied to eliminate a tuple that is contained
in another tuple (i.e., tuples containing partial information). Ra-
jaraman and Ullman [32] stated that FD is the right semantics
for data integration and several others [5, 17, 30] propose algo-
rithms to compute FD faster in practice. Recently, Khatiwada
et al. [20] proposed ALITE, which uses the Full Disjunction op-
erator to integrate data lake tables discovered using different
table search techniques. Since data lake tables have inconsistent
and unreliable column headers [14, 26], ALITE first determines
the matching columns in the tables to be integrated by applying
holistic schema matching [34] over column-based pre-trained
embeddings. After that, ALITE uses the (Natural) Full Disjunc-
tion [13], over the matched columns to produce an integrated
table. Notice that all the prior work considers equi-join integra-
tion of tuples, i.e., the values of the tuples to be integrated are
consistent and can be matched using the equality operator. We
relax this assumption and propose a novel way of applying Full
Disjunction over data lake tables using approximate or fuzzy
joins.

Previous work has addressed the challenge of identifying fuzzy
inner joins. Zhu et al. [36] determined fuzzy matches by employ-
ing string transformations such as matching n-grams of cell val-
ues and concatenating cell values. Li et al. [23] determined fuzzy
matches between the values within a column pair by selecting
suitable parameters for the given input table. They framed fuzzy
matching as an optimization task with an objective of maximiz-
ing matching recall under a precision constraint. In our work,
we address fuzzy Full Disjunction rather than inner join. For
comparison, we have used the latest of these [23] as a baseline.

3 Fuzzy Full Disjunction
In this section, we describe our proposed method for integrating
data lake tables using Full Disjunction, considering fuzzy matches
of values in the join columns. Our system takes as input a set of
tables that may have inconsistent column headers and inconsis-
tent value representations and outputs a maximally integrated
table. The system is illustrated in Fig. 2. We first use ALITE’s
holistic column matcher to determine the aligned columns in
the input tables. Aligned columns are annotated with the same
integration id. The tables after column annotation are denoted
as Annotated Tables in Fig. 2. Over the aligned columns of an-
notated tables, we apply our novel value matching component
which addresses inconsistencies among join values. Once value
matches are identified, the matching values are replaced with a
single consistent value before applying the FD operator.

3.1 ALITE’s Holistic Column Matcher
Before explaining how we implement the value matching com-
ponent, we briefly describe ALITE’s column matcher[20]. ALITE
considers a set of tables to be integrated as input that can have
inconsistent column headers and we cannot rely on them for in-
tegration. So first, ALITE determines matching columns among
all the input columns by applying holistic schema matching over
them. Specifically, ALITE first represents each input column us-
ing pre-trained embeddings over their values, and over such
embeddings, it applies hierarchical clustering to get distinct sets

97

Fuzzy Integration of Data Lake Tables EDBT ’26, 24-27 March 2026, Tampere (Finland)

…

𝑝1

 …

𝑝2

 …

Integration ID Assignment

…

…………………

…………………

…………………

…………………

…………………

Full
Disjunction

Input
Tables

Annotated
Tables

Integrated Table

𝑝5 𝑝2 𝑝7 𝑝1

Annotated Tables with
Matched Values

𝑝5 𝑝2 𝑝7 𝑝1

Match Values

Figure 2: Block Diagram of the proposed system for Fuzzy Integration of Data Lake Tables.

of matching columns. The matched columns are assigned with a
unique column integration ID. Because ALITE uses embeddings
of column values, its matcher is robust to tables with inconsistent
value representations and can be applied in our new setting of
fuzzy joins. The ALITE column matcher ensures each column of
a table𝑇1 in the integration set matches with at most one column
from any other table 𝑇2 (and does not match columns within a
table).

3.2 Value Matching
In its current form, ALITE only considers semantic inconsis-
tencies in aligning columns as described above. However, as
motivated in our running example (see Fig. 1), inconsistencies
can present themselves also on a value level. That means that
two values, such as Canada and CA, that do not have an exact
match, should and will be considered when integrating the tables
via Full Disjunction (right-most part of Fig. 2).

Now, we discuss how we determine the fuzzy matching values
within the aligning columns. Following the literature on the prob-
lem of entity matching (EM) [24], we consider a clean-clean value
matching scenario [4], i.e., there is no inconsistency of value rep-
resentations within a column and we want to match potentially
inconsistent representations across different (matched) columns.
This means, for example, that when referring to Canada within
a single column, the value “Canada” is used consistently, but
in other tables this value might appear as "CA" or "CAN". Note
that, different from the EM problem, here we consider single
column values (though these values may be phrases containing
many words) for matching rather than full rows (tuples). Further-
more, we consider de-duplicated column values for our discus-
sion. However, it is trivial to handle duplicate values in a column.
The matching process can be extended by first de-duplicating
the values within a column while retaining a representative row
for each value group and keeping track of the removed dupli-
cates. Once matching is performed on the de-duplicated rows,
the removed rows can be reinstated by associating them with
their representatives.

Let 𝑇 be a table in the integration set (left-most part of Fig. 2).
We denote a set of aligning columns using 𝐶 and a specific 𝑖𝑡ℎ
column in the set using 𝑐𝑖 . Similarly, we represent a 𝑗𝑡ℎ value
in a list of values 𝑉 using 𝑣 𝑗 . Furthermore, 𝑐𝑖 .𝑣 𝑗 represents the
𝑗𝑡ℎ value of Column 𝑐𝑖 . Next, we formally define the Fuzzy Value
Match problem.

Definition 2 (Fuzzy Value Match Problem). We are given
a set of aligned columns 𝑐1, 𝑐2 . . . 𝑐𝑛 , a list of their values

[𝑐𝑖 .𝑣 𝑗 |𝑖 ∈ 1 . . . 𝑛; 𝑗 ∈ 1, 2, . . .], a matching threshold 𝜃 , and a
distance function 𝑑𝑖𝑠𝑡 (.), The Fuzzy Value Match Problem is to
find a disjoint set of values 𝑉1, 𝑉2, . . . 𝑉𝑘 such that ∀𝑢, 𝑣 ∈ 𝑉𝑖
(1 ≤ 𝑖 ≤ 𝑘) input, 𝑑𝑖𝑠𝑡 (𝑢, 𝑣) < 𝜃 .

The definition, which aims to obtain sets of values that repre-
sent the matching meanings, uses two key components, namely
a distance function and a threshold, which we address in the next
section.

3.3 Match Values Implementation
Now, we explain how we implement the Match Values component
that determines the fuzzy matches between the values.
Embed Column Values: We first represent each column value
in a fixed-dimension embedding space to ensure that matched
values are close to each other in this embedding space. For in-
stance, cells referring to Canada with values "Canada" and "CA"
in 𝑇1 and 𝑇2 (Fig. 1), respectively, are embedded near each other,
while "Germany" and "CA" are embedded farther apart. Similarly,
we aim to embed "Berlinn" and "Berlin" close to each other as
they both represent Berlin. In our system, we embed each cell
using Mistral-7B-Instruct model,1 a recent large language model
that we used in our experimental analysis (detailed in Sec. 4).
Determine Fuzzy Matches: In the context of the clean-clean
scenario [4, 31], the values within each column are consistent
(that is, two values have the same meaning iff they are iden-
tical). In what follows, our approach identifies fuzzy matches
between values across aligned columns. We initiate this process
by selecting a pair of aligned columns and determining the fuzzy
matches between their respective sets of values. To determine
these matches, we compute the cosine distances between the em-
beddings of cell values from the first column and those from the
second column. Based on these distances, we perform bipartite
matching between the values of the column pairs. Specifically,
we apply a linear sum assignment algorithm [6] that identifies
an optimal bipartite match between the values, minimizing the
total distance between the matched values. Note that we do not
allow matches whose distance is higher than the threshold 𝜃 .

Example 3. Consider the Country columns of Tables 𝑇1 and
𝑇2 in Fig. 1 that are aligned. We apply bipartite matching between
their sets of values. Based on the embeddings, Germany is matched
with DE, Canada is matched with CA, and Spain is matched with
ES. Bipartite matching matches India in𝑇1 with US in𝑇2 but their

1https://huggingface.co/docs/transformers/main/en/model_doc/mistral

98

EDBT ’26, 24-27 March 2026, Tampere (Finland) Khatiwada et al.

City
Berlinn
Toronto

Barcelona
New Delhi

T2 T3 T1

City
Toronto
Boston
Berlin

Barcelona

City
Berlin

barcelona
Boston

City
(Berlinn, Berlin)

(Toronto, Toronto)
(Barcelona, Barcelona)

(New Delhi)
(Boston)

Match(T1.City, T2.City)

T3

City
Berlin

barcelona
Boston

T1, T2

Match (T1.City, T2.City, T3.City)

City
(Berlinn, Berlin, Berlin)

(Toronto, Toronto)
(Barcelona, Barcelona, barcelona)

(New Delhi)
(Boston, Boston)

Aligned Columns

Select Representative values

Aligned Columns with Matched Values

City
Berlin

Toronto
Barcelona
New Delhi

T2 T3 T1

City
Toronto
Boston
Berlin

Barcelona

City
Berlin

Barcelona
Boston

T1, T2 , T3

Figure 3: Applying Match Values component over the aligning columns for Fuzzy Integration of Data Lake Tables.

match score is above the threshold. So, this match is discarded
and these values are placed in separate value sets.

Once we determine a match between the values of two
columns, we outer join the columns to generate a combined
column. If a value in one column is not matched with a value in
another column, it is left in a singleton set represented by its em-
bedding. If two values match, we select the most representative
value embedding, i.e., the one that appears most frequently in
the list of all values from the aligned columns. In the case of a tie,
we select a value from the first table among the two matching
tables each time, to keep the assignment consistent. This process
produces a combined column, which we then use for bipartite
matching with another aligned column. We continue producing
the combined column and matching it with another aligned col-
umn until all fuzzy matches in the set of aligned columns are
determined.

Example 4. Figure 3 illustrates three aligned City columns
from 𝑇1, 𝑇2, and 𝑇3 in Fig. 1. In the first step, we match the
City columns from 𝑇1 and 𝑇2. This results in Berlinn, Toronto,
and Barcelona from 𝑇1 being matched with Berlin, Toronto, and
Barcelona from 𝑇2, respectively. New Delhi remains unmatched.
Since Berlin appears twice and Berlinn appears once across all
three columns, we select Berlin for the combined column (bold
in Table 𝑇1,𝑇2 on the top-right corner). For the other two values
(Toronto and Barcelona), as they are identical, we simply select
one for the combined column. New Delhi with no other matches is
also added to the combined column. Next, we match the combined
column from 𝑇1 and 𝑇2 with the City column from 𝑇3. This pro-
cess results in the final combined column containing the values
Berlin, Toronto, Barcelona, New Delhi, and Boston (bottom-right
corner).

The column values in the final combined column are selected
as the representative values for each set of matched values. Then,
we replace all of the values across the aligned columns with their
respective representative value. For instance, continuing Ex. 4, as
shown in the bottom-left corner of Fig. 3, we replace Berlinn and
barcelona with their representative values Berlin and Barcelona.

After matching the values in each set of aligned columns, all
value level inconsistency are resolved. Consequently, we apply
the equi-join Full Disjunction operator from ALITE [20] and it

integrates the tuples without missing the integration on fuzzy
values.

Finally, we note that the threshold, representing the sensitivity
of value matching, is set empirically. This highlights an important
trade-off that comes from the literature on fuzzy/similarity joins.
Specifically, setting the threshold very low, even if the embedding
is effective, might not match together semantically similar values
that should be considered for join. On the other end, setting
the value to be very high may end up with too many matches.
For example, the value Barcelona from 𝑇1 (Fig. 3) and the value
Berlin from 𝑇2 are semantically similar (major cities in Europe)
and thus have a non-negligible value matching score. However,
the assumption is that this value should be higher than that
of Berlinn and Berlin. Even if the distance between Barcelona
and Berlin is less than an overly high threshold, the bipartite
matching would correctly match Berlin with Berlinn, rather than
Barcelona. To select the optimal threshold, we conducted a grid
search experiment, varying the threshold value between 0 and 1,
aiming to maximize matching effectiveness. Our results showed
that the threshold has minimal impact on the effectiveness of our
method, as it is applied after bipartite matching, which already
determines the best possible matches. We report our results with
a threshold of 0.7 and provide results with other thresholds in
our GitHub repository.2

4 Experiments
Now we empirically evaluate our Fuzzy Full Disjunction method.
In our evaluation, we aim to answer the following questions:

(1) How effective is our method in determining the fuzzy
matches between the values?

(2) How efficient is our proposed method in integrating the
tables considering fuzzy matches?

Specifically, we evaluate several embedding models to assess
their performance for value matching. Our primary point of
comparison is state-of-the-art (equi-based) full disjunction algo-
rithms [5, 20].

2https://github.com/northeastern-datalab/fuzzy_fd

99

Fuzzy Integration of Data Lake Tables EDBT ’26, 24-27 March 2026, Tampere (Finland)

4.1 Experimental Setup
We run all our experiments using Python 3.10 on a server having
Intel(R) Xeon(R) Gold 6346 CPU @ 3.10GHz and NVIDIA A40
GPU.

We implement the ALITE Full Disjunction operator [20] using
the publicly available code3 and use scipy’s implementation of the
linear sum assignment algorithm to perform bipartite matching.4

Benchmarks. We run our experiments over a publicly avail-
able fuzzy join benchmark and an integration benchmark from
the literature.

(i) Auto-Join Benchmark. Auto-Join is a publicly available5

fuzzy tuple matching Benchmark that comes with 31 integration
sets of tables (each with about 4 columns on average) covering
17 topics such as songs, government official details, etc. [36].
Each integration set contains sets of aligned columns (having
around 150 values per column on average) that can be joined
in a fuzzy manner under a clean-clean scenario [4]. We run our
experiments over such joining columns. We use this benchmark
to evaluate the accuracy of our fuzzy matching algorithm over
different embedding methods.

(ii) ALITE EM Benchmark. Khatiwada et al. [20] created a set
of datasets using open data tables to evaluate the effectiveness
and efficiency of table integration methods. We use their En-
tity Matching Benchmark to evaluate effectiveness. This bench-
mark includes tables on football players, their positions, teams,
and related team information such as home stadium, capacity,
and opening date. To create the entity matching scenario, they
augment an original table with new tuples that can be fuzzily
matched to existing ones, incorporating abbreviations, typos, and
similar variations. After this augmentation, the original table is
partitioned into smaller tables, which are then integrated using
different methods during the experiment. After integration, en-
tity matching is applied as a downstreaming task to evaluate
integration quality.

(iii) ALITE Movie Benchmark. Khatiwada et al. [20] also cre-
ated a (non-fuzzy) benchmark based on IMDB movie dataset
containing about 106M tuples distributed in 6 tables, to study
the efficiency of different Full Disjunction implementations.6
Specifically, they sampled the rows from the IMDB tables to cre-
ate integration sets containing 5K to 30K input tuples and study
FD’s runtime over them. Although this is an equi-join bench-
mark, as the Match Values component still needs the same time
to check for the fuzzy matches even if they do not exist, we use
this benchmark to study the efficiency of our method against the
baselines.

Baselines. To embed the column values, we evaluate different
embedding baselines. Specifically, we implement a publicly avail-
able word embedding model (FastText [16]).7 We also implement
two pre-trained language models (BERT [7] and RoBERTa [25])
and two large language models: Mistral (Mistral-7B-Instruct-
v0.3) and Llama3 (Meta-Llama-3-8B-Instruct) available in Hug-
ging Face library.8 For each language model, we pass the cell
values through its layers and extract the embeddings of the last
hidden layer. Next, we implement Auto-FuzzyJoin (AutoFJ) [23]
baseline using its public implementation. AutoFJ takes as input a

3https://github.com/northeastern-datalab/alite
4https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linear_sum_
assignment.html
5https://github.com/Yeye-He/Auto-Join
6https://datasets.imdbws.com/
7https://github.com/facebookresearch/fastText
8https://huggingface.co/

pair of tables and a user-defined precision target between 0 and
1. It then maximizes recall while ensuring the specified precision
target is met. Following the original paper, we use a default pre-
cision target of 0.9 for our experiments and provide results for
other precision targets in our GitHub repository.2 In addition,
we use (non-fuzzy) ALITE as an integration baseline.3 We also
use BICOMNLOJ, another non-fuzzy FD algorithm [5], for an
efficiency experiment.

Evaluation Metrics. To report the value match effectiveness,
we use the standard Precision (𝑃), Recall (𝑅), and 𝐹1-Score (𝐹1).
We also report runtime to compare efficiency. If 𝑀𝐺 is the set
of value matches in the ground truth and 𝑀𝑀 is the set of value
matches given by a method,

𝑃 =
𝑀𝐺 ∩𝑀𝑀

𝑀𝑀
, 𝑅 =

𝑀𝐺 ∩𝑀𝑀

𝑀𝐺
, 𝐹1 =

2 · 𝑃 · 𝑅
𝑃 + 𝑅

(1)

4.2 Results
Now we discuss the results of our experiments.

4.2.1 Fuzzy Matching Effectiveness. First, we report the perfor-
mance of different embedding methods in determining the fuzzy
matches. Table 1 shows the average performance of each em-
bedding baseline over 31 sets of aligning columns in Auto-Join
Benchmark. It is seen that although being smaller in size (7B
parameters) than the second best model Llama3 (8B parameters),
Mistral outperforms all the language models in terms of Preci-
sion, Recall, and 𝐹1-Score. Other models, FastText, BERT, and
RoBERTa, show lower performance by at least 8% in terms of all
metrics than Mistral. This shows that pre-trained embeddings of
large language models can be used to embed the column values
for fuzzy matches. As Mistral performs better than Llama3, even
being slightly smaller than Llama3 in terms of the number of
parameters, we use it in our system and for all our experiments.
Another baseline, AutoFJ, is the most precise system since it
is designed to meet a user-defined precision target. However,
this comes at the cost of lower recall, which reduces its overall
𝐹1-Score. We also experimented with different precision target
values, but AutoFJ did not outperform the top two methods in
terms of 𝐹1-Score for any of them.

Table 1: Value Matching effectiveness of different models
in Auto-Join Benchmark. The best score along each column
is in bold; the second best score is underlined.

Model Precision Recall F1-Score
FastText 0.70 0.67 0.66
BERT 0.72 0.76 0.73
RoBERTa 0.73 0.77 0.74
AutoFJ 0.84 0.65 0.68
Llama3 0.81 0.85 0.81
Mistral 0.81 0.86 0.82

4.2.2 Downstreaming Task Effectiveness. Next, we report the ef-
fectiveness of integration using Fuzzy FD over regular FD in the
ALITE EM Benchmark. Specifically, we perform entity matching
over the integrated table created using our fuzzy FD and over
the table created using regular FD (ALITE) and report the effec-
tiveness. For reference, we also pick an arbitrary join order and
perform entity matching over the result of outer (equi) join over
the tables. The results are reported in Table 2. Entity resolution
over our Fuzzy FD integration is better than that over the regular

100

EDBT ’26, 24-27 March 2026, Tampere (Finland) Khatiwada et al.

0.0 5k 10k 15k 20k 25k 30k
s (Number of Input Tuples)

0

2000

4000

6000

8000

Ru
nt

im
e

(s
ec

on
ds

)

BICOMNLOJ
ALITE
Fuzzy FD

Figure 4: Runtime comparison of Regular Full Disjunction
Algorithms against Fuzzy FD in IMDB Benchmark.

FD in terms of all three metrics: Precision, Recall, and 𝐹1-Score
(by over 7 %, 2 %, and 5 % respectively). Specifically, precision
improves with Fuzzy FD because it eliminates the false negatives
(tuples that are not correctly resolved) that regular FD produces
due to unmatched values. Additionally, Fuzzy FD’s better integra-
tion of tuples provides more information for the entity matching
algorithm, which as a result, retains more true positive tuples,
increasing recall.

Table 2: Entity Resolution over tables that are integrated
using Regular Full Disjunction against Fuzzy Full Disjunc-
tion. The best scores are bolded.

Integration Method Precision Recall F1-Score
Outer Join 0.33 0.39 0.36
Regular FD (ALITE) 0.79 0.83 0.81
Fuzzy FD 0.86 0.85 0.86

4.2.3 Efficiency. We compare the runtime of ALITE’s regular
FD Operator [20] and an alternative algorithm BICOMNLOJ [5]
against our Fuzzy FD over the IMDB Benchmark. Recall this
benchmark has no fuzzy value matches, but we run our fuzzy
matching and confirm that it correctly outputs just singleton
value matches. For a comprehensive evaluation, we report the
total number of input tuples considered for integration on the
X-axis and the runtime on the Y-axis. As shown in Fig. 4, the
lines for ALITE (fastest among regular FD algorithms) and fuzzy
FD methods almost overlap throughout the graph, showing that
our fuzzy FD algorithm, although performing an additional value
matching step, does not add significant additional time overhead
to the regular Full Disjunction.

5 Discussion and Future Work
Finally, we discuss some limitations, potential extensions, and
tradeoffs of using Fuzzy FD in data integration. First, Full Disjunc-
tion has exponential complexity in the number of input tables,
limiting its scalability. As a result, it is practical only for a modest
number of tables. This fits our scenario where we only deal with
around 10 to 15 tables retrieved using table discovery techniques
for integration. If we have hundreds of tables, it may not be fea-
sible to apply FD. Second, the Integration ID Assignment phase
may not always achieve perfect precision, which can affect the
quality of downstream integration. An interesting future direc-
tion would be to add an LLM-based feedback loop that can help
to automatically correct any imperfect alignment to enhance in-
tegration effectiveness. Moreover, we currently embed each cell

independent of the rest of the table context in the value match
phase; this could be enhanced using more table context.

We presented an extension of the Full Disjunction algorithm
to integrate a set of tables considering fuzzy matches between the
values. Experimentally, we showed that our Fuzzy Full Disjunc-
tion algorithm does not add significant runtime overhead while
it does improve integration effectiveness. To show the latter, we
applied a downstream entity-matching algorithm over the result
of FD and Fuzzy FD and showed a 5% improvement in 𝐹1-Score
for Fuzzy FD.

Acknowledgments
This work was supported in part by NSF under award numbers
IIS-1956096, IIS-2107248, and IIS-2325632. We acknowledge the
support of the Canada Excellence Research Chairs (CERC) pro-
gram. Nous remercions le Chaires d’excellence en recherche du
Canada (CERC) de son soutien.

6 Artifacts
The source code, data, and/or other artifacts have been made
available at: https://github.com/northeastern-datalab/fuzzy_fd.

References
[1] Jens Bleiholder and Felix Naumann. 2009. Data Fusion. ACM Comput. Surv.

41, 1, Article 1 (Jan. 2009), 41 pages. doi:10.1145/1456650.1456651
[2] Alex Bogatu, Alvaro A. A. Fernandes, Norman W. Paton, and Nikolaos Kon-

stantinou. 2020. Dataset Discovery in Data Lakes. In 2020 IEEE 36th Interna-
tional Conference on Data Engineering (ICDE). 709–720. doi:10.1109/ICDE48307.
2020.00067

[3] Dan Brickley, Matthew Burgess, and Natasha Noy. 2019. Google Dataset
Search: Building a Search Engine for Datasets in an Open Web Ecosystem.
In The World Wide Web Conference. ACM, 1365–1375. doi:10.1145/3308558.
3313685

[4] Vassilis Christophides, Vasilis Efthymiou, Themis Palpanas, George Papadakis,
and Kostas Stefanidis. 2021. An Overview of End-to-End Entity Resolution for
Big Data. ACM Comput. Surv. 53, 6 (2021), 127:1–127:42. doi:10.1145/3418896

[5] Sara Cohen, Itzhak Fadida, Yaron Kanza, Benny Kimelfeld, and Yehoshua Sagiv.
2006. Full Disjunctions: Polynomial-Delay Iterators in Action. In VLDB 2006.
ACM. http://dl.acm.org/citation.cfm?id=1164191

[6] David Frederic Crouse. 2016. On implementing 2D rectangular assignment
algorithms. IEEE Trans. Aerosp. Electron. Syst. 52, 4 (2016), 1679–1696. doi:10.
1109/TAES.2016.140952

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for Language Under-
standing. ArXiv abs/1810.04805 (2019).

[8] AnHai Doan, Alon Halevy, and Zachary Ives. 2012. Principles of data integra-
tion. Elsevier.

[9] Yuyang Dong, Kunihiro Takeoka, Chuan Xiao, and Masafumi Oyamada.
2021. Efficient Joinable Table Discovery in Data Lakes: A High-Dimensional
Similarity-Based Approach. In 37th IEEE International Conference on Data
Engineering, ICDE 2021. IEEE, 456–467. doi:10.1109/ICDE51399.2021.00046

[10] Grace Fan, Jin Wang, Yuliang Li, Dan Zhang, and Renée J. Miller. 2023.
Semantics-aware Dataset Discovery from Data Lakes with Contextualized
Column-based Representation Learning. PVDLB 16, 7 (2023), 1726–1739.

[11] Raul Castro Fernandez, Ziawasch Abedjan, Famien Koko, Gina Yuan, Samuel
Madden, and Michael Stonebraker. 2018. Aurum: A data discovery system.
In 2018 IEEE 34th International Conference on Data Engineering (ICDE). IEEE,
1001–1012.

[12] Sainyam Galhotra and Udayan Khurana. 2020. Semantic Search over Struc-
tured Data. In CIKM 2020. Association for Computing Machinery, 3381–3384.
doi:10.1145/3340531.3417426

[13] César A. Galindo-Legaria. 1994. Outerjoins as Disjunctions. In SIGMOD
Conference 1994. ACM, 348–358. doi:10.1145/191839.191908

[14] Rihan Hai, Christos Koutras, Christoph Quix, and Matthias Jarke. 2023. Data
Lakes: A Survey of Functions and Systems. IEEE Trans. Knowl. Data Eng. 35,
12 (2023), 12571–12590. doi:10.1109/TKDE.2023.3270101

[15] Xuming Hu, Shen Wang, Xiao Qin, Chuan Lei, Zhengyuan Shen, Christos
Faloutsos, Asterios Katsifodimos, George Karypis, Lijie Wen, and Philip S. Yu.
2023. Automatic Table Union Search with Tabular Representation Learning.
In Findings of the Association for Computational Linguistics: ACL 2023, Toronto,
Canada, July 9-14, 2023. Association for Computational Linguistics, 3786–3800.
https://aclanthology.org/2023.findings-acl.233

[16] Armand Joulin, Edouard Grave, Piotr Bojanowski, and Tomas Mikolov. 2016.
Bag of tricks for efficient text classification. arXiv preprint arXiv:1607.01759
(2016).

101

Fuzzy Integration of Data Lake Tables EDBT ’26, 24-27 March 2026, Tampere (Finland)

[17] Yaron Kanza and Yehoshua Sagiv. 2003. Computing Full Disjunctions. In
Proceedings of the Twenty-Second ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems (PODS ’03). ACM, 78–89. doi:10.1145/773153.
773162

[18] Aamod Khatiwada, Grace Fan, Roee Shraga, Zixuan Chen, Wolfgang Gatter-
bauer, Renée J Miller, and Mirek Riedewald. 2023. SANTOS: Relationship-based
Semantic Table Union Search. Proc. ACM Manag. Data 1, 1 (2023), Article 9.
doi:10.1145/3588689

[19] Aamod Khatiwada, Harsha Kokel, Ibrahim Abdelaziz, Subhajit Chaudhury,
Julian Dolby, Oktie Hassanzadeh, Zhenhan Huang, Tejaswini Pedapati, Horst
Samulowitz, and Kavitha Srinivas. 2025. TabSketchFM: Sketch-Based Tabular
Representation Learning for Data Discovery over Data Lakes . In 2025 IEEE 41st
International Conference on Data Engineering (ICDE). IEEE Computer Society,
Los Alamitos, CA, USA, 1523–1536. doi:10.1109/ICDE65448.2025.00118

[20] Aamod Khatiwada, Roee Shraga, Wolfgang Gatterbauer, and Renée J. Miller.
2022. Integrating Data Lake Tables. Proc. VLDB Endow. 16, 4 (2022), 932–945.
doi:10.14778/3574245.3574274

[21] Aamod Khatiwada, Roee Shraga, and Renée J. Miller. 2023. DIALITE: Discover,
Align and Integrate Open Data Tables. In Companion of the 2023 International
Conference on Management of Data, SIGMOD/PODS 2023, Seattle, WA, USA,
June 18-23, 2023. ACM, 187–190. doi:10.1145/3555041.3589732

[22] Christos Koutras, George Siachamis, Andra Ionescu, Kyriakos Psarakis, Jerry
Brons, Marios Fragkoulis, Christoph Lofi, Angela Bonifati, and Asterios Kat-
sifodimos. 2021. Valentine: Evaluating Matching Techniques for Dataset
Discovery. In 37th IEEE International Conference on Data Engineering, ICDE
2021. IEEE, 468–479. doi:10.1109/ICDE51399.2021.00047

[23] Peng Li, Xiang Cheng, Xu Chu, Yeye He, and Surajit Chaudhuri. 2021. Auto-
FuzzyJoin: Auto-Program Fuzzy Similarity Joins Without Labeled Examples.
In SIGMOD ’21: International Conference on Management of Data, Virtual Event,
China, June 20-25, 2021, Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh
Srivastava (Eds.). ACM, 1064–1076. doi:10.1145/3448016.3452824

[24] Yuliang Li, Jinfeng Li, Yoshihiko Suhara, AnHai Doan, and Wang-Chiew Tan.
2020. Deep Entity Matching with Pre-Trained Language Models. Proc. VLDB
Endow. 14, 1 (2020), 50–60. doi:10.14778/3421424.3421431

[25] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
2019. RoBERTa: A Robustly Optimized BERT Pretraining Approach. CoRR
abs/1907.11692 (2019). arXiv:1907.11692 http://arxiv.org/abs/1907.11692

[26] Renée J. Miller. 2018. Open Data Integration. Proc. VLDB Endow. 11, 12 (2018),
2130–2139. doi:10.14778/3229863.3240491

[27] Fatemeh Nargesian, Erkang Zhu, Renée J. Miller, Ken Q. Pu, and Patricia C.
Arocena. 2019. Data Lake Management: Challenges and Opportunities. Proc.
VLDB Endow. 12, 12 (2019), 1986–1989. doi:10.14778/3352063.3352116

[28] Fatemeh Nargesian, Erkang Zhu, Ken Q. Pu, and Renée J. Miller. 2018. Table
Union Search on Open Data. Proc. VLDB Endow. 11, 7 (2018), 813–825. doi:10.
14778/3192965.3192973

[29] Paul Ouellette, Aidan Sciortino, Fatemeh Nargesian, Bahar Ghadiri
Bashardoost, Erkang Zhu, Ken Q. Pu, and Renée J. Miller. 2021. RONIN:
Data Lake Exploration. Proc. VLDB Endow. 14, 12 (2021), 2863–2866. doi:10.
14778/3476311.3476364

[30] Matteo Paganelli, Domenico Beneventano, Francesco Guerra, and Paolo Sot-
tovia. 2019. Parallelizing Computations of Full Disjunctions. Big Data Research
17 (2019), 18–31. doi:10.1016/j.bdr.2019.07.002

[31] George Papadakis, Ekaterini Ioannou, and Themis Palpanas. 2020. Entity
Resolution: Past, Present and Yet-to-Come. In Proceedings of the 23rd Inter-
national Conference on Extending Database Technology, EDBT 2020. OpenPro-
ceedings.org, 647–650. doi:10.5441/002/edbt.2020.85

[32] Anand Rajaraman and Jeffrey D. Ullman. 1996. Integrating Information by
Outerjoins and Full Disjunctions (Extended Abstract). In PODS 1996. ACM.

[33] Franck Ravat and Yan Zhao. 2019. Data Lakes: Trends and Perspectives.
In Database and Expert Systems Applications - 30th International Conference,
DEXA 2019, Linz, Austria, August 26-29, 2019, Proceedings, Part I (Lecture
Notes in Computer Science, Vol. 11706), Sven Hartmann, Josef Küng, Sharma
Chakravarthy, Gabriele Anderst-Kotsis, A Min Tjoa, and Ismail Khalil (Eds.).
Springer, 304–313. doi:10.1007/978-3-030-27615-7_23

[34] Weifeng Su, Jiying Wang, and Frederick H. Lochovsky. 2006. Holistic Schema
Matching for Web Query Interfaces. In Advances in Database Technology -
EDBT 2006, 10th International Conference on Extending Database Technology,
Proceedings (Lecture Notes in Computer Science, Vol. 3896). Springer, 77–94.
doi:10.1007/11687238_8

[35] Erkang Zhu, Dong Deng, Fatemeh Nargesian, and Renée J. Miller. 2019. JOSIE:
Overlap Set Similarity Search for Finding Joinable Tables in Data Lakes. In
SIGMOD Conference 2019. ACM, 847–864. doi:10.1145/3299869.3300065

[36] Erkang Zhu, Yeye He, and Surajit Chaudhuri. 2017. Auto-Join: Joining Tables
by Leveraging Transformations. Proc. VLDB Endow. 10, 10 (2017), 1034–1045.
doi:10.14778/3115404.3115409

[37] Erkang Zhu, Fatemeh Nargesian, Ken Q. Pu, and Renée J. Miller. 2016. LSH
Ensemble: Internet-Scale Domain Search. Proc. VLDB Endow. 9, 12 (2016),
1185–1196. doi:10.14778/2994509.2994534

102

