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Abstract
In hybrid transactional and analytical processing (HTAP) sys-
tems, users often struggle to understand why query plans from
one engine (OLAP or OLTP) perform significantly slower than
those from another. Although optimizers provide plan details
via the EXPLAIN function, these explanations are frequently too
technical for non-experts and offer limited insights into per-
formance differences across engines. To address this, we pro-
pose a novel framework that leverages large language models
(LLMs) to explain query performance in HTAP systems. Built
on Retrieval-Augmented Generation (RAG), our framework con-
structs a knowledge base that stores historical query executions
and expert-curated explanations. To enable efficient retrieval of
relevant knowledge, query plans are embedded using a light-
weight tree-CNN classifier. This augmentation allows the LLM
to generate clear, context-aware explanations of performance
differences between engines. Our approach demonstrates the
potential of LLMs in hybrid engine systems, paving the way for
further advancements in database optimization and user support.

Keywords
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1 Introduction
“Why does my query run so slowly?” In modern database manage-
ment systems (DBMS), users frequently struggle to understand
why certain queries experience very long execution times. While
contemporary optimizers provide an EXPLAIN function that de-
tails the execution plan, these explanations are too complex for
non-experts to interpret fully. This challenge is particularly evi-
dent in hybrid transactional and analytical processing (HTAP)
systems, such as ByteHTAP [4], which features a unified in-
terface with two underlying execution engines: OLTP (online
transactional processing, referred to as TP) and OLAP (analytical
processing, referred to as AP). When a query is executed in the
HTAP system, users often seek guidance on why one engine
outperforms the other. Traditionally, database experts manually
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analyze queries to provide tailored explanations, but as query
volumes grow, this approach becomes unsustainable.

To fill the gap between the incomprehensibility of optimizer-
generated explanations and the high cost of expert-provided
explanations, we aim to develop a user-friendly and intelligent
explanation system satisfying three key criteria:

• The explanations should be clear and easy for non-experts
to understand why certain engine is faster than the other at
runtime.

• The explanations must consider the database and engine con-
text to ensure reasonably accurate output, even if they may not
always achieve the same level of precision as human experts.

• The system should support fully automatic generation with
minimal human effort, while remaining cost-efficient in both
training and maintenance.

To meet these requirements, we propose a novel framework
that leverages large language models (LLMs) to automatically
explain query performance across different engines and help
users understand the reasons behind performance differences.
LLMs have gained popularity thanks to their ability to generate
understandable natural language outputs. However, balancing
accuracy and efficiency presents a trade-off: while using pre-
trained models (such as Doubao [3], ChatGPT [1], Llama [15], and
Claude [2]) is efficient, they lack the specific context needed for
accurate query performance explanations. Although fine-tuning
LLMs could improve relevance and accuracy, this is resource-
intensive. To strike a balance between cost and accuracy, we
employ pre-trained public models using a Retrieval-Augmented
Generation (RAG) approach [9], addressing the limitations of
general-purpose LLMs while maintaining efficiency.

The RAG framework relies on two key components: a retriever
and a knowledge base [7]. First, the retriever finds relevant
references in a pre-built knowledge base and provide them as
contextual input to the LLM. In the HTAP system ByteHTAP
[5] that this paper focuses on, this retriever is powered by a
lightweight machine learning model—specifically, a tree-CNN
classifier based on recent research on learned query optimizers
[11, 17, 20], trained to route queries to the engine best suited for
efficient execution. This model also functions as a query plan
encoder, generating embeddings that represent the plan for each
query.

Second, the knowledge base serves as an external data source,
supplementing the LLM’s original training data. In our setup, the
knowledge base stores historical queries, their plan embeddings
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generated by the tree-CNN classifier, and expert-curated perfor-
mance difference explanations—specifically, the reasons why the
TP plan runs faster than the AP plan and vice versa.1 At runtime,
the retriever searches the knowledge base for similar plan embed-
dings relevant to the current query. These retrieved embeddings
enrich the LLM with relevant context-specific information, en-
abling it to generate more accurate and targeted natural language
explanations. As shown by experiments, by combining the preci-
sion of the machine learning model’s embeddings with the LLM’s
generative capabilities, our approach provides insightful, contex-
tually grounded explanations of engine performance, without
requiring expert intervention or costly fine-tuning of the LLM.
Our framework is not limited to ByteHTAP; it is adaptable to
any HTAP system capable of retrieving historical explanations
as augmented inputs.

Explaining why one engine outperforms another may seem
more straightforward than answering the broader question of
“Why does my query run so slowly?” However, the two are in-
tricately connected, as engine choice and query execution per-
formance are shaped by the same underlying factors, such as
plan efficiency and system architecture. While fully automating
explanations for query performance remains challenging, our
approach offers a significant step forward. By integrating LLMs
within HTAP systems, our framework helps users understand
engine performance differences, demonstrates the potential of
LLMs to deliver intuitive, accessible explanations, and paves way
for future research toward more comprehensive automation in
database performance analysis.

The structure of this paper is as follows: After briefly sur-
veying related work in Section 2, we describe our framework in
Section 3, including the integration of LLMs with RAG to improve
explanation quality in HTAP systems. Section 4 and Section 5
outline the knowledge base construction and prompt engineer-
ing, while Section 6 presents and analyzes results of experiments.
Finally, Section 7 concludes with key insights and future research
directions.

2 Related work
Large Language Models (LLMs) have shown considerable promise
in enhancing database systems by providing intuitive, natural
language explanations and recommendations [19]. LLMs excel
at translating complex, system-level insights into user-friendly
explanations, sparking interest in their application across vari-
ous database tasks, including query performance analysis and
optimization. LLMs have also been effectively applied in data-
base research. For example, they have been used to understand
and generate SQL queries [6, 12, 13, 16]. D-Bot [18] employs
LLMs to detect and resolve anomalies within databases, while
Panda [14] leverages Retrieval-Augmented Generation (RAG)
[9] to ground LLM outputs in context, providing performance
diagnostics based on execution metrics rather than query plan
analysis. RAG improves the accuracy and relevance of language
models by integrating a retrieval mechanism with text genera-
tion [7]. Further research, such as DBG-PT [8], demonstrates the
utility of LLMs for diagnosing performance regressions through
comparisons between structured query plans. While DBG-PT
successfully analyzes plans from the same optimizer, our work
extends this approach to scenarios involving plans generated by

1These explanations address why one engine’s plan runs faster than the other
post-execution, rather than interpreting the classifier’s routing decision—the latter
underscores a broader challenge of interpretability in machine learning.

different engines. Instead of comparing the plan details from the
EXPLAIN clause directly, our methods enhances explanation qual-
ity by integrating RAG by a small model for improved context
and relevance.

3 Retrieval-Augmented Explanation
Generation by Large Language Model

3.1 Constructing an Effective Retriever
Since LLMs may lack query-specific or up-to-date context, we
leverage insights from past queries through RAG to enrich re-
sponses with precise and relevant historical information. These
retrieved references, combined with carefully designed prompts,
are provided to the LLM to generate more accurate and contex-
tually grounded answers.

Knowledge base for RAG. In our system, we store historical
query plans and their corresponding plan performance explana-
tions in a key-value knowledge base. The key consists of a pair
of plans (one for TP and the other for AP) for the same query,
while the value contains the plan details and associated expla-
nations. Instead of straightforwardly storing the plan pairs as
raw text (e.g., the output of EXPLAIN from the optimizer), the
plan pairs in our system are stored as vectors, whose encoding
process is described later. This idea is motivated by our focus
not on semantic similarity between plans but on “similar perfor-
mance distinctions”—specifically, similar performance differences
between TP and AP plans observed in past queries. For a new
query, we aim to retrieve historical queries with similar plan
performance distinctions and use this knowledge to enhance the
LLM’s generation.

Plan embeddings by a lightweight model. Our HTAP system [5]
features a smart router, which is an enhanced tree-CNN classifier
that predicts, for a given query, which engine will yield a plan
with better performance. Experiments demonstrated that the
router achieves high accuracy in identifying the more efficient
plan between TP and AP engines. Therefore, it naturally serves
as a good model for generating plan embeddings. Key advantages
of using the smart router for plan embeddings include:
• Lightweight model: The smart router is highly efficient, with a

physical model size of less than 1MB and an average inference
time of only 1ms, making it an ideal choice for embedding
generation. Additionally, it can be quickly retrained to adjust
to changes in query workloads or underlying data.

• Task-specific design: Directly taking plan trees as input, em-
beddings generated by the smart router can capture detailed
plan performance comparisons since the original task is to de-
termine the faster engine. Trained on a large dataset of query
plan pairs, it identifies performance-relevant features within
plans. These intermediate plan encodings serve as “signatures”
enabling the retriever to match new queries with similar his-
torical performance distinctions.

3.2 Framework Overview
From a system integration perspective, our explainer operates
above the TP/AP optimizer in the ByteHTAP system. The sys-
tem steers a pre-trained LLM to generate explanations based on
plan embeddings from the smart router and retrieved contextual
information. The framework consists of three main components
as illustrated in Figure 1. We describe these components below
in turn.
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Figure 1: Framework of our method with three main components: 1) HTAP system, 2) human (user/expert), and 3): RAG
and LLM. The red line shows the workflow for new queries, while the black line represents historical queries.

ByteHTAP systemwith smart router. This component is marked
as 1 in Figure 1. To explain the performance distinction be-
tween engines for a new query (marked by red arrows), the
tree-structured execution plans from both AP and TP engines
are processed by the smart router, which encodes them into a
vector representation. The plan pair embedding, created by con-
catenating vectors from both AP and TP plans, is then utilized
by subsequent components to generate explanations. Historical
queries (marked by black arrows) are selected from the training
set of smart router and forwarded to the human side for expert-
curated explanations, which are then stored in the knowledge
base along with their corresponding plan pair embeddings.

Human interaction and expert evaluation. The human side
(marked as 2) has two roles: database users and database experts.
Users submit queries and seek guidance on performance-related
questions. Experts can provide, during the knowledge base con-
struction phrase, detailed explanations of why one plan performs
better or worse than the other based on practical insights. They
can also assess the quality of future LLM-generated explanations.
Users may also offer additional contextual information, such as
details on newly created indexes, which help refine the LLM’s
responses and improve explanation accuracy.

RAG and LLM integration. On this side (marked as 3 in Fig-
ure 1), we integrate a knowledge base for retrieval and a pre-
trained public LLM for explanation generation. The knowledge
base is a vector database populated with historical queries, where
their AP/TP execution plans are encoded by the smart router. The
resulting plan pair embeddings are stored as keys and the values
are the expert’s explanations. Further details on the construc-
tion of the knowledge base are provided in Section 4. For each
incoming user query, the retriever uses the plan pair embedding
obtained from the smart router to search in the knowledge base
for the top 𝐾 most similar plan pairs. These retrieved knowledge
(including expert explanations), the plan details and execution
results of the new user query, and the background context (in-
cluding default prompts and any user-provided prompts), serve

as the input for the LLM.2 The LLM then generates an explana-
tion based on this enriched input, which is returned to the user.3
As mentioned, these generated outputs can also be reviewed and
evaluated by experts. If an explanation is deemed inaccurate, ex-
perts will correct it and add the revised version to the knowledge
base for future retrieval.

4 RAG Knowledge Base Construction
For RAG, we construct a knowledge base by storing historical
queries and their performance explanations. This knowledge
base provides the necessary context for the LLM to generate
accurate and relevant explanations. For each query, we store
the following data: ⟨plan pair encoding, plan details, execution
result, expert explanation⟩. The plan pair encoding is a vectorized
representation of the pair of AP and TP plans, encoded by the
smart router, which enables efficient retrieval of similar queries.
Plan details includes the actual execution plans for both engines.
The execution result indicates which engine executes this query
faster. Finally, the expert explanation is a curated explanation
from database experts detailing why one engine outperforms the
other in specific cases.

To maximize the effectiveness of RAG, the knowledge base
must include a sufficient number of representative queries. In
a real-world scenario, this requires carefully identifying query
patterns that frequently cause performance confusion for users.
In our setup, we select query patterns frequently requested by
ByteDance users seeking explanations for the engine perfor-
mance discrepancy. Then, to protect the privacy of users’ data
and queries, we synthetically generate similar queries using the
TPC-H dataset instead of directly using user-submitted queries.
Note that these generated queries are also in the training set of
the smart router, ensuring the encodings are attended to the per-
formance distinctions. For the demonstration case in Section 6,
the selected query patterns primarily include:

2Since the smart router may mispredict, the actual execution results may differ
from the router’s initial prediction. We include the execution results of the AP and
TP plans to ensure that the LLM generates explanations based on accurate runtime
information.
3If the LLM determines the augmented knowledge lacks sufficient information, it
will return a None response.
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(1) Join queries: Join operations in which AP and TP engines
apply different join strategies, offering insights into engine-
specific optimizations. These join queries vary in factors such
as the number of joined tables, table size, predicate selectivity,
and index usage.

(2) Top-𝑁 queries: Queries that retrieve the top 𝑁 records based
on specific criteria, often using clauses like ORDER BY, LIMIT,
and sometimes OFFSET. These queries are common in user
workloads and often perform differently depending on engine-
specific optimizations.

After executing these synthetic queries on both TP and AP en-
gines, we send the queries, plans, and execution results to data-
base experts, requesting the corresponding explanations. Such
expert participation is only required at the knowledge base con-
struction time, and not needed in the subsequent explanation
generation process. For the experimental setup in Section 6, we
selectively include only 20 representative queries in the knowl-
edge base. These queries are carefully hand-picked and designed
to reflect the types of performance difference issues most fre-
quently encountered by online users. While 20 queries alone
may not cover the full spectrum of all possible queries, they are
sufficient to capture the core patterns behind the cases users are
most interested in. This selective approach not only helps reduce
the cost of expert annotations but also ensures that the knowl-
edge base is able to capture the performance distinctions that are
broadly applicable to the users’ query workload. In addition, we
provide an interface to continuously expand the knowledge base
by accepting new queries along with expert-provided explana-
tions, allowing the system to evolve and improve over time. A
full analysis of how to manage the knowledge base, including
methods for automatically selecting representative queries and
expiring stale queries, remains a future work direction.

For each query, the plan pair encoding is a 16-dimensional
vector generated by the smart router. The retriever searches the
top 2 similar vectors for the new query. To evaluate generalization
and test our performance, we synthesize an additional set of
200 queries, distinct from both the training and representative
query sets, following the same distribution of query patterns we
consider. Detailed experimental results are in Section 6.2.

5 Prompt Engineering
Following the RAG process, we send the retrieved information
along with the new query to the LLM. To guide the LLM in
generating accurate explanations, we provide carefully structured
prompts, which are organized into three parts:

• Background information, which includes the overall objective,
an overview of the HTAP system, key differences between its
engines, and specifics about the schema and dataset queried.

• Task description, which defines the RAG task, detailing ex-
pected inputs and outputs, along with additional guidance to
ensure clarity.

• Additional user-provided context, such as recent modifications
to indexes, to ensure that the LLM has the latest context.

During prompt design, we observed that the pre-trained LLM
often defaults to directly comparing the plan costs generated by
the query optimizer to explain which plan is faster. However, be-
cause the optimizers are implemented differently across engines,
plan costs are generally not comparable across engines (which is
the case for ByteHTAP). To prevent this incorrect reasoning, we
emphasized in the prompts that the costs in the plan pair should

Background information: We are using RAG to assist database users in
understanding query performance across differences engines in our HTAP sys-
tem—specifically, why one engine performs faster while the other is slower. Please
ensure you are familiar with the TPC-H schema, and our dataset follows the default
schema and contains 100GB of data. Our HTAP system has two database engines,
“TP” and “AP”. The TP engine uses row-oriented storage, while the AP engine utilizes
column-oriented storage. Note that the optimizers for TP and AP engines are distinct,
leading to different execution plans. Therefore, you are not allowed to compare the
cost estimates of the execution plans from TP and AP engines.

Task description: Here is your task: I will provide you with the execution plans
and their performance results from both the TP and AP engines. Please evaluate the
performance of each engine without directly comparing the cost estimates. Focus on
factors such as the join methods used, the storage formats (row-oriented vs. column-
oriented), index utilization, and any potential implications of the execution plan
characteristics on query performance. Your task is to explain the reason why the
specific engine performs better for this specific query, based on these factors. To assist
you, we have a retriever that can find relevant historical plans from the knowledge
base with precise performance explanation from our experts. The KNOWLEDGE
and QUESTIONS you received will be in the following format:
• KNOWLEDGE: historical query + historical plan pair (AP/TP plan) + historical

execution result (indicating whether TP or AP runs this query faster) + historical
expert explanation (why TP or AP is faster).

• QUESTION: new query + new plan pair + new runtime execution result.
You could use KNOWLEDGE to explain the following new pair of plans in QUESTION.
If the KNOWLEDGE does not contain the facts to answer the QUESTION return
None. Note, to make sure your answer is accurate, I may input you several retrieved
old queries with their plans, results and explanations. Please understand all the
information I provide to generate your explanation. Now, I am ready to send you the
KNOWLEDGE and QUESTION

Additional user context: Beyond the default indexes on primary and foreign keys,
an additional index has been created on the c_phone column in the customer table.

Table 1: Prompts used.

not be used for comparison. Table 1 presents the prompts used in
our experiments, and Section 6 analyzes the generation results.

6 Experiments and Participant Study
6.1 Demonstrative Case
First, we show one example to demonstrate how our system
works. This query is synthetic, constructed from similar query
patterns we observed from the real user queries. All subsequent
queries were executed in the same environment described in [5],
consisting of a six-machine cluster with four data servers. Each
data server is configured with 8 vCPUs, 32 GB DRAM, and 1
NUMA node.

Example 1. Consider a query joining 3 tables.

SELECT COUNT(*) FROM customer, nation, orders

WHERE SUBSTRING(c_phone, 1, 2) IN ('20', '40', '22', '30',

'39', '42', '21')

AND c_mktsegment = 'machinery'

AND n_name = 'egypt' AND o_orderstatus = 'p'

AND o_custkey = c_custkey

AND n_nationkey = c_nationkey;

In this example, the TP plan takes 5.8s to run, while the AP plan
completes in 310ms. We show the details of TP and AP plans in
Table 2 and the corresponding expert’s explanation and the LLM-
generated explanation in Table 3. The explanation generated
by our approach using the LLM demonstrates high accuracy. It
highlights the key factor that hash joins are more efficient than
nested-loop joins, as no index is available, which aligns closely
with the expert explanation. The LLM-generated explanation
also provides additional insights, including details about AP’s
aggregation efficiency, an aspect the experts did not explicitly
mention. Overall, the LLM output is informative, clear, and easy
to understand by non-experts. Because ease of understanding is a
subjective measure, we conducted a user study to gather feedback
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Details of TP Plan for Example 1

{ 'Node Type': 'Group aggregate', 'Total Cost ': 5213.0, 'Plan Rows': 1, 'Plans': [ { 'Node
Type': 'Nested loop inner join', 'Total Cost': 5175.0, 'Plan Rows': 379, 'Plans': [ {
'Node Type': 'Nested loop inner join', 'Total Cost ': 1002.0, 'Plan Rows': 285, 'Plans': [
{ 'Node Type': 'Filter', 'Total Cost ': 2.75, 'Plan Rows': 2, 'Plans': [ { 'Node Type': 'Table
Scan', 'Relation Name': 'nation', 'Total Cost ': 2.75, 'Plan Rows': 25 } ] }, { 'Node Type':
'Filter', 'Total Cost': 290.0, 'Plan Rows': 114, 'Plans': [ { 'Node Type': 'Table Scan',
'Relation Name': 'customer', 'Total Cost': 290.0, 'Plan Rows': 1142 } ] } ] }, { 'Node
Type': 'Filter', 'Total Cost': 13.3, 'Plan Rows': 1, 'Plans': [ { 'Node Type': 'Table Scan',
'Relation Name': 'orders', 'Total Cost': 13.3, 'Plan Rows': 13 } ] } ] } ] }

Details of Ap plan for Example 1

{ 'Node Type': 'Aggregate', 'Total Cost': 16500000.0, 'Plan Rows': 1, 'Plans': [ { 'Node
Type': 'Inner hash join', 'Total Cost ': 16500000.0, 'Plan Rows': 134933, 'Plans': [ { 'Node
Type': 'Filter', 'Total Cost ': 13500000.0, 'Plan Rows': 13500000, 'Plans': [ { 'Node Type':
'Table Scan', 'Relation Name': 'orders', 'Total Cost ': 0.5, 'Plan Rows': 135000000 } ] }, {
'Node Type': 'Hash', 'Plans': [ { 'Node Type': 'Inner hash join', 'Total Cost ': 1640000.0,
'Plan Rows': 135985, 'Plans': [ { 'Node Type': 'Filter', 'Total Cost': 1500000.0, 'Plan
Rows': 1360000, 'Plans': [ { 'Node Type': 'Table Scan', 'Relation Name': 'customer',
'Total Cost': 0.5, 'Plan Rows': 13600000 } ] }, { 'Node Type': 'Hash', 'Plans': [ { 'Node
Type': 'Filter', 'Total Cost': 3.0, 'Plan Rows': 2, 'Plans': [ { 'Node Type': 'Table Scan',
'Relation Name': 'nation', 'Total Cost': 0.5, 'Plan Rows': 25 } ] } ] } ] } ] } ] } ] }

Table 2: TP and Ap plan for Example 1.

Explanation by experts for Example 1

AP is faster than TP because TP’s optimizer chooses to use nested loop join with no
index available. AP uses hash join, which is more efficient.

Explanation by our approach for Example 1

AP is faster due to its use of hash joins and hash aggregates, which are highly
efficient for handling large datasets, especially in a columnar storage format. These
operations allow AP to scan only relevant columns and apply filters before joining,
making it particularly effective for large, complex queries involving multiple tables.
In contrast, TP’s use of nested loop joins and group aggregates, combined with table
scans that don’t benefit from index optimizations, leads to slower performance when
processing large datasets. AP’s ability to efficiently process joins and aggregates
across multiple tables gives it a significant advantage in this scenario.

Explanation by DBG-PT for Example 1

The AP engine is faster in this case because it utilizes column-oriented storage,
which efficiently scans large tables like orders by only reading the required columns.
Additionally, the AP engine uses hash joins, which are well-suited for joining large
datasets. Both engines likely benefit from the index on c_phone; however, the AP
engine’s column-oriented storage allows it to quickly access and filter the c_phone
column without the overhead of retrieving entire rows. In contrast, the TP engine
performs nested loop joins that are less efficient for large tables and requires reading
entire rows, making table scans more costly. These factors combined result in the AP
engine delivering better performance for this query.

Table 3: Plan performance explanations for Example 1 by dif-
ferent approaches.

on how well users comprehended the generated explanations.
The design and results of the user study are detailed in Section 6.3.

6.2 Experiment Results and Analysis
Explanation Accuracy. We first focus on experimentally eval-

uating the accuracy of the LLM-generated explanations. Given
the lack of a standard evaluation method or benchmark for this
specific setting, we relied on three database experts on HTAP
systems to manually assess the generated explanations for cor-
rectness and completeness. The experts’ evaluations revealed that
in 91% of cases, the LLM-generated explanations were accurate
and informative, though the explanations of the remaining 9%
were less precise than expert interpretations, including 4% queries
with None as output. The assessments showed high agreement
among the experts, with only minor discrepancies in edge cases,

which were resolved through discussion.4 For incorrect cases,
experts can correct the explanations and incorporate them into
the knowledge base, improving accuracy for future retrievals.

Impact of retrieved vectors. To understand the impact of the
number of similar vectors retrieved for augmented generation,
we vary this parameter in the range from 1 to 5. Retrieving be-
tween 2 and 5 vectors showed minimal performance differences,
with accuracy ranging from 89% to 91%. However, when retriev-
ing only 1 vector, accuracy dropped to 85%, and the proportion
of None outputs increased to 8%. We acknowledge that this be-
havior may be influenced by our controlled workload and limited
test distribution. Nonetheless, as the results indicate, even if the
encoding mechanism is imperfect, retrieving multiple similar vec-
tors enables the LLM to generate more robust and contextually
grounded explanations, mitigating potential inaccuracies.

End-to-end Response Time. The end-to-end response time con-
sists of three components: the encoding overhead from the smart
router, the search time within the knowledge base, and the pro-
cessing and generation overhead of the LLM. As mentioned in
Section 3.2, our smart router is lightweight, with average infer-
ence time lower than 0.1ms. Since our knowledge base is cur-
rently small (with only 20 queries), the search time per request
also remains under 0.1ms. If the knowledge base grows in size,
the search time will inevitably increase, but we do not expect
this component to dominate, given recent advances in vector
indexing [10]. The LLM’s processing (thinking) time is gener-
ally fast (≤ 2 seconds), but average generation time is around
10 seconds. This timing balance highlights that while retrieval
is near-instantaneous, the generation step requires more time.
While there is room for further improvement, the end-to-end
response time is acceptable because the output is meant to be
consumed by users.

Our experiments were conducted using both Doubao and Chat-
GPT 4.0, and we observed minimal differences in accuracy and
the end-to-end response time between them. A comprehensive
analysis of different language models is a future direction.

An additional advantage of using an LLM is its flexibility in
offering a conversational interface that allows follow-up ques-
tions. For instance, in this example, a user might inquire why
the predicate on the customer table does not benefit from the
index on c_phone. The LLM can provide an in-depth explanation,
clarifying that many database systems cannot utilize indexes on
columns when functions like substring are applied directly to
the indexed column.

6.3 Participant Study
To evaluate users’ perceptions of our explanation quality, we
designed a human-subject study focused on measuring ease of
understanding. To ensure a fair comparison, we divided partici-
pants equally into two groups. Both groups were given the same
query, as shown in Example 1, along with essential contextual
information (e.g., the purpose of the survey and an overview of
the hybrid engine structure).

The first group received both the AP and TP plan details (pre-
sented in JSON format for better readability) along with the
LLM-generated explanation. We asked users to review both the

4During evaluation, three experts independently voted “agree” or “disagree” on each
generated explanation. In 98.5% of the queries, all three experts reached unanimous
decisions. For the remaining 1.5%, consensus was achieved after discussion. This
high level of consistency reinforces the reliability of the expert evaluations used to
validate the accuracy of the LLM-generated explanations.
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Table 4: Comparison between our method and DBG-PT

Metric Our Method DBG-PT

Accurate Explanations 91% 67%
None Rate 3.5% 2%
Wrong Explanations 5.5% 31%

plan details and the LLM explanation, record the time taken until
they indicated full understanding of the explanation. Then we
ask them to submit their interpretations. The second group ini-
tially received only the AP and TP plan details, and we similarly
recorded the time they spent to fully understand the performance
differences based solely on these plan details. Users were also
asked to submit a brief description of their understanding to as-
sess correctness. Then, we further provided them with the LLM-
generated explanation and asked if they would like to modify or
adjust their initial understanding based on this new information.
Finally, we asked them to rate the difficulty of understanding
both the original plan details and the LLM explanation on a scale
from 0 (easiest) to 10 (hardest). Since both groups spent time
reviewing the plan details, the difference between two measured
time reflects only the additional cognitive effort required to ana-
lyze and interpret the plans with or without the LLM explanation.
This design fairly isolates the impact of structured versus natural
language output on user understanding.

Our results are as follows. For participants who did not initially
receive the LLM-generated explanation, 60% correctly identified
the reason for the plan performance differences between plans,
with an average time of 8.2 minutes (including the time spent
on reading and understanding the plan details). The remaining
40% submitted incorrect reasons; however, after reviewing the
LLM’s generation, they were able to correct their understanding.
The average difficulty rating for understanding the plan details
was 8.5, while the LLM-generated explanation received an av-
erage difficulty rating of 3. For participants who received the
LLM-generated results from the start, the average time taken
to understand the reason was 3.5 minutes, and all users in this
group were able to summarize the correct reason. These results
indicate that the explanation by LLM reduces both the time re-
quired for understanding and the perceived difficulty, enhancing
the comprehension of query performance differences.

6.4 Comparison with Other Methods
We additionally compare our approach with DBG-PT [8], which
aims to suggest hints for debugging regressions in query execu-
tion time. DBG-PT leverages LLMs to identify and reason about
structural differences between query plans from the same engine.
In a sense, DBG-PT can be viewed as a baseline similar to our
method but without RAG. We only provide the same TP and AP
plan details for DBG-PT, without any historical queries or ex-
pert explanations. Specifically, we adjust the prompts in Table 1
by removing RAG-related context in the task description while
retaining the same background information, question, and any
additional user-provided prompts to the LLM. We use the same
200 synthetic queries to test DBG-PT, and the generation is man-
ually evaluated by the same three database experts. Comparison
results are shown in table 4.

Even without RAG, DBG-PT still demonstrates strong capabil-
ity in analyzing structured plans by carefully comparing their dif-
ferences. However, it shows less accuracy in its explanations for
plan performance differences. As an illustrative example, Table 3

presents the generated results for the query shown in Example 1.
In this case, the DBG-PT explanation exhibits some inaccuracies,
such as misinterpreting index usage and overemphasizing minor
factors while missing critical execution details. Building on this
example and broader observations across additional test queries,
we summarize the key limitations of DBG-PT as follows:
• Fundamental errors: It may misinterpret index usage. For in-

stance, when a query includes a predicate like substring
(c_phone,1,2) in (...), no index is used; however, it still
assumes AP is faster due to perceived index benefits.

• Overemphasis on minor factors: DBG-PT often overemphasizes
column-oriented storage as the key reason for AP’s speed,
while underemphasizing critical factors such as TP’s lack of
indexes or inefficient join methods.

• Ignoring limitations: Despite instructions to avoid comparing
costs between AP and TP, DBG-PT still seems to rely on cost
differences sometimes, which is problematic because these
costs are calculated differently and do not correlate well with
real execution latencies.

• Lack of context for relative values: Without the RAG-enriched
input, DBG-PT struggles to assess the significance of certain
values without experience. For example, it cannot determine
whether the size of an OFFSET or LIMIT is large enough to
impact plan efficiency without historical execution data.

7 Conclusion and future work
In conclusion, our study demonstrates the effectiveness of a RAG-
augmented LLM framework in providing user-friendly, accurate
explanations for query performance in HTAP systems. By lever-
aging expert knowledge through a knowledge base containing
past explanations, our approach enhances the accuracy and rele-
vance of LLM-generated explanations, allowing users to better
understand complex execution plans without needing special-
ized expertise. This framework effectively balances efficiency
and accuracy by utilizing pre-trained public models with tar-
geted context augmentation, reducing reliance on costly expert
intervention.

Several areas remain open for future work, including develop-
ing strategies for maintaining the knowledge base (e.g., selecting
representative queries and expiring stale queries), establishing
benchmarks and automated tools to evaluate explanation quality.
The promising results from our work demonstrate the poten-
tial of RAG-augmented LLM in enabling more reliable, scalable,
and intelligent solutions for automated database performance
analysis.

8 Artifacts
This research was conducted internally at ByteDance, Inc. (San
Jose, CA). While we apologize that we are unable to release
the full materials of the HTAP system, we have open-sourced
an example implementation and a subset of the data at https:
//github.com/Hap-Hugh/LLM-Explain-HTAP for the approach
described in this paper.
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