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Abstract
This study introduces ALOG (Adaptive Longitudinal Grids for
Geospatial Data using Local Differential Privacy), a novel frame-
work designed to optimize geospatial data collection and fre-
quency estimation while ensuring robust user privacy. ALOG
leverages adaptive grids to dynamically adjust spatial granularity
based on data density, eliminating the need for prior knowledge
about data distribution. We evaluate ALOG and its variations
using both synthetic and real-world datasets, comparing their
effectiveness against state-of-the-art protocols. Experimental re-
sults demonstrate ALOG’s superior performance in balancing
privacy and utility, particularly under varying grid sizes and
privacy budgets. The findings highlight the effectiveness of adap-
tive grid refinement in achieving precise frequency estimates in
privacy-sensitive applications without relying on prior knowl-
edge of data density.

Keywords
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1 Introduction
The growing popularity of mobile devices and location-based
services has led to an unprecedented influx of geospatial data,
capturing detailed information on individual movements, loca-
tion preferences, and popular routes [7, 12]. This surge in loca-
tion data opens up opportunities for a wide range of applications
across sectors, from optimizing public transportation systems and
enhancing emergency response times to supporting intelligent
urban planning and resource allocation [25]. One key approach
in analyzing this data is through frequency analysis, which iden-
tifies areas with high concentrations of people over time [17]. By
quantifying how often certain locations are visited, frequency
analysis provides crucial insights that enable decision-makers
to allocate resources effectively and design services that meet
population needs.

Frequency analysis, for instance, is widely used for generating
heat maps [5, 18, 32], which visually represent high-frequency ar-
eas or routes based on user interactions. By highlighting patterns
in pedestrian traffic, vehicle concentration, or other location-
based trends [30], these maps offer actionable insights into critical
areas that could benefit from additional services or infrastructural
improvements [24]. Furthermore, tracking frequency changes
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over time enhances understanding of dynamic trends, allowing
analysis of complex, time-dependent phenomena. For instance,
observing shifts in traffic flow patterns helps city planners de-
sign better road systems and optimize signal timings to alleviate
congestion [19]. In public health, evolving frequency patterns
can reveal the spread of infectious diseases [4], guiding officials
to proactively allocate resources where they are most needed.
Additionally, analyzing changes in movement patterns informs a
range of personalized services and applications, from targeted ad-
vertising and location-based recommendations to social behavior
research [33].

However, while these geospatial analyses offer substantial
value across fields, they also raise serious privacy concerns. The
data required to generate heat maps over time and track patterns
often includes sensitive information about individuals’ locations
and movements, leading to potential risks related to user identi-
fication, behavioral profiling, and location-based discrimination
[24, 34, 36]. As a result, preserving the privacy of users while
leveraging the benefits of geospatial data has become a crucial
issue.

Differential Privacy (DP) has emerged as a prominent frame-
work for enabling data analysis while preserving individual pri-
vacy [9, 14]. However, its traditional model relies on a trusted
curator, introducing potential vulnerabilities due to the risk of
data breaches. To address this limitation, Local Differential Pri-
vacy (LDP) has been proposed as a robust alternative. LDP allows
individuals to anonymize their data locally before sharing it for
analysis, eliminating the need for a centralized curator [15, 20].
This decentralized approach has gained significant traction in
recent years, with major technology companies such as Apple
[38], Google [16], and Microsoft [13] incorporating LDP into
their consumer products.

LDP is particularly well-suited for scenarios involving longi-
tudinal data—data collected from the same individual over time.
For instance, in systems where users repeatedly send location
reports or other personal information at multiple time intervals,
the resulting data forms a longitudinal dataset. LDP ensures pri-
vacy protection in such settings by anonymizing each data point
before transmission.

Despite the advantages of LDP, current techniques applied
to geospatial data often rely on uniform grid structures to parti-
tion space for simplicity [1, 42], which can lead to an inadequate
representation of the data. These approaches apply the same
level of granularity to all regions, regardless of the density of
points of interest, potentially compromising both the accuracy
of the analyses and the utility of the aggregated data. This issue,
known as non-uniformity error, arises when the assumption of
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uniform data distribution within grid cells does not align with
the actual data distribution [27]. In dense regions, this mismatch
can lead to underrepresentation of critical areas, introducing bias
into the results, while in sparse regions, excessive granularity
can amplify noise, reducing the utility of the data. Because these
methods don’t consider how data is distributed within a region,
they can produce large errors. For example, in dense regions,
uniform grids may be too coarse, leading to significant bias when
answering queries. On the other hand, regions with sparse data
may be mapped by a fine-grained grid, resulting in weak utility
and high noise during query answering [27].

In this paper, we propose a new approach based on adaptive,
non-uniform grids that dynamically adjust to data point densities,
allowing for greater accuracy in regions with high individual
concentration and coarser granularity in less dense areas. Our
methodology combines the flexibility of adaptive grids with the
privacy guarantees offered by Local Differential Privacy. By iter-
atively refining cell sizes as new data is reported, our approach
incrementally adjusts to temporal variations in data distribution.
This temporal refinement is essential to accurately capture the
correlations present among consecutive reports submitted un-
der Local Differential Privacy (LDP), enabling our framework
to deliver more precise and context-aware analyses. Thus, these
enhancements make our framework, called ALOG (Adaptive
Longitudinal Grids), particularly well-suited for addressing the
challenges of privacy-preserving geospatial data analysis.

Contributions. In summary, this paper makes the following con-
tributions:

• We propose ALOG, an adaptive grid-based framework
for LDP-compliant longitudinal data collection, which ex-
ploits temporal correlations and dynamically refines spa-
tial partitions to balance privacy and utility.

• We analyze various grid refinement strategies to detect
and adapt to changing patterns in data density throughout
the grid adaptation windows with a detailed investigation
of the factors that influence the utility-privacy trade-off.

• To assess the effectiveness of our adaptive longitudinal
data collection framework, we conduct comprehensive
evaluations using both synthetic and real-world datasets
while comparing them with different prior state-of-the-art
techniques.

Organization. Section 2 formalizes the problem tackled in this
work, and presents the foundations and essential definitions used
throughout the work. In Section 3, we present the related work
and discuss how the main existing approaches work and their
limitations. We present our approach in Section 4. Experimental
results are shown in Section 5. Finally, Section 6 concludes this
work.

2 Foundations and Key Concepts
This work addresses the challenge of estimating the frequency of
user visits within a spatial region of interest, 𝑆 (e.g., a city), while
ensuring user privacy. The region 𝑆 is partitioned into a uniform
grid 𝐺 , where each cell 𝑔𝑖 ∈ 𝐺 represents a distinct sub-region.
For a set of users 𝑈 = {𝑢1, 𝑢2, ..., 𝑢𝑛} moving within 𝑆 across
discrete timestamps, the objective is to estimate the frequency
𝑓𝑖 of visits to each cell 𝑔𝑖 . Users generate true location reports 𝑟𝑖
at each timestamp, which are then anonymized locally using a
Local Differential Privacy (LDP) mechanism Ψ to produce private
reports 𝑟𝑖 = Ψ(𝑟𝑖 ) [11]. An aggregator collects these private

Table 1: Commonly Used Notations

Notations Meaning
𝑆 Geo-space

𝑔𝑖 ,𝐺𝑖 Grid cell and Grid partition of 𝑆
𝑢,𝑈 User and the set of all users
𝑡 ,𝑇 Timestamp and set of all timestamps
𝑓𝑖 ,𝑓𝑖 Frequency and frequency estimation for cell 𝑔𝑖
𝑟𝑖 ,𝑟𝑖 User true report and user private report at

each timestamp 𝑖
𝑤 , 𝑘 Window and grid size

reports {𝑟𝑖 } |𝑈 |
𝑖=1 and estimates the cell frequencies 𝑓𝑖 using an

estimator function 𝐹 (·). Key concepts like LDP and Frequency
Estimators, detailed below, form the basis of this approach. Table 1
summarizes commonly used notations.

2.1 Local Differential Privacy
Local Differential Privacy (LDP) differs significantly from the
centralized model of Differential Privacy (DP) [14] in where data
perturbation occurs. In LDP, each user applies a randomized
algorithm Ψ locally to perturb their true data before it is transmit-
ted. Only the perturbed output is sent to the server, protecting
the raw data and making LDP suitable for settings without a
fully trusted data curator. This model is well-suited for longitu-
dinal data, where users repeatedly report information over time,
ensuring privacy at each step [2].

Definition 2.1. (𝜖 - LDP [16]) An algorithm Ψ(·) satisfies 𝜖-
local differential privacy, where 𝜖 ≥ 0, if and only if for any pair
of inputs (𝑣, 𝑣 ′), and any set 𝑅 of possible outputs of Ψ, we have

𝑃𝑟 [Ψ(𝑣) ∈ 𝑅] ≤ 𝑒𝜖𝑃𝑟 [Ψ(𝑣 ′) ∈ 𝑅] (1)

Intuitively, 𝜖-LDP ensures that given the perturbed output in
𝑅, it is not possible for the server or for an adversary to distin-
guish whether the original true value was 𝑣 or 𝑣 ′ beyond the
probability ratio 𝑒𝜖 . Here, 𝜖 controls the privacy level. Lower 𝜖
yields stronger privacy. Analogous to central DP, LDP also ben-
efits from key foundational properties, including robustness to
post-processing and composition [15].

Proposition 2.2. (Post-Processing) If Ψ is 𝜖-LDP, then 𝑓 (Ψ) is
also 𝜖-LDP for any function 𝑓 .

Proposition 2.3. (Sequential Composition) Let each Ψ𝑖 be an
𝜖-LDP mechanism, and Ψ is the sequential composition Ψ1,...,Ψ𝑚 .
Then, Ψ satisfies

∑𝑚
𝑖=1 𝜖-LDP.

2.2 Frequency Estimator
A frequency estimator is an LDP mechanism designed to estimate
how often each value 𝑟 ∈ 𝑉 appears in the dataset, where𝑉 is the
set of all possible values of a given attribute [6, 8]. A frequency
estimator consists of two components: A sanitizer and an aggre-
gator. The sanitizer is employed by users to locally perturb their
data. An aggregator receives the perturbed data and estimates the
frequencies regarding the input. Frequency estimators have been
employed for a variety of different tasks such as answering range
queries [11], identifying heavy hitters [29, 44], and the problem
we attack in this paper, namely private queries on geospatial data
[17, 23, 35]. Figure 1 illustrates a typical frequency estimator. In
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User Side Server Side
Aggregation

Unbiased
Estimator

Sanitizer
Estimated
Frequency

A             0.33

B             0.35

C             0.32

Figure 1: Frequency Estimator: users sending their sani-
tized report to the aggregator to estimate the frequency of
values for a given attribute.

this example, the domain consists of three possible values: A, B,
and C, which could represent items a user purchased, such as a
doll, a car, or a dog. Each user applies a sanitization mechanism
to their true report before submitting the sanitized version to the
server. On the server side, the aggregator collects all sanitized
reports and estimates the frequency of each value in the domain.

2.3 Space Partitioning
Spatial regions are commonly represented using map projections
such as the Mercator projection, which converts latitude and lon-
gitude into a planar format [26]. While suitable for visualization,
many analytical tasks require discretizing this continuous space
into manageable units. Grid-based partitioning is a widely used
approach due to its simplicity and effectiveness in dividing the
region into uniform, contiguous cells [31].

Each cell represents a discrete sub-region of the original space,
allowing any point (latitude and longitude) to be mapped to
a specific cell. This structure supports efficient spatial queries,
aggregations, and systematic data processing, particularly in
high-density datasets [43].

To represent positions within the grid computationally, unary
encoding can be applied. In a grid with 𝑘 cells, each location is
represented as a binary vector of length 𝑘 , with a 1 indicating
the active cell and 0s elsewhere. For example, if a user is in cell
20 of a 100-cell grid, their position is encoded as a 100-bit vector
with a 1 at index 20. Unary encoding is well-suited for privacy-
preserving applications, as it enables straightforward integration
with differential privacy mechanisms [41].

By discretizing spatial data and encoding positions in this
manner, it becomes possible to anonymize and aggregate loca-
tion information effectively, enabling privacy-aware frequency
estimation and spatial analysis in sensitive domains.

3 Related Work
Centralized models for estimating individual frequencies in geospa-
tial areas typically use grids to partition space for location dis-
cretization [28, 39, 40]. Qardaji et al. [28] address the problem of
constructing a differentially private synopsis for two-dimensional
datasets, such as geospatial datasets. They highlight that a key
challenge is balancing noise error and non-uniformity error in
partition-based synopsis methods and study the uniform-grid
approach. The authors propose a method for choosing the grid
size. They also introduce an adaptive-grid method that refines
cell granularity based on data density. Kim et al. [21] proposes a
method that combines Geo-Indistinguishability [1] with adaptive
grids, adjusting grid granularity based on real-time user density
to improve location-based analysis accuracy. Unlike centralized
approaches, several studies have explored Local Differential Pri-
vacy (LDP) to enhance location privacy. Erlingsson et al. [16]

introduced RAPPOR, a protocol that uses LDP in longitudinal
data collection. Arcolezi et al. [2] proposed L-OSUE, an enhanced
LDP protocol that improves frequency estimate accuracy across
time and multiple dimensions. Additionally, Arcolezi et al. [3]
developed LOLOHA, an extension of OLH, for handling evolv-
ing data in trajectory-based applications, which refines hash
functions dynamically to enhance location-based analysis accu-
racy. Cunningham et al. [10] propose an LDP mechanism based
on perturbing hierarchically structured, overlapping n-grams
of trajectory data. It uses a multi-dimensional hierarchy over
real-world places of interest to improve the realism and utility of
perturbed, shared trajectories.

While effective, applying LDP protocols to location privacy
presents challenges. Specifically, discretizing continuous location
data into a grid structure requires dynamic grid evolution to
adapt to variations in user density, balancing privacy and data
utility.

This work explores the use of adaptive grids with LDP pro-
tocols to improve privacy and maintain high data utility. It will
be compared experimentally against state-of-the-art LDP meth-
ods, such as RAPPOR, LOSUE, and LOLOHA, to demonstrate
the effectiveness of adaptive grid structures in handling evolving
location-based datasets.

3.1 RAPPOR
RAPPOR [16] is an influential work in the development of LDP
and frequency estimators. It makes use of two rounds of saniti-
zation and memoization to provide LDP guarantees for several
queries over time. RAPPOR is especially relevant for longitudinal
location data, as it allows for ongoing collection while protecting
individual privacy by encoding and perturbing the data. In the
context of location data, the domain size 𝑘 refers to the number
of possible location encodings within the grid. Each user’s lo-
cation at a given timestamp is encoded into this k-dimensional
space, and RAPPOR’s perturbation mechanisms are applied to
this encoding. This process is repeated at each timestamp, allow-
ing for frequency estimation of location visits over time while
preserving privacy.

The first round of sanitization is referred to as the PRR step
(permanent randomized response), and the second as the IRR
step (instantaneous randomized response), both referencing the
randomized response algorithm and their respective functions.
In the memoization process, PRR adds noise to a value the first
time it is processed, and then the sanitizer memoizes the noisy
value, while IRR adds noise to every instance of a memoized
value before sending a report to the aggregator. By memorizing a
randomized version of a true value and consistently reusing it, or
reusing it as input to a second round of sanitization, it becomes
harder for an adversary to track changes in the data and reduces
the impact of temporal correlations, making it more difficult to
track changes in the data and infer the true values. As the domain
size gets larger, it becomes a challenge to apply noise in a utility-
preserving way, thus RAPPOR implements Unary Encoding as a
means of guaranteeing LDP while reducing data utility loss. In
Unary Encoding, an input value 𝑣 from a domain 𝐷 of size 𝑘 is
encoded as a binary vector 𝐵 of length 𝑘 : 𝐵 = [0, ..., 0, 1, 0, ..., 0],
where only the v-th position is 1.

The perturbation protocol for RAPPOR and other UE-based
LDP protocols is as follows: Given the probabilities 𝑝1, 𝑝2, 𝑞1,
𝑞2 to flip the 𝑖-th position of the binary vector 𝐵, for the first
sanitization round, we have
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𝑃𝑟
[
Ψ𝑈𝐸 (𝜖 )𝐵

′ [𝑖] = 1] =
{
𝑝1, if 𝐵 [𝑖] = 1
𝑞1, if 𝐵 [𝑖] = 0

,

and for the second

𝑃𝑟
[
Ψ𝑈𝐸 (𝜖 )𝐵

′ [𝑖] = 1] =
{
𝑝2, 𝑖 𝑓 𝐵 [𝑖] = 1
𝑞2, 𝑖 𝑓 𝐵 [𝑖] = 0

,

𝑝1, 𝑝2, 𝑞1, 𝑞2 are computed as function of 𝜖∞ and 𝜖1 by symmetric
unary encoding (SUE) to satisfy: 𝑝1 = 𝑒𝜖∞/2

𝑒𝜖∞/2+1 , 𝑞1 = 1
𝑒𝜖∞/2+1 ,

𝑝2 = 0.75, and 𝑞2 = 1 − 𝑝2.
𝜖∞ is an upper bound for the privacy budget as the number

of reports sampled by the frequency estimator tends to infinity,
and 𝜖1 is a lower bound for a single report. The value of 𝜖1 is
computed using the following equation:

𝜖1 = 𝑙𝑛

( (𝑝1𝑝2 − 𝑞2 (𝑝1 − 1)) (𝑝2𝑞1 − 𝑞2 (𝑞1 − 1) − 1)
(𝑝2𝑞1 − 𝑞2 (𝑞1 − 1)) (𝑝1𝑝2 − 𝑞2 (𝑝1 − 1) − 1)

)
(2)

All frequency estimators presented in this paper, including
those based on the RAPPOR protocol discussed in this section
and the L-OSUE and LOLOHA protocols covered in the follow-
ing two sections, utilize the same unbiased function to estimate
frequencies at the aggregator [2, 3, 16]:

Φ𝑓𝐿 (𝑣) := 𝐶 (𝑣) − 𝑛𝑞1 (𝑝2 − 𝑞2) − 𝑛𝑞2
𝑛(𝑝1 − 𝑞1) (𝑝2 − 𝑞2) =

𝐶 (𝑣)/𝑛−𝑞2
𝑝2−𝑞2

− 𝑞1

𝑝1 − 𝑞1
, (3)

where n is the number of reports, p1, p2 , q1, q2 are the proba-
bilities for perturbing the data, and C(v) is the count of reports
with a value v, given 𝑣 ∈ 𝐷 .

3.2 L-OSUE
L-OSUE is an alternative to RAPPOR proposed in [2]. It uses the
OUE [22] protocol for its first round of sanitization (PRR step)
and SUE [37], which is equivalent to simple single-time RAPPOR,
for the second (IRR step). The perturbation algorithm follows the
same structure as RAPPOR, but with 𝑝1 = 0.5, 𝑞1 = 1

𝑒𝜖∞+1 , 𝑝2 =
𝑒𝜖∞𝑒𝜖1 −1

𝑒𝜖∞−𝑒𝜖1 +𝑒𝜖∞+𝜖1 −1 , 𝑞2 = 1 − 𝑝2, and 𝜖1 calculated using equation
2. It provides better privacy guarantees than RAPPOR, while not
introducing too much extra noise and preserving similar data
utility. Similar to RAPPOR, L-OSUE can be applied to longitudinal
location data by encoding locations into a 𝑘-dimensional space,
where 𝑘 is the number of cells in the grid. At each time step,
user locations are encoded, perturbed using L-OSUE’s two-round
approach, and reported. This allows for improved accuracy in
frequency estimates across both time and multiple dimensions,
crucial for longitudinal location-based analysis.

3.3 LOLOHA
Unlike RAPPOR and L-OSUE, LOLOHA [3] does not make use
of unary encoding; it instead improves utility by shrinking the
domain size through local hashing. Like the previously cited es-
timators, LOLOHA implements two rounds of sanitization and
memoization to provide LDP guarantees while maintaining util-
ity for queries executed over time. In the context of location
data, LOLOHA uses a hash function to reduce the domain size
from 𝑘 (the number of grid cells) to a smaller space before ap-
plying perturbation. This hashing is crucial for managing the
evolving nature of location data over time. At each timestamp,
user locations are hashed, perturbed, and reported, allowing the

aggregator to estimate frequency distributions accurately as new
reports are continuously collected. In this paper, we will use
OLOLOHA, the optimal configuration of LOLOHA. It shrinks a
domain size 𝑘 to an optimal hashed size 𝑔, that is computed by

𝑔 = 1 + max
(
1,

⌈
1 − 𝑎2 + √

𝐴

6(𝑎 − 𝑏)

⌉)
, (4)

where 𝐴 = 𝑎4 − 14𝑎2 + 12𝑎𝑏 (1−𝑎𝑏) + 12𝑎3𝑏 + 1 given 𝑎 = 𝜖∞ and
𝑏 = 𝑒𝛼𝜖∞ for 𝛼 ∈ (0, 1).

In local hashing, given an original domain size 𝑘 and input
values 𝑣 ∈ 𝑉 , a randomly chosen universal hash function 𝐻 maps
the original domain to a range [1...𝑔] with 𝑔 ≥ 2. Approximately
𝑘/𝑔 values 𝑣 ∈ 𝑉 can be mapped to the same hashed value 𝐻 (𝑣) ∈
[1...𝑔] due to collision. The sanitization protocol for LOLOHA is
as follows:

∀𝑥∈[1...𝑔] 𝑃𝑟
[
Ψ𝐿𝑂𝐿𝑂𝐻𝐴(𝜖∞) (𝑣) = 𝑥

]
=

{
𝑝1 = 𝑒𝜖

𝑒𝜖+𝑔−1 if x = v
𝑞2 = 1

𝑒𝜖+𝑔−1 if x ≠ v

followed by a second round that outputs a report 𝑥 ′:

∀𝑥 ′∈[1...𝑔] 𝑃𝑟
[
Ψ𝐿−𝐺𝑅𝑅 (𝜖1 ) (𝑥) = 𝑥 ′

]
=

{
𝑝2 if x’ = x
𝑞2 = 1−𝑝2

𝑔−1 if x’ ≠ x

where:

𝜖1 = ln
(
𝑝1𝑝2 + 𝑞1𝑞2
𝑝1𝑞2 + 𝑞1𝑝2

)
, and

𝑝2 =
𝑞1 − 𝑒𝜖1𝑝1

−𝑝1𝑒𝜖1 + 𝑔𝑞1𝑒𝜖1 − 𝑞1𝑒𝜖1 − 𝑝1 (𝑔 − 1) + 𝑞1
.

After the sanitization step, the reports, privacy budgets, and
hash function seeds are sent to the aggregator, which then out-
puts estimates with the original domain size 𝑘 .

4 The ALOG Approach
In this section, we introduce ALOG (Adaptive Longitudinal Grids
for Geospatial Data using Local Differential Privacy), a novel
approach for privacy-preserving location frequency estimation.
ALOG employs a frequency estimation framework that leverages
Local Differential Privacy to collect user location data in a privacy-
preserving manner. ALOG consists of two primary entities: users,
who submit encoded reports of their private locations, and the
aggregator, which collects these reports and provides a frequency
estimation for each cell of the adaptive grid.

A key feature of ALOG is its use of adaptive grids that evolve
dynamically in response to longitudinal data, incorporating an
adaptation window to improve resource usage, such as the pri-
vacy budget. By capturing correlations within users’ data over
time, ALOG creates adaptive grids that reduce non-uniformity
errors, enhancing the accuracy and utility of spatial data anal-
ysis. This framework balances privacy, utility, and adaptability,
making it an effective solution for geospatial data collection and
analysis in privacy-sensitive contexts.

In the following subsections, we will define how the spatial
representation is constructed using this adaptive grid. Then we
will introduce three variations of ALOG, each designed to achieve
private frequency estimation over time while addressing different
aspects of the utility-privacy trade-off.

4.1 Adaptive Grid
The adaptive grid is a non-uniform data structure where cell
dimensions are determined by the volume of reports aggregated
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within each cell. This approach refines cell granularity in high-
density regions based on actual user-submitted reports to address
the challenges of skewed data distributions. This process ensures
that the overall data distribution across the grid becomes more
evenly spread, enhancing the accuracy of frequency estimations.
This behavior is demonstrated in Figure 2, where the adaptive
grid structure achieves a balanced density between regions with
varying population concentrations.

B

A

A A

B

Threshold (tr) = 5

Step 2: Split in cells A and B

Step 3: Split in Cell B

B

Step 1 Step 2

Step 3

Users Reports

1.0

0.5

0.0
0.0 1.0

1.0

0.5

0.5
0.0

0.0

0.0
0.0

1.0

1.0

0.5

0.5

Figure 2: Illustration of the adaptive grid process: Cell A is
split into four sub-cells after exceeding the threshold, and
Cell B undergoes an additional split into sixteen sub-cells.

The first step in constructing the adaptive grid is to define the
maximum allowable number of reports per cell, denoted as the
cell threshold 𝑡𝑟 , which is determined by privacy requirements.
Once the aggregator processes the users’ reports for a specific
timestamp 𝑡 , it calculates the count 𝑐𝑖 of reports for each cell
𝑔 ∈ 𝐺 . Cells with report counts exceeding the threshold tr are
recursively subdivided into four uniform cells, each occupying an
equal portion of the original cell’s spatial area. Subsequently, the
count for each newly formed cell is assigned as one-quarter of the
original cell count c, allowing the adaptive grid to dynamically
adjust to areas of high report density by increasing granularity.
This process is repeated until all cells satisfy the threshold tr. The
complete algorithm for constructing the adaptive grid is detailed
in Algorithm 1.

Figure 2 illustrates the grid adaptation process. In the transi-
tion from Box 1 to Box 2, cells 𝐴 and 𝐵 are each split into four
smaller cells. While cell 𝐴 reaches a count below the threshold 𝑡𝑟 ,
cell 𝐵 still exceeds the threshold, requiring an additional split in
Box 3. As a result, all cells achieve a more balanced distribution
of reports, ensuring a more uniform spatial representation. The
time complexity of the adaptive grid creation is O(𝑘 log𝑛), where
𝑘 is the number of initial grid cells and 𝑛 is the number of user
reports, reflecting the recursive subdivision of high-density cells.

4.2 Frequency Estimator Framework
ALOG comprises two main components: the users, who send
encoded reports of their private locations, and the aggregator,
who is responsible for collecting these reports and estimating
the frequency of each grid cell. Beyond frequency estimation,

Algorithm 1: Adaptive Grid Creation Algorithm
Input :Grid 𝐺 , Estimated frequency for timestamp 𝑡 , Cell

threshold 𝑡𝑟
Output :Adaptive grid with updated cell counts

1 Function AdaptativeGrid (𝐺):
2 Calculate ∀𝑖 ∈ 𝐺 : 𝑐𝑖 := 𝑓𝑖 ;
3 for each cell 𝑖 do
4 SplitCell(⟨𝑖, 𝑐𝑖 ⟩);
5 Function SplitCell (⟨𝑖, 𝑐𝑖 ⟩):
6 if 𝑐𝑖 > 𝑡𝑟 then
7 Split cell 𝑖 into four sub-cells of equal area;
8 for each sub-cell 𝑗 of cell 𝑖 do
9 Set count for sub-cell 𝑗 to 𝑐 𝑗 =

𝑐𝑖
4 ;

10 for each cell 𝑖 do
11 SplitCell(⟨𝑖, 𝑐𝑖 ⟩);

the aggregator also contributes to generating and distributing
the adaptive grid—a spatial representation that dynamically ad-
justs according to report density—to users. This adaptive grid
enables refined spatial partitioning that is aligned with the pop-
ulation distribution, enhancing the precision of data collection
and analysis.

Initially, the aggregator broadcasts a uniform grid accessible
to all users, partitioning the reference space—such as a city—into
square cells of equal size. On the user side, each user encodes their
current location according to the grid provided by the aggregator,
as detailed in Section 2.3. Utilizing a local differential privacy
protocol, each user sends a noisy, obfuscated report of their loca-
tion back to the aggregator. ALOG leverages the LOSUE protocol
3.2, which, following empirical analysis, has proven well-suited
to this context; however, other longitudinal LDP protocols could
also be employed.

Grid refinement is essential for reducing non-uniformity er-
rors and improving data utility. However, evolving grids during
anonymization can decrease memoization efficiency, leading to
higher privacy budget consumption. This inefficiency arises be-
cause new cells are created with each new grid generated during
the adaptation process. As a result, the previous canonical map-
ping of data to grid cells must be discarded, requiring the system
to reinitialize the memoization for the newly created grid struc-
ture.

To mitigate this trade-off between budget consumption and
grid adaptation, we propose a Grid Adaptation Window (GAW)
mechanism. This mechanism ensures that grid adaptations occur
only after every 𝑤 consecutive timestamps, after which the up-
dated grid is broadcast to the users. Figure 3 illustrates the grid
adaptation process with a window size of 2. Despite the use of
GAW, the aggregator continues performing frequency estima-
tions at each timestamp, ensuring continuous system monitoring
and analysis.

An additional benefit of the GAW is that it addresses situa-
tions where grid refinement is not always necessary. In some
cases, the gain from refining the grid is not significant enough to
justify the additional computational cost, as there may be little
to no change between consecutive occurrences. In these situa-
tions, the GAW mechanism effectively reduces unnecessary grid
adaptations, ensuring that system performance remains optimal
without compromising the accuracy of the frequency oracles.
The entire ALOG algorithm is detailed in Algorithm 2.

We propose three variations of the ALOG approach to deter-
mine the most effective solution for anonymizing user location
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Figure 3: GAW: Grid Adaptation Window mechanism with
time window of size𝑤 = 2

Algorithm 2: ALOG Algorithm
1 User-side:
Input :𝑤 (grid adaptation window)
Output :Report 𝑟𝑖

2 for each timestamp 𝑡 do
3 𝑙𝑖 = Capture current location
4 𝐺 = Receive the Grid from Server
5 𝑟𝑖 = Encode(𝑙𝑖 ,𝐺 )
6 𝑀 = Initialize the Memoization Vector (𝐺 )
7 𝑟𝑖 = LDP Protocol(𝑟𝑖 , 𝐺 , 𝑀);
8 if 𝑡%𝑤 == 0 then
9 𝑀 = Initialize the Memoization Vector (𝐺 );

10 Server-side:
Input :𝑡𝑟 (Cell Threshold), 𝑤 (grid adaptation window)
Output :Adaptive grid, Frequency Estimations

11 𝐺 = Initialize the initial Grid;
12 Process the reports to aggregate counts for each grid cell;
13 for each timestamp 𝑡 do
14 𝑅 = Receive the reports for all users
15 𝐹 = Aggregate the reports to process the frequency

estimation (𝑅);
16 if 𝑡%𝑤 == 0 then
17 𝐺 = Adaptive Grid Creation Algorithm (𝐺 , 𝐹 , 𝑡𝑟 );

reports in the context of grid refinement and data utility. The first
variation, ALOG-2R, implements a two-round sanitization pro-
cess designed to improve both grid refinement and the utility of
the data. In the first round, each user 𝑖 anonymizes their location
report using the initially provided uniform grid, allocating only a
fraction of the available privacy budget to this step. For example,
suppose a user 𝑖 has a true location at (𝑥𝑖 , 𝑦𝑖 ), and the initially
assigned grid cell is 𝑔0. The user first encodes their location into
the grid cell 𝑔0 (e.g., by rounding their location to the nearest cell
in the grid). The user then applies a Local Differential Privacy
(LDP) protocol, utilizing a fraction of the total privacy budget
to anonymize the encoded location. The resulting anonymized
report, denoted as 𝑟𝑖 , is sent to the aggregator. This initial stage
aims to provide a preliminary anonymized data sample to the
aggregator.

Once the aggregator has collected the anonymized reports
from all users, it proceeds to refine the spatial grid based on
these reports. Specifically, the aggregator applies the Adaptive
Grid Creation Algorithm (Algorithm 1) to construct a refined,
adaptive grid that more accurately reflects the underlying data
distribution. This adaptive grid is tailored to capture variations
in the density of user locations, allowing for more precise spatial
partitioning.

In the second round, the user 𝑖 now anonymizes their true loca-
tion using the refined grid. For instance, if the user’s true location
(𝑥𝑖 , 𝑦𝑖 ) falls in a newly created, smaller grid cell 𝑔1 (which results
from the adaptive grid refinement), the user will now encode
their location into this smaller, more precise grid cell 𝑔1. The user
then applies the remaining portion of their privacy budget to
anonymize the location in this refined grid cell, using the same
LDP protocol as in the first stage. This refined anonymization
ensures that the user’s location is represented with higher preci-
sion according to the new adaptive grid. The anonymized report
is then sent to the aggregator. After all users have submitted
their second-round reports, the aggregator collects these updated
anonymized reports and performs frequency estimation for the
given timestamp. With grid refinement in the first stage and a
more precise anonymization in the second stage, this two-stage
process results in improved utility. By incorporating the adap-
tive grid refinement early on, ALOG-2R ensures that the data
is processed with an optimized spatial partitioning, leading to
more accurate frequency estimations while maintaining a strong
privacy guarantee.

Alternatively, ALOG-1R-a (One-Round Sanitization — Adap-
tive) and ALOG-1R-b (One-Round Sanitization — Baseline) uti-
lize a single-round sanitization process. In both variations, users
initially report perturbed data using a uniform grid, and the
adaptive grid is applied only in subsequent reports. The key dis-
tinction between ALOG-1R-a and ALOG-1R-b lies in the choice
of the base grid used during the adaptation process.

In ALOG-1R-a, the base grid used for adaptation is not static.
Instead, the grid from the previous adaptation step serves as the
input for the Adaptive Grid Creation Algorithm. This allows for
incremental refinements over time, where the grid is continuously
adjusted to reflect the evolving spatial patterns of user locations.
For instance, suppose in the first timestamp, a user 𝑖 has a true
location at (𝑥𝑖 , 𝑦𝑖 ), which initially maps to a grid cell 𝑔0. After
anonymizing the location using LDP and sending the anonymized
data to the aggregator, the adaptive grid is refined based on the
collected reports. When the user submits their report in the next
timestamp, the adaptive grid generated from the prior stage is
used as the base grid for further refinement. If the user’s true
location (𝑥𝑖 , 𝑦𝑖 ) now falls into a more precise, smaller grid cell
𝑔1 in this updated grid, the user will anonymize their location
based on this refined grid, improving the accuracy of the spatial
partitioning with each adaptation step. This dynamic approach
allows the system to adapt to changing patterns in user data,
improving the overall utility while maintaining privacy.

Conversely, in ALOG-1R-b, the algorithm takes a different
approach. Here, the adaptive grid is reset at every adaptation
step, and the algorithm consistently uses the default uniform
grid as the base grid for every iteration of the grid refinement
process. In each adaptation step, the algorithm ignores any pre-
vious refinements and starts from the uniform grid, applying the
Adaptive Grid Creation Algorithm as if it were the first round of
processing. For example, a user 𝑖’s true location (𝑥𝑖 , 𝑦𝑖 ) is first
mapped to a grid cell 𝑔0 of the uniform grid. After anonymizing
their location using LDP and sending the anonymized report to
the aggregator, the grid is adapted based on the collected data.
This new adaptive grid will be used in the next timestamp for
users to anonymize their location, but the grid is discarded for
the next adaptation process. When the user submits their second
report, the algorithm again uses the uniform grid as the base
for the refinement, disregarding the previous adaptation. This
results in a stable reference framework for the grid adaptation
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process, which may be more predictable but does not account
for changes in user spatial distributions over time.
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Figure 4: ALOGWorkflow - Step 1: Users sanitize their own
reports. Step 2: Send the sanitized reports to the aggregator.
Step 3: Aggregate received reports. Step 4: Process count
for each cell. Step 5a: Perform frequency estimation. Step
5b: Grid adaptation to refine spatial granularity. Step 6:
Broadcast the new Grid

The workflow of ALOG is illustrated in Figure 4. The process
begins with Step 1, performed on the user side, where each user
encodes their location using the current base grid provided by the
aggregator. This grid could either be the initial uniform grid (for
ALOG-1R-b) or the refined grid from the previous moment (for
ALOG-1R-a and ALOG-2R). The user applies a Local Differential
Privacy (LDP) protocol to anonymize the location report in all
approaches. Once anonymized, the report is transmitted securely
to the aggregator, completing Step 2.

In Step 3, the aggregator collects all received reports. Step 4 fol-
lows, where the aggregator counts the occurrences within each
grid cell to estimate the spatial distribution of user locations. Step
5a is executed at every timestamp, regardless of the approach.
In this step, the aggregator publishes the estimated spatial dis-
tribution for each grid cell based on the received reports. This
frequency estimation is critical for maintaining real-time moni-
toring of the data. The distinction arises when a Grid Adaptation
Window (GAW) concludes. The GAW mechanism, primarily used
in ALOG-2R and ALOG-1R-a, allows the grid adaptation process
to occur only after a predefined number of timestamps (denoted
as w). When this window ends, Step 5b is triggered. During Step
5b, the grid cells are adjusted based on report density. This refine-
ment aims to enhance spatial resolution and precision, tailoring
the grid to represent the underlying distribution of user locations
better. This adjustment will occur as follows for each approach:

• ALOG-2R: Grid refinement occurs after every w times-
tamp, allowing for dynamic, incremental adaptations. This
means that after each window of w timestamps, the ag-
gregator adapts the grid based on the spatial distribution
observed in those reports.

• ALOG-1R-a: Similarly, the grid is adapted after every w
timestamps, but in this approach, the refinement is based
on the previously adapted grid. The grid evolves incremen-
tally, becoming more precise with each new adaptation.

• ALOG-1R-b: In this approach, even when the GAW ends,
the grid is reset to the initial uniform grid at every adapta-
tion step, discarding any previous refinements. This pro-
vides a stable reference framework but does not consider
previous grid adaptations.

Finally, in Step 6, the aggregator broadcasts the refined grid back
to the users. This ensures that users always work with an up-to-
date spatial representation of the data. The users then continue
the process of encoding, anonymizing, and sending reports based
on the latest grid, ensuring that the system adapts to real-time
patterns.

This entire workflow is designed to repeat iteratively, main-
taining a dynamic balance between spatial precision and pri-
vacy guarantees. The GAW ensures that grid adaptations occur
controlled, reducing unnecessary overhead, while the different
approaches (ALOG-1R-a, ALOG-1R-b, and ALOG-2R) offer flexi-
bility depending on the need for stability versus dynamic adapta-
tion.

On the client side, the ALOG algorithm 2 has a per-timestamp
time and space complexity of O(𝑘), where 𝑘 is the number of
grid cells. This cost stems from encoding the location as a unary
vector and applying the LDP mechanism. The time complexity
of the ALOG algorithm on the server side, assuming a one-round
approach, can be described in terms of the number of grid cells
𝑘 , the number of user reports 𝑛, and the grid adaptation window
size 𝑤 . For each timestamp, the server processes 𝑛 reports and
performs frequency estimation over 𝑘 cells, leading to a per-
timestamp cost of O(𝑛𝑘). Every 𝑤 timestamps, the adaptive grid
is updated using a recursive algorithm, whose worst-case cost is
O(𝑘 log𝑛) due to cell subdivisions based on report density. Thus,
over a time horizon 𝑇 , the amortized server-side complexity
becomes O(𝑇𝑛𝑘 +𝑤𝑇𝑘 log𝑛), balancing continuous frequency
estimation with periodic grid refinement.

4.3 Privacy and Utility Analysis
In our approach, we employ LDP to protect user privacy while
estimating the frequency of each grid cell in a spatial domain.
Each user perturbs their location data locally before transmitting
it to a centralized aggregator. This is done using the LOSUE
protocol, as Section 3.2 explains.

At each timestamp, ALOG uses at most a privacy budget of 𝜖∞,
even ALOG-2R. In the case of ALOG-2R, the 𝜖∞ is divided across
two stages: a fraction of 𝜖∞ is spent in the first stage, and the
remaining fraction is applied in the second stage. Like other data
collection models, whether using adaptive grids or not, ALOG
consumes a privacy budget of 𝜖∞ for a single report, which is the
single report’s upper bound.

Proposition 4.1 provides a pessimistic worst-case privacy guar-
antee for our approach. Nevertheless, our experiments demon-
strate that ALOG achieves Pareto efficiency – a state where no
further improvement can be made to one objective (e.g., utility)
without degrading another (e.g., privacy) – even with a slightly
higher theoretical privacy budget than competing methods.

Proposition 4.1 (ALOG’s Privacy Guarantee). The ALOG
algorithm guarantees, in the worst case, 𝜂𝜖∞-local differential pri-

vacy, where: 𝜂 =
(∑𝑅

𝑟=0 (𝑘 − 𝑘) · 4𝑟 + 𝑘
)
, 𝑘 is the number of initial

grid cells satisfying the threshold condition, 𝑅 =
⌈
log4

|𝑈 |
𝑡𝑟

⌉
is the

maximum recursion depth of the Algorithm 1, 𝜖∞ is the per-report
privacy budget under Ψ, the underlying LDP mechanism.
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Proof. At initialization, the grid contains 𝑘 cells, of which 𝑘
satisfy the threshold 𝑡𝑟 . The remaining 𝑘 −𝑘 cells are recursively
split (at most 𝑅 times) until all subcells meet 𝑡𝑟 , as formalized
in Algorithm 1. For recursion level 𝑟 ∈ [0, 𝑅], the grid contains
(𝑘 −𝑘) · 4𝑟 +𝑘 cells. Summing over all levels, the total cumulative
cell count is:

∑𝑅
𝑟=0

((𝑘 − 𝑘) · 4𝑟 + 𝑘 ) . Since each user’s location
report is privatized via Ψ (an 𝜖∞-LDP protocol), the longitudinal
privacy cost of ALOG, accounting for adaptive grid construction
and repeated reporting, is bounded by the worst-case total cell
count multiplied by 𝜖∞. This holds because:

(1) User-side perturbation: Each report is independently 𝜖∞-
LDP.

(2) Aggregator-side adaptation: The grid’s dynamic refinement
does not access raw data, relying only on privatized counts.

The total cumulative cell count reflects the worst-case scenario
where Algorithm 1 exhausts all possible recursions. Each cell is
sanitized only once during the longitudinal process by employing
memoization in the LDP protocol. Thus, since the upper bound
on cell count is 𝜂, the maximum number of sanitizations is pre-
cisely the cumulative cell count. As each report is independently
𝜖∞-LDP and there are at most 𝜂 cells in the grid, our proposed
algorithm is 𝜂𝜖∞-local differentially private. □

In ALOG, both the frequency estimation (Section 2.2) and grid
adaptation (Section 4.1) processes operate on the perturbed re-
ports, ensuring that individual location data remains protected.
As Proposition 2.3 states, any function applied to the output of
an 𝜖-LDP mechanism preserves 𝜖-LDP privacy guarantees, mean-
ing that the privacy established by the initial LDP perturbation
is maintained throughout these post-processing steps without
introducing additional privacy risks.

The granularity of the initial grid used in LDP significantly
impacts data sensitivity and privacy preservation. This relation-
ship is analyzed through variance, a key measure of frequency
estimate accuracy and reliability. The variance of LDP protocols
is inversely proportional to the number of times a value 𝑣𝑖 has
been reported [3], meaning that higher variance indicates greater
uncertainty and error in estimates. In comparison, lower variance
suggests more accurate results. Fine-grained grids yield fewer
reports per cell in low-density areas, increasing variance and
making estimates less reliable. Conversely, in high-density areas,
fine-grained grids can maintain utility without compromising
privacy, as the number of reports per cell remains high, reducing
variance.

ALOG directly addresses the variance problem by using coarser
grids in low-density areas, increasing reports per cell and de-
creasing variance. ALOG refines the grid in high-density areas
to maintain utility, and the higher density helps control variance.
Due to this adaptive behavior, ALOG’s grids tend to keep the
density between cells close to uniformity, further enhancing the
accuracy of estimates while preserving privacy.

When handling longitudinal data, ALOG mitigates privacy
loss through the Grid Adaptation Window (GAW). By regulating
the frequency of grid adjustments, the GAW ensures that the grid
adapts only after every𝑤 timestamps, limiting the reinitialization
of memorization, which is a process that consumes the privacy
budget. This mechanism balances the utility gains offered by
dynamic grid adaptation and the potential increase in privacy
loss resulting from frequent re-randomization, thus maintaining
privacy protection while enhancing utility.

Table 2: Summary of Datasets Used in the Experiments

Dataset Type Distribution #Trajectories

S1 Synthetic Uniform 10,000
S2 Synthetic Normal 10,000
GeoLife Real-world Real-world 6,281
Porto Real-world Real-world 10,000

5 Experimental Evaluation
In this section, we present the experiments conducted to empir-
ically demonstrate that our approach not only achieves higher
utility but also maintains a stronger level of privacy compared
to traditional local differential privacy (LDP) protocols such as
RAPPOR (Section 3.1), L-OSUE (Section 3.2), and LOLOHA (Sec-
tion 3.3). We implemented our solution in Python, including our
partitioning strategy and protocols.

5.1 Experimental Setup
We evaluate our approach using two synthetic datasets created
for this study and two real-world mobility datasets. The synthetic
datasets simulate user movement within a 100 km2 area and allow
us to assess behavior under contrasting spatial distributions.

• S1: Users are distributed uniformly across the region.
• S2: Users follow a normal distribution centered in the

region.
Each synthetic dataset simulates 10,000 users moving at a

constant speed of 40 km/h, generating one location report per
minute over 40 timestamps. Locations are constrained by the
speed to ensure realistic trajectories.

The GeoLife dataset1 contains GPS trajectories from 183 users
in Beijing. We extracted 6,261 trajectories of 20 timestamps each.
The Porto dataset2 comprises data from 442 taxis in Porto, Por-
tugal. We selected 10,000 trajectories, also with 20 timestamps.
Table 2 summarizes all datasets.

We acknowledge the use of only two real-world datasets, a lim-
itation imposed by the scarce availability of longitudinal datasets
with precise coordinate data — a key requirement for our analysis.
Nevertheless, the selected datasets offer meaningful and repre-
sentative insights. For each dataset, we simulate users submitting
anonymized location reports using longitudinal LDP protocols.
These reports are used to estimate cell frequencies over a uniform
grid. We compare these results with those obtained using ALOG’s
three variations (ALOG-2R, ALOG-1R-a, and ALOG-1R-b) under
identical conditions.

Data Utility: To assess utility, we compute the Root Mean
Squared Error (RMSE) between the true and estimated fre-
quency distributions over time. Let 𝐹𝑖 = {𝑓0, . . . , 𝑓 |𝐺𝑖 | } and 𝐹𝑖 =

{𝑓0, . . . , 𝑓 |𝐺𝑖 | } denote the true and estimated frequencies at times-
tamp 𝑡𝑖 . The utility error is defined as:

Utility Error = 1
|𝑇 |

|𝑇 |∑︁
𝑖=1

√√√√
1

|𝐺𝑖 |
|𝐺𝑖 |−1∑︁
𝑗=0

(𝑓𝑗 − 𝑓𝑗 )2 (5)

This metric captures the accuracy of frequency estimates over
time and across different spatial distributions.

Budget Consumption: We also evaluate the privacy budget
consumption of each method. For each timestamp 𝑡𝑖 , the budget
consumed is at most 𝜖∞ during anonymization. The total budget
1https://www.microsoft.com/en-us/download/details.aspx?id=52367
2https://www.kaggle.com/datasets/crailtap/taxi-trajectory?select=train.csv
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consumption is:
∑ |𝑇 |
𝑖=1 𝜖∞. We report the average total budget per

user to capture the cumulative privacy cost across the experiment.

5.2 Results
Grid Granularity x Utility: first, we analyze the adjustment of

grid granularity, which is a key aspect of the proposed adaptive
longitudinal grid framework. Specifically, we compare methods
using static uniform grids with ALOG, starting from the same
initial grid granularity. The relationship between grid granular-
ity and data utility is central to understanding how the system
adapts to different data distributions while balancing privacy
constraints.

Theoretically, the expected utility of each ALOG variant is
influenced by the trade-off between noise magnitude (from LDP
perturbation) and the granularity of the grid. According to the
variance of LDP frequency estimation protocols such as LOSUE,
the estimation variance is inversely proportional to the number
of reports per grid cell. Thus uniform grid approaches (e.g., RAP-
POR) are expected to exhibit higher error in regions with skewed
data distributions due to non-uniformity error.

Figure 5 illustrates the effectiveness of our proposed adaptive
grid approaches in enhancing utility compared to uniform grid-
based methods, which consistently yielded the highest 𝑅𝑀𝑆𝐸
across all scenarios. On the x-axis of the figure, 𝑘 represents the
number of cells in the grid, while the y-axis shows the 𝑅𝑀𝑆𝐸
between the real and estimated frequencies. Among the adaptive
grid strategies, ALOG-2R emerged as the most effective, achiev-
ing the lowest𝑅𝑀𝑆𝐸 due to its two-round mechanism. In contrast,
the ALOG-1R-b method demonstrated the poorest performance
among the ALOG approaches. This is attributed to its reliance on
a fixed base grid size during the grid adaptation process, which
results in the loss of previously acquired knowledge and compro-
mises its utility. For this experiment, a permanent privacy budget
of 0.1 was used for each timestamp, and the adaptation window
was set to 4.

Privacy Budget x Utility: analyzing the relationship between
the privacy budget and utility is crucial, as it highlights the trade-
off between privacy guarantees and the accuracy of data esti-
mates. A well-calibrated privacy budget establishes a balance,
minimizing the 𝑅𝑀𝑆𝐸 while ensuring adequate privacy protec-
tion. This balance is essential for practical deployments in appli-
cations involving sensitive data.

In our experiments, we varied the privacy budget values be-
tween 0 and 1, with the budget representing the upper bound of
privacy for each individual. We set up a cell size of 700 meters ×
700 meters, which results in an initial grid granularity of 𝑘 = 225
for datasets S1 and S2, 𝑘 = 336 for Geolife, and 𝑘 = 192 for Porto.
The grid adaptation window was set to 𝑤 = 4 moments of time.
This setup allows us to explore how different privacy levels affect
the utility of the system while maintaining the required privacy
guarantees, as shown in Table 3.

In the S1 and S2 datasets, ALOG-2R consistently achieves the
lowest 𝑅𝑀𝑆𝐸 values for all privacy budgets. This demonstrates
how the two-stage model effectively enhances utility while main-
taining compliance with privacy requirements. ALOG-1R-a fol-
lows closely, with slightly higher 𝑅𝑀𝑆𝐸 values than ALOG-2R
but significantly outperforming ALOG-1R-b.

The LOLOHA and LOSUE methods, while maintaining rela-
tively stable performance across datasets, generally exhibit higher
𝑅𝑀𝑆𝐸 values compared to ALOG-2R. Notably, RAPPOR, despite

ALOG-1R-a ALOG-1R-b ALOG-2R
RAPPOR LOSUE LOLOHA
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(a) S1 with 𝜖∞ = 0.1
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(b) S2 with 𝜖∞ = 0.1
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(c) Geolife with 𝜖∞ = 0.3
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(d) Porto with 𝜖∞ = 0.3

Figure 5: RMSE variation as a function of grid size for
the four datasets: S1, S2, GeoLife, and Porto. Each chart
represents the error in data analysis when the initial grid
size is set.

being a widely used method for privacy preservation, demon-
strates the highest 𝑅𝑀𝑆𝐸 values, particularly in scenarios with
small privacy budgets, indicating its limitations in achieving high
utility.
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For the Geolife and Porto datasets, a similar pattern emerges.
ALOG-2R continues to outperform other methods, achieving the
best balance between privacy and utility. In the Geolife dataset,
the 𝑅𝑀𝑆𝐸 for ALOG-2R is consistently the lowest, especially
for 𝜖 = 0.05 and 𝜖 = 0.5. In the Porto dataset, ALOG-2R again
achieves the best results, with noticeable improvements over
LOLOHA and LOSUE.

In summary, Table 3 emphasizes the significance of selecting
an appropriate privacy budget 𝜖 and algorithm based on the appli-
cation requirements. The results underscore the effectiveness of
ALOG-2R in achieving a superior trade-off between privacy and
utility, making it a strong candidate for practical deployments in
sensitive data applications.

Longitudinal Setting x Utility: another important aspect to
consider is the impact of data’s longitudinal nature on utility.
Figure 6 illustrates how the temporal evolution of data affects
the performance of privacy-preserving mechanisms, which is
crucial for applications that involve dynamic and continuously
changing datasets. Understanding this impact allows us to assess
the robustness of adaptive grid methods, such as ALOG-2R, in
maintaining low 𝑅𝑀𝑆𝐸 while addressing the challenges posed by
temporal variations in data distribution. This analysis will further
provide insights into how privacy budgets and grid adaptations
interact over time, ensuring the methods remain effective in
real-world scenarios with longitudinal data.

Figure 6 consists of four subcharts, each corresponding to a
different data set. These graphs illustrate the relationship be-
tween the number of consecutive reports sent by users and the
𝑅𝑀𝑆𝐸. In the preceding analysis, RAPPOR consistently demon-
strated significantly poorer performance compared to the other
methods (as seen in Figure 5 and Table 3). To provide a clearer
visualization and focus on the comparative differences among
the higher-performing approaches, RAPPOR was excluded from
Figure 6. However, it is important to note that the trend of RAP-
POR’s inferior performance continues in this subsequent analysis,
though not shown for visual clarity.

The ALOG approaches exhibit much better performance, with
ALOG-2R and ALOG-1R-a showing very similar results, often
achieving the lowest 𝑅𝑀𝑆𝐸 values. These methods leverage their
adaptive mechanisms to outperform not only RAPPOR but also
other approaches like LOSUE and LOLOHA, which perform mod-
erately but fail to match the precision of ALOG methods.

The consistent superiority of ALOG-2R and ALOG-1R-a across
datasets highlights their adaptability and efficiency, particularly
in scenarios with a higher frequency of consecutive user requests.
These results underline the importance of selecting advanced
adaptive grid methods to ensure low 𝑅𝑀𝑆𝐸 in privacy-preserving
systems.

Budget Consumption: we now begin a new analysis focusing
on the budget privacy consumption. As shown in Table 4, the
ALOG approaches demonstrate the highest budget consumption
among the methods. This is expected since the grid adaptation
process inherent to ALOG methods sacrifices a key efficiency
mechanism available in other approaches: memoization. Memo-
ization enables non-adaptive methods like LOLOHA, LOSUE, and
RAPPOR to conserve the privacy budget by reusing previously
computed information.

Despite this drawback, we now extend our analysis to explic-
itly evaluate privacy budget consumption using Pareto frontier

analysis (Figure 7). The Pareto frontiers reveal a clear efficiency-
accuracy trade-off among the evaluated methods. Methods lo-
cated closer to the frontier indicate superior performance, char-
acterized by achieving lower RMSE at minimal budget consump-
tion.

In the synthetic datasets, LOLOHA remains close to the fron-
tier only under conditions of very low privacy budget consump-
tion. In contrast, adaptive methods such as ALOG-2R and ALOG-
1R-a dominate all other approaches at higher budget levels, con-
sistently achieving lower RMSE values. For the GeoLife dataset,
ALOG-2R and ALOG-1R-a outperform other methods starting
from privacy budget consumptions above approximately 0.35
and 0.29, respectively. Similarly, for the Porto dataset, ALOG-
1R-a dominates at budget consumptions exceeding 0.9, whereas
ALOG-2R surpasses all other methods once the budget exceeds
1.0.

Non-adaptive methods, including LOLOHA, LOSUE, and RAP-
POR, consistently demonstrate lower budget consumption due
to memoization; however, their positions farther from the Pareto
frontier clearly illustrate their limitations in accuracy compared
to adaptive grid-based approaches.

These results highlight that while ALOG approaches are more
demanding in terms of budget consumption, their superior utility
makes them highly advantageous for applications where accuracy
and adaptability are critical, even in longitudinal settings.

GAW x Utility: the grid adaptation window plays a crucial
role in the performance of the ALOG approaches. Since all three
ALOG variants consistently outperform uniform grid approaches,
it is essential to understand their behavior in terms of grid size
and how it affects their utility.

Figure 8 illustrates that ALOG-2R and ALOG-1R-a maintain
better utility across all tested window sizes for each dataset. How-
ever, a notable trend emerges: as the window size increases, the
error for ALOG-2R and ALOG-1R-a also increases. Conversely,
ALOG-1R-b demonstrates a decreasing error trend as the win-
dow size grows. This divergence arises from the distinct grid
adaptation mechanisms employed by these approaches.

ALOG-1R-a and ALOG-2R experience an increase in error
with larger window sizes primarily due to their reliance on the
previous grid for adaptation. These methods dynamically split
grid cells to increase granularity when needed but lack the ability
to reduce granularity by merging cells as data density decreases.
This limitation becomes more pronounced as the window size
grows because larger windows lead to greater variations in data
distribution over time. The inability to decrease granularity hin-
ders their ability to adjust effectively to these abrupt changes,
resulting in inefficiencies and increased error.

In contrast, ALOG-1R-b demonstrates better performance in
scenarios with larger window sizes due to its use of a fixed base
grid during the adaptation process. This design allows ALOG-
1R-b to reset and adjust more effectively to significant changes
in data distribution, making it more resilient to abrupt shifts
that occur when the window size is larger. By avoiding reliance
on a previous grid, ALOG-1R-b can maintain alignment with
current data density, ensuring more consistent and efficient per-
formance even under challenging conditions. This highlights the
importance of adaptability in handling varying data dynamics,
particularly in scenarios with large adaptation windows.

In summary, the increasing error trend for ALOG-2R and
ALOG-1R-a with larger window sizes is a consequence of their
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Table 3: RMSE (×10−3) for 𝑘 = 225 in S1 and S2, 𝑘 = 336 in Geolife, and 𝑘 = 192 in Porto, with ALOG using𝑤 = 4.

DataSet Budget ALOG-1R-a ALOG-1R-b ALOG-2R LOLOHA LOSUE RAPPOR

S1

𝜖 = 0.05 4.009 5.497 3.908 6.948 6.924 1599.661
𝜖 = 0.1 3.919 5.473 3.866 7.124 6.960 1068.873
𝜖 = 0.5 4.125 5.417 3.771 6.882 6.884 153.428
𝜖 = 1.0 3.998 5.406 3.554 6.903 6.866 67.914

S2
𝜖 = 0.05 4.314 5.953 4.282 7.391 7.506 834.638
𝜖 = 0.1 4.476 5.967 4.212 7.516 7.536 666.694
𝜖 = 0.5 4.389 6.009 4.012 7.522 7.488 87.250
𝜖 = 1.0 4.335 5.903 4.102 7.749 7.489 112.595

Geolife
𝜖 = 0.05 7.672 8.183 6.694 9.053 9.162 432.922
𝜖 = 0.1 7.220 8.151 7.513 9.042 9.028 285.988
𝜖 = 0.5 7.403 8.116 6.855 9.001 9.190 77.613
𝜖 = 1.0 6.933 8.154 7.044 8.937 8.996 41.224

Porto
𝜖 = 0.05 7.522 9.211 7.303 11.358 11.320 829.024
𝜖 = 0.1 7.657 8.720 7.151 11.524 11.831 197.978
𝜖 = 0.5 7.831 8.796 6.886 11.778 11.332 111.164
𝜖 = 1.0 7.474 8.907 6.876 11.704 11.444 68.865

5 10 15 20 25 30 35 40

Longitunality: # reports per users

0.004

0.006

0.008

0.010

0.012

R
M

S
E

(A) S1 with ε∞ = 0.1 and k = 225

5 10 15 20 25 30 35 40

Longitunality: # reports per users

(B) S2 with ε∞ = 0.1 and k = 225

4 6 8 10 12 14 16 18 20

Longitunality: # reports per users

(C) Geolife with ε∞ = 0.3 and k = 336

4 6 8 10 12 14 16 18 20

Longitunality: # reports per users

(D) Porto with ε∞ = 0.3 and k = 192

ALOG-1R-a ALOG-1R-b ALOG-2R LOLOHA LOSUE

Figure 6: RMSE variation with the number of reports per user for the four datasets: S1, S2, GeoLife, and Porto.
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Figure 7: The Pareto frontier (black dashed line) demonstrates ALOG’s superior trade-off between error (RMSE) and privacy
budget consumption. Our method dominates the frontier in nearly all operational scenarios, establishing it as the preferred
choice for most practical applications. Only in a narrow range of extremely low budget conditions does LOLOHA show
marginally better performance.

grid adaptation process, which cannot shrink the grid when nec-
essary. ALOG-1R-b, with its reliance on a base grid, provides
better adjustment and resilience to data dynamics over longer
periods, highlighting the trade-offs inherent in these adaptive
strategies.

Budget partition x Utility: The final aspect of our analysis
focuses on ALOG-2R, the best-performing method across datasets.
A critical factor influencing its performance is the partitioning
of the privacy budget between the first and second rounds. This
partitioning directly affects the utility achieved by ALOG-2R, as
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Figure 8: RMSE variation in terms of the grid adaptation window size for the four datasets: S1, S2, GeoLife, and Porto.

Table 4: Budget Consumption for Datasets S1, S2, Geolife
and Porto

DataSet ALOG
1R-a

ALOG
1R-b

ALOG
2R LOLOHA LOSUE RAPPOR

S1 1.78 2.07 2.02 0.2 0.80 0.80
S2 1.84 2.11 2.05 0.2 0.84 0.86

Geolife 1.78 2.24 2.10 0.59 0.99 0.99
Porto 1.78 2.07 2.02 0.2 0.801 0.801

Table 5: RMSE as a function of budget proportion used in
ALOG-2R for rounds 1 and 2 (values are in units of ×10−3)

DataSet S1 S2 Geolife Porto

(r1 = 0.1𝜖, r2 = 0.9𝜖 ) 3.88 4.18 7.07 6.96
(r1 = 0.3𝜖, r2 = 0.7𝜖 ) 3.82 4.06 7.07 6.87
(r1 = 0.5𝜖, r2 = 0.5𝜖 ) 3.92 4.08 7.06 7.08
(r1 = 0.7𝜖, r2 = 0.3𝜖 ) 3.87 4.12 7.07 7.39

it determines the extent to which each round can contribute to
the grid’s adaptability and the accuracy of the results.

In the first round, the budget is primarily used to initialize the
grid structure and adapt it to the data distribution. This stage is
crucial for ensuring that the grid reflects the overall data density
and establishes a strong foundation for further refinements. The
second round leverages the remaining budget to refine the grid
further and address more localized variations in the data.

Table 5 reveals that for datasets S1, S2, and Porto, the optimal
partitioning allocates 30% of the total budget to the first round,
with the remaining 70% allocated to the second round. This con-
figuration ensures sufficient budget for initializing the grid while
allowing for meaningful refinements in the second round.

Conversely, the Geolife dataset exhibits only minor differences
in RMSE across the tested budget partitioning strategies. The
optimal configuration, with 50% of the budget assigned to each
of the two allocation stages, results in a minimal improvement
in RMSE. This suggests that the specific characteristics of the
Geolife data permit a wider range of effective privacy budget
distributions. In summary, the results emphasize the robustness
of ALOG-2R in delivering superior utility through its adaptive
grid mechanism, making it a strong candidate for practical ap-
plications in privacy-preserving data analysis. The findings also
underscore the importance of tuning parameters such as grid
adaptation windows and budget partitioning to maximize perfor-
mance across varying scenarios.

6 Conclusion
In this work, we proposed ALOG, a framework for privacy pre-
serving frequency estimation using adaptive grids under Local
Differential Privacy (LDP). Through extensive evaluations across
synthetic and real-world datasets, we demonstrated the superi-
ority of ALOG approaches, particularly ALOG-2R, in balancing
utility and privacy compared to traditional methods such as RAP-
POR, LOLOHA, and LOSUE. The results highlighted the effective-
ness of adaptive grids in dynamically adjusting to varying data
densities, significantly reducing MSE while maintaining robust
privacy guarantees.

Key findings include the importance of selecting appropriate
parameters, such as grid adaptation windows and privacy budget
partitioning. ALOG-2R consistently delivered superior perfor-
mance, with optimal budget partitioning strategies (e.g., 30%-70%
for most datasets) and smaller grid adaptation windows yield-
ing the best utility. However, a notable limitation of the current
ALOG approaches is their inability to reduce grid granularity
when data density decreases. This results in granular grids that
can lead to increased error over extended periods.

In real-world scenarios, where the distribution of reports
evolves throughout the day—such as during peak and off-peak
hours in urban settings—it is critical to overcome this limita-
tion to provide a truly adaptive model. Addressing this challenge
would enable the grid to dynamically adjust to both increases and
decreases in data density, ensuring optimal utility and efficient
resource usage.

Future Works: While ALOG shows strong performance, further
work is needed to explore several key directions. One is automat-
ing parameter tuning—using machine learning to optimize bud-
get partitioning and window size could enhance utility and ef-
ficiency across varying datasets. Enhancing granularity adjust-
ment through dynamic cell merging and splitting will directly
overcome ALOG-2R and ALOG-1R-a’s current limitations, en-
abling more adaptive data representation. These directions could
further improve the balance among privacy, utility, and adapt-
ability in privacy-preserving geospatial analysis.
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7 Artifacts
The artifacts for reproducing our experiments are available at:

https://github.com/edurdneto/ALOG
The repository includes source code, method implementations,

experiment scripts, and reproduction instructions.
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