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Abstract
In modern database management systems (DBMS), working mem-
ory often serves as a critical bottleneck when executing in-memory
analytic queries, including operations like joins, sorting, and
aggregation. Traditional approaches to resource estimation in
DBMSs predict query resource consumption by estimating the
memory usage of individual database operators within a query
execution plan. However, this method is both slow and prone
to errors, as it depends on simplifying assumptions such as data
uniformity and independence. Furthermore, existing approaches
primarily concentrate on individual query optimization without
considering the impact of executing multiple queries together as
a batch.

In this research, we address query performance optimization
in the context of batch execution of multiple queries (a workload).
Rather than estimating memory requirements for each query
separately, we focus on predicting the overall memory demand
of an entire workload. To this end, we introduce the problem
of workload memory prediction and formulate it as a distribution
regression problem. To address the problem, we propose Learned
Workload Memory Prediction (LearnedWMP), a method designed
to enhance and streamline memory demand estimation for a batch
of queries. LearnedWMP first learns low-rank query represen-
tations of queries by leveraging structural similarities in their
execution plans. This enables queries with similar characteristics
to be grouped or clustered and assigned a query template that
reflects their associated memory demand. Then, for a given batch
of queries, LearnedWMP generates a histogram representation of
the query templates within the batch and employs a distribution
regressor to predict its overall memory demand. Our extensive ex-
perimental evaluation demonstrates that LearnedWMP reduces
memory estimation errors by up to 47.6% compared to state-
of-the-art methods. Additionally, LearnedWMP and its variants
outperform alternative single-query models, achieving 3x to 10x
faster training and inference times. In most cases, LearnedWMP-
based models were also at least 50% smaller in size. Overall, these
results highlight the effectiveness of the LearnedWMP approach,
underscoring its potential for broader applications in query per-
formance optimization.
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1 Introduction
Estimating resource usage of database queries is critical to many
database operations and decision-making tasks, such as admis-
sion control, workload management, and capacity planning [16,
20, 68, 72]. Working memory is a region of the system memory
where DBMS performs in-memory operations, such as sort and
aggregation, while executing queries. Using a limited system
memory, the DBMS can decide the optimal time to schedule ex-
ecuting a finite number of in-memory operations (i.e., a set or
a batch of queries). Inaccurate estimation of a query’s working
memory requirement causes the DBMS to either under- or over-
commit the memory. This hinders the DBMS from achieving
optimal query performance, which includes faster query exe-
cution and higher throughput, and could potentially result in
query failures. To achieve high performance, the DBMS needs
accurate query working memory estimations before grouping
and admitting them for execution.
Motivation. The DBMS admits queries for execution based on
system capacity. Queries are queued and grouped into batches
based on similar execution patterns (e.g., query structure) or
resource requirements (e.g., CPU, I/O, memory constraints). A
workload is a set of queries executed under DBMS batch execution.
Predicting query workload requirements is a critical aspect of
workload-based optimization in DBMS, which aims to maximize
performance for specific workloads [18, 23, 71]. Accurate memory
predictions ensure that queries receive sufficient memory, pre-
venting out-of-memory errors or query abortions [24, 25, 49, 54].
Moreover, the DBMS can delay or reorder execution based on
batch memory prediction to avoid excessive memory pressure, se-
lect efficient execution plans, or make better scaling decisions for
multi-tenant databases and cloud environments [60, 65]. These
capabilities underpin self-tuning and self-driving databases, en-
suring efficient and autonomous performance [22, 43, 47, 57].
The State of the Practice & Limitations. In modern DBMS,
the query optimizer’s cost model drives estimations for each
query independently, without leveraging insights from batches
of queries that collectively stress specific resource utilization,
such as memory [16]. For example, processing two queries as a
batch with each including a group by operation can require a
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higher working memory than executing each query separately. 1

Thus, estimation based on simple heuristics, such as calculating
the memory demand for a single query and multiplying it by
batch size, is not practical. If this collective memory requirement
surpasses available system memory, it can increase query ex-
ecution times, decreasing the DBMS’s throughput. As another
option, creating a general cost model not tied to specific resources
and workloads is challenging because it relies on engineered fea-
tures that are often tied to specific schemas and query structures,
which limit its applicability across a diverse range of database
schemas, query structures, and data distributions. Despite dedi-
cated efforts over the past decade, the complexity arising from
these variations makes the task difficult and non-generalizable
(e.g., [6, 37, 56, 64, 66, 75, 76, 79]). In current practice, database
administrators (DBAs) depend on extensive testing and their
expertise to define heuristic features and rules for calculating
runtime metrics of queries to optimize database configurations
leading to significant time and effort investments [46, 74]. To our
knowledge, there is currently no practical engine or optimizer
capable of predicting a memory requirement with high accuracy
for a workload of queries. Predicting memory needs for a batch of
queries simultaneously carries the premise of delivering a more
precise estimate of the overall memory demand, helping to avoid
excessive or insufficient memory resource allocation, thereby
enhancing system stability and performance. This necessitates
the development of memory prediction techniques designed for
query batches, enabling the generation of precise memory esti-
mates suitable for DBMS integration [17, 38, 53].
Our Approach. We propose a novel approach for estimating
the memory demand of a batch of database queries, a workload.
Our approach is a departure from the existing approach of es-
timating the resource usage of each query separately [17, 21],
especially for cardinality estimation [19, 21, 28, 30, 42, 77, 78],
which is a distinct task from working memory estimation but
often lead to inaccuracies, contributing to imprecise memory esti-
mations [34, 35]. We exploit the observation that a DBMS admits
queries, queues them for execution in batches, and processes
each batch based on available resources, where these queries
often compete for these resources. By modeling the resource
demand of a batch of queries, we expect to achieve higher accu-
racy in estimating resources. Also, we expect our approach will
reduce the development costs of the DBMS’s resource estimator
and speed up the computation of resource estimations. As an
embodiment of our idea, we initially focused on estimating the
working memory of database workloads. We design a Learned
Workload Memory Prediction (LearnedWMP) model in three
steps. First, we use an intuition that queries with similar plan
characteristics and estimated cardinalities have similar mem-
ory demand. Based on this intuition, we use historical queries
to learn query templates that serve as groups for queries with
similar memory demands. Second, we randomly divide training
queries into fixed-size training workloads and represent each
workload as a histogram – a distribution of query templates. A
histogram-based representation allows capturing the underlying
statistical distribution of the queries by grouping them into bins
or templates. Histograms have been used in different domains
to aggregate multiple observations and obtain approximate data
distributions [31]. To simplify the setup, the current design of
LearnedWMP uses fixed-length workloads. However, the design

1While some DBMS process queries in parallel within a batch, this aspect is beyond
the scope of our research.

can be extended to work with variable-length workloads. In the
final step, using training workloads and their historical collective
actual memory usage, we train a regression model that learns to
estimate the memory usage of an unseen workload based on the
distribution of query templates. As the model learns from diverse
training workloads, its accuracy at estimating the memory of
workloads will improve with time.
Contributions. We summarize our key contributions as follows:
• We propose LearnedWMP, a novel prediction model that can es-

timate the working memory demand of a batch of SQL queries
in a workload at once. This is a departure from the state of
the practice and the state-of-the-art methods, which estimate
the memory demand of each query separately. To our knowl-
edge, this is the first attempt to predict memory demand at the
workload level utilizing machine learning (ML) techniques. 2

• We formulate the problem of workload memory prediction
as a distribution regression problem, which learns a regressor
function from workloads represented as distributions of query
templates. We use ML to learn the regressor without relying
on hand-crafted query-level or operator-level features.
• We devise unsupervised machine learning methods to group

queries of similar memory needs to reduce the computational
overhead of workload memory usage estimation significantly.
• We extensively evaluate our LearnedWMP model employing

three database benchmarks. These experimental results demon-
strate the merit of our proposed technique in workload-based
query processing and resource estimation.

Summary of Experimental Results. Our experiments demon-
strate that LearnedWMP substantially decreased memory es-
timation errors compared to current state-of-the-art practices,
achieving an impressive improvement of 47.6%. Our experiments
are conducted over transactional and analytical database bench-
marks to train and evaluate our model. LearnedWMP accepts as
input a workload and returns the workload’s estimated working
memory demand. Our findings indicate that, during training and
inferencing, the LearnedWMP model and its variant models were
3x to 10x faster compared to alternative machine learning models.
Also, LearnedWMP-based models were at least 50% smaller in
most cases. Furthermore, our study delved into the performance
and impact assessment of different components and parame-
ters within the model. These included various learning models,
workload sizes, numbers of query templates, and techniques for
learning query templates.
Paper Organization. The rest of the paper is organized as fol-
lows. Section 2 reviews the related work. Section 3 introduces
key terminology, notations, and the problem formally. Section 4
provides an overview of LearnedWMP, including details of the
training and inference stages. Section 5 presents an experimental
evaluation of LearnedWMP. Section 6 concludes the paper.

2 Related Work
Our research relates to ML methods for (i) database query opti-
mization [8, 26, 27], (ii) database query resource estimation [37],
(iii) query-based workload analysis [43], and (iv) distribution
regression problems. Each of these areas has extensive research
literature, and we discuss some of the most relevant research
efforts to our work.

2The source code of our model is available for reproducibility: https://github.com/
shaikhq/learnedwmp
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ML for Database Query Optimization In the broader topic of
query optimization, besides query resource estimation, many
recent works have explored ML techniques to learn various
tasks related to query optimization. Some of the key tasks in-
clude cardinality estimation [17, 28, 42], query latency prediction
[6, 80], index selection [12, 62]. A recent cardinality estimation
benchmark [17] evaluated eight ML-based cardinality estima-
tion methods—MSCN, LW-XGB, LW-NN, UAE-Q, NeuroCard,
BayesCard, DeepDB, and FLAT. Zhou et al. [80] proposed a graph-
based deep learning method to predict the execution time of con-
current queries. Akdere et al. [6] used SVM and linear regression
to predict the execution time of analytical queries. Marcus and
Papaemmanouil [46] proposed a plan-structured neural network
architecture, which uses custom neural units designed at the
level of query plan operators to predict query execution time.
Ahmad et al. [5] proposed an ML-based method for predicting the
execution time of batch query workloads. They relied upon DBAs
to define a set of query types used to create simulated workloads
and model interactions among queries. Contender [14] is a frame-
work for predicting the execution time of concurrent analytical
queries that compete for I/O. Ding et al. [12] applied classification
techniques to compare the relative cost of a pair of query plans
and use that insight in index recommendations.
ML for Database Query Resource Estimation Closer to our
problem are methods that estimate resources—such as memory,
CPU, and I/O—for executing database queries. Tang et al. used
ML to classify queries into low, medium, and high resource con-
sumption. They employed separate models for memory and CPU,
utilizing a bag-of-words approach to extract query keywords as
input features. XGBoost proved the most accurate among the
three compared algorithms [69]. Ganapathi et al. [16] tried five
ML techniques to predict run-time resource metrics of individual
queries. They achieved the best results with the kernel canoni-
cal correlation analysis (KCCA) algorithm. Li et al. [37] applied
boosted regression trees to predict individual queries’ CPU and
I/O costs. They modeled the requirements of each database op-
erator separately by computing a different set of features for
each operator type. All the above three approaches [16, 37, 69]
generate resource predictions at the level of individual queries.
In contrast, our proposed method estimates memory at the level
of workload query batches, which we found more accurate and
computationally efficient.
ML for Query-based Workload Analysis There is a line of
research that considers query-based workload analysis. Higgin-
son et al. [20] have applied time series analysis, using ARIMA
and Seasonal ARIMA (SARIMA), on database workload moni-
toring data to identify patterns such as seasonality (recurring
patterns), trends, and shocks. They used these time series pat-
terns in database capacity planning. Kipf et al. [30] use Multi-Set
Convolutional Network (MSCN) for workload cardinality esti-
mation, representing query features as sets of tables, joins, and
predicates. Similar methods have been used for constructing
query-based cardinality estimators (e.g., [53]). However, these
approaches involve significant sampling overhead or rely on
static data featurization, unsuitable for modern databases. Ad-
ditionally, they lack explanations for the relationships between
data, queries, and actual cardinalities. Other workload-based
analysis is Flux [40], which focuses on system-level resource
management by separating short- and long-running queries into
independently scalable clusters based on performance metrics
and workload forecasts. Ortiz et al. [55] proposed a PSLA-based

method that generates synthetic queries from schema statistics
to model runtimes and guide SLA planning. In contrast, Learned-
WMP provides query-level memory prediction by learning query
templates from real workloads and execution plans, enabling
accurate resource provisioning and efficient scheduling. Unlike
DBSeer [50], which uses clustering (e.g., DBSCAN) to group trans-
actions and predict resource demand, LearnedWMP does not rely
on clustering; instead, it learns from simple features in query
plans that exhibit a stronger correlation with memory usage. Our
experiments demonstrate that 𝑘-means clustering outperforms
DBSCAN for resource prediction. While Flux and PSLA address
infrastructure scaling and SLA guarantees, LearnedWMP focuses
on fine-grained, data-driven memory estimation at the query
processing level.
ML for Distribution Regression Problems Distribution re-
gression has emerged as a popular ML approach for mapping
complex input probability distributions to real-valued responses,
particularly in supervised tasks that require handling input and
model uncertainty [32], emerging as a promising alternative to
traditional techniques like random forests and neural networks
[39]. To our knowledge, we are the first to apply distribution
regression to model resource demand forecasting of database
workloads. Outside the database domain, some of the illustrative
use cases of distribution regression include predicting health
indicators from a patient’s list of blood tests [45], solar energy
forecasting, and traffic prediction[39]. Many recent papers have
offered approaches and optimization techniques for solving dis-
tribution regression tasks (e.g., [32, 39, 45]).

3 Preliminaries and the Problem
In this section, we introduce notation and preliminaries to assist
in defining the workload memory prediction problem. Next, we
formally present our novel approach to representing and solving
the problem as a distribution regression problem.
Query Let 𝑞 = (𝑒, 𝑝,𝑚) be a single SQL query where (i) 𝑒 is a
query expression received from a database user, (ii) 𝑝 is a query
execution plan generated by the DBMS optimizer for evaluating
𝑒 , and (iii) 𝑚 is the actual highest working memory usage of
the query for 𝑝 .𝑚 is available only for training queries that the
DBMS has already executed. For unseen queries,𝑚 is unknown.
Workload Let𝑤 = (Q, 𝑦) be a workload, which consists of (i) Q,
a set of queries where 𝑞𝑖 ∈ Q is a tuple (𝑒𝑖 , 𝑝𝑖 ,𝑚𝑖 ), as per def. 2.1,
and (ii) 𝑦 is the sum of the highest working memory utilization
of all queries in Q after the DBMS executes them.

𝑦 =
| Q |∑︁
𝑖=1

𝑚𝑖 (1)

𝑦 value of a workload (eq. 1 1) is only present for the train-
ing workloads executed by the DBMS. In the inference phase,
LearnedWMP receives only Q, a collection of queries without y.
WorkloadMemory Prediction Let us assume a training corpus
of 𝑛 workloads as follows:

{(𝑤1, 𝑦1), . . . , (𝑤𝑛, 𝑦𝑛)} (2)
Here, each tuple, (𝑤𝑖 , 𝑦𝑖 ) corresponds to the highest historical
working memory utilization 𝑦𝑖 of all queries in the workload𝑤𝑖 .
Now, given an unseen workload 𝑤 , we wish to learn a predic-
tor function 𝑓 (·) that can accurately estimate the workload𝑤 ’s
highest working memory usage 𝑦:

𝑓 (𝑤) = 𝑦 (3)
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Table 1: Summary of key notations
Symbol Description

𝑤 A workload.
Q The set of queries in a workload.
T The set of query templates in the DBMS.
H H ∈ R𝑘 is a workload histogram, representing the distribu-

tion of queries in a workload 𝑤 over the 𝑘 query templates
T .

ˆ𝑓 (H) The learned function (predictor) that predicts the memory
demand of an input workload histogram H.

𝑐𝑖 The number of queries in a workload 𝑤 that are mapped to a
query template 𝑡𝑖 ∈ T.

𝑦 The actual collective historical memory utilization of all
queries Q in a workload 𝑤.

�̂� The predicted collective memory demand of all queries Q in
an unseen workload 𝑤 as estimated by ˆ𝑓 ( ·) .

Working Memory is a memory region used to store interme-
diate results, temporary data structures, and execution context
information while executing database operations such as sorting
and aggregation. A query may use the working memory up to a
limit that is controlled by a DBMS setting. Working memory size
in a DBMS varies based on system configuration, workload, and
available resources. In the rest of this paper, for brevity, we may
refer to working memory as only memory.

We formulate estimating memory usage of an unseen workload as
a distribution regression problem [58, 67], where the estimate is
computed from an input probability distribution - the distribution
of queries Q among templates T .
Query Templates Let T = {𝑡1,...,𝑡𝑘 } be a set of 𝑘 query templates.
A query template 𝑡𝑖 ∈ T represents a class of queries with similar
plan characteristics and memory requirements. Any query 𝑞 can
be mapped to a query template 𝑡𝑖 ∈ T .
Workload Histogram Let𝑤 be a workload consisting of a set of
Q queries. 𝑐𝑖 is the number of queries in Q that can be mapped
to query template 𝑡𝑖 ∈ T . The counts of queries in Q that map
to different query templates in T are recorded in a 1-𝑑 vector
of length 𝑘 = |T |. We call this vector a workload histogram H .
Here,H = [𝑐1, ..., 𝑐𝑘 ] and

𝑘∑︁
𝑖=1

𝑐𝑖 = |Q| (4)

From such an input distribution, encoded in a workload histogram,
a distribution regression function computes as estimated memory
usage for the workload. Assume we have a training corpus of 𝑛
workload histograms, one histogram per workload, as follows:

{(H1, 𝑦1), . . . , (H𝑛, 𝑦𝑛)} (5)
Here, each tuple, (H𝑖 , 𝑦𝑖 ), corresponds to a single workload;H𝑖

is the workload histogram, and𝑦𝑖 is the collective historical mem-
ory utilization of all queries in the workload. On the workload
histogram, we assume the following:
(1) The distribution of queries among the query templates (i.e.,

the workload histogram bins) is uniform.
(2) Query templates are independently and identically distributed.
(3) An underlying function, 𝑓 (·), exists that can accurately com-

pute any workload’s memory usage, 𝑦, from the workload
histogram,H .

𝑓 (H) = 𝑦 (6)
We neither know 𝑓 (·) nor have access to the set of all possible
workload examples to derive 𝑓 (·). We wish to learn a function,

𝑓 (·), an approximation of 𝑓 (·), using the distribution of regres-
sion. From the input workload histogram,H , of a workload, 𝑓 (·)
can compute 𝑦, an accurate estimate of the actual memory usage
𝑦.

𝑓 (H) = 𝑦 (7)
Using training workloads labeled with their actual memory usage,
ˆ𝑓 (·) learns to estimate the memory usage of unseen workloads.

We expect that the larger and more diverse the training data set
of workload examples is, the more precise the predictor ˆ𝑓 (·) will
be. Table 1 provides a summary of the key notations.

4 The LearnedWMP Model
LearnedWMP comprises two stages: training and inference. The
training stage employs a machine learning pipeline and dataset
to build the model, while the inference stage utilizes the trained
model to predict memory usage for unseen workloads. Fig. 1
offers an overview of the workflow, and we subsequently outline
and delve into the technical details of each step.

4.1 Overview of the LearnedWMP ’s pipeline
Users and the Database. The top left section of Fig. 1 illustrates
user-database interaction, with the database interacting with
two LearnedWMP stages. The users and applications send SQL
queries to the database. To calculate the memory utilization of a
workload, we sum the highest memory usage for queries in that
workload. The LearnedWMP training pipeline (right of Fig. 1)
periodically retrains the model using the latest query log dump.
Training Stage. In Fig. 1 (top), TR1 through TR6 are the steps
of the training pipeline. Training begins with a set of training
queries, Q𝑡𝑟𝑎𝑖𝑛 , collected from a dump of the DBMS query log.
At TR1, from Q𝑡𝑟𝑎𝑖𝑛 , the pipeline extracts training queries, their
final execution plans, and the actual highest working memory
usage from the past execution. At TR2, from the query plans, the
pipeline generates a set of𝑚 features to represent the training
queries as a |Q𝑡𝑟𝑎𝑖𝑛 | ×𝑚 feature matrix. At TR3, the pipeline
learns T , a set of 𝑘 query templates, from the query feature
matrix. The value of 𝑘 can be determined experimentally (cf.
Section 4.2.1). At TR4, the pipeline equally divides the training
queries of Q𝑡𝑟𝑎𝑖𝑛 into a set of 𝑛 workloads,W = |Q𝑡𝑟𝑎𝑖𝑛 |/𝑠 . Each
workload contains 𝑠 , a constant, queries. We found a value of 𝑠
experimentally (cf. Section 5.3). At TR5, the pipeline generates a
workload histogramH for each training workload𝑤 = (Q, 𝑦) in
W.H represents the distribution of queries of Q among 𝑘 query
templates of T . In addition, the collective actual highest memory
utilization 𝑦 of the workload𝑤 is computed by summing up the
working memory utilization of each query 𝑞𝑖 ∈ Q. Each (H ,
𝑦) pair represents a training example for training a regression
model. At TR6, the model receives as input a collection of training
examples of the form (H , 𝑦). From these examples, the model
learns a regression function 𝑓 (H) to map an input histogramH
to its working memory demand,𝑦. At the end of TR6, the training
pipeline produces a trained LearnedWMP model.
Inference Stage. In Fig. 1 (bottom), IN1 through IN5 are the steps
of the inference pipeline, which generates estimated memory
usage of an unseen workload𝑤 , consisting of Q queries. Step IN1
collects the query plans of Q queries in𝑤 ; step IN2 generates the
feature vectors for these plans. Step IN3 assigns each query 𝑞𝑖 ∈
Q to a template 𝑡𝑖 ∈ T , from which IN4 constructs a workload
histogramH . The final step, IN5, uses the histogramH as input
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Figure 1: Overview of the LearnedWMPmodel. Left: Users send queries to a DBMS; the DBMS processes and sends responses
to the queries. Right-upper: the training steps of the LearnedWMP model. Right-bottom: the steps of the inference stage.

to the LearnedWMP and predicts the memory usage 𝑦 of the
workload,𝑤 .

4.2 LearnedWMP: Training Stage
The LearnedWMP model is trained in six steps (TR1 - TR6), grouped
in three phases (see Fig. 1). The first phase uses historical queries
from a DBMS’s log to learn a set of query templates. The second
phase prepares the training dataset for the learning algorithm.
The third phase uses the training dataset to train a regression
model, which can predict the memory usage of an input work-
load.

4.2.1 Phase 1: Learning Query Templates. We assign queries
to templates based on the intuition that queries with similar
query-plan characteristics and cardinality estimates have similar
execution-time memory usage [33]. In each workload, by group-
ing similar queries in the same templates or clusters, we expect to
model the memory requirements of the queries more efficiently
and speed up the computation of training and inference stages.
We are not looking for an optimal template assignment for each
query, which will require computation of operator-level features,
increase computation overhead, and outweigh the acceleration
we hope to gain from compressing queries into templates. Also,
estimating the cost of individual queries is a separate research
problem [16, 37] that we are not addressing in our current re-
search. Instead, we rely on a best-effort algorithmic principle for
assigning each query to a template. The template assignment
needs to be just good enough, not highly accurate. This allows
for designing simple but efficient methods for assigning queries
to templates that neither jeopardize the runtime cost nor the ma-
chine learning approach. This is not an algorithmic simplification
but rather an algorithmic design choice.

To assign queries to templates, we experimented with various
classes of techniques. We evaluated each method performance
(Section 5.3). Algorithm 1 describes the steps of GetTemplates
function that uses training queries of Q𝑡𝑟𝑎𝑖𝑛 to learn a set of 𝑘
query templates, T . For each query in Q𝑡𝑟𝑎𝑖𝑛 , GetTemplates()
first extracts the query plan (line 5). A query plan is a tree-like
structure where each node corresponds to a database operator.
The plan’s execution begins at the leaf nodes and completes at
the root node. The root’s output is the result of the entire query’s
executing . Each node has an input and an output. When applica-
ble, a node includes statistics, such as estimated pre-cardinality
and post-cardinality of the operator. For each operator type in a
query plan, GetTemplates() counts its frequency and aggregate

cardinalities of all its instances. The frequency count and aggre-
gated cardinality of each operator type are retrieved (line 6) and
used to represent the query features. Finally, 𝑘-means algorithm
[44], or any clustering technique, uses these query feature vec-
tors to learn 𝑘 clusters, each one representing a query template
𝑡𝑖 ∈ T (line 8). We use the elbow method to tune the value of 𝑘 .
Fig. 2 provides an illustrative example query, where its associ-
ated query plan tree (below) has five unique operators: TBSCAN,
HSJOIN, INDEX SCAN, SORT, and GROUP BY. Since each operator
type provides a (count, cardinality) pair of features (# of opera-
tors, total cardinality), this sample query plan has 10 features -
2 features for each of the 5 operators. GetTemplates() encodes
these features in a 1-𝑑 vector as follows: [4, 139532.48, 3, 50224.6,
1, 3201, 1, 134179, 1, 48873.6]. The approach of featurizing queries
is inspired by earlier research [13, 16] as the authors identified
this set of features as effective for predicting query performance.

4.2.2 Phase 2: Constructing Histograms from Workloads. In this
phase, LearnedWMP performs two tasks: (i) partitions training
queries of Q𝑡𝑟𝑎𝑖𝑛 into a set of workloads,W and (ii) from each
training workload,𝑤𝑖 ∈ W, constructs a histogram that repre-
sents the distribution of its queries among the query templates set
T . Histograms have played a significant role in estimating query
plans cost [7]. LearnedWMP randomly divides training queries
from Q𝑡𝑟𝑎𝑖𝑛 into 𝑚 training workloads, where 𝑚 = |Q𝑡𝑟𝑎𝑖𝑛 |/𝑠
with 𝑠 being a constant number of training queries per workload.
The value for 𝑠 depends on the application domain and can be
empirically found (cf. Section 5.3). As defined in definition 2.2,
each training workload,𝑤𝑖 , is a tuple (Q, 𝑦), where Q is a collec-
tion of queries and 𝑦 is their collective memory usage from the
past execution.
Algorithm 2 describes the steps of phase 2. It takes as input a
training workload, 𝑤 , and a set of query templates, T , which
were learned in phase 1. In lines 6-7, for each query 𝑞𝑖 ∈ Q,
the algorithm extracts the query execution plan and the features
from the plan. Since phase 1 already computed these features,
line 7 reuses the values from the previous computation. Using
these features, line 8 looks up the query template, 𝑡 𝑗 ∈ T , for 𝑞𝑖 .
After assigning each query, 𝑞𝑖 ∈ Q, to a template, the algorithm
counts the number of queries in Q in each template, 𝑡 𝑗 ∈ T
(line 10) and stores the counts in a histogram, a 1-d count vec-
tor, H = [𝑐1, ..., 𝑐𝑘= | T | ]. The length of H is 𝑘 , corresponding
to the number of query templates in T . Each count 𝑐 𝑗 ∈ H is
the number of queries in 𝑤 that are associated with the query
template 𝑡 𝑗 ∈ T . These counts add up to 𝑠 = |Q|, the workload
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Algorithm 2 Histogram construction from training workloads
1: 𝑤 ← (Q, 𝑦) ⊲ A training workload
2: T ← {𝑡1, ..., 𝑡𝑘 } ⊲ A set of 𝑘 query templates
3: function BinWorkload(𝑤 , T )
4: 𝐴𝑟𝑟𝑎𝑦 H[0 ... (𝑘 − 1)] ← 0
5: for 𝑞𝑖 𝑖𝑛 Q do
6: 𝑝𝑙𝑎𝑛𝑖 = getQueryPlan(𝑞𝑖 )
7: 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑖 = getFeatures(𝑝𝑙𝑎𝑛𝑖 )
8: 𝑞𝑖 .𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒 = findTemplate(𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑖 )
9: end for

10: for 𝑡 𝑗 𝑖𝑛 T do
11: H[ 𝑗] = 𝑐𝑜𝑢𝑛𝑡𝑇𝑒𝑚𝑝𝑙𝑎𝑡𝑒𝐼𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 (𝑡 𝑗 ,𝑤)
12: end for
13: return (H , 𝑦)
14: end function

Algorithm 1 Learning query templates with 𝑘-means clustering
1: Q𝑡𝑟𝑎𝑖𝑛 ← {𝑞1, 𝑞2, ..., 𝑞𝑛} ⊲ Q𝑡𝑟𝑎𝑖𝑛 is a set of historical

training queries collected from a DBMS.
2: function GetTemplates(Q𝑡𝑟𝑎𝑖𝑛)
3: 𝐴𝑟𝑟𝑎𝑦 𝑍 ← [][] ⊲ feature matrix for Q𝑡𝑟𝑎𝑖𝑛
4: for 𝑞𝑖 ∈ Q𝑡𝑟𝑎𝑖𝑛 do
5: 𝑝𝑙𝑎𝑛𝑖 = getQueryPlan(𝑞𝑖 )
6: 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑖 = getFeatures(𝑝𝑙𝑎𝑛𝑖 )
7: Z.insert(𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠𝑖 )
8: end for
9: T ← 𝑘𝑚𝑒𝑎𝑛𝑠 (𝑍, 𝑘) ⊲ learns templates using kmeans

return T ⊲ k learned query templates
10: end function

Figure 2: Extracting query features from a query. An exam-
ple query (top) is executed by the query plan (left), result-
ing in the extraction of query features (right). The query
features are used to learn a set of query templates T , of
size 𝑘 .

batch size:
𝑘= | T |∑︁
𝑗=1

𝑐 𝑗 = 𝑠 (8)

The histogramH is the distribution of queries in workload 𝑤
among the query templates set T . The histogram will be sparse
with many zeros as a workload is not expected to contain queries
that belong to each query template of T . At the final step (line
11), the algorithm returns a pair (H , 𝑦), where 𝑦 is the collective
memory usage of all 𝑞 ∈ Q. (H , 𝑦) becomes a labeled example
for training a supervised ML model in Phase 3.

Fig. 3 shows an example of constructing a histogram H of 4
bins, 𝑘 = |T | = 4. The example uses an input workload, 𝑤 ,
with 9 queries, 𝑠 = |Q| = 9. 3 of 4 histogram bins are populated
with nonzero values. The remaining bin has a zero value as its
corresponding query template has no queries in𝑤 . The histogram
vector is [3, 4, 0, 2]. The value of𝑦 is the total actual memory
usage of all 9 queries in𝑤 . Let’s assume 𝑦 = 125 MB. The output
pair for this example workload is ([3, 4, 0, 2], 125).

4.2.3 Phase 3: Training a Distribution Regression Deep Learning
Model. In this phase, we train a regression model for predict-
ing workload memory usage. The trained model takes an input
workload, represented as a histogram of query templates, and
computes the workload’s memory usage. We explored several
ML and deep learning (DL) techniques to train the model. In
this subsection, we present the design and implementation of a
DL model for our regression model. Section 4.2.4 describes the
other ML algorithms we explored for the model training. DL
recently had several algorithmic breakthroughs and has been
highly successful with many learning tasks over unstructured
data. For example, DL models for image recognition and language
translation are now highly accurate [63]. Additionally, DL can be
useful in learning a non-linear mapping function between input
and output without requiring low-level feature engineering. In
our case, we have dual complexities: the input is a complex dis-
tribution of query templates, and there is a complex relationship
between the distribution of query templates and its collective
memory demand. We wanted to explore the effectiveness of deep
learning for the problem.
Multilayer Perceptron (MLP) Model. In our case, the input
vector for each workload is structured and has a fixed length
corresponding to the number of query templates. Each vector
element represents the workload queries of a specific template.
Since we want to learn a regression function from fixed-length in-
put vectors, the multilayer perceptron (MLP) is a suitable choice
for learning a regression function from fixed-length input vec-
tors due to its assumption of fixed input dimension and flexibil-
ity in architecture [51]. In our case, from 𝑛 training examples
(H1, 𝑦1), (H2, 𝑦2), . . . , (H𝑛, 𝑦𝑛), a MLP model learns a function
𝑓 (·) : 𝑅𝑘 → 𝑅𝑜 , where 𝑘 is the number of dimensions for input
H = [𝑐1, ..., 𝑐𝑘= | T | ] and 𝑅𝑜 is the scalar output 𝑦.
Activation Function. The activation function in each layer
determines how the input is transformed. We explored linear
and Rectified Linear Unit (ReLU). For simpler datasets with fewer
query templates, linear activation performed better, while ReLU
proved more effective for complex datasets with more query
templates.
Loss Function. Depending on the problem type, an MLP uses
different loss functions. For the regression task, we use the mean
squared error loss function as follows:

𝐿𝑜𝑠𝑠 (𝑦,𝑦,𝑊 ) = 1
2𝑁

𝑁∑︁
𝑖=1
| |𝑦𝑖 − 𝑦𝑖 | |22 +

𝛼

2𝑁 | |𝑊 | |
2
2 (9)

where𝑦𝑖 is the target value;𝑦𝑖 is the estimated value produced by
the MLP model; 𝛼 | |𝑊 | |22 is an L2-regularization term (i.e., penalty)
that penalizes complex models; and 𝛼 > 0 is a non-negative
hyperparameter that controls the magnitude of the penalty. The
MLP begins with random weights and iteratively updates them
to minimize the loss by propagating the loss backward from the
output layer to the preceding layers and updating the weights in
each layer. The training uses stochastic gradient descent (SGD),
where the gradient∇𝐿𝑜𝑠𝑠𝑊 of the loss with respect to the weights
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Algorithm 3 Predict workload memory by rained MLP
1: T ← {𝑡1, ..., 𝑡𝑘 } ⊲ A set of 𝑘 query templates
2: 𝑓 ⊲ a workload memory estimation function
3: 𝑤 ← (Q) ⊲ An unseen input workload
4: function PredictMemory(𝑤, T , 𝑓 )
5: H = 𝐵𝑖𝑛𝑊𝑜𝑟𝑘𝑙𝑜𝑎𝑑 (𝑤,T)
6: 𝑦 = 𝑓 (H)
7: return 𝑦
8: end function

Figure 3: An example of generating a histogramH from a
training workload𝑤 = (Q, 𝑦), where |Q| = 9 and 𝑘 = 4.

is computed and subtracted from𝑊 . More formally,
𝑊 𝑖+1 =𝑊 𝑖 − 𝜖∇𝐿𝑜𝑠𝑠𝑖𝑊 (10)

where 𝑖 is the iteration step, and 𝜖 is the learning rate with a
value larger than 0. The algorithm stops after completing a preset
number of iterations or when the loss doesn’t improve beyond a
threshold.
Optimizer. We compared L-BFGS [41] and Adam [29] optimizers
using two datasets — a small dataset and a relatively large one.
For the small dataset, L-BFGS was more effective than Adam as
it ran faster and learned better model coefficients. In contrast,
Adam worked better with the large dataset. Our observation is
consistent with scikit-learn’s MLPRegressor[61].
Hyperparameter Tuning of the MLPModel. We tuned hyper-
parameters, including the number of hidden layers, the number
of nodes in each layer, the optimizer, and the dropout rate. Given
the large dataset and parameter search space, we employed ran-
domized search using scikit-learn library [2]. We found a
neural network architecture with eight layers (input, six hidden,
and output), and the hidden layers contained 48, 39, 27, 16, 7,
and 5 nodes, while the input layer received workload histograms
or query distribution, and the output layer provided estimated
memory demand.
Model Complexity. Assume 𝑛 training samples, 𝑘 features, 𝑙
hidden layers, each containing ℎ neurons — for simplicity, and
𝑜 output neurons. The time complexity of backpropagation is
𝑂 (𝑛 · 𝑘 · ℎ𝑙 · 𝑜 · 𝑖), where 𝑖 is the number of iterations.

4.2.4 Other machine learning methods. Besides deep learning
networks, for a comparative analysis, we explored additional ML
techniques to train LearnedWMP models. They include a linear
and three tree-based techniques. We picked Ridge, a popular
method for learning regularized linear regression models [59],
which can help reduce the overfitting of the linear regression
models. From the tree-based approaches, we used Decision Tree
(DT), Random Forest (RF), and XGBoost (XGB). DT uses a
single tree for predictions, while Random Forest employs an
ensemble of trees that consider random feature subsets, resulting
in better generalization and outlier handling capabilities [59].
Finally, XGBoost [9], a gradient boosting tree technique that has
achieved high performance for many ML tasks based on tabular
data [63].

4.3 LearnedWMP: Inference Stage
Algorithm 3 describes the steps of PredictMemory() function
that estimates the memory demand of an unseen workload, 𝑤 .
The function operates with two models: a trained𝑘-means cluster-
ing model, T , which represents a set of learned query templates,
and a trained predictive model for estimating workload memory
demand. PredictMemory() receives as input an unseen work-
load whose memory demand needs to be estimated. At line 5,
the function generates a histogram vector,H , a distribution of
query templates. This step reuses the BinWorkload() function
of algorithm 2. Next, line 6 estimates working memory demand
𝑦 of𝑤 usingH .

5 Experimental Evaluation
We would like to reiterate that LearnedWMP is an innovative
model addressing the novel problem of predicting memory for a
workload. In this section, we experimentally evaluate Learned-
WMP through this prism. In our first set of experiments, we
demonstrate how LearnedWMP estimates memory for a work-
load using different ML models and metrics, revealing a signifi-
cant reduction in estimation error compared to alternative base-
lines for predicting query memory demand. Second, we show
that LearnedWMP is more efficient in terms of training, infer-
ence time, and model size when compared to single-based query
models. Finally, we conduct an analysis to study the impact of
the major parameters of the LearnedWMP model and the choice
of the template learning method.
Baselines. In the workload memory prediction problem, we aim
to estimate the aggregate memory demand for a query work-
load. As there are no existing libraries or methods for this novel
problem, we develop and evaluate different variants of Learned-
WMP and compare them with the state-of-the-art single-based
models for predicting query memory demand and assessing their
performance.
• LearnedWMP-based Methods. LearnedWMP accepts as in-

put a workload𝑤 and returns the workload’s estimated work-
ing memory demand, 𝑦. As described in Section 4.2.4, besides
the proposed MLP-based deep neural network (DNN) method,
we can use other ML techniques to learn the memory esti-
mation regression function. Thus, we explored additional ML
techniques, such as Ridge, DT, RF, and XGB, in this experiment.
We refer to the LearnedWMP-based models trained with differ-
ent ML techniques as LearnedWMP-DNN, LearnedWMP-Ridge,
LearnedWMP-DT, LearnedWMP-RF, and LearnedWMP-XGB.
• SingleWMP-based Methods. An alternative approach to es-

timate the workload’s working memory is to rely on single-
query-based methods. In this approach, first, the highest work-
ing memory requirement for each query in the workload is es-
timated separately. This estimation depends on the cost model
and heuristics implemented in the DBMS engine. Then, these
individual estimates are summed up to produce the aggregate
working memory estimation for the workload. We refer to this
method as Single-query based Workload Memory Prediction
(SingleWMP). Formally, given a workload 𝑤 , consisting of a
set of Q queries, the estimated memory demand 𝑦 of𝑤 is:

𝑦 =
| Q |∑︁
𝑖=1

𝑦𝑞𝑖 (11)

where 𝑦𝑞𝑖 is the estimated memory demand of a single query
𝑞𝑖 ∈ Q. In this approach, we use query plan features of each
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(a) TPC-DS (b) JOB (c) TPC-C
Figure 4: Root Mean Squared Errors (smaller is better)

query as direct input to an ML algorithm. During the train-
ing, the algorithm additionally receives the historical mem-
ory usage of each training query. Using the pairs of query
plan features and memory usage of many individual training
queries, the algorithm learns a function to estimate the mem-
ory demand of individual queries. Unlike the LearnedWMP
approach, the SingleWMP approach does not learn query tem-
plates from historical queries. Like LearnedWMP, we use DNN,
Ridge, DT, RF, and XGB techniques to train five variations
of the SingleWMP models. We refer to these variants of Sin-
gleWMP as SingleWMP-DNN, SingleWMP-Ridge, SingleWMP-
DT, SingleWMP-RF, and SingleWMP-XGB. An additional method
of the SingleWMP approach is SingleWMP-DBMS, which ob-
tains the estimated memory usage for each query directly from
a DBMS’s query optimizer. SingleWMP-DBMS does not use
ML in the memory estimation; instead, it relies on heuristics
written by database experts. SingleWMP-DBMS represents the
current state of practice in the commercial DBMSs.

Datasets. We used three popular database benchmarks: TCP-
DS[52] Join Order Benchmark or JOB[34], and TPC-C[36]. TPC-
DS and JOB are benchmarks for analytical workloads, whereas
TPC-C is for transactional workloads. We used either its query
generation toolkit or the seed query templates for each bench-
mark to generate queries for our experiment. We generated 93000
queries for TPC-DS, 2300 queries for JOB, and 3958 queries for
TPC-C. For each benchmark, we randomly divided the queries
into training (Q𝑡𝑟𝑎𝑖𝑛) and test (Q𝑡𝑒𝑠𝑡 ) partitions, with 80% of the
queries belonging to Q𝑡𝑟𝑎𝑖𝑛 and the remaining 20% to Q𝑡𝑒𝑠𝑡 . We
grouped queries into workload batches from training and test
partitions. We experimented with different batch sizes and found
10 to be a decent size to improve the memory estimation of our
experimental workloads. We discuss our experiment with batch
size parameter in Section 5.3.
Evaluation metrics. To evaluate the accuracy performance of
various models, we use two accuracy metrics:
• Root Mean Squared Error (RMSE): For measuring the accuracy

performance of the LearnedWMP and SingleWMP models. We
use 𝐿2 loss or root mean squared error (RMSE), as follows:

𝑅𝑀𝑆𝐸 =

√︄∑𝑁
𝑖=1 (𝑦𝑖 − 𝑦𝑖 )2

𝑁
(12)

We seek to find an estimator that minimizes the RMSE.
• IQR and Error Distribution: While RMSE is convenient to use,

it does not provide insights into the distribution of prediction
errors of a model. Two models can have similar RMSE scores
but different distributions of errors. For each benchmark, we
compute the signed differences between the actual and the pre-
dicted memory estimates - the residuals of errors. We use the

residuals to generate violin plots [11], which help us compare
the interquartile ranges (IQR) and the error distributions of
different models. IQR is defined as follows.

𝐼𝑄𝑅 = 𝑞𝑛 (0.75) − 𝑞𝑛 (0.25) (13)
Here, 𝑞𝑛 (0.75) is the 75th percentile or the upper quartile, and
the 𝑞𝑛 (0.25) is the 25th percentile or the lower quartile. The
range of values that fall between these two quartiles is called
the interquartile range (IQR). IQR is shown as a thick line inside
the violin in a violin plot. A white circle on the IQR represents
the median. When a model’s violin is closer to zero and has a
smaller violin, it is more accurate.

In addition to computing accuracy, for each ML-based Learned-
WMP and SingleWMP model, we measured the model size in
kilobyte (𝑘𝐵), the training time in millisecond (𝑚𝑠), and the infer-
ence time in microsecond (𝜇).
Experiments Design. In Section 5.1, we evaluate the perfor-
mance of LearnedWMP-based models compared to that of Single-
WMP-based models. The computational overhead of the Learned-
WMP model is discussed in Section 5.2. This includes the model
size and runtime cost of training and inference of LearnedWMP-
based models and how it compares to SingleWMP-based models’.
Section 5.3 performs a sensitive study for the parameters and
design choices of the LearnedWMP model. We conducted the
experiments using a commercial DBMS instance running on a
Linux system with 8 CPU cores, 32 GB of memory, and 500 GB
of disk space.

5.1 LearnedWMP Accuracy Performance
We report on LearnedWMP’s accuracy performance in terms of
RMSE and the distribution of error residuals presented as violin
plots for completeness.
RMSE. Fig. 4 reports the RMSEs of SingleWMP-based and Learned-
WMP-based models. SingleWMP-DBMS represents the state of
practice in commercial DBMSs. LearnedWMP models and ML-
based SingleWMP models significantly outperformed the Single-
WMP-DBMS model. For the TPC-DS, SingleWMP-DBMS’s RMSE
was 1868. In comparison, LearnedWMP-DNN and LearnedWMP-
Ridge, the two best models, achieved an RMSE of 169, represent-
ing a 90.95% reduction in estimation error compared to SingleWMP-
DBMS.

On RMSE, ML-based methods — LearnedWMP-based models
and SingleWMP-based ML models — were significantly more ac-
curate than SingleWMP-DBMS method. Using heuristics, Single-
WMP-DBMS couldn’t accurately capture the complex interac-
tions between database operators within a query plan and pro-
duced large estimation errors. In contrast, using ML, LearnedWMP-
based, and SingleWMP-based ML models learned to estimate the
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(a) TPC-DS (b) JOB (c) TPC-C
Figure 5: Estimation Error Residuals Distributions

memory requirements of complex database workloads more ac-
curately.
IQR and Error Distribution. Fig. 5 compares the violin plots
of different models. The violins of the SingleWMP-DBMS are
wider and far from zero. DBMS’s estimations are skewed towards
either underestimation or overestimation and span a larger re-
gion. In contrast, ML-based estimates are balanced between over
and under-estimations and are not skewed. The violins of ML-
based models span a smaller range than SingleWMP-DBMS’s.
For TCP-DS, LearnedWMP-DNN’s violin is centered at zero and
small. For the same dataset, SingleWMP-DBMS’s violin is skewed
toward underestimation and larger when compared to the IQR of
LearnedWMP-DNN. We see a similar pattern when comparing
the violins of SingleWMP-DBMS models with the violins of other
ML models. Using human-crafted rules, SingleWMP-DBMS’s es-
timation errors are not distributed between overestimations and
underestimations. These static rules skew the estimations toward
one direction. In contrast, ML-based models learn from real-world
workloads — which include examples of both overestimation and
underestimation — and learn to compute memory predictions
that are not skewed in one direction. For instance, the memory
estimation errors of the DNN and XGboost methods for both
SingleWMP-based and LearnedWMP-based models are smaller
and balanced.

5.2 Computational Overhead
We evaluate the LearnedWMP-based and SingleWMP-based mod-
els overhead in terms of training time, inference time, and model
size.
Training and Inference Time. Fig. 6 reports the training time of
all models3. For each dataset, LearnedWMP-based and SingleWMP-
based methods use the same set of training queries as input. The
singleWMP-based method uses individual training queries di-
rectly as input to the model. LearnedWMP batches the train-
ing queries into workloads, represents workloads as histograms,
and uses the histograms as input to the models. Compared to
SingleWMP-based models, the training of LearnedWMP-based
models was significantly faster. For instance, with the TPC-DS
dataset, SingleWMP-XGB was trained in 912.7 ms, whereas Learn-
edWMP-XGB was trained in 404 ms — which is more than 2x
faster. For all three datasets, we observe a similar trend: the train-
ing of a LearnedWMP-based model was faster than that of the
equivalent SingleWMP-based model. The Ridge is the only algo-
rithm that did not demonstrate a significant difference in training
time between the LearnedWMP and SingleWMP approaches. This
3Note that for this set of experiments, we do not consider LearnedWMP-DBMS as
it is not an ML model, and it does not have a training and an inference cost.
is expected as Ridge is a linear algorithm with no sophisticated
learning method.

Fig. 7 compares the inference time of SingleWMP-based and
LearnedWMP-based models. The LearnedWMP-based models
achieved between 3x and 10x acceleration compared to their
equivalent SingleWMP-based models. As an example, for infer-
ence of TPC-DS workloads, LearnedWMP-DNN took 87.3 µs
as compared to 870.5 µs needed by SingleWMP-DNN. Similarly,
with JOB, LearnedWMP-XGB needed 313.3 µs for inference, while
SingleWMP-XGB took 1115.6 µs. Accelerated training and infer-
ence performance of the LearnedWMP models can be attributed
to our approach of formulating the training and inference task
at the level of workloads, not at the level of individual queries.
LearnedWMP-based models process batches of queries at the
same time and, therefore, speed up the computation during both
training and inference. In contrast, SingleWMP-based models
require a longer time for training and inference as they work one
query at a time.
Model Size. The model size largely depends on the learning
algorithm and the feature space complexity of the training set. Fig.
8 shows the size of LearnedWMP-based and SingleWMP-based
models. LearnedWMP-based models were significantly smaller
when compared with equivalent SingleWMP-based models. For
example, when compared with SingleWMP-DNN, LearnedWMP-
DNN is 59% TPC-DS, 72% JOB, and 97% TPC-C smaller than
SingleWMP-DNN. We see a similar pattern with XGBoost, RF,
and DT when comparing their LearnedWMP-based models with
equivalent SingleWMP-based models. Batching training queries
as workloads compress the information a LearnedWMP model
needs to process during training. This compression helps the
LearnedWMP approach produce smaller models compared to
those of the SingleWMP approach. Ridge is an exception to this
observation. The size of a LearnedWMP-Ridge model is larger
than its equivalent SingleWMP-Ridge model. This was expected
as Ridge learns a set of coefficients, one for each input feature in
the training dataset. In our training datasets, each LearnedWMP
training example has more input features, one per query template,
than the number of features in a SingleWMP training example.
As a result, LearnedWMP-Ridge learns more coefficients during
training and produces larger models.

5.3 Sensitivity Analysis
In the next set of experiments, we investigate the impact of vari-
ous parameters of LearnedWMP, such as the batch size parameter
𝑠 , the number of query templates 𝐾 , the effect of variable batch
size 𝑠 , the choice of the learning query templates techniques, and
their effect on the memory prediction accuracy.

5.3.1 LearningQuery Templates. In the first phase of Learned-
WMP, queries are assigned to templates based on their similarity
in query plan characteristics and estimates, with the expectation
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(a) TPC-DS (b) JOB (c) TPC-C
Figure 6: ML model training time

(a) TPC-DS (b) JOB (c) TPC-C
Figure 7: ML model inference time

(a) TPC-DS (b) JOB (c) TPC-C
Figure 8: ML model size

that queries in the same template exhibit similar memory usage
(See Section 4.2.1). We evaluated our method against four other
approaches for learning query templates:
(1) Query plan based: Our proposed LearnedWMP model as-

signs queries to query templates by extracting features from
the query plan and then employing a 𝑘-means clustering
algorithm. Details can be found in Section 4.2.1.

(2) Heuristic Rule based: We create a set of rules, one per tem-
plate, to classify a query statement into one of the pre-defined
query templates. Subject matter experts, such as DBAs, may
need to be involved in defining these rules [80].

(3) Bag of Words based: We extract unique keywords from
the entire query corpus to build a vocabulary. Each query
expression generates a feature vector representing the count
of each vocabulary word in the query. The 𝑘-means clustering
algorithm then assigns these feature vectors to different query
templates.

(4) Text mining based: This is a variation of the bag of words
approach, which indiscriminately extracts unique keywords
from the training corpus. In contrast, in this approach, the
vocabulary includes only those keywords that are either data-
base object names (e.g., a Table name) or SQL clauses (e.g.,
group by). After vocabulary building, we generate a feature
vector for each query then 𝑘-means clustering to assign them
to templates.

(5) Word embeddings based: Word Embeddings addresses two
limitations of bag-of-words methods: dealing with numerous
keywords and capturing keyword proximity. Using word em-
beddings, we construct a vocabulary from the query corpus
and generate a feature vector for each query expression. Ap-
plying 𝑘-means clustering assigns these feature vectors to
templates.

(6) SQL Embbedings using Foundation Models: Since SQL
queries consist of meaningful textual statements, we lever-
age pre-trained foundation models to embed these state-
ments into a high-dimensional space, following established
approaches in the literature [70, 73]. We use Sentence-Tran-
sformers [15], a fine-tuned model based on a pre-trained
Microsoft mpnet-base model[48]. The generated query em-
beddings are then used in the LearnedWMP to form templates
for the workloads.

To evaluate the performance of the five alternative methods for
learning templates, we used the LearnedWMP-XGB model with
JOB workloads. We trained five LearnedWMP-XGB models, each
using a different method for learning templates. Fig. 9 compares
the accuracy of these models. The model— labeled query plan
(ours) in the figure—that uses our original method for learning
templates outperformed the four alternatives. Compared with
the alternatives, the LearnedWMP method uses features from the
query plan. The query plans include estimates that are strong
indicators of the query’s resource usage. A prior research [16]
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Figure 9: LearnedWMP’s accuracy performance achieved
by different methods for learning query templates.

made a similar observation. In contrast, the alternative methods
extract features directly from the query expression, which does
not provide insights into the query’s memory usage. A major
limitation of the rules-based method is that creating effective
rules requires knowledge from human experts, which can be both
a slow and challenging process.

5.3.2 Effect of the number of query templates. As described in
Section 4.2.1, LearnedWMP assigns queries into templates, such
as queries with similar query plan characteristics in the same
groups. This experiment aimed to assess the effects of the num-
ber of templates on the LearnedWMP model’s accuracy. In the
experiment, we tested the performance of the LearnedWMP-XGB
model on three datasets using 10 to 100 templates, comparing
the model’s performance across different template sizes.
We used the Mean Absolute Percent Error (MAPE) [10] to eval-
uate and compare these models, each using a different num-
ber of templates. The scale of the error can vary significantly
when changing the number of templates. MAPE is unaffected
by changes in the error scale when comparing models trained
with different numbers of templates because it calculates a rela-
tive error. We used equation (14) to compute the MAPE of the
LearnedWMP-XGB model.

𝑀𝐴𝑃𝐸 =
1
𝑁

𝑁∑︁
𝑖=1

|𝑦𝑖 − 𝑦𝑖 |
𝑦𝑖

× 100 (14)

We computed the relative estimation error between the actual
and predicted memory usage by dividing the absolute difference
between them by the actual value and then averaged the relative
estimation errors across all workloads. The resulting average was
multiplied by 100 to obtain the MAPE, ranging from 0 to 100 per-
cent. Fig. 11 shows the performance of LearnedWMP-XGB as a
factor of the number of templates. Fig 10 shows the performance
of the LearnedWMP-XGB model for each template size for each
dataset. For the TPC-DS dataset, performance improved as the
number of templates increased. The best performance was ob-
served at 100 templates. However, for the JOB and TPC-C datasets,
performance varied as the number of templates increased, with
optimal performance achieved within the 20 to 40 templates. We
argue that this correlation between the number of queries and the
optimal number of templates is due to the characteristics of each
dataset. The larger TPC-DS dataset benefits from a greater di-
versity of queries (93,000) queries generated from (99) templates,
which allows clustering with a higher number of templates. How-
ever, the other datasets lack the same level of query variation,
which explains why the best performance was achieved with a
moderate number of templates.

5.3.3 Effect of the batch size parameter. The experiments we
discussed so far used a constant workload batch size of 10. The
batch size, 𝑠 , is a tunable hyperparameter of the LearnedWMP
model. We tried different workload batch sizes and compared
their impact on the LearnedWMP’s accuracy. We used the TPC-
DS dataset and the LearnedWMP-XGB model for this experiment.
We used 12 values for the batch size: [1, 2, 3, 5, 10, 15, 20, 25,

30, 35, 40, 45, 50]. For each value, we created TPC-DS training
and test workloads, which we used for training and evaluating a
LearnedWMP-XGB model. We computed and used MAPE to com-
pare the relative accuracy performance of these models. Fig. 11
shows the performance of LearnedWMP-XGB as a factor of the
batch size. We can see that as the batch size increases, the accu-
racy of the memory estimation improves. The improvement is
more rapid initially, gradually slowing down, as expected of any
learning algorithm as it approaches perfect prediction. For exam-
ple, at batch size 2, the estimation error was 10.4% then at batch
size 10, the error was reduced to 3.8%. We have seen a similar
improvement in prediction accuracy with the other experimental
datasets. This observation supports our position that batch esti-
mation of workload memory is more accurate than estimating
one query’s memory at a time. Additionally, we compared the
MAPE of the LearnedWMP model with batch size 1 with the Sin-
gleWMP model’s MAPE. At batch size 1, LearnedWMP’s MAPE
is 10.2, whereas SingleWMP’s MAPE is 3.6.

The SingleWMP model outperformed the LearnedWMP batch
1 model, as expected, since SingleWMP was directly trained with
query plan features, which provided strong signals for individ-
ual query memory usage. In contrast, the LearnedWMP model
mapped queries into templates and generated predictions based
on collective memory usage, lacking the ability to learn from
individual query features. While LearnedWMP may have weaker
signals for single-query predictions, it consistently outperforms
SingleWMP when predicting memory demand for batches of
queries, as demonstrated in Section 5.1.

5.3.4 Effect of variable batch size. To evaluate the generalizabil-
ity of LearnedWMP across varying workload sizes, we trained a
model using a mixed-batch setup that included workloads with
batch sizes of 5, 10, 15, 20, and 25—each contributing 20% of the
training data. We then evaluated the model on five separate test
sets, each corresponding to a different batch size. As shown in
Fig. 12, the mixed-batch model demonstrates consistently strong
performance across all batch sizes. When compared to models
trained on a single batch size, the mixed-batch model achieves
comparable accuracy. For example, the model trained exclusively
on a batch size of 15 achieved a MAPE of 2.9 on its corresponding
test set, while the mixed-batch model obtained a MAPE of 3.71
on the same set. Although there is a slight increase in error, the
performance remains competitive, underscoring the robustness
and flexibility of the mixed-batch training approach.

5.3.5 DBMS Integration & Broader Impact. A DBMS vendor can
train a LearnedWMP model on sample workloads and ship it
with the DBMS product to enable memory prediction before
query execution. During deployment, the model can be refined
using real query traces, allowing it to adapt to workload-specific
patterns and dynamically determine batch sizes. LearnedWMP
can be integrated without modifying the optimizer or execution
engine through various strategies: (1) as an external estimator
providing predictions to the resource manager, (2) as a middle-
ware component analyzing query batches pre-execution, (3) as a
query scheduler plugin for memory-aware scheduling, or (4) as
a workload management module guiding batch formation and
provisioning. Since LearnedWMP relies on features from query
execution plans, commonly available in modern DBMSs, such
integration is practical. Moreover, many DBMSs now offer built-
in ML infrastructure to host, retrain, and serve models, such as
LearnedWMP [1, 3, 4].
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(a) TPC-DS (b) JOB (c) TPC-C
Figure 10: MAPE at different template sizes with LearnedWMP XGBoost for datasets: (a) TPC-DS, (b) JOB, and (c) TPC-C

Figure 11: TPC-DS MAPE at different batch sizes with
LearnedWMP XGBoost Model.

Figure 12: TPC-DS MAPE evaluted for mixed batch sizes
with LearnedWMP XGBoost Model.
6 Conclusions

We proposed a novel approach to predicting the memory us-
age of database queries in batches. Our approach is a paradigm
shift from the state of the practice and the state-of-the-art meth-
ods designed to estimate resource demand for single queries. As
an embodiment of our approach, we presented LearnedWMP, a
method for estimating the working memory demand of a batch of
queries, a workload. The LearnedWMP method operates in three
phases. First, it learns query templates from historical queries.
Second, it constructs histograms from the training workloads.
Third, using training workloads, it trains a regression model
to predict the memory requirements of unseen workloads. We
model the prediction task as a distribution regression problem.
We performed a comprehensive experimental evaluation of the
LearnedWMP model against the state-of-the-practice method of
a contemporary DBMS, multiple sensible baselines, and state-of-
the-art methods. Our analysis demonstrates that our proposed
method significantly improves the memory estimation of the
current state of the practice. Additionally, LearnedWMP matches
the performance of advanced ML-based methods trained with
a single-query approach. It generates smaller models, enabling
faster training and predictions. We conducted parameter sensi-
tivity analysis and explored various strategies for learning query
templates from historical DBMS queries. Our novel LearnedWMP
model presents an alternative perspective on a crucial DBMS
problem, easily integratable with major DBMS products.

7 Artifacts
The source code and resources for our research are available for
reproducibility: https://github.com/shaikhq/learnedwmp
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