
␣

␣

In-depth Analysis of LLM-based Schema Linking
George Katsogiannis-Meimarakis

IBM Research, Switzerland
Univ. Grenoble Alpes, France

Athena Research Center, Greece
katso@athenarc.gr

Katsiaryna Mirylenka
IBM Research

Zurich, Switzerland
kmi@zurich.ibm.com

Paolo Scotton
IBM Research

Zurich, Switzerland
psc@zurich.ibm.com

Francesco Fusco
IBM Research

Zurich, Switzerland
ffu@zurich.ibm.com

Abdel Labbi
IBM Research

Zurich, Switzerland
abl@zurich.ibm.com

Abstract
This work examines the critical component of schema linking
in the Text-to-SQL domain, investigating the ability of Large
Language Models (LLMs) to accurately identify relevant database
tables and columns for SQL query generation from natural lan-
guage requests. We conduct an in-depth analysis of LLM-based
schema linking approaches, exploring the best practices to ob-
tain high-quality predictions. Additionally, we experiment with
multiple techniques, such as question decomposition, that have
been successfully applied in Text-to-SQL and test their benefits
to schema linking. We also challenge the prevailing assump-
tion that the oracle linked schema, comprising the minimum
set of columns necessary for SQL generation, is always the opti-
mal schema representation. Our experiments on the Spider and
BIRD benchmarks demonstrate the ability of LLMs to perform
high-quality schema linking, boosting the overall Text-to-SQL
performance.

Keywords
Schema Linking, Text-to-SQL, NLIDBs, LLMs

1 Introduction
The demand for natural language interfaces to relational databases
(Text-to-SQL) has grown significantly, particularly among non-
technical users. This longstanding problem, which has been
explored for decades [5, 10, 43], has gained renewed interest
in recent years due to the rapid advancements in natural lan-
guage processing (NLP) models. However, this task remains a
significant challenge due to the complexity of both natural lan-
guage understanding and relational database schema naviga-
tion [4, 21, 23, 37, 38]. Given the difficulty of the problem, re-
searchers are also focusing on breaking it down and tackling its
sub-problems [8, 15, 19, 30, 35, 41, 48]. One such sub-problem is
schema linking, which is the focus of this work.

Schema Linking is a component of Text-to-SQL systems that,
given a Natural Language Question (NLQ), aims at identifying
the DB elements (tables and columns) that are necessary to trans-
form the NL question into its corresponding SQL representa-
tion [25, 50]. Modern relational databases (RDBs) can encompass
a multitude of tables and columns, making it difficult for Text-
to-SQL systems to simultaneously identify the relevant elements
and generate accurate SQL queries. Schema linking offers two
significant advantages for Text-to-SQL models: (i) it relieves the

EDBT ’26, Tampere (Finland)
© 2025 Copyright held by the owner/author(s). Published on OpenProceedings.org
under ISBN 978-3-98318-102-5, series ISSN 2367-2005. Distribution of this paper is
permitted under the terms of the Creative Commons license CC-by-nc-nd 4.0.

Name

Birth_Year

Citizenship

Singer

Singer_ID

Singer_ID

Concert

Stadium_ID

Name

Location

Capacity

Stadium

Stadium_ID

How many French singers have
performed at Wembley stadium?

Title

Singer

Release_Year

Song

Song_ID

SELECT COUNT(DISTINCT Singer.Sinder_ID)
FROM Singer
JOIN Concert ON Singer.Singer_ID = Concert.Singer_ID
JOIN Stadium ON Stadium.Stadium_ID = Concert.Stadium_ID
WHERE Singer.Citizenship = "French"
AND Stadium.Name = "Wembley"

Figure 1: An example of schema linking. The highlighted
blue columns and red tables are necessary for translating
the question to SQL.

model from the burden of identifying relevant database elements,
enabling it to concentrate solely on generating the correct SQL
structure, and (ii) it reduces the number of database tables and
columns that need to be included in the prompt, cutting cost
and processing time. The second benefit is crucial, as real-world
databases often contain an overwhelming number of tables that
exceed the prompt length of certain models.

Figure 1 show an example of the schema linking task where
given a DB schema describing Singers, Concerts, Songs and Sta-
diums, and a user question: ‘How many French singers have per-
formed at Wembley stadium? ‘ the task is to identify the relevant
schema elements: ‘Singer.Singer_ID‘, ‘Singer.Citizenship‘, ‘Con-
cert.Singer_ID‘, ‘Concert.Stadium_ID‘, ‘Stadium.Stadium_ID‘ and
‘Stadium.Name‘.

Experiments & Analyses Paper

Series ISSN: 2367-2005 117 10.48786/edbt.2026.11

http://dx.doi.org/10.48786/edbt.2026.11

EDBT ’26, 24-27 March 2026, Tampere (Finland) Katsogiannis-Meimarakis et al.

Earlier works that used schema linking [7, 46] mostly relied
on n-gram comparison and string matching between the NLQ
and the DB tables and columns. These approaches were relatively
simple and could discover links when the user referred to the DB
elements explicitly and with the same vocabulary as in the DB
declarations. Recent works are using dedicated models for schema
linking that are more robust to understanding synonyms and
discovering implicit mentions in the NLQ. While some systems
use ranking approaches [26], or generate a preliminary SQL query
for schema linking, most works [12, 35, 49] take advantage of
LLMs to generate the needed tables and columns, which are the
main focus of this work.

Although multiple previous works have used LLMs as schema
linking components, showcasing their importance, a systematic
analysis of their performance, their sensitivity to hyperparame-
ters such as the number of demonstration examples, and the best
practices to use them still remain underexplored. In fact, most
systems propose to prompt an LLM with the schema and the NLQ
and instruct it to choose the right tables and columns for schema
linking, without evaluating its performance on schema linking
or investigating if it could be improved. Furthermore, most of
these works rely on closed and proprietary LLMs. such as GPT-4
[32], making the reproducibility of their results unreliable due to
undisclosed changes that are often performed by their creators.

In this work, we perform an experimental analysis of LLM-
based schema linking, evaluating the performance and trade-offs
of different models for the schema linking task and their effect
on the text-to-SQL task. Given that LLM-based schema linking is
usually not clearly defined or formalized in previous works, we
created a unified schema linking pipeline that allows us to fairly
compare different LLMs. Furthermore, we use techniques that
have been proven to work well in LLM-based text-to-SQL and
test them in the context of schema linking. Specifically, we ex-
periment with in-context learning with demonstration retrieval,
supervised fine-tuning, and question decomposition to uncover
the best practices for LLM-based schema linking. Furthermore,
we investigate whether common drawbacks of LLMs, such as hal-
lucinations and lack of DB knowledge, can be easily remediated
by a set of simple refinement techniques. Finally, we use a schema
enrichment technique to test the common notion that perfect
schema linking (i.e. only keeping the bare minimum necessary
tables/columns) leads to the best performance, or if text-to-SQL
models benefit from additional schema info that is not used in
the final SQL.

Our experimental analysis provides multiple insights on the
best practices for LLM-based schema linking and its effect on
Text-to-SQL performance. The main contributions and the outline
of our work are the following: Section 2 presents the related work
to our study and an overview of previous studies and approaches
to schema linking. Section 4 presents the methodology that was
used to implement the pipeline for our experiments. Sections
5, 6, and 7 present our experimental results, offering valuable
insights into the current schema linking capabilities of LLMs and
revealing insights on how to best use them. Our code is made
publicly available1.

2 Related Work
2.1 Text-to-SQL and Previous Surveys
The field of Text-to-SQL has seen a large increase in research
and industrial interest during the past years, with major driving
1https://github.com/IBM/few-shot-schema-linking

forces being the introduction of large cross-domain benchmarks,
such as Spider [51] and BIRD [28], and the advancement of NLP
techniques such as LLMs based on the Transformer [44].

Due to the great interest shown for the Text-to-SQL problem
and the numerous systems proposed in the literature, there have
been multiple works that have provided literature reviews and
surveys of existing solutions. Earlier works [2, 24] focused mostly
on more traditional approaches from the DB community that did
not rely on neural networks. Later surveys [11, 21] investigated
the use of neural networks for the problem, which at the time
focused on introducing novel architectures and representation
techniques [6, 46, 53]. Several latest surveys [20, 55] provide
an overview of Text-to-SQL approaches using LLMs, classify-
ing them into categories based on their training and usage. The
latest works [12, 35, 45, 49], that are based on LLMs, focus on
breaking down the Text-to-SQL problem into smaller steps and
solving them separately, and improving the quality of their input
instructions (i.e.,prompts) and of the generated SQL queries. Our
work differs from these previous surveys in the form that it fo-
cuses on experimental evaluation of schema linking, while they
only briefly study it as a part of the larger Text-to-SQL pipeline,
without any experiments.

Another set of recent works [9, 16, 27, 52] study how to create
better prompts for the LLM that contain helpful information
(e.g.,schema information, column types, more informative table
and column names, etc.) as well as techniques for retrieving the
most relevant few-shot demonstrations [16, 27] for In-Context
Learning (ICL). Our work takes advantage of these studies by
using prompting and retrieval techniques that have already been
proven to work well, letting us focus on the schema linking
problem.

2.2 Schema Linking
Schema linking is often used in the pipeline of Text-to-SQL sys-
tems in to filter-out unnecessary schema elements or to empha-
size the most relevant elements, given a specific NL Question.
Earlier works [6, 7, 18, 46] mostly relied on n-gram matching tech-
niques to find mentions of DB elements in the NLQ. This allowed
for specific parts of the NL Query and DB tables and columns
to be specifically linked between each other, producing an addi-
tional input signal for the neural network. A different work [25]
proposed a learned MLP classifier to predict such links, demon-
strating that even a relatively simple schema linking model can
improve performance in the text-to-SQL task. Although schema
linking was proven beneficial, these approaches had their short-
comings. The string matching techniques are not robust to syn-
onyms as they require that the question and schema follow the
same phrasing and vocabulary. Furthermore, creating training
data for a learned classifier can not be done automatically and re-
quires a lot of manual work that is difficult to scale. Additionally,
schema elements can sometimes be implied and not mentioned
explicitly in the NL Query, making it impossible to identify them
with this approach. For these reasons, more recent works have
focused on only predicting the required tables and columns and
not the part of the NLQ that mentions them [15]. They also rely
on trained or pre-trained models that can generalize to harder
cases where synonyms are used or some DB elements are implied.
For these types of approaches, we observe to major categories
based on the way the predictions are generated.

118

In-depth Analysis of LLM-based Schema Linking EDBT ’26, 24-27 March 2026, Tampere (Finland)

Ranking-based Schema Linking. On one hand we have rank-
ing approaches where each schema element is assigned a rele-
vance score, based on the given NL Query. Such an approach
is proposed by RESDSQL [26] and later adopted by CodeS [27],
where an encoder-only Language Model (e.g., RoBERTA [29]) is
fine-tuned to generate relevance scores. This approach is more
explainable as the score of each element can be examined to bet-
ter understand the model’s performance, however it requires to
be fine-tuned and its thresholds must be tuned based on a specific
dataset making it more difficult to transfer to a new dataset. To
avoid setting thresholds, RESDSQL [26] proposes to keep the
top-m tables and top-n columns based on the relevance scores,
however this also requires setting the m and n parameters and
can lead to low recall as we show in our experimental section.
Preliminary SQL Generation. On the other hand, another
work [50] proposes to generate a preliminary SQL query with
a Text-to-SQL model and extract the used columns and tables
as schema linking predictions. On one hand this approach can
perform schema linking without the need for an additional model,
because it use the already available Text-to-SQL model. On the
other hand, it is very likely that a preliminary SQL will contain
a smaller amount of schema elements than the predictions of
other systems, because they must all appear in a single query. As
such it is more likely that such an approach might miss tables
and columns that could have otherwise been predicted, leading
to a lower recall which can be catastrophic. Additionally, if a
model was able to generate a query that uses all the right schema
elements, then it probable already good enough that it does not
need schema linking.
LLM-based Schema Linking. Finally, there are approaches
that rely on LLMs to predict the needed tables and columns as
generated text. These approaches [12, 16, 35, 45, 49] are te most
popular and use zero or few-shot prompting and ask the model
to predict which tables and columns are required to generate the
SQL that corresponds to a given NL Query. The advantage of
these approaches is that LLMs can be used without the need of
fine-tuning, making them easier to transfer to a new DB, and
do not require any knob tuning as they do not need to set any
thresholds. Our work focuses on this category of schema linking,
as we work towards formalizing and evaluating this process that
is often skimmed over in most systems. In fact, even though
the aforementioned systems are some of the best performing in
the literature, they do not offer many insights into how schema
linking helps their system or how it could be improved. This
work explores the different possible choices in the schema linking
pipeline and derives insights on how to optimize the performance
of this component.

2.3 Question Decomposition
The task of Question Decomposition has been previously pro-
posed [33] as an approach for handling difficult examples of
problems where a solution is already available but not as robust.
While earlier works [13, 34] focused on automatically generat-
ing corpora of decomposed questions to train decomposition
models, more recent works [22, 54] rely on the power of LLMs
which are able to generate decompositions without the need for
any fine-tuning. In the context of Text-to-SQL, there have been
a few works that have integrated such techniques. MAC-SQL
[45] uses Question Decomposition to guide the model towards
a step-by-step reasoning during SQL prediction. Another work
[47] proposes a weakly supervised approach through question

decomposition that generates synthetic data by breaking down
complex NL questions into simpler ones. Finally, on slightly dif-
ferent principle, the approach outlined in [30] incorporates active
user feedback to enhance decomposed SQL generation. In the con-
text of this work, we investigate whether schema linking could
also benefit from decomposing complex questions and separately
handling easier sub-questions.

3 Problem Definition
3.1 Text-to-SQL
The Text-to-SQL problem seeks to bridge the gap between natural
language and structured data, allowing users to query RDBs using
human language. Given a natural language question, the goal is to
generate a corresponding SQL query that can be executed against
a specified database (DB) to retrieve the desired information.

More formally, given a sequence of tokens 𝑋 = (𝑥𝑖)𝑡𝑖=1 repre-
senting a natural language question (NLQ) over a database D, the
Text-to-SQL task is to generate or transform it into a sequence of
tokens representing the corresponding SQL query 𝑄 = (𝑞𝑖)𝑟𝑖=1,
formulated with respect to D.

Database representation. The database D consists of 𝑛
tables 𝑇1,𝑇2, ...,𝑇𝑛 , where each table 𝑇𝑖 contains the columns
𝐶𝑖1,𝐶𝑖2, ...,𝐶𝑖𝑚𝑖 . The value𝑚𝑖 represents the number of columns
in table 𝑇𝑖 . We also define 𝑡𝑖1, 𝑡𝑖2, ..., 𝑡𝑖𝑚𝑖 being the types associ-
ated to the columns, and 𝑘𝑖1, 𝑘𝑖2, ..., 𝑘𝑖𝑚𝑖 , 𝑘 𝑗 where 𝑘 ∈ {none,
primary, foreign} indicating whether the column has no special
properties or is a primary or a foreign key.

A SQL query 𝑄 is considered a successful generation for the
NLQ 𝑋 if it is: (i) syntactically correctness and executable for the
database D, and (ii) aligned with the user’s intent, leading to the
requested results.

3.2 Schema Linking
The Schema Linking problem aims at identifying the relevant DB
elements (i.e., tables and columns) that are needed to construct a
SQL query, given a NL query. It can be represented as a function
𝜙 (·) that given an NLQ 𝑋 produces a set of tables T = {𝑇𝑘 }𝑠𝑘=1
and the corresponding columns within the tables C = {𝐶𝑡

𝑗 }𝑙𝑗=1,
𝑡 ∈ T .

What must also be noted is that recall is a key assessment
metric for this task because if a schema linking prediction misses
a table or column that is needed for the SQL, then it will be
impossible for the Text-to-SQL model to generate the correct
SQL query.

The schema linking approaches in the literature usually con-
sider the optimal set of columns C and tables T to contain mini-
mum number of the schema elements necessary for SQL to be
correct and executable, without adding any additional informa-
tion by including some other valid columns from the schema D.
This way the Text-to-SQL model is aimed to operate on the result
of schema linking that only contains the necessary columns and
tables. In addition to the traditional schema linking oracle that
contains the exact needed set of columns and tables, we also
consider enriched schema (see Section 4.6) that might contain
additional columns for better table representation.

4 Methodology
In this section we describe all the methodology and techniques
used in our experiments. More specifically, we provide an overview

119

EDBT ’26, 24-27 March 2026, Tampere (Finland) Katsogiannis-Meimarakis et al.

LLM

{
"tables": ["patient", "laboratory"],
"columns": [

"patient.diagnosis",
"patient.id",
"laboratory.id",
"laboratory.wbc",

]
}

Parsing and Refinement

You are an expert database assistant...
Your goal is to identify the schema elements (tables and...
Do not create the SQL query, only identify the necessary...
Create a json object in the following format...

table examination , columns = [examination.id (integer)...
table patient , columns = [patient.id (integer | primary key)...
table laboratory , columns = [laboratory.id (integer)...

< Instructions >

< DB Schema >

Which patients with SLE have a normal white blood cell level?
HINT: normal white blood cell level is between 3.5 and 9.0

< NL Question + Possible Hint >

examination.diagnosis (Normal , SLE)
patient.diagnosis (SLE)

< Matched Values >

Figure 2: An overview of the schema linking pipeline.

of the pipeline used for in-context schema linking, the demon-
stration retrieval techniques, how question decomposition and
fine-tuning are performed, the prediction refinement strategies,
and how schema enrichment in used.

4.1 In-Context Schema Linking
To perform in-context (or few-shot) schema linking, we must
define on one hand the structure of the given input and on the
other hand the parsing of the generated output. We follow the
findings presented in previous studies [9, 27] and construct our
prompt using the following parts: (i) task instructions, (ii) DB
schema, (iii) NL Question with additional hints when available,
and (iv) matched values from the DB contents. Furthermore, in
order to automatically extract the schema linking predictions
from the LLM’s textual output we chose a JSON output format
that can easily be parsed.

Task Instructions refer to general guidelines (e.g., ”You are an
expert DB assistant“) and task-specific instructions that explain

how the model should behave. For example, we state that it should
predict the needed tables and column and return a JSON dictio-
nary, giving a sample of the expected output. We also state that
the model should not generate a SQL query which is a common
mistake that LLMs make even when asked to only predict tables
and columns, The DB Schema (i.e., the DB tables and the columns
in each table) is an essential input which can be enriched by also
providing the types of the columns (e.g., text, date, number, etc.),
the primary and foreign key properties of the columns, and ex-
emplar values stored in each column. Additionally, some datasets
provide more descriptive names for some DB elements that can
help better understand their purpose. The NL Question is another
essential input which can also be enriched in some cases where
we might also have access to domain-specific evidence that help
disambiguate the NLQ. For example, given the question “List all
patients with normal white blood cell level”, a relevant evidence
is that “normal white blood cell level refers to WBC between 3.5
and 9.0”. Finally, we add Matched Values from the DB that appear
in the NL Query (e.g., the term ”SLE“ is found in the column
”patient.diagnosis“) which can be a strong indicator that the col-
umn in which the value appear is needed to build the SQL. To do
this efficiently we use an approach from the CodeS [27] paper,
where a BM25 index is built for the values of the DB to enable the
fast retrieval of relevant values based on the NLQ. The retrieved
values are then compared to the NLQ using Longest Common
Sub-sequence (LCS) and the most relevant are kept.

Using this approach we can prompt any pre-trained LLM to
generate schema linking predictions, allowing us to uniformly
compare the performance of different models. An example of
our pipeline can be seen in Figure 2. Finally, the predictions can
then be used by any Text-to-SQL system, independently of its
architecture, by filtering out all irrelevant schema elements and
only presenting the predicted tables and columns.

4.2 Demonstration Retrieval for ICL
When performing In-Context Learning it is important to select
demonstrations examples that are similar to the question pre-
sented to the LLM [16]. To retrieve similar examples we follow
a structural similarity approach [27], which uses the semantic
similarity and the structural similarity between the test question
and the questions in the demonstration set. More specifically,
for each test question we calculate two similarity scores with
the demonstration questions: (i) sentence similarity using the
original questions, and (ii) sentence similarity after removing all
entities in the questions. The maximum between the two scores is
then used as the similarity criterion. This approach helps retrieve
questions that are similar in structure, which would have been
otherwise overlooked because of the different entities that ap-
pear in them. Within the scope of this paper, we do not provide
an analysis of the question similarities. An in-depth study by
Pourreza et al. can be found in [36].

4.3 Prediction Refinement Techniques
While pre-trained LLMs show very good performance in under-
standing NL and identifying semantic relations between the NLQ
and the DB elements, they often disregard the database logic
that goes into building a SQL query. For example, they might
not include the necessary foreign keys or a connecting table in
their prediction, which are essential for the SQL query. Addition-
ally, due to the generative nature of LLMs there is no constraint

120

In-depth Analysis of LLM-based Schema Linking EDBT ’26, 24-27 March 2026, Tampere (Finland)

author
genre

book

publisher country

book_author

Figure 3: An example of foreign key-path refinement: The
model predicts the blue tables, but the yellow table is also
needed to generate the SQL query.

preventing the model from generating hallucinations or mis-
spellings of tables and columns (e.g., “actor.birth_year” instead
of “actor.birthYear”). Based on common mistakes, we investi-
gate a set of automatic refinement techniques that can increase
the recall of a model’s predictions. Specifically we consider the
following refinement steps:
A. Approximate String Matching: To tackle the hallucination
and misspelling problem of LLMs we perform approximate string
matching when a prediction does not exactly match a column
or table name, to find the closest match. More specifically, for
every unmatched table and column we calculate the approximate
match scores with the equivalent DB tables or columns and keep
the highest scoring candidate2. We only consider matches above
a threshold of 0.5 so that hallucinations that do not correspond
to any actual element do not get any assignments. If more than
one DB elements achieve the highest similarity score, we include
all tied elements, although this is rare. Additionally, for column
names we calculate the approximation score with and without
the table prefix and keep the average of the two scores. This is
done to ensure that the predicted table has a weight in finding
similar columns but does not overpower the actual column name.
For example, consider the predicted column “airlines.date” that
should be matched to “flights.date”, but would mistakenly be
matched to “airlines.name”, because there is a bigger overlap
between the table names even though only the “flights” tables
has a column named “date”.
B. Table Membership: If a column is predicted, we check that
the table it belongs to is also present in the predictions. If the
table is missing we add it automatically. While this might seem
straight-forward there is no restriction preventing the model
from omitting the table which can hinder the effectiveness of the
following step.
C. Foreign Key Path: While LLMs are good at understanding
semantic relationships between the question and the needed DB
elements, they often disregard the relational model that connects
the DB elements. For this reason, junction tables that are needed
to connect tables used in the query are often overlooked. To tackle
this we use a Foreign Key Path refinement which requires that
all predicted tables must have a connecting path of foreign keys.
An example can be seen in Figure 3 where the tables “author”,
“book”, and “genre” have been predicted by the model, but can
not be used in a SQL query unless the table “book_author”, which
connects authors and books in a many-to-many relationship, is
also added.

2We implement this using the RapidFuzz (https://github.com/rapidfuzz/RapidFuzz)
open source library for fast fuzzy string matching.

Example NLQ: “Among the countries whose GDP is over
1,000,000, how many of them have a population growth
rate of over 3%?”
Example Decomposition:

• “What is the GDP of each country?”
• “What is the population growth rate of each coun-

try?”
• “Which countries have a GDP over 1,000,000?”
• “How many countries have a population growth rate

of over 3%?”

Figure 4: An example of a decomposition for a Natural
Language Question (NLQ).

D. Foreign Key (FK) Connection: Similarly to the previous
refinement, we noticed that LLMs often miss important foreign
key columns without which it is not possible to JOIN the predicted
tables. To address this, if two predicted tables are connected by
Foreign Keys, we make sure that the FK columns are also added
to the predictions.

4.4 Question Decomposition
As previous works [45, 47] have shown, NLQs can refer to multi-
ple DB elements in a very short span of text which can be con-
fusing to the LLM, leading it to miss important tables or columns.
In order to alleviate this challenge and help the model focus on
all the referenced elements independently, we explore the impact
of question decomposition for schema linking. This way schema
linking can be performed on each question separately and the
results of each prediction can be combined to obtain more in-
formed schema links. An example of a decomposition is shown
in Figure 4.

To generate the decomposition of the original question we
follow the few-shot paradigm used in a previous Text-to-SQL
system [45]. This is also similar to the few-shot approach of the
schema linking pipeline, making the combination of the two
approaches much simpler. The prompt contains instructions and
a set of few-shot demonstrations that guide an LLM to follow
specific requirements when decomposing the questions. Our
requirements are that (i) each decomposed question can not be
decomposed any further, (ii) there is no overlap or repetition
between the decomposed questions, and (iii) no new information
or comments are added by the LLM. More specifically, when
question decomposition is used, schema linking is performed
as follows. For each NLQ, we first use few-shot prompting to
generate a set of decomposed questions. We then perform schema
linking on each decomposed question separately to obtain its
table and column predictions. The final schema links correspond
to the union of each individual prediction.

4.5 Fine-tuning for Schema Linking
In addition to In-Context Learning for schema linking, we also
experiment with Supervised Fine-Tuning (SFT) LLMs for the task.
While this approach requires additional time and computational
resources and is less portable, it is possible that a fine-tuned
model will be able to achieve better performance than a more
general one. Towards this direction we create a training corpus
following a similar approach to the one we describe in Section
4.1 with the appropriate expected outputs in JSON format. In

121

EDBT ’26, 24-27 March 2026, Tampere (Finland) Katsogiannis-Meimarakis et al.

this case we do not need to add the instructions that describe the
expected behavior as this will be learned through the fine-tuning
process. We present and compare the performance of fine-tuned
LLMs in Section 6.

4.6 Schema Enrichment Investigation
In this section, we formulate the methods for schema enrichment
that expand the linked schema beyond the strictly necessary
columns for SQL generation. The standard ’oracle’ schema (T𝑏𝑎𝑠𝑒)
contains the minimal columns for a specific query. However,
LLMs might benefit from richer context about a table’s overall
structure, semantics, and content to reason effectively, especially
for complex queries involving relationships or implicit concepts.
We hypothesize that providing a more representative subset of
columns, beyond the bare minimum, could improve the LLM’s
understanding of the table and lead to better SQL generation.
We investigate two strategies to select these additional columns
based on principles of diversity (covering different aspects of the
table) and representativeness (including typical columns).

Example. Consider a table ’Products’ with columns [Pro-
ductID(PK), Name, Category, Price, SupplierID(FK), Weight, De-
scription]. If the oracle schema linking result for a query about
product names is {ProductID, Name}, diversity enrichment might
add ’Description’ (semantically distant text) and representation
enrichment might add ’Price’ (typical numeric attribute) provid-
ing better understanding about the nature of the product entity.
Such representation might help with the correct interpretation
of a query’s constraints and relationships.

1. Diversity. To ensure the diversity coverage of the resulting
sub-schema, we measure the coverage span of T𝑏𝑎𝑠𝑒 and identify
elements in the initial schema T that are the most distant from the
base set. We define the coverage span of a set of columns within a
table as the extent to which these columns represent the different
semantic concepts or data types present in the table, measured by
the maximum distance between column embeddings within that
set. Column embeddings are generated using a Sentence-BERT
model [39] applied to a textual representation of each column,
including its name, data type, table name, descriptive comments
(if available), and sample data values. This captures the semantic
meaning of the column in its database context.

For each table𝑇 ∈ T𝑏𝑎𝑠𝑒 , we consider the coverage span within
the scope of that table. The columns of the base (oracle) schema
are denoted as C𝑖𝑛 , while the remaining columns are denoted
as C𝑜𝑢𝑡 . Within the column embedding space we compute two
sets of distances 𝐷𝑖𝑛 and 𝐷𝑜𝑢𝑡 . 𝐷𝑖𝑛 corresponds to the distances
within the C𝑖𝑛 set, i.e. for each column 𝑐𝑖𝑛 ∈ C𝑖𝑛 we compute
the minimum distance between the embedding of this column to
any other column within C𝑖𝑛 excluding itself:

𝑑𝑖𝑖𝑛 =𝑚𝑖𝑛{𝐸𝐷𝑐∈C𝑖𝑛\𝑐𝑖𝑖𝑛 (𝑒𝑚𝑏𝑒𝑑 (𝑐), 𝑒𝑚𝑏𝑒𝑑 (𝑐𝑖𝑖𝑛))}
where 𝐸𝐷 stands for the Euclidean distance.

For the distances 𝐷𝑜𝑢𝑡 = {𝑑𝑖𝑜𝑢𝑡 } we compute the minimum
distances between all the outside columns C𝑜𝑢𝑡 to the insider
columns within C𝑖𝑛 , this way we check if there is a column that
is not included in the result schema linking set which is quite
different (far away) from the included columns. More formally:

𝑑𝑖𝑜𝑢𝑡 =𝑚𝑖𝑛{𝐸𝐷𝑐∈C𝑖𝑛 (𝑒𝑚𝑏𝑒𝑑 (𝑐), 𝑒𝑚𝑏𝑒𝑑 (𝑐𝑖𝑜𝑢𝑡))}
In order to decide if any other column should be included

in the enriched set, we find the maximum distances 𝑑𝑚𝑎𝑥
𝑖𝑛 and

𝑑𝑚𝑎𝑥
𝑜𝑢𝑡 within the 𝐷𝑖𝑛 and 𝐷𝑜𝑢𝑡 sets and compare them. If 𝑑𝑚𝑎𝑥

𝑖𝑛 ≥
𝑑𝑚𝑎𝑥
𝑜𝑢𝑡 we consider that there is already enough diversity coverage

in the schema linking set, otherwise we add the element with
the maximum outside distance 𝑑𝑚𝑎𝑥

𝑜𝑢𝑡 and repeat the procedure
until 𝑑𝑚𝑎𝑥

𝑖𝑛 ≥ 𝑑𝑚𝑎𝑥
𝑜𝑢𝑡 . Essentially we start from a ‘personalized‘

column set of schema linking, and expand towards a more diverse
‘exploration‘ direction. Additionally, this approach avoids using
arbitrary thresholds for the diversity of the enriched schema
linking, so that it is purely based on the relative distances within
the column embedding space.

2. Representation. We also complement diversity by enrich-
ing the general representation of the characteristic columns. For
this purpose we consider two techniques to sample from the
column embedding space. The first technique uses uniform
sampling in the embedding space based on a predefined inclu-
sion percentage parameter 𝜌 ∈ [0, 1]. A value of 𝜌 = 0 indicates
no minimum requirement, while 𝜌 = 1 includes all columns.
Random sampling is still one of the most popular sampling tech-
niques of representative subsample extraction [40]. The second
proposed representation schema enrichment technique, cluster-
based sampling, identifies clusters within the embedding space
and selects the columns closest to the cluster centroids as repre-
sentatives. The number of clusters is automatically determined
based on a predefined element inclusion distance. This distance
threshold specifies how far an element can be from a cluster to
be included in it. The distance threshold can be set based on the
distribution of embedding distances within and between tables.

5 Experimental Setup
5.1 Datasets
To evaluate our work we use the Spider and BIRD datasets, the
two most widely used datasets in Text-to-SQL literature.

Spider [51] is a cross-domain dataset containing 10,000 NLQ-
SQL pairs over 200 different DBs. It has been one of the main
driving forces in the neural era of Text-to-SQL, providing a com-
mon framework to train and evaluate different models. The SQL
queries of Spider contain a wide variety of SQL clauses such as
GROUP BY, HAVING, ORDER BY, LIMIT, JOIN, INTERSECT,
EXCEPT, UNION, NOT IN, EXISTS, LIKE as well as nested
queries. The authors also provide a categorization of the exam-
ples based on 4 levels of difficulty: easy, medium, hard, and extra
hard.

BIRD [28] is a dataset released in 2023 that follows the same
structure as Spider but contains more complex SQL queries, larger
databases, and NL Questions that require a deeper understanding
of the DB and its domain. The SQL queries found in BIRD contain
all the types of clauses used in Spider as well as CTEs (i.e., WITH
statements), functions (e.g., STRFTIME, CAST, IIF, SUBSTR, etc.),
and mathematical operations between columns. For the above
reasons, BIRD is very challenging and is currently regarded as the
standard benchmark for Text-to-SQL. For certain questions, the
BIRD dataset also provides “evidences” that can be used to give
some insights to the model. These evidences are often definitions.
For example, to the question “Rank schools by their average score
in Writing where the score is greater than 499, showing their charter
numbers.” the following evidence is given: ‘‘Valid charter number
means the number is not null”. The authors of the dataset provide
a difficulty categorization for the queries in the dev set based on
3 levels: Simple, Moderate, and Challenging.

Table 1 presents an overview and statistics of the used datasets.
In order to provide a common difficulty axis for our experiments
we merge Spider’s “easy” and “medium” categories into the “sim-
ple” category of BIRD. This decision was made given the fact that

122

In-depth Analysis of LLM-based Schema Linking EDBT ’26, 24-27 March 2026, Tampere (Finland)

Tables per DB Query Length JOINs per Query Query Difficulty

Dataset (Min/Avg/Max) (Min/Avg/Max) (Min/Avg/Max) Simple Moderate Challenging Total

Spider-train 2 / 5.25 / 26 18 / 109.64 / 577 0 / 0.54 / 8 4,775 1,758 2,126 8,659
Spider-dev 2 / 4.00 / 11 20 / 106.69 / 422 0 / 0.50 / 4 690 174 168 1,032
BIRD-train 2 / 7.56 / 65 23 / 170.10 / 804 0 / 0.77 / 6 N/A N/A N/A 9,428
BIRD-dev 3 / 6.81 / 13 29 / 160.01 / 1,446 0 / 0.91 / 6 925 465 144 1,534

Table 1: Statistics of the used datasets.

BIRD’s “simple” queries are similar to Spider’s “medium” (i.e.,
small number of JOINs and use of aggregation functions). The
“hard’ and “extra hard” difficulties from Spider are mapped to the
“moderate” and “challenging” categories from BIRD respectively.
Unfortunately BIRD provides a difficulty rating only for its dev
set. By comparing the dataset statistics we observe that BIRD
contains more tables per database, longer queries, and more joins
per query. This combined with the additional SQL clauses and
functions it uses, makes it a harder benchmark for schema linking
and text-to-SQL.

For the schema linking task, we generate the ground truth
labels for each dataset by extracting the tables and the columns
that are used in each ground truth SQL query. It should be noted
that some of these labels might not be entirely accurate all of the
time, as there are cases where the same logic can be expressed
with different SQL queries. While more or less the same tables and
columns will be necessary despite the used syntax, there might
still be minor differences (e.g., a COUNT() can be performed
over an id column or the star operator and still return the same
results).

5.2 Metrics
We employ three metrics to evaluate our experiments, the first
two are used to evaluate the schema linking performance of a
model, while the third metric evaluates the Text-to-SQL perfor-
mance of model (using another model’s schema linking predic-
tions).

Schema Linking Precision is defined as the number of cor-
rectly predicted schema columns as a fraction of the total number
of predicted columns. We calculate the average of this score across
all examples in the dataset. This metric represents how many
unnecessary columns (noise) are incorrectly added in a schema
linking prediction, in relation to the number of predictions. A
high score indicates a very precise predictions, while a low score
indicates a noisy prediction.

Schema Linking Recall is defined as the percentage of ex-
amples in the dataset where all the necessary columns were
predicted. Or equivalently: The percentage of examples having
perfect recall. We employ a stricter variation of traditional recall
given that for any given example, if schema linking recall is not
perfect then Text-to-SQL is certain to fail. This score essentially
describes the the upper bound on the percentage of examples
where Text-to-SQL can be performed successfully.

ExecutionAccuracy: The percentage of predicted SQL queries
that when executed return the same results as the ground truth
SQL query. This has long been the most widely adopted metric
for Text-to-SQL [51], despite its known short comings as it can
produce false positives when the predicted SQL might return
the same result even though its logic might not match the NL
Question.

5.3 Models and Baselines
We will now provide an overview of the models and baselines
we use in our experiments.

No/Oracle Schema Linking: No schema linking refers to
using the entire DB schema and oracle schema linking refers
to using the ground truth schema to simulate the hypothetical
scenario of a model that can achieve perfect schema linking. We
include these two baselines for two reasons: (i) to use “No Schema
Linking” as a baseline for the lowest precision scores, and (ii)
to examine the difference in Text-to-SQL execution accuracy
compared to “No Schema Linking” an the possible gain that is
left in comparison with “Oracle Schema Linking”.

RESDSQL (RoBERTA-Large) (Baseline): This approach is
taken directly from the RESDSQL [26] paper, using the RoBERTA
[29] encoder-only LM with a classification head. The model is
fine-tuned on the dataset it is used (i.e., Spider or BIRD) and
can predict confidence scores for each table and column of the
schema. The authors choose to keep the top-5 rated tables and the
top-6 rated columns of each of these tables, as they achieved the
best results. As we will also observe in the experimental results,
this leads to high recall scores but low precision scores as more
tables and columns are selected than necessary. This could be
improved by making the number of top-𝑘 tables and columns
dynamic, but is beyond the scope of this work.

Prel-SQL (Baseline): This approach follows a previously pro-
posed method [50] to perform schema linking with a preliminary
SQL query prediction. In this case, an LLM is asked to predict a
SQL query as it would for Text-to-SQL but its prediction is only
used to extract the tables and columns, which will be used as
schema linking predictions. The intuition behind it is that the
LLM might be able to use the correct DB elements but it might
not use them in the correct manner.

LLMs: In our experiments we use multiple open-source LLMs
to get a representative view on how different models perform.
We focus on code-oriented models that are instruct-tuned so that
the fit best for the tasks and the few-shot setting. We refrain from
using very large models and prefer small and medium variants
(i.e., up to 33B parameters), because the problem at hand is only
a sub-task of the larger Text-to-SQL problem and dedicating
too many resources would be prohibitive for many applications.
Specifically we use: Codestral-22B [3], Deepseek-Coder-Instruct-
(6.7B and 33B) [17], Llama-3-Instruct-8B [31], and CodeGemma-
Instruct-7B [42].

Additionally, for question decomposition we use Llama-3-
Instruct-70B in order to keep the presentation of the experiments
simpler, as we noticed very good performance with little dif-
ferences between other large generalist models we tried. More
specifically, we performed an evaluation of 100 sampled predic-
tions for both datasets to measure how often the decomposition

123

EDBT ’26, 24-27 March 2026, Tampere (Finland) Katsogiannis-Meimarakis et al.

was missing any necessary information from the original ques-
tion. We observed that 95% and 97% of decompositions retained
all necessary information for Spider and BIRD accordingly.

6 Experimental Results
6.1 Schema Linking Performance
First of all we present our findings on the schema linking per-
formance of different LLMs. Table 2 contains our results on the
Spider and BIRD datasets. For each model, we consider four us-
age scenarios: (i) using the model in an few-shot setting (i.e., no
fine-tuning), (ii) performing few-shot prompting with question
decomposition, (iii) fine-tuning the model for the schema link-
ing task, and (iv) fine-tuning the model and also using question
decomposition.

Spider BIRD

Schema Linking Model Precision Recall Precision Recall

Baselines

No Schema Linking 15.01 100 10.09 100
RESDSQL [26] 18.56 99.70 21.19 88.07
Prel-SQL (Deepseek-Coder-33B) 76.59 91.48 81.67 59.51
Prel-SQL (Codestral-22B) 77.22 88.78 78.20 68.51

Few-Shot Prompting

Deepseek-Coder-6.7B 74.01 90.61 63.11 73.07
Llama3-8B 68.36 78.33 63.46 59.06
Codestral-22B 72.37 97.29 67.93 86.11
Deepseek-Coder-33B 62.02 97.48 60.62 75.81

Few-Shot Prompting with Question Decomposition

Deepseek-Coder-6.7B 55.85 97.00 51.33 85.78
Llama3-8B 51.52 93.52 49.39 80.70
Codestral-22B 56.23 96.51 45.35 92.04
Deepseek-Coder-33B 56.03 96.32 49.62 83.83

Supervised Fine-Tuning

Deepseek-Coder-6.7B 81.64 93.32 79.79 75.03
Llama3-8B 67.04 74.95 69.25 55.86
Codestral-22B 74.16 86.55 74.75 54.62
Deepseek-Coder-33B 81.46 93.13 79.44 75.03

Supervised Fine-Tuning with Question Decomposition

Deepseek-Coder-6.7B 67.03 96.42 66.02 84.09
Llama3-8B 54.49 88.39 59.29 68.44
Codestral-22B 59.77 93.03 63.68 68.70
Deepseek-Coder-33B 62.10 96.51 66.23 83.57

Table 2: Schema linking performance on the Spider and
BIRD benchmarks. We consider different settings, using
the LLM in either a few-shot paradigm or after fine-tuning
it. We also experiment with question decomposition in
both cases.

Regarding the general performance of schema linking, a re-
call of 100% means that all the tables and columns necessary to
answer the question are present in the linking schema. A recall
inferior to 100% is potentially detrimental as the model will not
receive the minimum information to answer the question. A pre-
cision inferior to 100% means that the linked schema will contain
additional tables or columns to those necessary.

Firstly, we observe that the baselines (RESDSQL and Prel-SQL)
can achieve good performance in Spider but their performance
degrades in the harder BIRD benchmark. RESDSQL achieves high
recall scores but very low precision, which was expected given
that it is designed to predict more elements than necessary most
of the time. Prel-SQL approaches go in the opposite direction,
achieving higher precision scores but lower recall because of their

design, which predicts a much lower number of DB elements.
However, in most cases, LLM-based approaches produce better
results.

On the Spider benchmark, we observe that all LLMs can con-
sistently achieve high recall and provide a precision that is four to
five times higher than the baseline of “No Schema Linking”, thus
greatly reducing the noise of the not needed DB elements. The
best recall is achieved by Deepseek-6.7B using supervised fine-
tuning. However, even simple few-shot prompting can achieve
very good performance with recall up to 97% and precision up
to 74%. It is also clear that each model performs better in dif-
ferent usage scenarios. For example, Codestral-22B performs
better with few-shot prompting, while the DeepSeek benefits
from fine-tuning.

On the BIRD benchmark, models perform relatively worse,
given the much higher complexity and difficulty of the bench-
mark, but still provide a large increase in precision compared
to baselines with a recall that can reach above 80% and up to
92.04%. The best recall is achieved by Codestral-22B using few-
shot prompting with question decomposition and the best preci-
sion is achieved by Deepseek-6.7B using supervised fine-tuning.

By comparing the performance of each model between the two
benchmarks, we observe that bigger models do not always trans-
late to better results. In fact, while larger models usually perform
better, a small code-oriented LLM like DeepSeek-Coder-6.7B is
quite competitive and in some cases the strongest model. Espe-
cially when comparing fine-tuned models, the playing ground is
much more even, which is an indicator that we might not need
huge models for schema linking, but specialist models instead.

Takeaway #1: Using larger models will usually lead to better
results, but small specialist models (e.g., code-oriented, fine-
tuned) are still competitive and sometimes even better for the
schema linking task.

Additionally, we make two observations across both datasets:
(i) Question Decomposition usually increases schema linking
recall, sometimes by more than 20%, while decreasing precision,
and (ii) Supervised Fine-Tuning usually increases precision while
decreasing recall. The first observation is expected, given that
sampling additional outputs will increase the number of predicted
elements that enables the model to find more useful elements at
the cost of also adding noise. The second observation shows that
fine-tuning a model will make it more cautious to the amount
of elements it predicts, most likely because it tries to generate
a similar number of elements to the ground truths it has been
trained on. Additionally, we observe that the combination of both
techniques leads to more balanced precision and recall scores,
keeping the precision boost of fine-tuning while minimizing the
decrease in recall.

We further investigate the effect of question decomposition
by performing an analysis on the schema linking predictions of
the Codestral-22B model with and without QD. We observe that
in 517 examples recall is increased and in 71 examples recall is
decreased, showing that decomposition is beneficial more often
than it causes performance degradation. For example, in the
BIRD question “Among the superheroes with height from 170 to
190, list the names of the superheroes with no eye color.”, when
not using QD, the model does not predict the required columns
colour.id, colour.colour. However, the model manages to
find these columns when the question is decomposed into the

124

In-depth Analysis of LLM-based Schema Linking EDBT ’26, 24-27 March 2026, Tampere (Finland)

Few-shot Few-shot with QD
Spider

80

85

90

95

Re
ca

ll

SFT SFT with QD
Spider

75

80

85

90

95

Re
ca

ll

SFT SFT with QD
Bird

55

60

65

70

75

80

85

Re
ca

ll

Figure 5: Comparison of schema linking recall scores for different scenarios with and without Question Decomposition

following sub-questions: “What is the height of each superhero?”,
“Which superheroes have a height between 170 and 190?”, “What
is the eye color of each superhero?”, “Which superheroes have no
eye color?”. This is due to the fact that the model sees simpler
questions and multiple references of “color”, compared to the
initial question that only mentions it once among many other
attributes.

In contrast, recall degrades in the BIRD question “State different
accounts who have account opening date before 1997 and own an
amount of money greater than 3000USD.”, where the model misses
the column trans.amountwhen using QD. This happens because
the word “amount” is not used in the decomposition: “What is the
account opening date of each account?”, “Which accounts have an
account opening date before 1997?”, “What is the current balance
of each account?”, “Which accounts have a balance greater than
3000USD?”. The decomposition used the word “balance” instead,
making it harder for the model to find the needed column.

Our statistical analysis using t-tests and non-parametric Mann-
Whitney U tests revealed a statistically significant differences
between methods with and without QD in 5 out of 8 experimental
settings (precision and recall for Spider and Bird, with and with-
out SFT conditions). In the remaining three scenarios (Figure 5),
usage of QD consistently resulted in higher recall values, but
the effect did not reach statistical significance given the current
number of observations.

Takeaway #2: Supervised Fine-tuning tends to increase pre-
cision and decrease recall, while Question Decomposition in-
creases recall and decreases precision. A combination of both
can be used for more balanced performance.

Finally, we present a performance comparison of different
approaches based on the query difficulty presented in Section 5.1.
Figure 6 shows the average performance of each usage scenario
of Table 2. This aggregation of results allows us to further pin-
point our previous observation on the trade-offs of question
decomposition and fine-tuning. Question decomposition leads
to higher recall and lower precision, whereas fine-tuning leads
to higher precision and lower recall. We also observe a pattern
when query difficulty increases, where precision increases and
recall drops. This trend is stronger in the Spider dataset than in
BIRD, where scores sometimes remain similar between difficulty
levels. This could be attributed to the fact that harder queries
contain more DB elements and as such models are more likely to
miss more relevant elements.

0

10

20

30

40

50

60

70

80

90

100

Simple Moderate Challenging Simple Moderate Challenging

Precision Recall

Few-shot Few-shot + QD Fine-tune Fine-tune + QD

(a) Results on Spider

0

10

20

30

40

50

60

70

80

90

100

Simple Moderate Challenging Simple Moderate Challenging

Precision Recall

Few-shot Few-shot + QD Fine-tune Fine-tune + QD

(b) Results on BIRD

Figure 6: Performance comparison on query difficulty of
different LLM-based schema linking approaches.

6.2 The impact of schema linking on
Text-to-SQL

Moving on, we investigate the effect of schema linking on the
Text-to-SQL performance of LLMs. More specifically, for the
Text-to-SQL task we use Codestral-22B and Deepseek-33B in a
few-shot setting, and take the schema linking predictions of the
few-shot models presented in Table 2. Our results can be seen in
Figure 7.

We observe that across both datasets, despite a few outliers
that we will discuss, better schema linking leads to better text-to-
SQL generation. It is also apparent from the clearer upward trend
in the figures, that recall plays a much more important role than
precision, which is expected as we discussed above. Precision
is also important, but it can be overshadowed by a low recall
score, as the outliers in the precision figures show. Specifically, in
Figure 7a the schema linking prediction with the lowest precision
leads to very high execution accuracy as it corresponds to the

125

EDBT ’26, 24-27 March 2026, Tampere (Finland) Katsogiannis-Meimarakis et al.

62 64 66 68 70 72 74
Schema Linking Precision

58

60

62

64

66

68

70

72

Ex
ec

ut
io

n
Ac

cu
ra

cy

70 75 80 85 90 95
Schema Linking Recall

Codestral-22B
Deepseek-33B
No Schema Linking

(a) Results on Spider

56 58 60 62 64 66 68
Schema Linking Precision

38

40

42

44

46

48

50

52

Ex
ec

ut
io

n
Ac

cu
ra

cy

55 60 65 70 75 80 85
Schema Linking Recall

Codestral-22B
Deepseek-33B
No Schema Linking

(b) Results on BIRD

Figure 7: Text-to-SQL performance with respect to the different schema linking scores of the tested LLMs. The horizontal
“No Schema Linking” line shows the baseline Text-to-SQL performance of each model without any schema linking method.

schema links with the highest recall, while the second-lowest
precision leads to poor execution accuracy because it corresponds
to the schema links with the lowest recall. Similarly, in Figure 7b
the second-highest precision shows a sudden dip in execution
accuracy because it corresponds to the schema links with the
second-lowest recall.

Another interesting observation can be made when comparing
Text-to-SQL performance with and without schema linking (hor-
izontal dashed lines). It becomes apparent that schema linking
might not always improve execution accuracy, especially when
the Text-to-SQL model can already achieve good performance
without it. For example, Codestral-22B has a much higher exe-
cution accuracy on BIRD without schema linking compared to
Deepseek-33B, and only the best schema linking performance
can lead to an improvement on Text-to-SQL. On the other hand,
Deepseek-33B benefits by almost all schema linking models as it
starts from a lower point.

Takeaway #3: Better schema linking performance leads to
better Text-to-SQL performance with recall having a more
important role than precision. However, not all Text-to-SQL
models benefit from schema linking to the same extent; the
better the model is, the less additional schema linking it needs.

6.3 The Impact of Schema Enrichment
We evaluated the effectiveness of the schema enrichment tech-
niques introduced in Section 4.6, first applied to the Oracle schema
linking performance and then to our schema linking approach.

For these experiments, we consider the proposed diversity -
representativeness enrichment presented in Section 4.6. We con-
sider both proposed approaches: sampling and clustering. The
sampling approach makes use of the ‘all-MiniLM-L12-v2‘ sen-
tence transformer embedding [1] to compute contextual column
embeddings. This approach is parametrized by the inclusion
percentage. The clustering approach uses the DBSCAN algo-
rithm [14] to automatically identify density-based clusters in
the high-dimensional column embedding space. Also, we con-
sider the alternative whether outliers are included or not. The
experimental results are summarized in Table 3 and graphically
depicted in Figures 8 and 9.

First, we check our hypothesis that optimal schema linking lies
beyond the schema linking oracle. Given the oracle extension re-
sults represented in the upper part of Table 3 and also in Figure 8,
we can see that in two out of three tried LLMs for SQL gener-
ation indeed can go beyond oracle. Deepseek-33B gets a boost
of over 5 percentage points while CodeGemma-7B gets slightly

35

40

45

50

55

60

 Codestral-22B Deepseek-33B CodeGemma-7B

No Schema Linking Oracle Oracle+Enrich repr0.4
Oracle+Enrich repr0.8 Oracle+Enrich Cluster

Figure 8: Exploration of the accuracy of Text-to-SQL be-
yond standard Oracle

better with maximum improvement of 0.72 points. Codestral-22B
does not benefit much from the enriched schema going beyond
oracle, but also does not degrade showing neutral changes. At
the same time, when enrichment is used on the automatically
extracted schema linking (lower part of Table 3 and Figure 9),
Codestral-22B benefits by more than 2.5 percentage points, sim-
ilar to CodeGemma-7B. Conversely, Deepseek-33b performed
best with the original schema linking predictions and showed
slight degradation with enrichment. This may indicate that the
basis for enrichment was not as effective for this model, despite
it showing the most potential for improvement over the oracle
schema.

40
42
44
46
48
50
52
54
56
58

Codestral-22B Deepseek-33B CodeGemma-7B
Shema Linking SL+ Enrich repr0.4 SL+Enrich Cluster

Figure 9: Text-to-SQL execution accuracy results for differ-
ent versions of schema linking.

126

In-depth Analysis of LLM-based Schema Linking EDBT ’26, 24-27 March 2026, Tampere (Finland)

Schema Linking Text-to-SQL Execution Accuracy with

Schema Linking Model Precision Recall Codestral-22B Deepseek-33B CodeGemma-7B

Baselines

No Schema Linking 10.09 100 51.04 42.18 36.77
Oracle Schema Linking 100 100 61.73 55.08 51.37

Oracle Enrichment

Enriched Oracle (repr=0.3) 82.66 100 58.74 60.76 51.69
Enriched Oracle (repr=0.4) 84.04 100 61.28 59.84 50.98
Enriched Oracle (repr=0.6) 87.98 100 60.37 58.93 50.26
Enriched Oracle (repr=0.8) 92.93 100 59.39 59.52 52.09
Enriched Oracle (Cluster) 87.27 100 59.71 59.84 50.65
Enriched Oracle (Cluster + Outliers) 95.36 100 59.58 60.56 51.75

Prediction Enrichment

Deepseek-6.7B (Finetuned) 79.79 75.03 54.11 53.32 43.09
DeepSeek-6.7B (Finetuned) + Enriched (repr=0.4) 67.71 75.94 56.78 52.80 45.63
DeepSeek-6.7B (Finetuned) + Enriched (Cluster) 70.44 75.55 56.58 52.22 45.70

Table 3: Experiments with schema enrichment. The middle part shows experiments on enriching the oracle (ground
truth) schema links; bold numbers indicate best performance between oracle and enrichment. The bottom parts shows
experiments on enriching the predictions of a schema linking model; bold numbers indicate best performance between the
initial and enriched predictions.

Takeaway #4: Schema enrichment can improve both the
predicted and oracle schema links, leading to higher Text-to-
SQL scored for certain models. The “oracle” schema linking is
in fact not always the optimal for Text-to-SQL generation.

7 Ablation Results
7.1 The Impact of Prediction Refinement
We evaluate the impact of our proposed refinement techniques
(Section 4.3) on the schema linking performance of LLMs. As we
have already noted, these techniques aim to counter the lack of
DB intelligence observed by LLMs (e.g., missing foreign keys, con-
necting tables, etc.). Table 4 shows the impact of these techniques
averaged over all the experiments conducted in our study.

Precision Recall

Avg. Score Without Refinement 65.90 43.07
Avg. Score With Refinement 61.15 69.40

Ablation of Refinement Steps

No Fuzzy Matching 61.39 66.54
No Parent Table 61.28 67.89
No FK Paths 61.88 67.70
No FK Connections 65.68 44.10

Table 4: Overview of average schema linking performance
with and without prediction refinement, across all experi-
ments on the BIRD dataset. We also perform a leave-one-
out ablation of each refinement step.

The proposed techniques increase the recall achieving an av-
erage boost of 26.33% while reducing precision to much smaller
extent, by 4.75% on average. The decreased precision is an ac-
ceptable sacrifice, since without the refinement about 30% of
examples would not be converted to SQL at all. Furthermore,

our ablation results show that the ‘FK Connections‘ refinement
technique has the largest impact among the techniques used.
In fact, when removing the step the boost in recall is reduced
by the largest amount, while precision stays almost the same.
This supports the initial intuition that LLMs often disregard the
foreign key columns that are necessary to build the desired SQL
query.

Takeaway #5: The schema linking recall of LLMs can greatly
be improved by expert-made rules that convey essential data-
base knowledge.

7.2 The impact of demonstration examples
Providing additional few-shot demonstration examples can be
beneficial as it gives the model a better understanding of the task
and the format in which it should respond. However, it is impor-
tant to investigate how many examples are actually beneficial
and exactly what their impact is on the tasks’ metrics. Moving on,
we investigate the impact of the number of demonstration exam-
ples and report precision and recall with respect to the number
of demonstrations. Our results can be seen in Figure 10.

From our results we can make a few interesting observations.
First of all we see that additional observations lead to an increase
in precision, but after a certain amount of demonstrations (around
3-5) this effect seems to reach a plateau, or even degrade. On the
other hand, recall appears to be less affected, fluctuating near the
same score for most models. The Codestral model benefits greatly
from having at least 1 demonstration, showing a great increase
in both precision recall, but adding more than 1 demonstration
has a relatively small effect. This indicates that this model is
having trouble following the task and the requested output format
without seeing a demonstration in its input. The Llama model
improves precision by having up to three demonstrations but its
performance starts to degrade when adding more. This is most

127

EDBT ’26, 24-27 March 2026, Tampere (Finland) Katsogiannis-Meimarakis et al.

0 1 2 3 4 5 6 7
demonstrations

45

50

55

60

65

70

75

Schema Linking Precision

0 1 2 3 4 5 6 7
demonstrations

Schema Linking Recall

Codestral-22B-v0.1 Meta-Llama-3-8B-Instruct deepseek-coder-33b-instruct deepseek-coder-6.7b-instruct

Figure 10: Schema linking performance on the BIRD
dataset w.r.t the number of few-shot demonstrations.

1 2 3 4 5 6 7 8
samples

60

65

70

75

80

85

Schema Linking Precision

1 2 3 4 5 6 7 8
samples

Schema Linking Recall

Codestral-22B-v0.1 Meta-Llama-3-8B-Instruct deepseek-coder-33b-instruct deepseek-coder-6.7b-instruct

Figure 11: Schema linking performance on the BIRD
dataset w.r.t the number of sampled outputs.

likely an indication that the model struggles to process such a
large input.

Takeaway #6: Having at least one demonstration example
can be very beneficial as it benefits the model’s understanding
of the task. However adding more demonstrations should be
done with caution based on each model’s behaviour.

7.3 The impact of additional output sampling
LLMs give us the opportunity to sample multiple schema link-
ing predictions for each input and use their union as the final
prediction. The intuition is that the prediction with the highest
confidence with might miss some DB tables and columns that
could have been predicted by using the second or third highest-
ranked predictions. To evaluate how the number of sampled
outputs affects schema linking performance, we keep the number
of few-shot demonstrations constant at 1 and run inference with
different numbers of sampled predictions. Our results can be seen
in Figure 11.

Our experiments show a trend across most models: increasing
the number of samples leads to decreased precision and increased
recall. This also confirms our intuition that considering more
predictions for each input allows the model to generate needed
DB elements that it would have otherwise missed. This comes
at the cost of also generating tables and columns that are not
useful, leading to a decrease in precision. However, given the
importance of recall for the problem we argue that it is beneficial
to explore this direction.

Takeaway #7: Sampling additional outputs from LLMs helps
retrieve otherwise missed DB elements, increasing schema
linking recall but decreasing precision.

8 Conclusion
Our study presents an in-depth analysis of LLM-based schema
linking under different usage scenarios and their effect on Text-
to-SQL. Using a unified pipeline allowed us to apply popular
techniques from the Text-to-SQL field, such as question decom-
position and supervised fine-tuning, along with a set of refine-
ment techniques, that can boost the performance of LLMs. Our
experimental findings reveal several takeaways for improving
and effectively incorporating schema linking in a Text-to-SQL
pipeline. One main conclusion is that schema linking in low re-
source settings is possible and can lead to better SQL generation
when used correctly. We also challenged the assumption that
the oracle schema, which contains only the minimum necessary
columns for SQL generation, is always the best schema repre-
sentation. In conclusion, our work provides valuable insights
and methodologies for enhancing Text-to-SQL systems through
effective schema linking.

Artifacts
The code that was developed for this work and used for all the
presented experiments is made publicly available at https://github.
com/IBM/few-shot-schema-linking.

References
[1] [n. d.]. Sentence Transformer model: all-MiniLM-L12-v2. https://huggingface.

co/sentence-transformers/all-MiniLM-L12-v2
[2] Katrin Affolter, Kurt Stockinger, and Abraham Bernstein. 2019. A comparative

survey of recent natural language interfaces for databases. The VLDB Journal
28, 5 (Oct. 2019), 793–819. doi:10.1007/s00778-019-00567-8

[3] Mistral AI. [n. d.]. Codestral: Hello, World! https://mistral.ai/news/codestral/.
Accessed: 2024-08-07.

[4] Sihem Amer-Yahia, Jasmina Bogojeska, Roberta Facchinetti, Valeria Franceschi,
Aristides Gionis, Katja Hose, Georgia Koutrika, Roger Kouyos, Matteo Lis-
sandrini, Silviu Maniu, Katsiaryna Mirylenka, et al. 2025. Towards Reliable
Conversational Data Analytics. In 28th International Conference on Extending
Database Technology (EDBT), Barcelona, Spain, 25-28 March 2025, Vol. 28. Open
Proceedings, 962–969.

[5] I. Androutsopoulos, G.D. Ritchie, and P. Thanisch. 1995. Natural language
interfaces to databases – an introduction. Natural Language Engineering 1, 1
(1995), 29–81. doi:10.1017/S135132490000005X

[6] Ben Bogin, Jonathan Berant, and Matt Gardner. 2019. Representing Schema
Structure with Graph Neural Networks for Text-to-SQL Parsing. In Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics,
Anna Korhonen, David Traum, and Lluís Màrquez (Eds.). Association for
Computational Linguistics, Florence, Italy, 4560–4565. doi:10.18653/v1/P19-
1448

[7] Ursin Brunner and Kurt Stockinger. 2021. ValueNet: A Natural Language-to-
SQL System that Learns from Database Information. arXiv:2006.00888 [cs.DB]
https://arxiv.org/abs/2006.00888

[8] Robin Chan, Katsiaryna Mirylenka, Thomas Gschwind, Christoph Miksovic,
Paolo Scotton, Enrico Toniato, and Abdel Labbi. 2024. Adapting LLMs for
Structured Natural Language API Integration. In Proceedings of the 2024 Con-
ference on Empirical Methods in Natural Language Processing: Industry Track.
991–1000.

[9] Shuaichen Chang and Eric Fosler-Lussier. 2023. How to Prompt LLMs for
Text-to-SQL: A Study in Zero-shot, Single-domain, and Cross-domain Settings.
arXiv:2305.11853 [cs.CL] https://arxiv.org/abs/2305.11853

[10] E. F. Codd. 1974. Seven Steps to Rendezvous with the Casual User. In IFIP
Working Conference Data Base Management. https://api.semanticscholar.org/
CorpusID:28690513

[11] Naihao Deng, Yulong Chen, and Yue Zhang. 2022. Recent Advances in Text-
to-SQL: A Survey of What We Have and What We Expect. In Proceedings
of the 29th International Conference on Computational Linguistics, Nicoletta
Calzolari, Chu-Ren Huang, Hansaem Kim, James Pustejovsky, Leo Wanner,
Key-Sun Choi, Pum-Mo Ryu, Hsin-Hsi Chen, Lucia Donatelli, Heng Ji, Sadao
Kurohashi, Patrizia Paggio, Nianwen Xue, Seokhwan Kim, Younggyun Hahm,
Zhong He, Tony Kyungil Lee, Enrico Santus, Francis Bond, and Seung-Hoon
Na (Eds.). International Committee on Computational Linguistics, Gyeongju,
Republic of Korea, 2166–2187. https://aclanthology.org/2022.coling-1.190/

[12] Xuemei Dong, Chao Zhang, Yuhang Ge, Yuren Mao, Yunjun Gao, lu Chen,
Jinshu Lin, and Dongfang Lou. 2023. C3: Zero-shot Text-to-SQL with ChatGPT.
arXiv:2307.07306 [cs.CL] https://arxiv.org/abs/2307.07306

[13] Dheeru Dua, Shivanshu Gupta, Sameer Singh, and Matt Gardner. 2022. Suc-
cessive Prompting for Decomposing Complex Questions. In Proceedings of
the 2022 Conference on Empirical Methods in Natural Language Processing,

128

In-depth Analysis of LLM-based Schema Linking EDBT ’26, 24-27 March 2026, Tampere (Finland)

Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (Eds.). Association for
Computational Linguistics, Abu Dhabi, United Arab Emirates, 1251–1265.
doi:10.18653/v1/2022.emnlp-main.81

[14] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. 1996. A
density-based algorithm for discovering clusters in large spatial databases
with noise. In kdd, Vol. 96. 226–231.

[15] Ju Fan, Zihui Gu, Songyue Zhang, Yuxin Zhang, Zui Chen, Lei Cao, Guoliang
Li, Samuel Madden, Xiaoyong Du, and Nan Tang. 2024. Combining Small Lan-
guage Models and Large Language Models for Zero-Shot NL2SQL. Proceedings
of the VLDB Endowment 17, 11 (2024), 2750–2763.

[16] Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun, Yichen Qian, Bolin Ding,
and Jingren Zhou. 2024. Text-to-SQL Empowered by Large Language Models:
A Benchmark Evaluation. Proc. VLDB Endow. 17, 5 (may 2024), 1132–1145.
doi:10.14778/3641204.3641221

[17] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang,
Guanting Chen, Xiao Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-
feng Liang. 2024. DeepSeek-Coder: When the Large Language Model Meets
Programming – The Rise of Code Intelligence. arXiv:2401.14196 [cs.SE]
https://arxiv.org/abs/2401.14196

[18] Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-Guang Lou, Ting Liu, and
Dongmei Zhang. 2019. Towards Complex Text-to-SQL in Cross-Domain Data-
base with Intermediate Representation. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics, Anna Korhonen, David
Traum, and Lluís Màrquez (Eds.). Association for Computational Linguistics,
Florence, Italy, 4524–4535. doi:10.18653/v1/P19-1444

[19] Noah Hampp and Katya Mirylenka. 2024. Leveraging Large Language Mod-
els for Natural Language to SQL Conversion (Reward Modeling and RLAIF
for Improved Natural Language to SQL Generation). In The Mathematics of
Machine Learning Workshop, ETH Zurich.

[20] Zijin Hong, Zheng Yuan, Qinggang Zhang, Hao Chen, Junnan Dong, Feiran
Huang, and Xiao Huang. 2025. Next-Generation Database Interfaces: A Survey
of LLM-based Text-to-SQL. arXiv:2406.08426 [cs.CL] https://arxiv.org/abs/
2406.08426

[21] George Katsogiannis-Meimarakis and Georgia Koutrika. 2023. A Survey
on Deep Learning Approaches for Text-to-SQL. The VLDB Journal (2023).
doi:10.1007/s00778-022-00776-8

[22] Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao Fu, Kyle Richardson,
Peter Clark, and Ashish Sabharwal. 2023. Decomposed Prompting: A Modular
Approach for Solving Complex Tasks. In The Eleventh International Conference
on Learning Representations. https://openreview.net/forum?id=_nGgzQjzaRy

[23] Hyeonji Kim, Byeong-Hoon So, Wook-Shin Han, and Hongrae Lee. 2020.
Natural language to SQL: Where are we today? Proceedings of the VLDB
Endowment 13, 10 (2020), 1737–1750.

[24] Hyeonji Kim, Byeong-Hoon So, Wook-Shin Han, and Hongrae Lee. 2020.
Natural language to SQL: where are we today? Proc. VLDB Endow. 13, 10 (June
2020), 1737–1750. doi:10.14778/3401960.3401970

[25] Wenqiang Lei, Weixin Wang, Zhixin Ma, Tian Gan, Wei Lu, Min-Yen Kan, and
Tat-Seng Chua. 2020. Re-examining the Role of Schema Linking in Text-to-
SQL. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), Bonnie Webber, Trevor Cohn, Yulan He, and
Yang Liu (Eds.). Association for Computational Linguistics, Online, 6943–6954.
doi:10.18653/v1/2020.emnlp-main.564

[26] Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen. 2023. RESDSQL: Decou-
pling Schema Linking and Skeleton Parsing for Text-to-SQL. Proceedings of
the AAAI Conference on Artificial Intelligence 37, 11 (Jun. 2023), 13067–13075.
doi:10.1609/aaai.v37i11.26535

[27] Haoyang Li, Jing Zhang, Hanbing Liu, Ju Fan, Xiaokang Zhang, Jun Zhu,
Renjie Wei, Hongyan Pan, Cuiping Li, and Hong Chen. 2024. CodeS: Towards
Building Open-source Language Models for Text-to-SQL. Proc. ACM Manag.
Data 2, 3, Article 127 (may 2024), 28 pages. doi:10.1145/3654930

[28] Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li, Bowen Li, Bailin
Wang, Bowen Qin, Ruiying Geng, Nan Huo, Xuanhe Zhou, Ma Chen-
hao, Guoliang Li, Kevin Chang, Fei Huang, Reynold Cheng, and Yong-
bin Li. 2023. Can LLM Already Serve as A Database Interface? A BIg
Bench for Large-Scale Database Grounded Text-to-SQLs. In Advances in
Neural Information Processing Systems, A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine (Eds.), Vol. 36. Curran Associates, Inc.,
42330–42357. https://proceedings.neurips.cc/paper_files/paper/2023/file/
83fc8fab1710363050bbd1d4b8cc0021-Paper-Datasets_and_Benchmarks.pdf

[29] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi
Chen, Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov.
2019. RoBERTa: A Robustly Optimized BERT Pretraining Approach.
arXiv:1907.11692 [cs.CL]

[30] Antonis Mandamadiotis, Georgia Koutrika, and Sihem Amer-Yahia. 2024.
Guided SQL-Based Data Exploration with User Feedback. In 2024 IEEE 40th
International Conference on Data Engineering (ICDE). 4884–4896.

[31] AI Meta et al. 2024. The llama 3 herd of models. arXiv preprint arXiv:2407.21783
2 (2024).

[32] OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge
Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam
Altman, Shyamal Anadkat, Red Avila, Igor Babuschkin, Suchir Balaji, Valerie
Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian, Jeff Belgum, Irwan
Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny
Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brock-
man, Tim Brooks, Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell,

Andrew Cann, Brittany Carey, Chelsea Carlson, Rory Carmichael, Brooke
Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen, Ruby Chen, Jason
Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas
Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowl-
ing, Sheila Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi,
Liam Fedus, Niko Felix, Simón Posada Fishman, Juston Forte, Isabella Fulford,
Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel
Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray,
Ryan Greene, Joshua Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy,
Jesse Han, Jeff Harris, Yuchen He, Mike Heaton, Johannes Heidecke, Chris
Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon Houghton, Kenny
Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne
Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie
Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser, Ali Kamali, Ingmar Kan-
itscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kilpatrick, Jong Wook
Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie Kiros, Matt
Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris Kon-
stantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai
Lan, Teddy Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel
Lim, Molly Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe,
Patricia Lue, Anna Makanju, Kim Malfacini, Sam Manning, Todor Markov,
Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne, Bob McGrew,
Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil,
David Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko,
Pamela Mishkin, Vinnie Monaco, Evan Morikawa, Daniel Mossing, Tong Mu,
Mira Murati, Oleg Murk, David Mély, Ashvin Nair, Reiichiro Nakano, Rajeev
Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo Noh, Long Ouyang,
Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano,
Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail
Pavlov, Andrew Peng, Adam Perelman, Filipe de Avila Belbute Peres, Michael
Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny, Michelle Pokrass,
Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl,
Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Fran-
cis Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ry-
der, Mario Saltarelli, Ted Sanders, Shibani Santurkar, Girish Sastry, Heather
Schmidt, David Schnurr, John Schulman, Daniel Selsam, Kyla Sheppard, Toki
Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon Sidor, Eric
Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin
Sokolowsky, Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie
Summers, Ilya Sutskever, Jie Tang, Nikolas Tezak, Madeleine B. Thompson,
Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston Tuggle, Nick Turley,
Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang,
Jonathan Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Ji-
ayi Weng, Lilian Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel
Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu, Jeff Wu, Michael
Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba,
Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng,
Juntang Zhuang, William Zhuk, and Barret Zoph. 2024. GPT-4 Technical
Report. arXiv:2303.08774 [cs.CL] https://arxiv.org/abs/2303.08774

[33] Pruthvi Patel, Swaroop Mishra, Mihir Parmar, and Chitta Baral. 2022. Is a Ques-
tion Decomposition Unit All We Need?. In Proceedings of the 2022 Conference
on Empirical Methods in Natural Language Processing, Yoav Goldberg, Zornitsa
Kozareva, and Yue Zhang (Eds.). Association for Computational Linguistics,
Abu Dhabi, United Arab Emirates, 4553–4569. doi:10.18653/v1/2022.emnlp-
main.302

[34] Ethan Perez, Patrick Lewis, Wen-tau Yih, Kyunghyun Cho, and Douwe Kiela.
2020. Unsupervised Question Decomposition for Question Answering. In
Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP), Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu
(Eds.). Association for Computational Linguistics, Online, 8864–8880. doi:10.
18653/v1/2020.emnlp-main.713

[35] Mohammadreza Pourreza and Davood Rafiei. 2023. DIN-SQL: Decomposed
In-Context Learning of Text-to-SQL with Self-Correction. In Advances in
Neural Information Processing Systems, A. Oh, T. Naumann, A. Globerson,
K. Saenko, M. Hardt, and S. Levine (Eds.), Vol. 36. Curran Associates, Inc.,
36339–36348. https://proceedings.neurips.cc/paper_files/paper/2023/file/
72223cc66f63ca1aa59edaec1b3670e6-Paper-Conference.pdf

[36] Mohammadreza Pourreza, Davood Rafiei, Yuxi Feng, Raymond Li, Zhenan
Fan, and Weiwei Zhang. 2024. SQL-Encoder: Improving NL2SQL In-Context
Learning Through a Context-Aware Encoder. arXiv:2403.16204 [cs.CL] https:
//arxiv.org/abs/2403.16204

[37] Bowen Qin, Binyuan Hui, Lihan Wang, Min Yang, Jinyang Li, Binhua Li,
Ruiying Geng, Rongyu Cao, Jian Sun, Luo Si, Fei Huang, and Yongbin Li. 2022.
A Survey on Text-to-SQL Parsing: Concepts, Methods, and Future Directions.
arXiv:2208.13629 [cs.CL] https://arxiv.org/abs/2208.13629

[38] Abdul Quamar, Vasilis Efthymiou, Chuan Lei, and Fatma Özcan. 2022. Natural
Language Interfaces to Data. Foundations and Trends® in Databases 11, 4
(2022), 319–414. doi:10.1561/1900000078

[39] Nils Reimers and Iryna Gurevych. 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks. In Proceedings of the 2019 Conference on Empir-
ical Methods in Natural Language Processing. Association for Computational
Linguistics. https://arxiv.org/abs/1908.10084

129

EDBT ’26, 24-27 March 2026, Tampere (Finland) Katsogiannis-Meimarakis et al.

[40] Qun Sui and Sujit K Ghosh. 2024. Entropy-Based Subsampling Methods for
Big Data. Journal of Statistical Theory and Practice 18, 2 (2024), 24.

[41] Shayan Talaei, Mohammadreza Pourreza, Yu-Chen Chang, Azalia Mirhoseini,
and Amin Saberi. 2024. CHESS: Contextual Harnessing for Efficient SQL
Synthesis. arXiv:2405.16755 [cs.LG] https://arxiv.org/abs/2405.16755

[42] CodeGemma Team, Heri Zhao, Jeffrey Hui, Joshua Howland, Nam Nguyen,
Siqi Zuo, Andrea Hu, Christopher A. Choquette-Choo, Jingyue Shen, Joe
Kelley, Kshitij Bansal, Luke Vilnis, Mateo Wirth, Paul Michel, Peter Choy,
Pratik Joshi, Ravin Kumar, Sarmad Hashmi, Shubham Agrawal, Zhitao Gong,
Jane Fine, Tris Warkentin, Ale Jakse Hartman, Bin Ni, Kathy Korevec, Kelly
Schaefer, and Scott Huffman. 2024. CodeGemma: Open Code Models Based
on Gemma. arXiv:2406.11409 [cs.CL] https://arxiv.org/abs/2406.11409

[43] Enrico Toniato, Abdel Labbi, Katya Mirylenka, Christoph Miksovic Czasch,
Thomas Gschwind, Paolo Scotton, Francesco Fusco, and Diego Antognini.
2023. FlowPilot: An LLM-powered system for enterprise data integration. In
Annual Conference on Neural Information Processing Systems.

[44] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. In Proceedings of the 31st International Conference on Neural Information
Processing Systems (Long Beach, California, USA) (NIPS’17). Curran Associates
Inc., Red Hook, NY, USA, 6000–6010.

[45] Bing Wang, Changyu Ren, Jian Yang, Xinnian Liang, Jiaqi Bai, Linzheng
Chai, Zhao Yan, Qian-Wen Zhang, Di Yin, Xing Sun, and Zhoujun Li.
2024. MAC-SQL: A Multi-Agent Collaborative Framework for Text-to-SQL.
arXiv:2312.11242 [cs.CL] https://arxiv.org/abs/2312.11242

[46] Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew
Richardson. 2020. RAT-SQL: Relation-Aware Schema Encoding and Linking
for Text-to-SQL Parsers. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics. 7567–7578.

[47] Tomer Wolfson, Daniel Deutch, and Jonathan Berant. 2022. Weakly Supervised
Text-to-SQL Parsing through Question Decomposition. In Findings of the
Association for Computational Linguistics: NAACL 2022, Marine Carpuat, Marie-
Catherine de Marneffe, and Ivan Vladimir Meza Ruiz (Eds.). Association for
Computational Linguistics, Seattle, United States, 2528–2542. doi:10.18653/v1/
2022.findings-naacl.193

[48] Quan Xiao, Debarun Bhattacharjya, Balaji Ganesan, Radu Marinescu, Kat-
siaryna Mirylenka, Nhan Pham, Michael Glass, and Junkyu Lee. 2025. The
Consistency Hypothesis in Uncertainty Quantification for Large Language
Models. In The Conference on Uncertainty in Artificial Intelligence (UAI) 2025.

[49] Yuanzhen Xie, Xinzhou Jin, Tao Xie, MingXiong Lin, Liang Chen, Chenyun Yu,
Lei Cheng, ChengXiang Zhuo, Bo Hu, and Zang Li. 2024. Decomposition for
Enhancing Attention: Improving LLM-based Text-to-SQL through Workflow
Paradigm. arXiv preprint arXiv:2402.10671 (2024).

[50] Sun Yang, Qiong Su, Zhishuai Li, Ziyue Li, Hangyu Mao, Chenxi Liu, and
Rui Zhao. 2024. SQL-to-Schema Enhances Schema Linking in Text-to-SQL.
arXiv:2405.09593 [cs.DB] https://arxiv.org/abs/2405.09593

[51] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li,
James Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir
Radev. 2018. Spider: A Large-Scale Human-Labeled Dataset for Complex and
Cross-Domain Semantic Parsing and Text-to-SQL Task. In Proceedings of the
2018 Conference on Empirical Methods in Natural Language Processing, Ellen
Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (Eds.). Association
for Computational Linguistics, Brussels, Belgium, 3911–3921. doi:10.18653/
v1/D18-1425

[52] Bin Zhang, Yuxiao Ye, Guoqing Du, Xiaoru Hu, Zhishuai Li, Sun Yang,
Chi Harold Liu, Rui Zhao, Ziyue Li, and Hangyu Mao. 2024. Benchmark-
ing the Text-to-SQL Capability of Large Language Models: A Comprehensive
Evaluation. arXiv:2403.02951 [cs.CL] https://arxiv.org/abs/2403.02951

[53] Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2SQL: Generating
Structured Queries from Natural Language using Reinforcement Learning.
arXiv:1709.00103 [cs.CL] https://arxiv.org/abs/1709.00103

[54] Denny Zhou, Nathanael Scharli, Le Hou, Jason Wei, Nathan Scales, Xuezhi
Wang, Dale Schuurmans, Olivier Bousquet, Quoc Le, and Ed Huai hsin Chi.
2022. Least-to-Most Prompting Enables Complex Reasoning in Large Lan-
guage Models. ArXiv abs/2205.10625 (2022). https://api.semanticscholar.org/
CorpusID:248986239

[55] Xiaohu Zhu, Qian Li, Lizhen Cui, and Yongkang Liu. 2024. Large Language
Model Enhanced Text-to-SQL Generation: A Survey. arXiv:2410.06011 [cs.DB]
https://arxiv.org/abs/2410.06011

130

