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Abstract
Schema matching, a critical task for integrating data from diverse
sources, seeks to identify correspondences between attributes and
tables across different schemas. In multi-source schema scenarios
that are highly heterogeneous in volume, schema design, and do-
main, we observe that only a fraction of tables and attributes are
linkable, while many unlinkable ones occupy the search space and
worsen the linkage generation. Therefore, we focus on semantic
schema linkability assessment as a quality pre-processing phase
that identifies linkable tables and attributes, and prunes unlink-
able ones at the same time. This paper introduces collaborative
scoping, a self-supervised and distributed encoder-decoder frame-
work enabling local schemas to independently scope streamlined
schemas. Experiments show that collaborative scoping is robust,
more efficient, and more effective compared to scoping baselines.
This is true for matching scenarios on multi-source schemas that
are relatively homogeneous (domain-specific) or highly heteroge-
neous. In subsequent matching experiments, algorithms that use
the streamlined schemas as input improve their linkage quality
(precision) by up to +80% and F1-measure by up to +20% while
still remaining efficient.
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1 Introduction
Data is being generated at an unprecedented rate, increasingly
migrating to cloud platforms and online data marketplaces. Or-
ganizations with historically grown data can improve their data-
driven decision-making (e.g., B2B or M&A), without the need for
materialized integration [9]. A necessary first step and precursor
to integration is identifying the correct linkages between the
elements that represent similar semantics across the relevant
systems.

For relational systems, tables and attributes of one schema
need to be correctly matched to those of another schema. Source-
to-target matching is already challenging [2, 17, 37, 38, 49]. When
more than two schemas are involved, this process is referred to
as Multi-Source Schema Matching, and it is known to pose further
challenges on efficiency and effectiveness [8, 36, 50]. Matching
multiple schemas is necessary for integration purposes, yet no
global alignment standard exists [6, 42]. Therefore, organizations
typically expose only their metadata in order to identify syn-
ergies with other organizations or data markets. However, the
underlying data usually remains private and is only available for
purchase in data markets.

For example, Figure 1 shows four heterogeneous schemas to
be matched that differ in volume, structural design, and domain.
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Figure 1: Example of scoping streamlined schemas by dis-
tinguishing linkable tables and attributes from unlinkable
ones (cross symbol) for multi-source schema matching.

In schema 𝑆1, the table CLIENT and attribute ADDRESS are se-
mantically similar to table CUSTOMER in 𝑆2 and attribute CITY in
𝑆3. Distinguishing relevant from irrelevant tables and attributes
for schema matching is a challenge because each schema is
constructed with concepts modeled for a specific application,
business case, or domain. Consequently, the attributes DOB, SID,
DELIVERY_TIME, and PHONE are irrelevant for the other schemas.
Matching more than two schemas expands the search space in in-
creasing orders of magnitude with additional attributes and tables
that may represent identical or sub-typed (e.g., CITY � ADDRESS)
or entirely dissimilar concepts. In the worst case, schemas from a
completely unrelated domain such as 𝑆4 (containing Formula One
car info) must be still compared to the other schemas, even though
the table CAR and attributes CID, CNAME, YEAR, and COUNTRY are
unlinkable. Unlinkable schema elements pose a significant over-
head. They not only occupy computational space but also negatively
impact the matching quality: When unlinkable elements remain in
the matching process, they may transit to overgeneralized schema
clusters. For example, the global schema matching attempt be-
tween the schema 𝑆4 with 𝑆1, 𝑆2, and 𝑆3 would lead to false link-
ages such as YEAR and DOB and missing ones such as ADDRESS and
CITY because, element-wise, CITY and COUNTRY are considered
to be more similar.

Existing multi-source schema matching solutions fall short
by not separating relevant from irrelevant schema portions. By
processing them in their original form, every element needs to
be searched for potential correspondences in all other schemas.
When associated linkages fall below a similarity threshold [9,
10, 17, 23, 50] or when they are not captured in a cardinality-
based cluster [21, 27, 33, 37] (Section 2.2), only then they are
considered unlinkable. Using a global pruning threshold limits
high-quality linkages, especially when matching multiple het-
erogeneous schemas. In prior work [44], we proposed Scoping, a
method that adapts outlier detection algorithms (ODAs) for prun-
ing unlinkable schema elements ahead of matching. Although
scoping works for domain-specific matching, it is inadequate for
heterogeneous schemas as it applies an ODA globally (Section
2.4).
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In this paper, we propose a new way of pruning unlink-
able schema elements ahead of matching: Our approach
leverages self-trained encoder-decoder models, which capture
the independent semantics of local schemas. Specifically, we
identify linkable elements from another schema when they are
reconstructed in such a way that an encoder-decoder recognizes
local patterns. Hence, our approach tailors source-specific func-
tions and thresholds for the linkability assessment, making it
applicable as a robust and self-supervised pre-processing method
that prunes away the unlinkable elements and keeps only the
linkable subset of the original schemas. Extensive evaluation has
shown that matching algorithms benefit from such streamlined
schemas as they contain only the linkable subsets of the originals.
Our contributions are the following:
• A formal description of the schema linkability problem for

multi-source schema matching (Section 2).
• A novel methodology that produces streamlined schemas

for schema matching using distributed self-supervised
encoder-decoder models. The models capture the local
schema semantics to assess the linkability of tables and
attributes and to prune unlinkable ones. (Section 3).
• A technique that automatically identifies local linkabil-

ity thresholds. This is an improvement over existing ap-
proaches that implement a global similarity or cardinality
threshold for matching that are, in essence, unknown and
dependent on the schema matching scenario.
• An empirical evaluation of two multi-source schema match-

ing scenarios to convey the practical effectiveness of the
proposed algorithmic solution (Section 4). We show that
collaborative scoping excels in highly heterogeneous (up
to +26%) and domain-specific (up to +8%) matching scenar-
ios compared to scoping baselines. Collaborative scoping
remains robust regardless of the schema heterogeneity and
is even more efficient because of the reduced complexity.
• An ablation study of collaborative scoping for a Cosine,

k-Means, and LSH matcher that empirically validates an
improvement in the quality of linkages (up to +80%) and
F1-measure (up to +20%) with consistent efficiency gains.

Although our approach mainly targets multi-source schema
matching scenarios, it also works well for pruning unlinkable
elements for source-to-target matching.

2 Preliminaries
In this section, we provide preliminary definitions relevant to
schema linkages. Then, we describe related work on traditional
schema matching solutions. Next, we recapture language models
and a prior scoping technique using outlier detection algorithms.
Table 1 summarizes the notations used.

2.1 Problem Formulation
Schema Linkages: We are given a set of relational schemas 𝑆 =
(𝑆1, 𝑆2, . . . , 𝑆𝑘 ) that are heterogeneous in volume (number of
tables and attributes), structural design (level of normalization
and attribute atomicity), and domain, that need to be matched.
Each schema 𝑆𝑘 = {𝑡𝑘1 , 𝑡𝑘2 , . . . , 𝑡𝑘𝑖 } contains a set of tables and
each table 𝑡𝑘𝑖 = {𝑎𝑘1 , 𝑎𝑘2 , . . . , 𝑎𝑘 𝑗

} contains a set of attributes. For
multi-source matching, the tables and attributes of one schema
𝑆𝑘 are aligned with at least another schema 𝑆𝑚 . The alignment
between heterogeneous schemas is not fully bijective, since they
may include one-to-one and one-to-many linkages as well as non-
correspondences (unlinkable elements). We define the relevant

inter-linkages between the schemas as the set of table pairs and
attribute pairs between them: 𝐿(𝑆) = {(𝑡𝑘𝑖 , 𝑡𝑚𝑙 ), (𝑎𝑘 𝑗

, 𝑎𝑚𝑛 ), . . . :
𝑡𝑘𝑖 ∈ 𝑆𝑘 ∧ 𝑡𝑚𝑙 ∈ 𝑆𝑚 ∧ 𝑎𝑘 𝑗

∈ 𝑡𝑘𝑖 ∧ 𝑎𝑚𝑛 ∈ 𝑡𝑚𝑙 } where 𝑆𝑘 , 𝑆𝑚 ∈ 𝑆
and 𝑘 ≠𝑚. The table-pairs (𝑡𝑘𝑖 � 𝑡𝑚𝑙 ) or attribute-pairs (𝑎𝑘 𝑗

�
𝑎𝑚𝑛 ) represent a semantic congruence. Note that both binary
relationships are symmetric and represent the ground truth.

In order to explain the introduced notion of congruence, we
refer to the multi-source schemas depicted in Figure 1. To this
end, we seek the following linkage types:

(1) Inter-Identical: This linkage type represents identical one-
to-one semantics between attribute or table pairs. No fur-
ther modification of schema elements is necessary apart
from lexical normalization (e.g., rename 𝑎12 NAME⇒ CNAME
so it becomes identical to 𝑎32 ). Note that the attributes 𝑎32
CNAME and 𝑎42 CNAME are not inter-identical because of the
different underlying semantics (i.e., client name versus car
name).

(2) Inter-Sub-Typed Attributes: These one-to-many linkages
represent a relationship between schema attributes with
partial information intersection. There are two cases: First,
partial information of one attribute links to another (e.g., a
split 𝑎13 ADDRESS links to 𝑎34 CITY). Second, two or more
attributes from one schema link to another schema’s at-
tribute (e.g., 𝑎22 FIRST_NAME and 𝑎23 LAST_NAME both link
to 𝑎12 NAME).

(3) Inter-Sub-Typed Tables: We consider two tables between
different schemas as conceptually similar if they have at
least one inter-identical or inter-sub-typed attribute re-
lationship. Tables that contain additional non-matching
attributes can be reduced to relevant ones via projec-
tion. As an example, projecting Π(𝑎21 , 𝑎22 , 𝑎23 ) on table
𝑡21 CUSTOMER excludes 𝑎24 DOB because it is not contained
in table 𝑡11 CLIENT. This type also includes one-to-many
table linkages, e.g., table 𝑡11 CLIENT also links to the table
𝑡22 SHIPMENTS in 𝑆2 due to the matching customer iden-
tifiers and locations. Note that table 𝑡41 CAR is not linked
to any other table because none of its attributes link to
another despite lexical similarities.

Every integration approach aims at finding as many true
linkages as possible. The linkages can be used to integrate the
schemas with transformations and conjunctive queries (i.e., JOINs
and UNIONs), which are out of scope in this work.

Table 1: Symbols and Description.

Symbol Description

𝑆 Set of multi-source schemas {𝑆1, 𝑆2, . . . , 𝑆𝑘 } to be matched.
𝑆𝑘 Schema with a set of tables {𝑡𝑘1 , 𝑡𝑘2 , . . . , 𝑡𝑘𝑖 }.
𝑡𝑘𝑖

Table with a set of attributes {𝑎𝑘1 , 𝑎𝑘2 , . . . , 𝑎𝑘 𝑗
} and metadata

on 𝑡𝑛𝑘𝑖 table name and {𝑎𝑛𝑘1 , 𝑎𝑛𝑘2 , . . . , 𝑎𝑛𝑘 𝑗
} attribute names.

𝑎𝑘 𝑗

Attribute with metadata on 𝑎𝑛𝑘 𝑗
attribute name,

𝑡𝑛𝑘𝑖 table name, 𝑑𝑘 𝑗
data type, and 𝑐𝑘 𝑗

constraint.

𝐿(𝑆)
All inter-identical and inter-sub-typed linkages between schemas

{(𝑡𝑘𝑖 , 𝑡𝑚𝑙 ), (𝑎𝑘 𝑗
, 𝑎𝑚𝑛 ), . . . : 𝑡𝑘𝑖 ∈ 𝑆𝑘 ∧ 𝑡𝑚𝑙 ∈ 𝑆𝑚∧

𝑎𝑘 𝑗
∈ 𝑡𝑘𝑖 ∧ 𝑎𝑚𝑛 ∈ 𝑡𝑚𝑙 } where 𝑆𝑘 , 𝑆𝑚 ∈ 𝑆 and 𝑘 ≠𝑚.

𝑆 ′
Streamlined schemas {𝑆 ′1, 𝑆′2, . . . , 𝑆 ′𝑘 } where each is

a subset 𝑆 ′
𝑘
∈ 𝑆𝑘 of the original schema and 𝐿(𝑆 ′) ≈ 𝐿(𝑆).

𝑆𝑡
𝑘

Metadata based text sequences of attributes and tables in a
schema (𝑒𝑡

𝑘 𝑗
← 𝑇𝑎 (𝑎𝑘 𝑗

) |𝑎𝑘 𝑗
∈ 𝑡𝑘𝑖 ∈ 𝑆𝑘 ) ∪ (𝑒𝑡𝑘𝑖 ← 𝑇 𝑡 (𝑡𝑘𝑖 ) |𝑡𝑘𝑖 ∈ 𝑆𝑘 ).

𝑆 ®𝑣
𝑘

Language model encoded schema signatures
(𝑒 ®𝑣
𝑘𝑖
← 𝐸 (𝑒𝑡

𝑘𝑖
) |𝑒𝑡

𝑘𝑖
∈ 𝑆𝑡

𝑘
)).
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To effectively manage the complex linkage solution space, we
propose to decompose it using the notion of linkability that char-
acterizes tables and attributes as linkable or unlinkable within
the context of schema matching.

Definition 1. Linkability: Any attribute or table in a set of
schemas 𝑆 that occurs in a linkage pair in 𝐿(𝑆) is defined as
linkable. All other attributes and tables not in any of the linkage
pairs are denoted as unlinkable.

Given the relations in Figure 1, the attribute 𝑎24 DOB in schema
𝑆2 or the whole table 𝑡41 CAR and its attributes 𝑎41 , 𝑎42 , 𝑎43 , and 𝑎44
in schema 𝑆4 are considered to be unlinkable (cross symbol). The
distinction between linkable and unlinkable schema elements
provides a means to use in order to scope streamlined schemas
for heterogeneous multi-source matching pipelines.

Definition 2. Streamlined Schemas: Given a set of multi-source
schemas 𝑆 = {𝑆1, 𝑆2, . . . , 𝑆𝑘 }, we aim to identify the streamlined
subset of these 𝑆 ′ = {𝑆 ′1, 𝑆′2, . . . , 𝑆 ′𝑘 } with 𝑆 ′

𝑘
⊆ 𝑆𝑘 which in-

clude only linkable tables and attributes. Identifying the set of
streamlined schemas 𝑆 ′ is an approximation and thus may also
include false positive and false negative linkability assignments.
The latter has a serious impact on matching because associated
inter-linkages will remain undiscovered for the falsely pruned
schema elements.

Given the overall number of elements in the schemas |𝑆 | and
the linkable ones |𝑆 ′ | ≥ 2, the overhead of unlinkable ones that
need to be processed when matching the schemas can be cal-
culated as |𝑆 |− |𝑆

′ |
|𝑆 ′ | ∈ R+. For example, the multi-source schema

matching scenario in Figure 1 has an unlinkable overhead of
24−15
15 = 60%.
The goal of our work is to find the best approximation of

𝐿(𝑆 ′), which is as close as possible to the schema linkage set
𝐿(𝑆) using the original schemas. As a result, we generate stream-
lined schemas 𝑆 ′ that contain only relevant (linkable) elements
and, thus, inherently reduce the computational overhead of the
subsequent matching pipeline to finally generate higher quality
schema linkages, regardless of the applied blocking and matching
workflow.

2.2 Related Work
Our proposed method relates to multi-source, schema-based, and
target-free relational matching scenarios. Our goal is a distributed
and self-supervised pre-processing method for pruning unlink-
able schema elements, thus improving the efficiency and effec-
tiveness of traditional matching (ref. Figure 2). Therefore, we now
discuss existing matching algorithms, which all require model-
specific parameters as well as a global threshold on similarity or
cardinality. The threshold values, as well as the parameters, are
basically unknown and highly influence the matching process.

Matching with similarity. The long-standing problem of
schema matching can be split into schema-based, instance-based,
and hybrid. Schema-based matching uses similarity between
names, descriptions, synonyms, data types, and constraints of
schema elements. For instance-based matching, the actual in-
stance values, patterns, and functional dependencies can be used.
Over the years, numerous element-wise algorithms were pro-
posed, e.g., CUPID [25], Similarity Flooding [28], COMA [2], all
packaged in the Valentine project by Koutras et al. [23]. In such
algorithms, unlinkable schema elements are merely pruned when
associated linkages fall below a user-defined similarity threshold;
the accurate threshold value differs from linkage to linkage and
between schemas.

Figure 2: Traditional global matching pipeline.

Exclusively relying on string similarity (e.g., Levenshtein or
Fuzzy) between schema names suffers from labeling conflicts.
Therefore, recent approaches learn to encode [3, 8, 12, 47], fine-
tune [50], or use pre-trained Language Models [17] in order to
transform textual descriptions into a Signature, a fixed-size nu-
meric embedding (Section 2.3). The values of actual instances
(records) may also contribute to the semantics of schema ele-
ments. However, matching in the context of privacy-preserving
organizations and data markets1 must resort to the understand-
ing of the linguistics of schema metadata, as access to instance
data is limited.

Recently, Shraga and Gal developed ADnEV to improve the
matching effectiveness by adjusting the similarity matrix be-
tween schema elements using a deep neural network [41]. In
contrast, our approach scopes streamlined schemas upfront in or-
der to avoid the computational overhead of maintaining linkages
that need to be pruned in a post-processing phase. Loster et al.
proposed Siamese Neural Networks in order to learn a tailored
similarity function that aligns with the characteristics of hetero-
geneous sources [24]. In contrast to our work, this supervised
approach requires linkage annotations that are difficult to ob-
tain. In particular, transferring the models to another matching
scenario leads to performance improvements, which motivated
our distributed approach. Shraga et al. developed PoWareMatch
to calibrate a matcher and decision boundary based on tempo-
ral matching decisions of an active-learning pipeline [40]. The
authors’ work suggests that matching improves with threshold
calibration, motivating our self-supervised collaborative scop-
ing approach that generates source-specific linkability functions
and thresholds but does not require any annotated linkages or
linkability labels.

Blocking with cardinality. In general, there is a significant
difference between source-to-target 𝑂 ( |𝑆source | · |𝑆target |) and
multi-source (holistic) schema matching𝑂 ( |𝑆1 |·|𝑆2 |·. . .·|𝑆𝑘 |). The
goal is to derive linkages that represent groups of semantically
related elements, a challenge in efficiency and effectiveness.

He and Chang proposed a holistic ensemble approach that
ranks majority voting among matching multiple schemas [15].
Their approach targets large quantities of heterogeneous input
schemas but uses sampling techniques to scale holistically. In-
stead of sampling, a more promising technique to avoid the Carte-
sian product size of element-wise comparisons is Blocking. Here,
schema elements that are likely to match are efficiently grouped
without affecting linkage completeness (recall) [4, 29, 30, 43].
Blocking utilizes clustering or approximate nearest neighbor
search (ANNs), both based on a user-defined cardinality.

Clustering. Papadakis et al. [33] JedAI system implements a
k-Means module for matching attributes using their names, in-
stances, or combinations [32]. Sahay et al. propose k-Means and
Self-organizing map (Kohonen) limited to one-to-one linkages be-
tween source-to-target matching [37]. More recently, Khatiwada

1AWS marketplace https://aws.amazon.com/marketplace contains 4624 Data Ex-
change offers, of which 268 (5.8%) provide data samples.
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et al. propose ALITE to bond the clustering cardinality to the Sil-
houette coefficient [21]. Even if the cluster cardinality is known
or self-tuned, all methods still have unlinkable elements in their
global matching space, likely leading to more false linkages.

ANNs are built to retrieve the approximately nearby data
points (signatures of another schema) for a query item (signature
of schema). One famously applied technique is locality-sensitive
hashing (LSH) in Data Discovery [11, 22] and Entity Resolution
[31, 43] that also suits well to holistic schema matching. For ex-
ample, Meduri et al. designed Alfa that pre-selects linkages for
active learning via "semantic blocking" variants (i.e., SIM, CLUS-
TER, LSH ) [27]. However, ANNs require a global top-k cardinality
that needs to be searched for every single element, including un-
linkable ones.

All related matching approaches use schemas in their original
state as input and would benefit from our collaborative scoping
approach as a pre-processing module. In Section 4, we show
Meduri et al.’s "semantic blocking" variants to be prone to false
positive linkages (precision) when schemas contain unlinkable
elements.

2.3 Language Models and Schema Signatures
Language models that implement an encoder-decoder architec-
ture, such as Sentence-BERT [34], are trained to transform se-
quences of words into a fixed-sized latent vector. Formally, given
an encoder-based language model 𝐸 and some input text se-
quence 𝑡 = {𝑤1,𝑤2, . . . ,𝑤𝑑 }, first, each word 𝑤𝑑 ∈ 𝑡 is encoded
using word embeddings and consolidated as a matrix set that the
encoder transforms via average pooling in order to output a fixed-
size vector ®𝑣 . To this end, we capture the semantic nuances of the
textual serializations of tables and attributes by encoding them
into signatures. These are used to determine true linkages among
the schemas using similarity (e.g., Cosine) with high scores.

Due to limitations on data access for matching organizations
and data markets outlined in Section 2.2, we focus on metadata
to encode schema-based signatures. For attributes, we therefore
extract the attribute name, table name, data type, and constraint
𝑎𝑘 𝑗

= (𝑎𝑛𝑘 𝑗
, 𝑡𝑛𝑘𝑖 , 𝑑𝑘 𝑗

, 𝑐𝑘 𝑗
). For simplicity, the constraint is re-

stricted to PRIMARY KEY or FOREIGN KEY, the latter without the
reference value. Then, the attribute object values are concate-
nated into a text sequence using the function 𝑇𝑎 . As an exam-
ple, 𝑇𝑎 (𝑎11 ) from Figure 1 returns 𝑎𝑡11 : "CID CLIENT NUMBER
PRIMARY KEY".

We encode the information of tables in a similar way. To
this end, we incorporate the table name, [attribute names] 𝑡𝑘𝑖 =
(𝑡𝑛𝑘𝑖 , {𝑎𝑛𝑘 𝑗

← 𝑎𝑘 𝑗
|∀𝑎𝑘 𝑗

∈ 𝑡𝑘𝑖 }) from the metadata. Then, we
generate descriptive text sequences for the tables using the func-
tion 𝑇 𝑡 . For example, the serialization of the table 𝑇 𝑡 (𝑡11 ) re-
sults in the text sequence 𝑡𝑡11 : "CLIENT [CID, NAME, ADDRESS,
PHONE]".

While instance data samples may become more accessible in
data markets, incorporating these into the schema element serial-
ization must be carefully considered for each matching scenario.
Given the attributes 𝑎𝑡12 : NAME CLIENT (Michael Scott), 𝑎𝑡22 :
FIRST_NAME CUSTOMER (Michael), and𝑎𝑡23 : LAST_NAME CUSTOMER
(Bluth), Sentence BERT captures the semantic similarities be-
tween CLIENT, CUSTOMER as well as NAME, FIRST_NAME, and LAST_
NAME. However, including the instance samples (in parentheses)
increases the cosine similarity2 between 𝑎®𝑣12 ∼ 𝑎®𝑣22 (+5%) but

2Cosine similarity between Sentence-BERT (all-mpnet-base-v2) encoded signatures.

Figure 3: Global example of a normal distribution from col-
lected attributes on names among heterogeneous schemas.

decreases 𝑎®𝑣12 ∼ 𝑎®𝑣23 (-11%). Overall, including instance samples
in the serialization results in less effective matching results [44].
However, effective semantic enrichment strategies exist, such as
embedding learning [3, 8, 12], encoder fine-tuning [50], or using
LLMs [13, 38, 45, 49]. They can be easily integrated, but they are
out of the scope of this paper.

2.4 Scoping Streamlined Schemas
Recently, we introduced an approach called Scoping to identify
linkable schema elements [44] in a multi-source schema matching
scenario. To clarify the differences between Scoping and our new
approach, we briefly summarize Scoping before actually intro-
ducing Collaborative Scoping in Section 3. Scoping is a method to
generate streamlined schemas by ranking, sorting, and filtering
the original schema signatures on linkability:

(1) Ranking with Outlier Detection Algorithms (ODAs): ODAs
are designed to identify a normal distribution from a data
set in order to identify data points with significant devi-
ations as anomalies. We adopt ODAs to score tables and
attributes on linkability across schemas. Using the set of
all textually sequenced and encoded signatures from the
schemas 𝑆 ®𝑣 = {𝑒 ®𝑣11 , . . . , 𝑒

®𝑣
𝑘𝑖
}, each signature obtains an

outlier score. The output is a set of tuples {(𝑒11 , 𝑠11 ), . . . ,
(𝑒𝑘𝑖 , 𝑠𝑘𝑖 )}, where 𝑒𝑘𝑖 is an attribute or table and 𝑠𝑘𝑖 its
respective outlier score.

(2) Sorting: The signature score tuples [(𝑒𝑘𝑖 , 𝑠𝑘𝑖 ), (𝑒𝑘 𝑗
, 𝑠𝑘 𝑗
), . . .]

are sorted in descending order of the outlier scores 𝑠𝑘𝑖 <𝑠𝑘 𝑗
.

(3) Scoping: The sorted signature score tuples are filtered us-
ing the relative threshold parameter 𝑝 ∈ (0..1). The output
is streamlined schemas 𝑆 ′ ⊆ 𝑆 that contain the 𝑝 portion
of schema signatures with lower outlier scores (linkable),
leaving the anomalous ones (unlinkable) aside. Scoping
with 𝑝 = 1 is equivalent to the original set of input schemas
𝑆 ′ ≡ 𝑆 , while 𝑝 = 0 results in empty schemas 𝑆 ′ = 𝜙 .

It is worth noting that the input size for ODAs is linear in the
number of schema elements |𝑆1 | + |𝑆2 | + . . . + |𝑆𝑘 | and not the
Cartesian product size between all possible pairs |𝑆1 | · |𝑆2 | · . . . ·
|𝑆𝑘 |. Therefore, various ODAs can be used for global scoping. A
straightforward method is to compute the signature’s standard de-
viation of the mean 𝜇 (Z-score). Alternatively, the density-based
approach Local Outlier Factor (LOF) quantifies the local signature
distance of a cluster [7]. Recently, encoder-decoder models have
received great attention [14, 18, 20, 35]. Self-supervised models,
such as Principal Component Analysis (PCA) [39] and Neural
Autoencoders [5, 46] (that generalize PCA) function as ODAs
by reconstructing signatures to their original state. In general,
when a signature is close to the mean, has a low distance to a
cluster centroid, or is reconstructed with a low error, then it is
considered to be linkable.
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Figure 4: Proposed collaborative scoping framework.

Scoping yields promising results, but it does not work well on
schemas that are heterogeneous in volume, design, and domain.
As matching heterogeneous schemas may involve an excessive
number of unlinkable elements, a single ODA will not be able
to capture the linkable ones as the normal distribution. In this
case, scoping assesses unlinkable schema elements as linkable
(false positives) and linkable schema elements as unlinkable (false
negatives). For example, Figure 3 illustrates an excerpt of a normal
distribution of attribute signatures from four schemas, of which
𝑆1−3 represent customer names while 𝑆4 represents an entirely
different domain, Formula One data.

Volume. A single ODA assigns equal weight to schema signa-
tures, working under the assumption that the matching schemas
have similar volumes of tables and attributes. In reality, they vary
in size so that one schema dominates the mean of the normal
distribution (e.g., |𝑆4 | > |𝑆2 |> |𝑆1 | = |𝑆3 |) with its own elements.

Design. Additionally, the schemas may have varying decom-
positions of tables and attributes to describe a common concept,
e.g., FIRST_NAME and LAST_NAME (𝑆2) represent customer NAME
(𝑆1) and CNAME (𝑆3). Instead of recognizing similarities across
different schema designs, a single ODA would allocate structural
differences as anomalous with high outlier scores.

Domain. Lastly, schemas may contain domains or concepts
that are completely irrelevant to others (e.g., customer names
in 𝑆1−3 versus Formula One names 𝑆4). A single ODA would
have difficulties defining what constitutes the "normal" domain
among all heterogeneous schemas. In the worst case, an entirely
unrelated schema occupies the most frequent patterns (i.e., For-
mula One names in 𝑆4). Unfortunately, the unlinkable elements
receive low outlier scores while linkable elements receive high
ones. Thus, a global scoping approach would generate schema
subsets that are ineffective for subsequent matching pipelines.

3 Method
In this section, we introduce collaborative scoping as a robust
approach to locally examine the linkability of schema elements
on their way toward matching multiple heterogeneous schemas
with different volumes, designs, and domains. We first introduce
the overall framework, followed by details of the three phases: (I)

Local Signatures, (II) Local Self-Supervised Models, and (III) Local
Linkability Assessment. Finally, we discuss the computational
effort.

Overview. Collaborative scoping is a self-supervised method
for pruning unlinkable schema elements. As illustrated in Figure
4, we follow the three sequential phases for generating stream-
lined schemas, i.e., (I) Local Signatures, (II) Local Self-Supervised
Models, and (III) Local Linkability Assessment, for more efficient
and effective schema matching pipelines. In contrast to the estab-
lished matching pipelines (ref. Figure 2), the collaborative scoping
approach locally learns the semantics of each input schema. In
the first phase, the schemas transform their tables and attributes
into signatures. In the second phase, each schema self-supervises
an encoder-decoder to capture the local schema semantics based
on a global variance parameter that ensures a common degree of
generalizability. In the last phase, the schemas locally assess the
linkability of tables and attributes using the distributed encoder-
decoders. The outputs are streamlined schema subsets to be used
for schema matching.

In comparison to the traditional matching pipeline, this self-
supervised approach reduces irrelevant (unlinkable) schema ele-
ments instead of passing them into matching algorithms. Conse-
quently, we inherently reduce computational overhead for match-
ing (improve efficiency) and avoid an extensive post-pruning of
unlinkable tables, attributes, and associated linkages (improve
effectiveness).

(I) Local Signatures. In Section 2.3, we describe a centralized
approach to process tables and attributes uniformly regardless of
schema origins. In order to ensure consistency and compatibil-
ity within collaborative scoping among the distributed schemas
𝑆1, 𝑆2, . . . , 𝑆𝑘 , the metadata of tables and attributes must be ex-
tracted, pre-processed, and uniformly encoded. Therefore, the
schemas agree on a global textual serialization (𝑇 𝑡 and 𝑇𝑎) and
encoder-based language model (𝐸) to transform the local schema
serializations into a set of signatures, each being a fixed-size
vector of uniform length 𝑆 ®𝑣

𝑘
= (𝑒 ®𝑣

𝑘𝑖
← 𝐸 (𝑒𝑡

𝑘𝑖
) |∀𝑒𝑡

𝑘𝑖
∈ 𝑆𝑡

𝑘
).

(II) Local Self-Supervised Models. In [44], we have shown that
encoder-decoders are effective in scoping streamlined schemas
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for domain-specific matching scenarios. However, we showed in
Section 2.4 that a single global ODA is ineffective for pruning
unlinkable elements in heterogeneous schemas. To avoid the
outlined problems, we propose to encode-decode the normal
distribution of each local schema independently. Note that a
self-trained encoder-decoder can also process the signatures of
another schema.

Intuitively, if a schema element in 𝑆𝑘 is similar to another one
in 𝑆𝑚 , then the element in 𝑆𝑘 also must be recognized by the
encoder-decoder of schema 𝑆𝑚 . This is true because an encoder-
decoder maintains an inherent generalizability that allows the
recognition of unseen data associated with a reconstruction error.
We propose to train a self-supervised encoder-decoder based on
Singular Value Decomposition (SVD) and Principal Component
Analysis (PCA) for the signatures 𝑆 ®𝑣

𝑘
in a schema 𝑆𝑘 . This way,

the semantics of each local schema are summarized into a single
encoder-decoder model.

The number of principal components directs the generalization
for a PCA-based encoder-decoder and needs to be parameterized.
A high number of principal components would overfit so that
the variance of the signatures would be entirely reconstructed.
On the other hand, a small number of principal components
barely captures the variance of the signatures, leading to high
reconstruction errors. The parameterization of PCA is a prob-
lem because the number of principal components is unknown.
Furthermore, they are different for each local schema due to the
heterogeneity in volume, design, and domain. Identifying the
number of principal components for each local encoder-decoder
is closely tied to balancing the generalizability with the risks of
overfitting and underfitting the self-supervised patterns of local
schema signatures.

In order to achieve interoperability for collaborative scoping
among the heterogeneous schemas, we need to maintain a con-
sistent generalization complexity of their encoder-decoders. As
we use SVD, we propose to use the explained variance 𝑣 as a
global reference to homogeneously quantify how much of the
variance of the local schema signatures is captured by the first 𝑛
principal components. The global explained variance 𝑣 enables a
common degree of generalization for the encoder-decoders. The
ideal value for 𝑣 is unknown and varies between the matching
scenarios. Our domain-specific and heterogeneous experiments
have shown that 𝑣 = [0.95, 0.6] achieves a good balance between
precision and recall.

The (II) Local Self-Supervised Models phase is applied to each
schema and outlined in Algorithm 1 with the key observations:

• Line 1-2: Generate local schema signatures with global
textual serialization function and language model encoder.
• Line 3-5: Project schema signatures onto the mean and

compute full singular value decomposition.
• Line 6-10: Select principal components based on a globally

determined explained variance.
• Line 11-13: Encode and decode the schema signatures with

the selected principal components.

The output of Algorithm 1 is the local model 𝑀𝑘 that consti-
tutes the local schema signature mean 𝜇𝑚 and local principal
components 𝑃𝐶𝑚 to be reused for the reconstruction of signa-
tures from other schemas. Because each encoder-decoder now
captures only its native schema context, scoping the outlier scores
with a global threshold is not useful. Consequently, it is not triv-
ial to effectively handle the linkability assessment of tables and
attributes in a collaborative context. Instead, our collaborative

Algorithm 1 Local Self-Supervised Models

Input: 𝑆𝑘 local schema, 𝑇𝑎,𝑇 𝑡 global textual serialization, 𝐸
global language model encoder, 𝑣 ∈ (1..0) global variance

Output: Local model: 𝑀𝑘 = {𝜇𝑘 local signature mean, 𝑃𝐶𝑘 local
principal components, 𝑙𝑘 local linkability range}

1: 𝑆𝑡
𝑘
← (𝑒𝑡

𝑘 𝑗
← 𝑇𝑎 (𝑎𝑘 𝑗

) |𝑎𝑘 𝑗
∈ 𝑡𝑘𝑖 ∈ 𝑆𝑘 )∪

(𝑒𝑡
𝑘𝑖
← 𝑇 𝑡 (𝑡𝑘𝑖 ) |𝑡𝑘𝑖 ∈ 𝑆𝑘 ) //Local serialization.

2: 𝑆 ®𝑣
𝑘
← (𝑒 ®𝑣

𝑘𝑖
← 𝐸 (𝑒𝑡

𝑘𝑖
) |𝑒𝑡

𝑘𝑖
∈ 𝑆𝑡

𝑘
)) //Local signatures.

3: 𝜇𝑘 = mean(𝑆 ®𝑣
𝑘
) //Compute local signatures mean.

4: 𝑋𝑜𝑟𝑖𝑔𝑖𝑛 = 𝑆 ®𝑣
𝑘
− 𝜇𝑘 //Project signatures onto origin.

5: 𝑆𝑉 = {𝑠𝑣1, 𝑠𝑣2, . . .}, 𝑃𝐶 = {𝑝𝑐1, 𝑝𝑐2, . . .} = 𝑆𝑉𝐷 (𝑋𝑜𝑟𝑖𝑔𝑖𝑛)
//Compute full Singular Value Decomposition and
return Singular Values and Principal Components.

6: 𝐸𝑉 𝑠𝑢𝑚 =
∑𝑆𝑉

𝑗=1 𝑠𝑣
2
𝑗 //Compute the sum of the squared

SV for Explained Variance.

7: 𝐸𝑉 ← (𝑒𝑣𝑖 = 𝑠𝑣2𝑖
𝐸𝑉 𝑠𝑢𝑚 |∀𝑠𝑣𝑖 ∈ 𝑆𝑉 ) //Compute EV per PC.

8: 𝐶𝐸𝑉 = (𝑒𝑣1, 𝑒𝑣1 + 𝑒𝑣2, . . .) ← CumulativeSum(𝐸𝑉 )
//Cumulate EV for each added PC.

9: 𝑛comp ← GetIndex(𝐶𝐸𝑉 , 𝑣) + 1 //Find PC number needed
to locally explain the variance so that > 𝑣 .

10: 𝑃𝐶𝑘 ← {𝑝𝑐1, 𝑝𝑐2, . . .} with 𝑝𝑐𝑙 ∈ 𝑃𝐶 ∧ 𝑙 < 𝑛
//Reduce set of all PC to the top-𝑛.

11: 𝑋𝑍 = 𝑋𝑜𝑟𝑖𝑔𝑖𝑛 · 𝑃𝐶𝑇𝑘 //Encode projected signatures.

12: 𝑋𝑜𝑟𝑖𝑔𝑖𝑛 = 𝑋𝑍 · 𝑃𝐶𝑘 //Decode signatures.

13: 𝑋 = 𝑋𝑜𝑟𝑖𝑔𝑖𝑛 + 𝜇𝑘 //Reverse projection onto origin.

14: 𝑆𝑠
𝑘
← {𝑠𝑘𝑖 = 𝑀𝑆𝐸 (𝑒 ®𝑣

𝑘𝑖
, 𝑥𝑖 ) |∀(𝑒 ®𝑣𝑘𝑖 , 𝑥𝑖 ) ∈ (𝑆

®𝑣
𝑘
, 𝑋 )}

//Compute mean reconstruction error score of
original and encoded-decoded signatures.

15: 𝑙𝑘 ← 𝑚𝑎𝑥 (𝑠𝑘𝑖 ∈ 𝑆𝑠
𝑘
) //Select maximum outlier score

as local linkability range.
16: return 𝑀𝑘 = {𝜇𝑘 , 𝑃𝐶𝑘 , 𝑙𝑘 } //Local model components.

scoping strategy automatically determines a range for assessing
the linkability as the third essential component of a local schema
model (Line 14-15).

Definition 3. Local Linkability Range: Given the encoder-
decoder components 𝜇𝑘 , 𝑃𝐶𝑘 , and a set of local schema signatures
𝑆 ®𝑣
𝑘
= {𝑒 ®𝑣

𝑘1
, 𝑒 ®𝑣
𝑘2
, . . . , 𝑒 ®𝑣

𝑘𝑖
}, the signature in the set that reconstructs

with the largest outlier score 𝑠𝑘𝑖 represents the local linkability
range 𝑙𝑘 of the local model 𝑀𝑘 .

Intuitively, a foreign schema element 𝑒𝑘𝑖 is considered to be
linkable if the encoder-decoder𝑀𝑚 of another schema recognizes
it with a reconstruction error that falls into the reconstruction
range [0, . . . , 𝑙𝑚] of its schema elements that it has been trained
on. This threshold is relatively strict, as one could allow for more
reconstruction errors such as 𝑙𝑚 + 𝜖 . However, the local linkabil-
ity range 𝑙𝑚 is already dependent on the explained variance 𝑣 ,
and experiments have shown that further relaxation leads to no
improvement in the overall performance.

(III) Local Linkability Assessment. We design a local linkability
assessment strategy that does not exchange tables and attributes
among the schemas, but the self-trained encoder-decoders. This
way, each local schema individually assesses its linkability and
streamlines it for schema matching, shown in Algorithm 2.

The local schema uses its encoded signature set 𝑆 ®𝑣
𝑘

to recognize
linkable schema tables and attributes to generate a streamlined
schema. Instead of applying its own model 𝑀𝑘 = {𝜇𝑘 , 𝑃𝐶𝑘 , 𝑙𝑘 },
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the local schema iterates through the set of distributed encoder-
decoder models 𝑀 = {𝑀1, 𝑀2, . . . , 𝑀𝑚} \ {𝑀𝑘 } from the schemas
intended to match (Line 1-6). Therefore, schema𝑘 uses the schema
model 𝑀𝑚 in order to encode its local signatures 𝑆 ®𝑣

𝑘
in the latent

space of schema𝑚. Then, it decodes its salient features using the
reverse operation (·𝑃𝐶𝑚 and +𝜇𝑚) back into its original state.

Definition 4. Linkability Assessment: Given the distributed
encoder-decoder model𝑀𝑚 = {𝜇𝑚, 𝑃𝐶𝑚, 𝑙𝑚} from another schema
and a set of local schema signatures 𝑆 ®𝑣

𝑘
= {𝑒 ®𝑣

𝑘1
, 𝑒 ®𝑣
𝑘2
, . . . , 𝑒 ®𝑣

𝑘𝑖
}, the

corresponding tables and attributes in it are linkable when they
reconstruct with an outlier score 𝑠𝑘𝑖 smaller than the local linka-
bility range 𝑙𝑚 . Specifically, the model encoder-decoder function
𝑀𝑚 (𝑒 ®𝑣𝑘𝑖 ) filters linkable (true) from unlinkable (false) schema
signatures as follows:

𝑀𝑚 (𝑒 ®𝑣𝑘𝑖 ) = 𝑀𝑆𝐸 (𝑒 ®𝑣
𝑘𝑖
, ((𝑒 ®𝑣

𝑘𝑖
− 𝜇𝑚) · 𝑃𝐶𝑇𝑚 · 𝑃𝐶𝑚 + 𝜇𝑚) ≤ 𝑙𝑚

The output of Algorithm 2 is a streamlined schema 𝑆 ′
𝑘

with all
tables and attributes considered linkable by one or more of the
distributed encoder-decoder models 𝑀 . The streamlined schema
𝑆 ′
𝑘

can be subsequently used by a traditional matching pipeline
(ref. Figure 2), avoiding ineffective and inefficient linkages that
would have needed to be filtered via subsequent blocking, match-
ing, and post-pruning via user-defined method parameters and
thresholds.

Computational Complexity. We intend to match 𝑘 different
schemas 𝑆1, 𝑆2, . . . , 𝑆𝑘 , where one schema 𝑆𝑘 has a number of
signatures (rows) that we denote as |𝑆𝑘 | with the predefined
length |®𝑣 | (columns) of the encoder-based language model 𝐸.

Scoping. The main computational effort to scope streamlined
schemas is calculated with the applied ODA:
• Z-Score: 𝑂 ( |𝑆 | · |®𝑣 |)
• Local Outlier Factor (LOF) and outlier score computation:
𝑂 ( |𝑆 |2 · |®𝑣 |) +𝑂 ( |𝑆 | · 𝑛)
• Principal Component Analysis (PCA) with full SVD and

reconstruction for outlier scores:𝑂 ( |𝑆 |2 · |®𝑣 | + |®𝑣 |3) +𝑂 ( |𝑆 |)
• Neural Autoencoder (AE): It is dependent on network con-

figurations such as layers, neurons, and epochs. The time
complexity of the simplest network is higher than that of
PCA.

With respect to LOF and PCA, the computational complexity
of scoping has a constant factor with the signature length |®𝑣 | and
predominantly rises in the quadratic sum of signatures | (𝑆1 +
𝑆2 + . . . + 𝑆𝑘 ) |2 = |𝑆 |2 among all schemas intended to match.

Collaborative scoping. Following the same goal with stream-
lined schemas, we construct one encoder-decoder for every local
schema 𝑘 , which additionally needs to reconstruct its signatures
with |𝑀 | = 𝑘 − 1 models of the other schemas. The pooled time
complexity of the collaborative scoping method with PCA based
on Algorithm 1 and 2 advances to the following order∑

𝑘 𝑂 ( |𝑆𝑘 |2 · |®𝑣 | + |®𝑣 |3) +
∑
𝑘 𝑂 ( |𝑆𝑘 | · |𝑀 |) =

𝑂 (( |𝑆1 |2 + |𝑆2 |2 + ... + |𝑆𝑘 |2) · |®𝑣 | + 𝑘 · |®𝑣 |3 + |𝑆 | · |𝑀 |)
because of |𝑆1 | + |𝑆2 | + . . . + |𝑆𝑘 | = |𝑆 |. The computational com-
plexity depends on the size |𝑆1 | + |𝑆2 | + ... + |𝑆𝑘 | that needs to
be additionally factored by the number of 𝑘 schemas. Note that
the higher the number of schemas 𝑘 gets, the lower the sum
of quadratic signatures from local schemas becomes in com-
parison to the quadratic number of the unified signature set
|𝑆1 |2 + |𝑆2 |2 + ... + |𝑆𝑘 |2 < |𝑆 |2. Furthermore, the computation of
the self-supervised encoder-decoder and linkability assessment
takes place in parallel at each local schema.

Algorithm 2 Local Linkability Assessment

Input: 𝑆 ®𝑣
𝑘

local schema signatures, 𝑀 = {𝑀1, 𝑀2, . . . , 𝑀𝑚} \
{𝑀𝑘 } models of all other local schemas where 𝑀𝑚 =
{𝜇𝑚, 𝑃𝐶𝑚, 𝑙𝑚}

Output: Streamlined schema: 𝑆 ′
𝑘
= {𝑒𝑘1 , 𝑒𝑘2 , . . . , 𝑒𝑘𝑖 }

1: for all𝑀𝑚 ∈ 𝑀 do
2: 𝑋𝑜𝑟𝑖𝑔𝑖𝑛 = 𝑆 ®𝑣

𝑘
− 𝜇𝑚 //Project signatures.

3: 𝑋𝑍 = 𝑋𝑜𝑟𝑖𝑔𝑖𝑛 · 𝑃𝐶𝑇𝑚 //Encode signatures.

4: 𝑋𝑜𝑟𝑖𝑔𝑖𝑛 = 𝑋𝑍 · 𝑃𝐶𝑚 //Decode signatures.

5: 𝑋 = 𝑋𝑜𝑟𝑖𝑔𝑖𝑛 + 𝜇𝑚 //Reverse projection onto origin.

6: 𝑆𝑠
𝑘
← {𝑠𝑘𝑖 = 𝑀𝑆𝐸 (𝑒 ®𝑣

𝑘𝑖
, 𝑥𝑖 ) |∀(𝑒 ®𝑣𝑘𝑖 , 𝑥𝑖 ) ∈ (𝑆

®𝑣
𝑘
, 𝑋 )}

//Compute mean reconstruction error score of
original and encoded-decoded signatures.

7: for all 𝑠𝑘𝑖 ∈ 𝑆𝑠𝑘 do
8: if 𝑠𝑘𝑖 ≤ 𝑙𝑚 then
9: 𝑆 ′

𝑘
← Append (𝑆 ′

𝑘
, 𝑒𝑘𝑖 )

//Append linkable table or attribute
signature 𝑒𝑘𝑖 ∈ 𝑆𝑘 to streamlined schema 𝑆 ′

𝑘
.

10: end if
11: end for
12: end for
13: return 𝑆 ′

𝑘

4 Evaluation
In this section, we evaluate our collaborative scoping approach
against the traditional matching pipeline as a pre-processing
step and show its effectiveness in pruning unlinkable schema
elements. We first describe the experimental setup and introduce
different evaluation metrics. All experiments are conducted in a
Python Jupyter Notebook on an Intel i7-1265U CPU with 32GB
memory. The datasets and code can be found at https://github.
com/leotraeg/CollaborativeScoping. Overall, we observe that:

(1) Collaborative scoping always outperforms scoping in ef-
fectiveness by up to +26%.

(2) Traditional scoping is ineffective for heterogeneous schema
matching scenarios compared to domain-specific ones,
while collaborative scoping remains highly robust.

(3) In an ablation study, collaborative scoping boosts match-
ing algorithms in precision (PQ) by up to +80% and F1-
measure by up to +20% while remaining more efficient in
pair comparisons (RR).

4.1 Experimental Setup
Datasets. We conduct experiments that resemble two distinct
multi-source schema matching scenarios. The "OC3" dataset
contains a domain-specific set of three schemas to store Order-
Customer data from the three different database vendors Oracle3,
MySQL4, and SAP HANA5. Note that even the three domain-
specific OC3 schemas have different numbers of tables and at-
tribute atomicity levels, including elements with no correspon-
dences at all that lead to an unlinkable overhead of 103%. The
"OC3-FO" dataset extends the domain-specific schemas with ta-
bles and attributes from the official Formula One6 schema that

3Oracle Schema: https://github.com/oracle-samples/db-sample-schemas
4MySQL Schema: https://www.mysqltutorial.org/mysql-sample-database.aspx
5SAP HANA Schema: https://developers.sap.com/tutorials/hxe-ua-dbfundamentals-
sample-project.html
6JOLPICA-F1 Formula One Schema: https://github.com/jolpica/jolpica-f1
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Table 2: Overview of linkable and unlinkable schema ele-
ments in OC3 and OC3-FO dataset.

Schema (𝑆𝑘 ) Tables Attributes Linkable Unlinkable

OC3 18 142 79 81
OC-Oracle 7 43 27 23
OC-MySQL 8 59 34 33
OC-HANA 3 40 18 25
OC3-FO 34 253 79 208

Formula One 16 111 0 127

is completely unrelated, further increasing the overhead of un-
linkable schema elements to 263%. For the latter dataset, schema
matching is problematic because even the unrelated schema may
contain linkable schema elements (e.g., DRIVER could be regarded
as a CLIENT or EMPLOYEE). However, because of the different
schema semantics, these kinds of tables and attributes should not
be linked to the order and customer domain. The overview of
the matching scenarios with the schemas and linkability label
distribution is summarized in Table 2. The linkability labels de-
rive from the annotated schema linkages 𝐿(𝑆), which are shown
in Table 3 with the Cartesian product sizes.
Signature details. We extract the metadata of the schemas,
create textual sequences of their tables and attributes, and encode
these using Sentence-BERT7 into 768-dimensional signatures
(Section 2.3).
Scoping baselines. We compare collaborative scoping with scop-
ing and four ODAs as baselines. Based on Section 2.4, we compute
outlier scores via Scoping with the unified set of table and at-
tribute signatures 𝑆 ®𝑣 among all schemas, which are then sorted
and filtered using the threshold parameter 𝑝 ∈ (0..1) for stream-
lined schemas. We implement the following ODAs:
• Z-Score: We implement this method using SciPy8.
• Local-Outlier-Factor (LOF): We use the sklearn neighbors

library9 and the default number of neighbors 𝑛 = 20.
• Principal-Component-Analysis (PCA): We use the NumPy10

library for the full Singular Value Decomposition (SVD).
As the generalizability of the model is unknown, we experi-
ment with three explained variance levels 𝑣 = {0.3, 0.5, 0.7}.
• Autoencoder: We use Keras and configure a fully dense

network (768|100|10|100|768) to extend the reconstruction
complexity to PCA. We use ReLUs with Adam and the
mean-squared error (MSE) as the loss function due to its
outlier sensitivity. For a stable result, we initialize and train
the autoencoder 100 times and sum up each computed
outlier score as a variant of ensemble training, each for 50
epochs.

Collaborative scoping details. We use the identical PCA im-
plementation as for the scoping baseline but computed for each
set of local schema signatures (i.e., Algorithm 1 and 2) over the
range of explained variance 𝑣 ∈ (1..0). With respect to the hard-
ware mentioned above and the OC3 and OC3-FO schemas, the
computation of the PCA-based encoder-decoder takes less than

7Sentence-BERT pre-trained with all-mpnet-base-v2 (https://huggingface.co/
sentence-transformers/all-mpnet-base-v2) is reported as the best general-
purpose model (https://www.sbert.net/docs/sentence_transformer/pretrained_
models.html).
8SciPy: https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.zscore.html
9LOF: https://scikit-learn.org/stable/api/sklearn.neighbors.html
10SVD: https://numpy.org/doc/stable/reference/generated/numpy.linalg.svd.html

Table 3: Overview of Cartesian product size and annotated
linkages between schemas for OC3 and OC3-FO dataset.

Schemas
( |𝑆𝑘 | · |𝑆𝑚 |)

Cartesian
Product Table

Cartesian
Product Attr. II* IS*

OC3 101 6617 39 36
Oracle-MySQL 56 2537 14 22
Oracle-HANA 21 1720 10 8
MySQL-HANA 24 2360 15 1

OC3-FO 389 22379 39 36
* Inter-Identical and Inter-Sub-typed linkages (ref. Section 2.1).

a second. To determine the best performance results, several
encoder-decoders can be constructed with different explained
variance values 𝑣 ∈ (1..0).
Matching algorithms. We implement SIM, CLUSTER, and LSH
for generating linkages based on the "semantic blocking" meth-
ods in Meduri et al. [27]. For each algorithm, we select three
different threshold values that cover a large, medium, and small
portion of the linkage search space. SIM enumerates the entire
search space (i.e., Cartesian product size in Table 3), which also
corresponds to the "Preparation" module in Zhang et al. [50].
Then, those linkages are pruned, not to exceed the threshold val-
ues 𝑡𝑆𝐼𝑀={0.4, 0.6, 0.8}. The CLUSTER method applies k-Means
to the signatures of two schemas with 𝑘𝑀𝑒𝑎𝑛𝑠={2, 5, 20} clusters.
Subsequently, only those linkages are considered true for signa-
tures grouped in identical clusters [37]. Lastly, LSH represents
a nearest-neighbor search method that we implement with the
FAISS library [19]. We build an IndexFlatL2 for each schema that
is searched for top-𝑘𝐿𝑆𝐻={1, 5, 20} similar signatures in another
schema. Note that LSH is also used by the SOTA DeepBlocker
[43] method for Entity Resolution [31].

4.2 Evaluation Metrics
Scoping. We measure the effectiveness of scoping streamlined
schemas by predicting the linkable (true) or unlinkable (false)
label for each table and attribute. Following related studies on
schema matching [6, 17, 48], we compute accuracy, precision,
recall, and F1-score. As we neither know the optimal value for the
scoping parameter 𝑝 ∈ (0..1) nor the global explained variance
𝑣 ∈ (1..0) in collaborative scoping, a common practice11 in outlier
detection is to measure the Area Under the Curve (AUC) between
comparative hyperparameter ranges [1, 26]. Accordingly, we
measure the AUC-F1 as a summarizing metric.

Due to the binary class nature of the linkability problem, in
which the parameter values heavily influence the scoping perfor-
mance, we additionally use the AUC of the Receiver Operating
Characteristic (AUC-ROC). We note that in collaborative scop-
ing, some table and attribute signatures will be reconstructed with
an error that is too high to be considered linkable by any other
schema encoder-decoder, regardless of the explained variance. In
these cases, both the false positive rate (FPR) and true positive
rate (TPR) may never reach 100% for any explained variance
𝑣 ∈ (1..0). Unfortunately, FPR never reaching 100% negatively
affects the AUC-ROC score even though it is a favorable model
characteristic. In essence, the quality of a linkability examination

11Sklearn evaluation of outlier detection estimators: https://scikit-learn.org/stable/
auto_examples/miscellaneous/plot_outlier_detection_bench.html
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Table 4: AUC-F1, AUC-ROC, AUC-ROC’, and AUC-PR performance of scoping methods with OC3 and OC3-FO schemas.

Methods ODA OC3 OC3-FO

AUC-F1 AUC-ROC AUC-ROC’3 AUC-PR AUC-F1 AUC-ROC AUC-ROC’3 AUC-PR

Scoping1 Z-Score 51.64 61.67 64.07 61.93 35.52 55.51 56.39 35.51
𝑝 ∈ (0..1) LOF (𝑛 = 20) 52.52 63.24 66.00 61.79 36.76 56.15 57.79 35.49

PCA (𝑣 = 0.3) 55.24 67.71 70.34 67.01 47.04 72.88 74.25 57.98
PCA (𝑣 = 0.5) 58.27 73.64 76.40 71.77 47.97 75.55 77.09 55.22
PCA (𝑣 = 0.7) 54.40 66.72 69.23 65.53 40.30 64.11 65.56 39.34
Autoencoder 55.68 68.90 71.56 67.73 45.79 72.00 73.33 52.54

Collaborative1 PCA 61.82 64.26 82.52 76.39 50.45 62.36 92.80 73.71
𝑣 ∈ (1..0)
Difference2 +6.10% -12.73% +8.01% +6.44% +5.17% -17.46% +20.37% +27.11%
1 The best AUC scores per scoping method are in bold.
2 The percentual improvement or decline between the best AUC scores with scoping and collaborative scoping are in italic.
3 Monotonically sorted and interpolated ROC curve via smoothing12 to compare model performances with FPR < 100% fairly.

is represented by the fact of how quickly the ROC curve con-
verges to a high TPR, which the overall AUC approximates. In
order to diminish the effect of a model never reaching FPR=100%,
we monotonically sort and interpolate12 the ROC curve as ROC’
and compute the respective AUC-ROC’.

Thirdly, in order to account for the imbalances between the
linkable versus unlinkable schema elements (i.e., unlinkable over-
head > 100%), we compute the AUC of the precision-recall curve
(AUC-PR). Due to its focus on the positive class (linkable), we
use it as the primary metric to enable a fair comparison between
the imbalanced unlinkable overheads with the OC3 and OC3-FO
scenarios.
Matching. We evaluate the performance of linkage generation
by a matching algorithm 𝐴 using streamlined schemas 𝑆 ′ with
the annotated set of ground truth linkages 𝐿(𝑆) (ref. Table 3). We
focus on match effectiveness with the standard metrics [3, 31,
40] precision as the Pair Quality (PQ) = |𝐴(𝑆 ′) ∩ 𝐿(𝑆) |/|𝐴(𝑆 ′) |,
recall as the Pair Completeness (PC) = |𝐴(𝑆 ′) ∩𝐿(𝑆) |/|𝐿(𝑆) |, and
F1 = 2· (PQ·PC)

(PQ·PC) as the harmonic mean between PC and PQ. We
measure the number of comparisons by the matching algorithm
with respect to the Cartesian product size of the original schemas
as the Reduction Ratio (RR) = 1 − |𝐴(𝑆 ′ ) |

|𝑆1 | · |𝑆2 | ·...· |𝑆𝑘 | .

4.3 Results
We evaluate the collaborative scoping performance compared
to the scoping baselines. The AUC scores of the F1, ROC, and
PR measures across the OC3 and OC3-FO schemas are reported
in Table 4. We plot the best-performing scoping (a, c, e) and
collaborative scoping (b, d, f) methods for the OC3 schemas
in Figure 5 and OC3-FO schemas in Figure 6. In the first row,
we show the accuracy (blue dashed), precision (green dotted),
recall (red dash-dotted), and F1 (black solid) on the y-axis for the
scoping method (a) with growing 𝑝 ∈ (0..1) and collaborative
scoping (b) with decreasing 𝑣 ∈ (1..0) on the x-axis. In the second
row, we show the ROC (black solid) and smoothed ROC’ (blue
dashed) curves for scoping (c) and collaborative scoping (d). In the
last row, we show the PR curves for scoping (e) and collaborative
scoping (f).

12Python library splrep: https://docs.scipy.org/doc/scipy/reference/generated/scipy.
interpolate.splrep.html (applied smoothing factor 𝑠 = 0.2).

Scoping. As observed in Table 4, scoping with PCA as ODA
significantly outperforms the Z-Score and LOF by +13-63% for
both OC3 and OC3-FO schemas. PCA (𝑣 = 0.5) retrieves the best
results that surpass the AUC scores of the non-linear autoencoder
for both the OC3 and OC3-FO schemas by +4-6%. However, it
is evident that the parameter setting of a single ODA influences
the outlier scores. Thus, a different 𝑣 parameterization leads to
better or worse scoping performance, such as for the best AUC-
PR score for OC3 with PCA (𝑣 = 0.5) and OC3-FO schemas with
PCA (𝑣 = 0.3).

When comparing the performance curves of scoping with
PCA (𝑣 = 0.5) for OC3 (Figure 5 (a)) and OC3-FO (Figure 6 (a))
schemas, we observe a significant drop in precision. Generally,
precision declines steadily as 𝑝 increases in scoping. We attribute
the worse performance in precision with OC3-FO schemas to the
interference of the Formula One tables and attributes, leading to
a considerably lower AUC-F1 (a) score by -18% and AUC-PR (e)
score by -19%. Conversely, AUC-ROC (c) remains relatively stable
between OC3 and OC3-FO (+3%), highlighting its insensitivity to
the linkability class imbalance. Scoping OC3-FO schemas shows
a stronger acceleration of recall than for OC3, both stabilizing at
𝑝 ≈ 0.9 to 100%.

Notably, all scoping methods, except PCA (𝑣 = {0.3, 0.5}) and
the autoencoder, perform worse than randomly guessing (i.e.,
<50 in AUC-PR) for OC3-FO. We relate this performance decline
and change in prediction behavior from OC3 to OC3-FO to the
Formula One table and attribute signatures occupying the models’
normal distribution mean (ref. Figure 3).
Collaborative scoping. As observed in Table 4, our new ap-
proach remains quite robust in terms of AUC-ROC (-3%) and
AUC-PR (-4%) for the additional Formula One tables and at-
tributes that cannot be linked. However, this method struggles
with maintaining consistent precision and recall, as measured by
AUC-F1, showing a decrease of -18% compared to the OC3 and
OC3-FO schemas. When comparing the performance curves from
the collaborative PCA method for OC3 (Figure 5 (b)) and OC3-FO
(Figure 6 (b)) schemas, we observe nearly identical performance
trajectories in precision and recall within the explained variance
range 1 > 𝑣 ≥ 0.7. However, performance differences between
the two schema-matching scenarios become apparent for 𝑣 < 0.7.
We highlight that both the precision and recall curves fluctuate
throughout the range of explained variance 𝑣 ∈ (1..0) due to
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(a) Scoping PCA (𝑣 = 0.5) : F1 (b) Collaborative Scoping PCA: F1

(c) Scoping PCA (𝑣 = 0.5) : ROC (d) Collaborative Scoping PCA: ROC

(e) Scoping PCA (𝑣 = 0.5) : PR (f) Collaborative Scoping PCA: PR

Figure 5: Best performing scoping methods in AUC-F1,
AUC-ROC, and AUC-PR for OC3 schemas.

the dependent local linkability range 𝑙𝑘 of an encoder-decoder
model 𝑀𝑘 . Lower explained variance results in underfitting the
local encoder-decoders, leading to incorrectly tolerating higher
reconstruction errors of unlinkable tables and attributes as link-
able. Consequently, precision decreases in trade-off with minor
improvements in recall. The AUC-F1 improvement is more sig-
nificant for the OC3-FO scenario than OC3.

Regarding the AUC-ROC score in Table 4, the collaborative
PCA scores for OC3 and OC3-FO schemas are quite similar. At a
closer look, the ROC curve for OC3-FO (Figure 6 (b)) rises more
steeply at lower FPR ranges compared to the OC3 schemas (Figure
5 (b)). Secondly, the maximum FPR for OC3-FO is 𝐹𝑃𝑅 ≈ 75%,
whereas it exceeds 𝐹𝑃𝑅 > 80% for OC3 schemas, indicating
improved prediction behavior for OC3-FO schemas. Although we
interpret the AUC-ROC scores with caution due to the imbalance
of label classes not being considered, the smoothed ROC curves
suggest a further +13% improvement in AUC-ROC’ scores for
OC3-FO schemas.

As FPR can remain well below 100% in collaborative scoping
throughout the explained variance 𝑣 ∈ (1..0) range, so may the re-
call/true positive rate (TPR) be affected (recall (b) or TPR (d) in Fig-
ure 5 and 6). For example, in collaborative scoping applied to both
OC3 and OC3-FO schemas at 𝑣 ≤ 0.3, the reconstruction of the
encoded attribute text sequence ORDERDATE ORDERS DATE from
schema 𝑆OC-MySQL ends up not passing the model 𝑀OC-Oracle as
linkable even though its schema 𝑆OC-Oracle contains a linkable
attribute with the text sequence ORDER_DATETIME ORDERS DATE.
Due to their semantic similarity, these two attributes are anno-
tated as an inter-sub-typed linkage in the ground truth set 𝐿(𝑆).

(a) Scoping PCA (𝑣 = 0.5) : F1 (b) Collaborative Scoping PCA: F1

(c) Scoping PCA (𝑣 = 0.5) : ROC (d) Collaborative Scoping PCA: ROC

(e) Scoping PCA (𝑣 = 0.3) : PR (f) Collaborative Scoping PCA: PR

Figure 6: Best performing scoping methods in AUC-F1,
AUC-ROC, and AUC-PR for OC3-FO schemas.

However, the little nuanced differences (i.e., _ and TIME) encode
a deviating signature that causes this false negative at any given
𝑣 . While this case has only occurred to a single element in both
schema matching scenarios, this is a limitation of collaborative
scoping. Pruning false negatives ahead of matching will cause
associated true linkages to remain undiscovered.
Comparison. Collaborative scoping outperforms all scoping
baselines (except AUC-ROC discussed in Section 4.2). For the
domain-specific schemas in OC3, collaborative scoping yields
+6% higher scores for AUC-F1 and AUC-PR and performs +8%
better in AUC-ROC’ compared to the best-performing scoping
method with PCA (𝑣 = 0.5). For the more challenging OC3-FO
matching scenario with a 2.6× unlinkable overhead, collaborative
scoping further excels in AUC-F1 by +5%, AUC-ROC’ by +21%,
and AUC-PR by +27%.

Notably, the performance curves for collaborative scoping
(Figure 5 and 6 (b)) fluctuate throughout the explained variance
ranges 𝑣 ∈ (1..0) compared to scoping (Figure 5 and 6 (a)) that
monotonically increase and decrease with the relative threshold
𝑝 ∈ (0..1). The fluctuating performance in collaborative scoping
stems from each local encoder-decoder 𝑀𝑘 maintaining its own
linkability range 𝑙𝑘 guided by the explained variance 𝑣 rather
than the global threshold 𝑝 in scoping. Carefully considering
AUC-ROC’ alongside the improved AUC-F1 and AUC-PR perfor-
mances, collaborative scoping preserves the local schema context
and, therewith, remains robust in pruning unlinkable schema ele-
ments across both matching scenarios regardless of the different
overheads.

38



Collaborative Scoping: Self-Supervised Linkability Assessment for Schema Matching EDBT ’26, 24-27 March 2026, Tampere (Finland)

(a) OC3: Pair Quality (PQ) (b) OC3: Pair Completeness (PC) (c) OC3: Harmonic Mean (F1) (d) OC3: Reduction Ratio (RR)

(e) OC3-FO: Pair Quality (PQ) (f) OC3-FO: Pair Completeness (PC) (g) OC3-FO: Harmonic Mean (F1) (h) OC3-FO: Reduction Ratio (RR)

SIM(0.4) SIM(0.6) SIM(0.8) CLUSTER(2) CLUSTER(5) CLUSTER(20) LSH(20) LSH(5) LSH(1)

Figure 7: Ablation study for matching OC3 & OC3-FO schemas with collaborative scoping on PQ, PC, F1, and RR.

Ablation study with matching algorithms. We select col-
laborative scoping over scoping as a more effective and efficient
pre-processing method (analysis in Section 3). Figure 7 shows the
PQ, PC, F1, and RR performance (y-axis) for matching OC3 (a-d)
and OC3FO (e-h) schemas with collaborative scoping 𝑆 ′ over
the explained variance range 𝑣 ∈ (1..0) (x-axis). As an ablation
study, we also apply the matching algorithms on the original
schemas 𝑆 without any pre-processing (represented as SOTA in
x-axis=0), with each matching algorithm’s performance drawn as
a thin horizontal baseline. SIM is shown in green with the cosine
threshold values 𝑡𝑆𝐼𝑀 = {0.4 (solid), 0.6 (dashed), 0.8 (dash-dot)},
CLUSTER in red with the cluster numbers 𝑘𝑀𝑒𝑎𝑛𝑠 = {2 (solid),
5 (dashed), 20 (dash-dot)}, and LSH in blue with top-𝑘𝐿𝑆𝐻 = {1
(solid), 5 (dashed), 20 (dash-dot)} lines.

Pair Quality. With collaborative scoping, all matching algo-
rithms generate significantly fewer false positive linkages. Hence,
a global similarity or cardinality threshold alone is not able to
prune false positive linkages effectively. For the variance values
𝑣 > 0.7, the PQ reaches up to 100% and remains consistent for
both OC3 (a) and OC3-FO (e) schemas, showing its robustness
to heterogeneous schema matching scenarios. At 𝑣 > 0.6, CLUS-
TER(20) improves by up to +80%, LSH(20) by up to +70%, and
SIM(0.8) by up to +30%. At 𝑣 < 0.6, the PQ performance saturates
on par with SOTA while all LSH parameterizations consistently
outperform it. Thus, collaborative scoping considerably boosts PQ
for all values of 𝑣 .

Pair Completeness. Collaborative scoping primarily enhances
PQ, whereas the PC metric reflects the trade-off risk of prun-
ing linkable elements ahead of matching. At 𝑣 ≈ 0.6 and again
at 𝑣 < 0.35, all matching algorithms achieve near-SOTA per-
formance (within 1% difference) for both OC3 (b) and OC3-FO
(f) scenarios. Only SIM(0.4) followed by LSH(20) retain enough
linkages to achieve near full PC, but this comes with the cost of
large expansions in the search space. Notably, CLUSTER(2) and
CLUSTER(5) perform better than SOTA at certain variance values
𝑣 < 0.6. However, this optimized PC score is achieved at the cost of
a lower PQ score, which is typically not desired.

F1. In general, most matching algorithms benefit from col-
laborative scoping and improve F1. Thus, streamlining schemas
before matching results in a considerable gain of PQ compared to
the minor losses in PC. Matching heterogeneous OC3-FO schemas
is more error-prone compared to matching homogeneous OC3
schemas. In particular, LSH(1) improves F1 with up to +15% for
OC3 (c) and +20% for OC3-FO (g) schemas at 𝑣 < 0.95. The only
two exceptions are the SIM(0.8) and SIM(0.6) parameterizations
that only reach on-par with SOTA at 𝑣 < 0.7 as they perform an
exact search through the expensive Cartesian product space.

Reduction Ratio. We consistently reduce the number of com-
parisons using the streamlined schemas compared to using the
original ones. The higher the global explained variance, the fewer
schema elements are assigned as linkable, reducing the search
space. The boost in efficiency has more impact on matching
algorithms that extend the linkage search space from medium
to large magnitudes. Notably, even the lowest variance value
𝑣 = 0.01 prunes 9.37% (15) elements in OC3 (d) and 19.86% (57)
in OC3-FO (h) schemas. Given the PQ and PC graphs, with the
exception of one, all these schema elements are irrelevant com-
parison candidates (true negative unlinkable elements) pruned
ahead of matching via collaborative scoping.

4.4 Discussion
Setting variance value. The global variance 𝑣 is a key deter-
minant in collaborative scoping that automatically generates
an independent linkability function and threshold for each lo-
cal schema. Our experiments indicate that when 𝑣 ∈ [0.95, 0.6],
collaborative scoping effectively prunes unlinkable schema el-
ements while balancing high precision with high recall. The
method demonstrated robustness for pruning the different over-
heads of unlinkables by achieving identical performance results
for 𝑣 > 0.7 for the domain-specific (OC3: 103%) and heteroge-
neous (OC3-FO: 263%) scenarios. As a pre-processing phase, we
believe setting 𝑣 as a global model parameter for local pruning
is advantageous because it enables determining the pair quality
and completeness of linkages. In contrast, post-matching with a
global similarity or cardinality threshold cannot account for the
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local schema semantics, such as the mismatching of the Formula
One schema in Figure 1 (e.g., client CITY ≠ car COUNTRY).
Pre-processing trade-off. Collaborative scoping requires each
schema to independently self-train a PCA-based encoder-decoder
with𝑂 ( |𝑆𝑘 |2) as the additional cost. While avoiding element-wise
comparisons, all schema elements must be passed through the
encoder-decoders of the other schemas𝑂 ( |𝑆 | · |𝑀 |). However, the
number of encoder-decoder pass operations is relatively small
compared to the Cartesian product size 𝑂 ( |𝑆1 | · |𝑆2 | · . . . · |𝑆𝑘 |)
(ref. Table 3). Specifically, that is 4.76% (320) for OC3 and 3.78%
(861) for OC3-FO schemas. In general, the higher the number of
schemas, the lower this percentage.
Limitations. First, collaborative scoping does not guarantee
retaining all linkable elements, and sometimes may allow false
negatives. Schema elements classified as unlinkable need to be
carefully evaluated, particularly for matching scenarios with
a strict requirement for Pair Completeness. Secondly, our ap-
proach heavily relies on schema metadata, which, in general, is
obtainable but may sometimes be incomplete or may not exist.
Regardless, our approach avoids matching unlinkable schemas
without any meaningful semantics provided, making collabora-
tive scoping a fault-tolerant pruning solution.

5 Conclusion
In this paper, we discussed schema linkability as a practical pre-
cursor problem for multi-source schema matching, facing the
challenge of distinguishing linkable from unlinkable schema ele-
ments. Our collaborative scoping method aims to solve this prob-
lem by capturing the independent semantics of a schema with
self-supervised encoder-decoder models. Subsequently, the models
of other schemas are used in order to locally assess the schema
linkability and scope a streamlined schema. This approach signifi-
cantly differs from matching methods that apply global similarity
or cardinality thresholds, which are locally self-tuned with col-
laborative scoping. Evaluations show that our approach remains
robust for pruning unlinkable elements when matching hetero-
geneous schemas and performs better than prior work. This way,
the linkage quality and F1 performance of schema matching sig-
nificantly improve. At the same time, the number of element-wise
comparisons is inherently reduced. As part of future work, we
plan to extend encoder-decoders in order to recognize non-linear
signature patterns and experiment with the overall applicability
in entity resolution and ontology alignment [16].
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Artifacts
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able and accessible in the GitHub repository https://github.com/
leotraeg/CollaborativeScoping. The README.md file provides a
description of the datasets along with a quick-start guide to the
implementation and performance metrics.
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