
␣

␣

CAMEO: Autocorrelation-Preserving Line Simplification for
Lossy Time Series Compression

Carlos Enrique Muñiz-Cuza
muniz.cuza@tu-berlin.de

TU Berlin, Germany

Matthias Boehm
matthias.boehm@tu-berlin.de

TU Berlin, Germany

Torben Bach Pedersen
tbp@cs.aau.dk

Aalborg University, Denmark

Abstract
Time series data from a variety of sensors and IoT devices need
effective compression to reduce storage and I/O bandwidth re-
quirements. While most time series databases and systems rely on
lossless compression, lossy techniques offer even greater space-
saving with a small loss in precision. However, the unknown
impact on downstream analytics requires a semi-manual trial-
and-error exploration. We initiate work on lossy compression
that provides guarantees on complex statistical features (which
are strongly correlated with the accuracy of downstream analyt-
ics). Specifically, we propose CAMEO, a new lossy compression
method that provides guarantees on the autocorrelation and
partial-autocorrelation functions (ACF/PACF) of a time series.
Our method leverages line simplification techniques as well as
incremental maintenance, blocking, and parallelization strategies
for effective and efficient compression. The results show that
our method improves compression ratios by 2x on average and
up to 54x on selected datasets, compared to previous lossy and
lossless compression methods. Moreover, we maintain, and some-
times even improve, the forecasting accuracy by preserving the
autocorrelation properties of the time series.

Keywords
Lossy Time Series Compression, Autocorrelation Function, Time
Series Forecasting Analytics, Anomaly Detection

1 Introduction
High-frequency time series are everywhere, from industrial man-
ufacturing to weather prediction. For instance, an offshore oil rig
typically has 30,000 sensors, of which only a few are utilized for
real-time control and anomaly detection [72]. Time series com-
pression can significantly reduce storage space, I/O bandwidth
(storage or network) and analysis requirements [23, 51–53, 110].
Motivated by these benefits, numerous algorithms have been pro-
posed for lossless [12, 67, 82, 83, 105] and lossy [6, 15, 29, 58, 73]
compression. While lossless methods preserve the raw data, lossy
methods offer an appealing trade-off: more effective compression
with only a small, typically bounded reconstruction error.

Lossy Compression Problem: In order to reduce the impact
on downstream applications, lossy compression often minimizes
the reconstruction error. These methods focus on maximizing
compression ratios, bounded to a maximum distortion of time
series values [15, 32, 46, 59, 71, 93]. Common techniques include
domain transformation (Fourier Transform) [2, 21, 55], functional
approximation (Polynomial Approximation) [11, 29, 32, 56], and
symbolic representation (Dictionary Encoding) [61, 69, 70, 70, 73,
88]. Reconstruction quality is typically measured by the Normal-
ized Root Means Square Error (NRMSE) or the Peak Signal-to-
Noise Ratio (PSNR) [92]. However, the impact on downstream

EDBT ’26, Tampere (Finland)
© 2025 Copyright held by the owner/author(s). Published on OpenProceedings.org
under ISBN 978-3-98318-102-5, series ISSN 2367-2005. Distribution of this paper is
permitted under the terms of the Creative Commons license CC-by-nc-nd 4.0.

Figure 1: (left) Pearson Correlation of Forecasting Errors
and Different Statistical Features. (right) Average Forecast-
ing Accuracy using Discrete Fourier Transform (DFT) and
our CAMEO method at a Fixed Compression Ratio.

time series analytics remains largely unclear, requiring a tedious,
semi-manual trial-and-error exploration [14, 29, 47, 74, 76, 79].

A Case for Autocorrelation Preservation: Minimizing re-
construction errors like NRMSE or PSNR treats data points in-
dependently, ignoring the temporal dependencies essential for
forecasting and anomaly detection. In contrast, complex statis-
tics like autocorrelation (ACF) and partial autocorrelation (PACF)
capture these dependencies. For stationary series, the ACF fully
characterizes the second-order structure (i.e., all pairwise covari-
ances), critical for many forecasting methods [8]. Preserving the
ACF also retains the signal’s spectral characteristics [102], cap-
turing both dominant and subtle temporal patterns including
periodicity. As the PACF also determines lag selection in ARIMA
models [8], preserving the ACF/PACF ensures the retention of
features essential for accurate forecasting.

Empirical Validation: For validating this intuition, we ran ex-
periments on three datasets: Pedestrian, Rideshare, and AirQual-
ity [42], comprising 2,831 time series. First, we compressed each
series at varying compression ratios using the Discrete Fourier
Transform (DFT) [21], measuring impacts on both reconstruction
metrics (NRMSE, PSNR) and downstream forecasting accuracy
(modified sMAPE from STL-ETS [19, 49]). Our analysis (Figure 1
left) shows that deviations in ACF and PACF features, notably
ACF1 and PACF5, correlate more strongly with forecasting errors
than traditional reconstruction metrics. Second, further experi-
ments at a fixed compression ratio of 5 compare DFT with our
proposed method CAMEO which preserves the ACF. Across two
forecasting models (STL-ETS, STLF-ARIMA) on the Pedestrian
dataset, CAMEO reduces forecasting errors by 10%–20% com-
pared to DFT (Figure 1 right).

Contributions:We introduce an auto-cor-relation-preserving
lossy time series compressor (CAMEO). Our objective is to max-
imize compression while guaranteeing a user-defined maximum
deviation of the ACF or PACF on the compressed data. CAMEO
uses an iterative greedy approach, removing points based on
their impact on the ACF or PACF. These statistics are updated
incrementally. To improve runtime, we leverage blocking and
parallelization strategies. In detail, our contributions are:
• We survey lossy time series compression and line simplifi-

cation methods through a new hierarchical and compara-
tive classification in Section 2.

Series ISSN: 2367-2005 15 10.48786/edbt.2026.02

http://dx.doi.org/10.48786/edbt.2026.02

EDBT ’26, 24-27 March 2026, Tampere (Finland) Muniz-Cuza et al.

Lossy Compression

Functional
Approximation

Linear
Non-linear
Mixed

Domain
Transformation

Frequency
Latent Space
Trans. Matrix
Neural Networks

Value
Representation

Dictionary
Symbolic
Quantization

Line
Simplification

Turning Points
Perceptual
Imp. Points
Statistical
Imp. Points

based on

Figure 2: Hierarchy for Lossy Time Series Compression.

• We introduce a new general problem formulation for lossy
time series compression under user-specified statistical
feature constraints in Section 3.
• We instantiate this formulation by designing CAMEO,

a concrete framework that enforces user-defined error
bounds 𝜖 on ACF and PACF (Section 4). Key aspects in-
clude incremental updates, blocking heuristics, and paral-
lelization strategies.
• We conduct broad experiments to study CAMEO compared

to state-of-the-art lossy compressors, on different datasets,
and with different time series analytics in Section 5.

CAMEO yields improvements in compression ratios of 2x on
average (and up to 54x on some datasets) while preserving the
same deviation of the ACF. Due to the bounded impact on the
ACF, CAMEO better maintains, and sometimes even improves,
the accuracy of forecasting models and anomaly detection tasks.

2 Background
In this section, we describe the background of lossy time se-
ries compression (via a hierarchical classification), existing line
simplification algorithms, and autocorrelation functions.

2.1 Lossy Time Series Compression
Lossy time series compression converts an input time series X
of size 𝑛 into a compressed representation X′ of size 𝑛′, where
𝑛′ ≪ 𝑛. The sizes of X and X′ can be measured in number of
bits (e.g., under quantization) or number of elements (e.g., for
line simplification). The compression ratio 𝑐 = 𝑛

𝑛′ quantifies
compression effectiveness. Data distortion refers to the loss of
information in the reconstructed time series compared to the
original. For further details on compression methods, we refer
readers to recent surveys [17] and comparative analyses [7, 48].

Lossy Compression Categories: There is a plethora of lossy
time series compression methods with different trade-offs. Fig-
ure 2 shows the major categories arranged in a type hierarchy.
• Functional Approximation: The data is approximated

by one or more functions [9, 11, 16, 29, 32, 56, 59, 63],
where the time series is divided into segments, and we
store parameters of a low-order polynomial per segment.
Such methods guarantee a maximum distortion error per
value and are particularly effective on smooth trends.
• Domain Transformation: The data is transformed into

a different mathematical domain [2, 10, 21, 24, 50, 55, 64].
We compress the data by retaining significant components
in this new domain and discarding less important ones.
These techniques often assume stationarity or periodicity.
• Value Representation: The data is substituted with an-

other more compact representation [43, 58, 70, 73, 88]
(e.g., binning or quantization). Here, the compression is

Figure 3: ACF Importance Skew (Non-Uniform Importance)

achieved by limiting the number of distinct items—thus,
codeword size—while controlling the reconstruction error.
Symbolic methods enable efficient indexing and search.
• Line Simplification: All points are ranked according to

a certain criterion and removed in reverse order [18, 39,
40, 44, 89, 90, 108]. The ranks are often updated locally
within a small neighborhood of the removed point.

CAMEO Positioning: Our approach is inspired by Line Sim-
plification methods (which often preserve geometric properties
such as area-under-the-curve) but extends this idea to preserving
more complex statistical features. We introduce a new category,
Statistical Important Points, for methods that explicitly preserve
time series statistics such as the ACF and PACF. To the best of our
knowledge, CAMEO is the first method proposed in this category.

2.2 Line Simplification for Lossy Compression
Line simplification methods reduce the number of points while
preserving major geometric or visual characteristics. Keeping
relevant original points while approximating others via interpo-
lation can help maintain key patterns, e.g., total energy (area-
under-the-curve) in semiconductor degradation tests [22].

Turning Points: The central idea behind turning-points (TP)
compression is to store only the points at which the time series
changes direction, i.e., where it turns from increasing to decreas-
ing, or vice versa [89, 108]. This approach preserves key inflection
points and supports the reconstruction of linear trends, often
critical in applications such as stock trading [3].

Perceptual Important Points: The core idea behind per-
ceptual important points (PIP) compression is to find and store
points that are significant or meaningful based on the human
perception [38, 54]. These points can include peaks, valleys, and
other visually salient features that may indicate important events
or changes in the data. In detail, PIP-based algorithms build a
reduced approximation iteratively by always inserting the point
with the largest vertical distance from the current approximation
line between two existing PIPs [18, 38, 62, 85]. Early versions of
this idea were proposed for polygonal curve simplification and
cartographic generalization [27, 84, 98].

Visvalingam-Whyatt Algorithm: The main idea behind
Visvalingam-Whyatt (VW) line simplification is to remove points
based on the areas of the triangles formed by triplets of sequential
points [98]. At each iteration, VW replaces the smallest triangle
with a straight-line segment by eliminating the middle point and
computing the areas of the newly formed left and right triangles.
The algorithm stops when the smallest triangle’s area does not
meet the error bound or a specified number of points is removed.

CAMEO Differentiation: While CAMEO shares the gen-
eral structure of progressive point selection with classical line
simplification methods, it fundamentally differs in its optimiza-
tion goal. Instead of preserving geometric properties (area, direc-
tion changes, or peaks), CAMEO selects points to preserve the
compressed-modified ACF/PACF within an error bound. Figure 3
illustrates this distinction by showing how the ACF importance

16

CAMEO: Autocorrelation-Preserving Line Simplification EDBT ’26, 24-27 March 2026, Tampere (Finland)

distribution—measured as the distortion introduced by removing
each point—is highly non-uniform across four time series. This
pattern highlights the need for a more targeted point selection
strategy instead of treating all points equally. CAMEO’s shift
from geometry- or perception-driven importance to preserving
time series temporal structure marks a significant change from
previous approaches.

2.3 Quality Measures
To measure the deviation between the original and reconstructed
time series, or the original and compression-modified ACF and
PACF, or the forecasted and expected time series, one can use
different quality measures D(X,X′):
• Mean Absolute Error: MAE = 1

𝑛

∑𝑛
𝑖=1 |𝑥𝑖 − 𝑥 ′𝑖 |

• Root Mean Square Error: RMSE = 1
𝑛

√︁∑𝑛
𝑖=1 (𝑥𝑖 − 𝑥 ′𝑖)2

• Normalized RMSE: NRMSE = RMSE
max(X)−min(X)

• Modified Symmetric MAPE:

mSMAPE =
1
𝑛

𝑛∑︁
𝑖=1

|𝑥𝑖 − 𝑥 ′𝑖 |
max (|𝑥𝑖 | + |𝑥 ′𝑖 | + 𝜖, 0.5 + 𝜖)/2

where 𝜖 is by default 0.1 [42].

2.4 Time Series Autocorrelation Functions
The ACF and PACF are two fundamental statistical concepts that
measure the correlation between the observations at a current
point in time and observations at different time lags [8].

Basic ACF: The ACF is the Pearson correlation of the time se-
ries X and a lagged version of itself—computed for lags 1 through
a user-provided max lag 𝐿—and is computed at lag 𝑙 as follows:

ACF𝑙 (X) =
1

(𝑛 − 𝑙)𝜎2

𝑛−𝑙∑︁
𝑡=1
(𝑥𝑡 − 𝜇) (𝑥𝑡+𝑙 − 𝜇) (1)

where 𝜇 and 𝜎 are the mean and standard deviation of X, and
𝑛 = |X| (number of points). Equation (1) assumes the time series
is stationary, and thus, 𝜇 and 𝜎 are the same at all time intervals. If
the time series is non-stationary, 𝜇 and 𝜎 should be computed for
X and its lagged version X𝑙 . Specifically, X spans [1 · · ·𝑛 − 𝑙] and
X𝑙 spans [𝑙 + 1 · · ·𝑛]. Thus, both time series have 𝑛 − 𝑙 elements.

Alternative ACF: An equivalent formulation of the ACF at
lag 𝑙 , but more convenient for later incremental updates, is:

ACF𝑙 =
(𝑛 − 𝑙)∑𝑥𝑡𝑥𝑡+𝑙 −

∑
𝑥𝑡

∑
𝑥𝑡+𝑙√︂((𝑛 − 𝑙)∑𝑥2𝑡 − (

∑
𝑥𝑡)2

) (
(𝑛 − 𝑙)∑𝑥2

𝑡+𝑙 − (
∑
𝑥𝑡+𝑙)2

)
(2)

whose basic aggregates can be maintained incrementally [101].
Basic PACF: The PACF measures the correlation between

current and past observations at lag 𝑙 , removing intermediate
lag influences. The PACF𝑙 = 𝜙𝑙,𝑙 , can be computed using the
Durbin-Levinson (DL) [28, 75] recursion in O(𝐿2) as follows:

𝜙1,1 = ACF1, 𝜙𝑙,𝑙 =
ACF𝑙 −

∑𝑙−1
𝑘=1 𝜙𝑙−1,𝑘ACF𝑙−𝑘

1 −∑𝑙−1
𝑘=1 𝜙𝑙−1,𝑘ACF𝑘

(3)

where 𝜙𝑙,𝑘 = 𝜙𝑛−1,𝑘 − 𝜙𝑛,𝑛𝜙𝑛−1,𝑛−𝑘 for 1 ≤ 𝑘 ≤ 𝑙 − 1.
Utility: The ACF and PACF are valuable tools in time series

analytics, often used for understanding the underlying patterns in
the series, assisting in selecting the type and order of forecasting
models, and enabling precise and reliable forecasts.

3 Problem Formulation
In this section, we introduce three variants for the problem of
compressing a time series while preserving statistical features.
This problem formulation is independent of concrete algorithms.

Definition 1 (Statistical Important Points). Given a time
series X, an error bound 𝜖 , a time series statistic S, and a quality
measure D, we aim to find a compressed time series X′ (in terms
of a subset of original data points) such that:

max
|X|
|X′ |

s.t. D(S(X),S(X′)) ≤ 𝜖
(4)

This optimization objective maximizes |X|/|X′ | (compression ratio),
while enforcing a bounded deviation of the user-provided statistic
S on the compressed data (measure by D) by at most 𝜖 .

Complexity: Similar to other line simplification methods,
finding the globally optimal solution efficiently is intractable [95,
96]. Thus, we aim to find approximate solutions with high com-
pression ratios but hard or high-probability guarantees on the
deviation from S. Furthermore, we may need to preserve statis-
tics on window aggregates of the time series. For example, a time
series in 4-second granularity with daily seasonality would re-
quire an ACF with 21,600 lags to capture a full season. Therefore,
we introduce a variant of the Statistical Important Points problem,
aiming to preserve statistical features on aggregated time series.

Definition 2 (Statistical Important Points on Aggre-
gates). Given a time series X, an error bound 𝜖 , a time series
statistic S, a quality measure D, and an additional aggregation
function Agg𝜅 over 𝜅 data points, we aim to find a compressed time
series X′ (in terms of a subset of original data points) such that:

max
|X|
|X′ |

s.t. D(S(Agg𝜅 (X)),S(Agg𝜅 (X′))) ≤ 𝜖
(5)

where Agg𝜅 (X) = [𝑎1, . . . , 𝑎𝑛/𝜅] and 𝑎𝑖 = Agg𝜅 (𝑥 [𝑖 :𝑖+𝜅]). The
aggregation function Agg𝜅 needs to be additive, semi-additive, or
additively-computable to enable incremental updates [101].

Example: To illustrate the SIP on Aggregates problem, assume
an original time series X sampled every minute, 𝜖 = 0.01, S =
ACF, Agg𝜅 =

∑𝑖+30
𝑖+1 𝑋𝑖/30 (the mean value every 𝜅 = 30 minutes),

and D =MAE. Here, Equation 5’s constraint renders to

MAE
(
ACF⟨1· · ·𝐿⟩

(∑𝑖+30
𝑖+1 X𝑖

30

)
,ACF⟨1· · ·𝐿⟩

(∑𝑖+30
𝑖+1 X′𝑖
30

))
≤ 0.01,

where 𝑖 iterates through and aggregates consecutive tumbling
(i.e., jumping) windows in the time series. Alternative problem
formulations exchange the hard and soft constraints of the above
optimization objectives to reach desired compression ratios with-
out unnecessary exploration of parameters.

Definition 3 (Compression-centric Statistical Impor-
tant Points). Given a time series X, a statistic S, a quality mea-
sure D, an optional aggregation function Agg𝜅 and a minimum
compression ratio 𝑐 , we aim to find a compressed time series X′

such that:

min D(S(Agg𝜅 (X)),S(Agg𝜅 (X′)))

s.t.
|X|
|X′ | ≥ 𝑐

(6)

17

EDBT ’26, 24-27 March 2026, Tampere (Finland) Muniz-Cuza et al.

\
 \
 \

 \
 \

�

<
 ><

\

 \

0

0
 \

 \
 \

 \

-
N

Figure 4: Linear Interpolation of x3 (Left) and x2 (Right).

This optimization objective minimizes the distortion between the
original and reconstructed statistical features while removing points
until the compression ratio 𝑐 is reached.

4 CAMEO Framework
CAMEO addresses the Statistical Important Points problem using
a greedy, iterative strategy that progressively removes points
while controlling the impact on the ACF. At each iteration, it
selects the point with the minimum ACF impact, interpolates
its value, updates internal aggregates, and checks whether the
user-defined error bound 𝜖 is still satisfied. This section intro-
duces the overall compression algorithm (Algorithm 1), as well as
three techniques for improving its runtime efficiency: incremen-
tal maintenance of the ACF (Section 4.2), blocking of local neigh-
borhoods (Section 4.3), and different parallelization strategies
(Section 4.4). The underlying greedy heuristics of our algorithm
include (1) selecting the next best point, and (2) updating the
ACF impact in a local neighborhood.

4.1 Overall Compression Algorithm
CAMEO begins by calling ExtractAggregates(X) (Line 1 of Al-
gorithm 1) to compute the basic aggregates needed for efficiently
evaluating the ACF using Equation 2. Rather than recomputing
the ACF from scratch after each removal, CAMEO incrementally
updates these aggregates based on the interpolation error intro-
duced by removing a point (Line 6). Figure 4 (left) illustrates this
process: removing 𝑥3 and interpolating its value from 𝑥2 and 𝑥4
introduces a small error Δ𝑥3, which is then used to update the
aggregates. This update enables maintaining the ACF in constant
time per lag. The compression process iterates over these steps
until the error bound 𝜖 is violated or no further points can be
removed (Lines 4–12).

Initialization: To rank points for removal, we compute for
each point its estimated impact on the ACF if removed (Line 3).
The function GetAllImpactACF (Algorithm 2) leverages the pre-
computed aggregates to evaluate the impact in O(𝐿𝑛) time and
stores the results in a heap H. This operation is vectorizable and
parallelizable, as each point’s impact can be calculated indepen-
dently. Specifically, GetAllImpactACF updates the ACF aggre-
gates based on the hypothetical removal of each point (Lines 4-9),
computes the new ACF (Line 10), and measures the distortion
using D (Line 11). The impacts are then organized into H, built
in O(𝑛) time using Floyd’s method [36]. The total initialization
time complexity is O(𝐿𝑛 + 𝑛).

Inner Loop and Updating Heuristic: Every time a point
x𝑖 is popped from the heap, we compute its interpolation er-
ror Δx𝑖 , update the ACF aggregates, and recompute the ACF
(Lines 5–8). We then check whether the updated ACF satisfies
the user-defined quality constraint D (Line 9). If so, the point
is permanently removed (Line 11). Since removing points alters
relationships between values at different lags, the previously com-
puted ACF impacts of neighboring points may become outdated.
To maintain consistency, CAMEO uses the ReHeap procedure

Algorithm 1 CAMEO
Input: Time Series X, Error Bound 𝜖 , Max Lag 𝐿
Output: List of Remaining Points X′

1: ACFAgg← ExtractAggregates(X) // Get ACF aggregates
2: PL ← GetACF(ACFAgg) // Get raw ACF
3: H← GetAllImpactACF(ACFAgg,X) // Heap of distortions
4: while Top(H) ≠ NULL do // Not empty
5: x𝑖 ← Pop(H) // Get next point
6: Δx𝑖 ← Interpolate(x𝑖) // Get interpolation error
7: ACFAgg← Update(ACFAgg,Δx𝑖) // Update ACFAgg
8: P̂𝐿 ← GetACF(ACFAgg) // Get new ACF
9: if D(P̂L, PL) ≥ 𝜖 then // Check error bound

10: return X′ // Error bound reached
11: X′ ← Remove(X, x𝑖) // Remove the point
12: H← ReHeap(H, x𝑖) // Update impact of points inNℎ (𝑥𝑖)
13: return X′

Algorithm 2 GetAllImpactACF
Input: ACF aggregates ACFAgg, Time Series X, Raw ACF 𝑃𝐿
Output: Heap with Impact on ACF per each Point 𝐻

1: 𝑖 ← [1, · · · , 𝑛 − 1] // Get indices
2: 𝑙 ← [1, · · · , 𝐿] // Get lags
3: 𝑛 ← [𝑛 − 1, · · · , 𝑛 − 𝐿] // Get size for all lags
4: ΔX← 1

2 (X[2 :] − X[: −2]) − X[𝑖] // Get all deltas 𝑥𝑖 by LIP
5: 𝑠𝑥 ← ACFAgg.𝑠𝑥 + ΔX //

∑
𝑥

6: 𝑠𝑥𝑙 ← ACFAgg.𝑠𝑥𝑙 + ΔX //
∑
𝑥𝑙

7: 𝑠𝑥2 ← ACFAgg.𝑠𝑥2 + 1
𝑛ΔX(ΔX + 2X[𝑖]) //

∑
𝑥2

8: 𝑠𝑥2
𝑙
← ACFAgg.𝑠𝑥2

𝑙
+ 1

𝑛ΔX(ΔX + 2X[𝑖]) //
∑
𝑥2
𝑙

9: 𝑠𝑥𝑥𝑙 ← ACFAgg.𝑠𝑥𝑥𝑙 + 1
𝑛ΔX(X[𝑖 − 𝑙] + X[𝑖 + 𝑙]) //

∑
𝑥𝑥𝑙

10: P̂𝐿 ← GetACF(𝑠𝑥, 𝑠𝑥𝑙 , 𝑠𝑥2, 𝑠𝑥2𝑙 , 𝑠𝑥𝑥𝑙) // Apply Equation 2
11: H← Heapify(D(P̂𝐿, P𝐿)) // Floyd’s method
12: return H

(Line 12) to selectively update these scores. A blocking heuristic
(see Section 4.3) limits this recomputation to a fixed number of
neighbors, balancing efficiency and accuracy.

Decompression: CAMEO uses linear interpolation as its de-
compression strategy, consistent with standard line simplification
methods. This choice aligns with CAMEO’s compression phase,
which assumes linear interpolation when estimating the ACF/-
PACF impact of removing a point. As a result, the reconstructed
time series is composed of piecewise linear segments. This ap-
proach is both efficient and practical, requiring only a single
forward pass over the retained points.

4.2 Incremental ACF and PACF
Computing the ACF or PACF from scratch for every removed
point is infeasible for large time series. Hence, we incrementally
maintain the autocorrelation functions—for constraint valida-
tion during compression—by keeping track of Equation 2’s basic
aggregates 𝑠𝑥 , 𝑠𝑥2, 𝑠𝑥𝑙 , 𝑠𝑥2𝑙 , and 𝑠𝑥𝑥𝑙 :

𝑠𝑥 =
𝑛−𝑙∑︁
𝑖=0

𝑥𝑖 𝑠𝑥𝑙 =
𝑛∑︁
𝑖=𝑙

𝑥𝑖 𝑠𝑥𝑥𝑙 =
𝑛−𝑙∑︁
𝑖=0

𝑥𝑖𝑥𝑖+𝑙

𝑠𝑥2 =
𝑛−𝑙∑︁
𝑖=0

𝑥2𝑖 𝑠𝑥2𝑙 =
𝑛∑︁
𝑖=𝑙

𝑥2𝑖

(7)

These aggregates are computed by the function ExtractAggre-
gates for all lags 𝑙 ∈ [1, 𝐿] in Algorithm 1 with complexityO(𝐿𝑛)

18

CAMEO: Autocorrelation-Preserving Line Simplification EDBT ’26, 24-27 March 2026, Tampere (Finland)

dominated by 𝑠𝑥𝑥𝑙 . When removing the data point 𝑥𝑖 , we then
compute the distance Δ𝑥𝑖 between 𝑥𝑖 and its interpolated value
𝑥𝑖 , i.e., Δ𝑥𝑖 = 𝑥𝑖 −𝑥𝑖 . Figure 4 (left) shows an example. Given Δ𝑥𝑖 ,
we derive the following update rules:

𝑠𝑥+ = Δ𝑥𝑖 , 𝑠𝑥2+ = Δ𝑥𝑖 (2𝑥𝑖 + Δ𝑥𝑖), 𝑠𝑥𝑙+ = Δ𝑥𝑖

𝑠𝑥2𝑙 + = Δ𝑥𝑖 (2𝑥𝑖 + Δ𝑥𝑖), 𝑠𝑥𝑥𝑙+ = Δ𝑥𝑖 (𝑥𝑖−𝑙 + 𝑥𝑖+𝑙)
(8)

Once the aggregates are updated, we can compute the ACF at a
specific lag using Equation 2. Similarly, to compute and preserve
the PACF, we incrementally maintain the ACF and apply the DL
recursion in Equation 3 albeit with higher computational cost.

Update Rules for Multiple Elements: In some cases, re-
moving a point requires interpolating more than one element,
as shown in Figure 4 (right). In that case, the basic aggregates
are updated by summing over the deltas of every interpolated
point. Specifically, if removing point 𝑥𝑖 requires interpolating the
𝑚 points [𝑥 𝑗 , . . . , 𝑥𝑖 , . . . , 𝑥 𝑗+𝑚] (changed interpolations until the
next remaining points left and right), the update rules are:

𝑠𝑥+ =
𝑗+𝑚∑︁
𝑘=𝑗

Δ𝑥𝑘 ,

𝑠𝑥𝑙+ =
𝑗+𝑚∑︁
𝑘=𝑗

Δ𝑥𝑘 ,

𝑠𝑥2+ =
𝑗+𝑚∑︁
𝑘=𝑗

Δ𝑥𝑘 (2𝑥𝑘 + Δ𝑥𝑘),

𝑠𝑥2𝑙 + =
𝑗+𝑚∑︁
𝑘=𝑗

Δ𝑥𝑘 (2𝑥𝑘 + Δ𝑥𝑘),

𝑠𝑥𝑥𝑙+ =
𝑗+𝑚∑︁
𝑘=𝑗

Δ𝑥𝑘 (𝑥𝑘−𝑙 + 𝑥𝑘+𝑙) +
𝑗+𝑚−𝑙∑︁
𝑘=𝑗

Δ𝑥𝑘Δ𝑥𝑘+𝑙

(9)

Ideally, updating the basic aggregates should not materialize the
interpolation of the points from 𝑗 to 𝑗 + 𝑚 because they are
affine functions. However, there is no straightforward way to
update 𝑠𝑥𝑥𝑙 without any assumption on the time series. Note
that, updating 𝑠𝑥𝑥𝑙 has a time complexity of O(𝑚𝐿) since we
need to calculate a value for each lag 𝑙 and point from 𝑗 to 𝑗 +𝑚.
The rest of the basic aggregates can be updated in O(𝐿 +𝑚).

Update Rules with Aggregation Function: Solving the
Statistical Important Points on Aggregates problem requires ad-
ditional extensions. Given the aggregation function Agg𝜅 , we
first compute and store all 𝑎𝑖 ∈ Agg𝜅 (𝑋). Subsequently, while
removing the points 𝑥𝑖 , we incrementally update the aggregates:

𝑠𝑎 =
⌊𝑛/𝜅 ⌋−𝑙∑︁

𝑖=0
𝑎𝑖 𝑠𝑎𝑙 =

⌊𝑛/𝜅 ⌋∑︁
𝑖=𝑙

𝑎𝑖 𝑠𝑎𝑎𝑙 =
⌊𝑛/𝜅 ⌋−𝑙∑︁

𝑖=0
𝑎𝑖𝑎𝑖+𝑙

𝑠𝑎2 =
⌊𝑛/𝜅 ⌋−𝑙∑︁

𝑖=0
𝑎2𝑖 𝑠𝑎2𝑙 =

⌊𝑛/𝜅 ⌋∑︁
𝑖=𝑙

𝑎2𝑖

(10)

When removing the point 𝑥𝑖 , we again consider two cases. First,
if only one point is interpolated, the update rules are:

𝑠𝑎+ = Δ𝑎𝑖 , 𝑠𝑎2+ = Δ𝑎𝑖 (2𝑎 𝑗 + Δ𝑎𝑖), 𝑠𝑎𝑙+ = Δ𝑎𝑖

𝑠𝑎2𝑙 + = Δ𝑎𝑖 (2𝑎𝑖 + Δ𝑎𝑖), 𝑠𝑎𝑎𝑙+ = Δ𝑎𝑖 (𝑎𝑖−𝑙 + 𝑎𝑖+𝑙)
(11)

where Δ𝑎𝑖 = Agg𝜅 ([𝑥𝑖 , . . . , 𝑥𝑖+𝜅])−𝑎𝑖 . Note, if Agg𝜅 is commuta-
tive and associative, it is possible to avoid computing Agg𝜅 over
all points. For example, if Agg𝜅 is the mean function, then Δ𝑎𝑖 =
(𝑥 −𝑥𝑖)/𝜅 . Second, if𝑚 points are interpolated, we first compute
all Δ𝑎𝑖 by mapping the interpolated points 𝑥𝑖 ∈ [𝑥 𝑗 , . . . , 𝑥 𝑗+𝑚]
to their aggregates 𝑎𝑖 . Then, Δ𝑎𝑖 = Agg𝜅 (𝑥𝑖 , 𝑥𝑖+1, . . . , 𝑥𝑖+𝜅) − 𝑎𝑖 ,
which requires recomputing Agg𝜅 for all elements if they are
interpolated. Finally, we reuse Equation 9 on the aggregates.

Figure 5: Blocking and Coarse-grained Parallelization.

4.3 Blocking
Inspired by blocking strategies in entity resolution (deduplica-
tion), CAMEO improves efficiency by updating the ACF impact
only for neighboring points around a removed point instead of
all points in the time series.

Blocking Heuristic: Our blocking heuristic relies on the as-
sumption of temporal locality. We assume that removing a point
affects the nearby points, and its impact further away diminishes.
Thus, we update the impact on the ACF of only non-removed
ℎ-neighboring points of x𝑖 . To efficiently identify neighbors, each
point maintains dynamic left and right pointers in the heap. When
a point is removed, we traverse up to ℎ hops in both directions,
collecting non-removed neighbors. After each removal, point-
ers are updated to maintain consistency. The ReHeap procedure
then updates the ACF impacts of the affected neighbors based on
the update rules (Equations 8 and 9). Updating the values takes
O(log𝑛) per point. Figure 5 (Left) illustrates this process.

Time Complexity: Let 𝑛 = |𝑋 |, 𝐿 be the number of lags,
and ℎ the blocking window. For each neighboring point within
ℎ hops, we update its score using the incremental rules in O(𝐿)
time and adjust its position in the heap in O(log𝑛) time. Thus,
the cost of a single removal is O(ℎ(𝐿 + log𝑛)) . As compressing
from 𝑛 points down to 𝑛′ points requires at most 𝑛 − 𝑛′ = O(𝑛)
removal steps, the overall complexity is O(𝑛ℎ(𝐿 + log𝑛)) . In
practice, setting ℎ = 10 log𝑛 retains compression quality while
substantially reducing runtime (see Section 5.5). Alternatively, ℎ
can be incrementally tuned by starting from a small value and
increasing it until no significant improvement in compression
ratio is observed. Exploring adaptive blocking strategies based on
seasonality or lag-correlation, and providing theoretical guaran-
tees on compression efficiency, remains an interesting direction
for future work.

4.4 Parallelization
When dealing with very large time series, the application of
parallelization strategies becomes indispensable to significantly
improve computational time. In CAMEO, we implement two dif-
ferent parallelization strategies, namely, fine- and coarse-grained
approaches with their specific advantages and disadvantages.

Fine-grained Parallelization: The first strategy is designed
with the primary objective of improving runtime efficiency with-
out additional heuristics that might impact the quality of compres-
sion. In CAMEO’s blocking strategy, each neighbor’s impact on
the ACF can be calculated independently during the look-ahead
phase. Given 𝑇 threads, we segment the number of neighbors, ℎ,
into static chunks of size ℎ/𝑇 , assigning each chunk to a thread.
Each thread independently computes the look-ahead impact on
the ACF for its designated chunk, thereby reducing execution
time. However, there are fine-grained synchronization barriers
for every removed point.

Coarse-grained Parallelization: This strategy is designed
for systems with many cores and very large time series data.

19

EDBT ’26, 24-27 March 2026, Tampere (Finland) Muniz-Cuza et al.

Table 1: Datasets Summary. The standard deviation is denoted by 𝜎 , and the probability of a data point to be higher than,
equal to, or lower than that of the previous data point is denoted by (p↑), (p=) and (p↓).

Dataset Length ACF
#Lag ACF1 ACF10 PACF5 Min

Value Range Median 𝜎 p↑ — p= — p↓
Mean
Delta

ElecPower [45] 2,977 48 0.768 3.38 0.94 0.099 5.7 0.29 0.74 48%–0%–52% 8e-04
MinTemp [80] 3,652 365 0.774 5.97 1.32 0.01 26.3 11.0 4.01 52%–1%–47% 0.002
Pedestrian [42] 8,766 24 0.896 1.02 -0.11 0.00 5,573 396 1,017 45%–0%–55% 0.004

UKElecDem [37] 17,520 48 0.988 7.2 0.37 16,309 30,124 27,857 6,071 44%–0%–56% 0.34

AUSElecDem [42] 230,736 7 on 48 0.762 5.09 1.09 3,498 9,367 6,783 1,361 42%–0%–58% 0.001
Humidity [78] 397,440 24 on 60 0.951 2.66 -0.07 12.65 87.27 76.38 19.73 55%–3%–42% 5e-06

IRBioTemp [77] 878,400 24 on 60 0.958 4.41 0.17 -5.47 54.6 23.21 8.55 45%–5%–50% -3e-06
SolarPower [42] 986,297 24 on 120 0.90 1.02 0.125 0.00 116.5 0.0 43.33 12.5%–75%–12.5% 0.0

The core idea is to partition the time series X into 𝑇 consec-
utive chunks, assign a thread to each partition, and compress
each partition independently using the single-threaded CAMEO
algorithm. Each thread independently computes and updates
its own aggregates while concurrently handling overlapping re-
gions of the partitions. Synchronization overhead is minimized
by allowing each thread to work independently within a local
ACF deviation threshold of 𝑝 · 𝜖/𝑇 . Once a partition reaches its
local error threshold, synchronization begins to update global
aggregates across all partitions. This way, we introduce synchro-
nization only when necessary to guarantee the global allowable
ACF deviation is not exceeded.

Example 4.1 (Coarse-grained Parallelization). Consider a time
series X divided into three partitions 𝑃1, 𝑃2, and 𝑃3, as shown
in Figure 5 (Right). Let 𝑠𝑥 (𝑃𝑖) denote the sum of all points of
partition 𝑃𝑖 . Each partition computes and updates its own aggre-
gates independently: 𝑠𝑥 (𝑃1), 𝑠𝑥 (𝑃2), and 𝑠𝑥 (𝑃3). Similarly, the
aggregates 𝑠𝑥𝑙 (𝑃𝑖), 𝑠𝑥2 (𝑃𝑖), and 𝑠𝑥2

𝑙
(𝑃𝑖) are handled indepen-

dently within each partition 𝑃𝑖 . For the dot product between the
lagged time series, the overall aggregate 𝑠𝑥𝑥𝑙 is computed from
the aggregates per partition 𝑠𝑥𝑥𝑙 (𝑃𝑖) and the contributions of
overlapping regions: 𝑠𝑥𝑥𝑙 =

∑3
𝑖=1 𝑠𝑥𝑥𝑙 (𝑃𝑖) + 𝑠𝑥𝑥𝑙 (Overlap12) +

𝑠𝑥𝑥𝑙 (Overlap23), where 𝑠𝑥𝑥𝑙 (Overlap𝑖 𝑗) =
∑

𝑡 ∈𝑃𝑖 ,𝑡+𝑙∈𝑃 𝑗 𝑥𝑡𝑥𝑡+𝑙 ac-
counts for cross-products where 𝑥𝑡 is in 𝑃𝑖 and 𝑥𝑡+𝑙 is in 𝑃 𝑗 . Only
the threads handling 𝑃𝑖 and 𝑃𝑖+1 need to synchronize when ac-
cessing the small overlapping regions, and thus, synchronization
overhead is negligible. Given these aggregates, each partition can
operate independently until meeting the error bound 𝑝 ·𝜖/3. Once
a partition reaches its local error threshold, the global ACF can
be computed by synchronizing access to the aggregates across all
the partitions, ensuring that the overall ACF deviation remains
within the specified error bound 𝜖 .

5 Experiments
Our experiments study CAMEO’s compression ratio, reconstruc-
tion error, and runtime across various datasets, and compare
them with those of lossless and lossy compression techniques.

5.1 Experimental Setup
We conduct the experiments on a Linux server equipped with two
Intel Xeon Gold 6338 @ 2.0 GHz CPUs (in total 128 virtual cores),
48 MB L3 caches, and 1 TB of DDR4 @ 3200 MHz main memory.
We implemented CAMEO in Cython 3.0.0, compiled with GCC
9.4.0 at optimization level O3 and OpenMP 4.5. Cython provides
performance enhancements through static typing of variables
while supporting NumPy [34], and avoiding the problems of

Python’s Global Interpreter Lock (GIL). By default, our experi-
ments use the SIP problem (Equation 4), the mean aggregation
function Agg𝜅 , quality measure D =MAE.

Line-Simplification Baselines: We compare CAMEO’s per-
formance with three line-simplification algorithms (Section 2.2),
which we adapt to support an ACF constraint by incrementally
maintaining each point’s impact on the ACF.

• the Visvalingam-Whyatt (VW) algorithm [98],
• the Turning Points (TP) algorithm [89] (w/ Sum of the

Absolute Values TP, and Mean Absolute Error TPm [89]),
• the Perceptual Important Points (PIP) algorithm [38, 54]

(w/ Vertical PIPv and Euclidean PIPe distances [38]).

Additional Baselines: We also compare CAMEO with four
well-known lossy compression algorithms: Sliding Window and
Bottom Up (SWAB) [57], Poor Man’s Compression Mean (PMC)
[63], Swing Filter (SWING) [32], Sim-Piece (SP) [59], and the Dis-
crete Fourier Transform (DFT) [21]. SWAB, PMC, SWING, and
SP learn constant and linear approximations which are prevalent
functional approximation approaches. FFT can compress the data
by discarding the less important high-frequency components
of the frequency spectrum. Since enforcing the ACF constraint
while compressing is not straightforward, we perform a trial-and-
error exploration of the parameters of these methods. In addition,
we compare with Gorilla (GHR) [82] and Chimp (CHM) [67] as
lossless compressors, and SZ3 [68] and Mix-Piece (MXP) [60] as
lossy compressors. Gorilla and Chimp rely on XOR compression
of consecutive floating-point values, whereas SZ3 relies on pre-
diction and quantization and integrates lossless compressors like
Zstandard (Zstd) [20]. MXP extends SP with segment grouping
strategies and also integrates Zstd.

Datasets: We use eight publicly available datasets. Our pri-
mary selection criterion was the presence of a seasonal compo-
nent, which is discernible via the ACF. This seasonal component
was then used to guide dataset-specific configurations of the
number of lags. Table 1 summarizes their main characteristics:

• ElecDem [45]: contains the electric power consumption
of one household with a 15-minute sampling rate during
the month 07-2007.
• MinTemp [80]: contains daily min temperature in Mel-

bourne (Australia) from 1981 through 1990.
• Pedestrian [42]: contains hourly pedestrian counts of 66

sensors in Melbourne from May 2009 through 05-2020.
• UKElecDem [37]: contains the national electricity de-

mand every half-hour of Great Britain for 2021.
• AUSElecDem [42] contains the electricity demand every

half-hour in Victoria (Australia) from 2002 to 2015.

20

CAMEO: Autocorrelation-Preserving Line Simplification EDBT ’26, 24-27 March 2026, Tampere (Finland)

Figure 6: Compression Ratio as the ACF Error Increases
for Line Simplification Baselines (VW, TP, PIP).

• Humidity [78]: contains relative humidity measurements
averaged over 1 minute from 04-2015 through 06-2023.
• IRBioTemp [77]: contains biological surface temperature

averaged over 1 minute from 04-2015 through 06-2023.
• SolarPower [42]: contains solar power production stored

every 30 seconds from 08-2019 through 06-2020.
We divide the datasets into two groups of four datasets, where for
group 1, we preserve the ACF directly; for group 2, we preserve
the ACF on window aggregates. Table 1 also specifies the number
of points per window and the number of lags, e.g., for "7 on 48",
we aggregate 48 points per window and keep 7 ACF lags.

Number of Lags: For all experiments, we select the number
of ACF lags as a full seasonality period. For example, MinTemp
contains daily measurements with yearly seasonality, and thus,
we compute the ACF for 365 lags. This parameter can also be
set automatically using seasonality detection techniques based
on ACF peaks, spectral density estimation, or heuristic meth-
ods [5, 33, 49]. We select the aggregation period based on the
seasonality we aim to preserve. For example, Humidity has one-
minute granularity, we aggregate over hours and computed the
ACF of 24 lags (a day) instead of an ACF with 1,440 lags.

Compression Ratio Computation: We compute compres-
sion ratios primarily at the logical level, i.e., based on the number
of elements retained. For line simplification methods such as
CAMEO, which subsample points, we define the compression
ratio as 𝑐 = 𝑛/𝑛′, where 𝑛′ is the number of points preserved.
For functional approximation methods like PMC and SWAB, we
count the number of segments, whereas for SP (which tightly
integrates timestamps and values), we conservatively count all
elements. To evaluate MXP and SZ3, which perform byte-level
encoding and output compact binary representations, we report

Figure 7: Compression Ratio as the ACF Error Increases
for Lossy Compressor Baselines.

compression efficiency using the 𝐵𝑖𝑡𝑠/𝑣 = 𝐵𝑖𝑡𝑠 (X′)/|X| met-
ric, where 𝐵𝑖𝑡𝑠 (X′) is the number of bits required to store the
compressed output. For fair comparison under this metric, we
also apply delta encoding to the timestamps and compress both
timestamps and values using Zstd on CAMEO’s output. While
this comparison may underestimate the compression ratio of
some methods, we adopt this approach to better separate the
influence of the output’s logical structure from the physical-level
compression effectiveness across techniques.

5.2 Compression Ratio
In the first set of experiments, we assess the compression ratio
achieved for the eight datasets. We report CAMEO’s compression
ratio without blocking to understand CAMEO’s maximal com-
pression capability. Figure 6 shows the results CAMEO achieved
compared to other line-simplification baselines under varying
error bounds for the ACF deviation. CAMEO consistently de-
livers the best compression ratio among all baselines, mainly
because it is the only technique that directly optimizes for the
ACF. CAMEO achieves a 1.1x to 54x higher compression ratio,
even at very small error bounds. Our extensions of the PIPs and
TPs line-simplification methods to ensure a constraint on the ACF
deviation were effective in most datasets except Pedestrian, Aus-
ElecDem, and SolarPower. In these instances, the initial phase of
the TP method, which involves removing all non-turning points,
results in an ACF that deviates more than the allowed error
bounds. Among the line-simplification baselines, VW shows the
best performance on average.

Additional Baselines Results: We compare CAMEO with
the additional lossy compression baselines. As shown in Figure 7,
CAMEO delivers the best compression ratio among all baselines.

21

EDBT ’26, 24-27 March 2026, Tampere (Finland) Muniz-Cuza et al.

Table 2: Bits/value (B/v) Result of Lossless and Additional
Lossy Compression Baselines.

Dataset GRL CHM Zstd SZ3 MXP CAMEO

B/v B/v B/v B/v 𝜖 B/v 𝜖 B/v 𝜖

ElecPower 32.6 28.2 26.2 1.9 0.01 2.8 0.02 3.5 0.01
MinTemp 31.0 25.6 13.5 2.2 0.05 3.7 0.04 2.3 0.01
Pedestrian 16.1 21.0 16.4 1.3 0.03 2.3 0.03 3.2 0.01
UKElecDem 18.3 21.3 20.7 0.8 0.03 1.5 0.05 1.4 0.01

AUSElecDem 27.5 24.8 27.6 5.6 1e-5 4.3 2e-3 4.1 1e-5
Humidity 24.3 21.0 17.2 3.5 5e-6 1.8 4e-4 1.6 1e-6
IRBioTemp 24.9 21.4 14.4 3.2 7e-6 1.6 2e-3 1.6 1e-6
Solar 2.3 2.8 5.1 1.7 1e-4 1.3 1e-3 0.7 1e-6

Some methods outperform CAMEO in a few instances. For ex-
ample, DFT outperforms CAMEO in Pedestrian and UKElecDem,
which suggests that these datasets predominantly consist of low-
frequency components. Similarly, SWING outperforms CAMEO
on ElecPower, showing higher compression ratios at larger er-
ror bounds after an initially weaker performance. This higher
compression ratio suggests that, in these cases, the error bound
is large enough to allow the fitting of a few linear functions
without significantly affecting the ACF. Despite these exceptions,
CAMEO consistently demonstrates superior compression ratios.

Bits-per-Value Analysis: We further evaluate CAMEO’s
compression effectiveness by comparing it against lossless com-
pressors Gorilla (GRL), Chimp (CHM), and Zstd, as well as lossy
compressors SZ3 and MXP, using the Bits-per-Value metric (𝐵/𝑣).
Table 2 shows that lossy compression can outperform lossless
methods by a significant margin while introducing only a small
distortion on the ACF (𝜖). CAMEO achieves compression levels
that are competitive with or better than SZ3 and MXP across most
datasets. On larger datasets like Solar and IRBioTemp, CAMEO
significantly outperforms all baselines despite preserving the
ACF under a stricter error bound (𝜖 = 10−6). For smaller series,
SZ3 and MXP benefit from their low-level optimizations (e.g.,
quantization and byte encoding), yielding slightly better com-
pression in some cases. Interestingly, GRL and CHM significantly
outperform Zstd on the Solar dataset, likely due to the long flat
segments (e.g., nighttime with zero values), where XOR-based
delta encoding is especially effective.

5.3 Decompression Error
In a second set of experiments, we evaluate the reconstruction
error by collecting the decompressed series produced during
the compression ratio evaluation. We use NRMSE to quantify
the distortion. Figure 8 illustrates the results. Overall, no single
method consistently outperforms the others, with performance
highly dependent on the characteristics of each dataset. On av-
erage, CAMEO performs on par with the baselines in terms of
NRMSE, achieving similar reconstruction quality for comparable
compression ratios. Notably, CAMEO never performs the worst
and achieves the best results on the SolarPower dataset. These
results are particularly interesting, as CAMEO is optimized for
preserving temporal structure rather than reconstruction error,
yet still retains point-wise accuracy comparable to methods tai-
lored for it. Preserving the ACF seems to help maintain local
trends and smooth transitions in the time series, which indirectly
limits large deviations and keeps a low NRMSE. In contrast, PIPe
exhibits the highest NRMSE across several datasets among the
line simplification methods, suggesting that Euclidean distance

Figure 8: NRMSE as the Compression Ratio Increases.

may not be a suitable importance function. Notably, DFT per-
forms well on some datasets, highlighting its effectiveness for
time series dominated by low-frequency components.

5.4 Blocking Strategy
In a third series of experiments, we conduct micro-benchmarks
for the blocking strategy and how it impacts CAMEO’s compres-
sion performance and the decompression error. We showcase the
results using four datasets: Pedestrian, MinTemp, AUSElecDem,
and Humidity (two of both groups). For the case of AUSElec-
Dem and Humidity, the number of blocking hops is multiplied by
the size of the aggregation window to cover the necessary lags.
Figure 9 shows CAMEO’s compression ratio as the error bound
increases, using different numbers of hops in our blocking strat-
egy. The results show only a slightly reduced compression ratio
when using different factors of log𝑛 (from 5 to 20), compared to
no blocking (𝑤/𝑜𝑏). In contrast, using log𝑛 results in an inferior
compression ratio on all datasets. This result supports our hy-
pothesis that temporal locality influences how point removals
affect the ACF, and that insufficient blocking fails to update ACF
contributions at relevant lags. Complementary, Figure 10 shows
the decompression error (NRMSE) on two of the datasets. The
NRMSE trends mirror those of the compression ratios, suggesting
that moderate blocking has no negative impact on decompres-
sion accuracy; instead, the observed variation is driven by the
underlying compression ratio. The next section also examines
the impact of blocking on compression time.

5.5 Compression Time
In a fourth set of experiments, we compare CAMEO’s single-
threaded compression time with all other baselines. We show

22

CAMEO: Autocorrelation-Preserving Line Simplification EDBT ’26, 24-27 March 2026, Tampere (Finland)

Table 3: Compression Times (sec) of the Baselines and Singled-threaded CAMEO (with different blocking sizes).

Dataset SWAB PMC SWING SP DFT TP PIP VW CAMEO
1 log𝑛 3 log𝑛 5 log𝑛 7 log𝑛 10 log𝑛 𝑤/𝑜𝑏

ElecPower 0.02 6e-4 6e-4 2e-3 4e-4 3e-3 0.04 0.01 0.02 0.02 0.09 0.2 0.33 0.4 2.5
MinTemp 0.03 7e-4 1e-3 2e-3 4e-4 0.01 0.2 0.02 0.06 0.07 0.6 0.42 1.49 2.75 17.7
Pedestrian 0.2 1e-3 2e-3 5e-3 1e-3 - 0.02 8e-3 0.03 0.09 0.2 0.3 0.5 0.68 9.2
UKElecDem 0.7 3e-3 5e-3 1e-2 1e-3 8e-3 0.05 0.02 0.05 0.2 0.76 1.08 1.49 2.39 64.1

AUSElecDem 0.16 0.04 0.06 0.13 0.03 0.04 0.3 0.27 0.25 0.6 0.3 3.6 8.0 12.2 2,554
Humidity 0.34 0.04 0.07 0.15 0.05 0.3 0.9 0.52 1.24 10.3 21.9 25.3 35.6 48.6 6,837
IRBioTemp 0.74 0.10 0.15 0.29 0.16 0.25 2.1 1.6 2.5 24.9 51.8 78.9 91.7 121 17,602
SolarPower 0.87 0.11 0.17 0.34 0.42 - 21 0.72 1.19 13.8 32.8 44.7 52.7 63.3 5,718

Figure 9: Compression Ratio using Blocking.

Figure 10: NRMSE using Blocking.

the results for an error bound of 0.01 for all the small datasets
and 0.001 for the rest. We also terminate the algorithms once
we reach a compression ratio of 10. PMC, SWING, and SP are
implemented in Zig [111], DFT uses NumPy [35], while SWAB,
PIP, TP, VW, and CAMEO are implemented in Cython. Ultimately,
all implementations run as native code, making their comparison
broadly possible. We run SWAB with a window size of 50% on
the small datasets and 100% on the big datasets. Table 3 shows
the runtime for all baselines and CAMEO as we increase the
blocking hops from 1 to 10 log𝑛, and without blocking (w/ob, i.e.,
full coverage of the series).

Runtime Analysis: CAMEO’s single-threaded implementa-
tion performs comparably to other line simplification baselines
when using a single hop for blocking. As the number of hops
increases, the execution time increases slightly sublinearly. While
its execution time increases with more hops, this trade-off en-
ables CAMEO to achieve significantly higher compression ratios.
Removing blocking (w/ob) makes CAMEO infeasible for real-
life applications. Among the baselines, PMC and DFT are the
fastest, which is expected considering PMC linear time complex-
ity and DFT’s highly optimized implementation. However, they
still have the limitation of requiring trial-and-error exploration
for preserving bounds on the ACF. Finally, TP’s initial phase,
which preserves only the turning points, positively impacts its

Table 4: Decompression Times (ms).

Dataset PMC SWING SP DFT CAMEO
AUSElecDem 19 17 14 20 12
Humidity 26 23 18 33 21
IRBioTemp 80 77 60 97 54
SolarPower 88 79 66 352 55

execution time, albeit risking not meeting the error-bound guar-
antee on the ACF. Overall, CAMEO is the preferred choice when
optimizing compression ratio over speed while providing strong
guarantees on the ACF deviation.

PACF Preservation Runtime Analysis: We also evaluate
CAMEO when preserving the PACF. The results show that while
its compression ratio is still superior to the baselines, preserving
the PACF entails a significantly higher execution time. For ex-
ample, when running CAMEO on ElecPower, with blocking at
10 log𝑛, we obtain an execution time of 2.6 seconds, around 6x
slower than preserving the ACF in Table 3. This increased execu-
tion time is due to the quadratic execution time of DL recursion
with complexity O(𝐿2), computed multiple times per iteration. In
future work, we will focus on preserving specific lags to enhance
execution speed without sacrificing forecasting accuracy.

5.6 Decompression Time
In a fifth series of experiments, we evaluate decompression time.
Specifically, we compute the execution time of the linear inter-
polation used as the decompression strategy for CAMEO while
directly measuring the decompression times for the other lossy
compressors after achieving a 10x compression ratio. Table 4
presents the results in milliseconds, with CAMEO represent-
ing all line simplification methods due to their decompression
runtime. The results show that CAMEO achieves significantly
faster decompression than the baselines, which is particularly
important in scenarios where quick decompression is critical. In-
terestingly, DFT has the slowest decompression time, contrasting
its fast compression performance. This discrepancy arises be-
cause the decompression logic of other baselines is much simpler,
while DFT has a complexity of O(𝑛 log𝑛).

5.7 Parallelization Strategies
We evaluate CAMEO’s parallelization strategies across four of
the datasets: MinTemp, Humidity, IRBioTemp, and Solar in order
to cover various sizes and ACF lags.

Fine-grained Parallelization: We run CAMEO with the ob-
jective from Equation (6) fixing the compression ratio to 10 and
thus, making the execution time comparable across different
configurations. Figure 11(a) shows the relative improvements

23

EDBT ’26, 24-27 March 2026, Tampere (Finland) Muniz-Cuza et al.

(a) Fine-grained (b) Coarse-grained

Figure 11: Results with Different Parallelization Strategies.

Figure 12: Joint Fine- and Coarse-Grained Parallelization.

when applying fine-grained parallelization, with varying block-
ing sizes and the number of threads. MinTemp, with the larger
ACF (365 lags), achieves the highest speedup of 4x at a hop size of
10 log𝑛 using 8 threads. We observe speedups across all blocking
configurations except 𝑙𝑜𝑔(𝑛) (12 points), where parallelization
overheads dominate. In contrast, the Solar dataset exhibits a mod-
est speedup of approximately 2x at 14 threads. This discrepancy
is due to MinTemp’s larger number of lags compared to Solar’s
24. The more lags, the more workload per thread, which makes
parallelization more effective.

Coarse-Grained Parallelization: To showcase the benefits
of coarse-grained parallelization, we use the Humidity and IR-
BioTemp datasets. For both, we set the ACF error bound to 1e-4
(Equation (4)) and record the compression ratio and impact on
the overall ACF. Figure 11(b) shows the results for increasing
the number of threads. The compression ratio is shown relative
to single-threaded execution. Humidity achieves significant run-
time reductions, up to an 8x speedup with minimal impact on
the compression ratio. IRBioTemp, however, shows a 2.5x run-
time improvement coupled with a notable increase (up to 3x) in
compression ratio. This compression ratio improvement occurs
because local partitions independently achieve better compres-
sion due to dataset-specific patterns.

Hybrid Parallelization: Figure 12 shows the speedup when
combining fine- and coarse-grained parallelization. Using a block-
ing size of 10 log𝑛, MinTemp shows the most significant improve-
ment among all datasets, with a speedup of up to 14x when using
6 fine-grained and 8 coarse-grained threads. This speedup repre-
sents an execution time reduction from 2.75 seconds (see Table 3)
to 0.2 seconds. Other datasets show smaller but good speedups as
well, primarily driven by coarse-grained parallelism. This result
aligns with Figure 11(a) as these datasets only need to preserve
an ACF of 24 lags. However, increasing the number of lags from
24 to 168 notably benefits from fine-grained parallelism, resulting
in improved hybrid speedups (e.g., 15x and 13x improvement for
IRBioTemp and Humidity, respectively).

Discussion: The results show the complementary strengths
of CAMEO’s parallelization strategies. Fine-grained parallelism
provides deterministic and straightforward runtime improve-
ments without affecting compression quality or accuracy. How-
ever, the speedup is inherently sub-linear due to thread synchro-
nization overhead and limited per-thread workloads. In some
cases, particularly with smaller blocking sizes or fewer lags, fine-
grained parallelization can even lead to performance degradation.
Coarse-grained parallelism provides good scalability but intro-
duces slight variability in compression ratios due to processing
partitions independently. If predictable compression ratios are
desired, adopting the compression-centric strategy (Equation (6))
gives users explicit control over the compression ratio. Together,
these strategies allow users to tune CAMEO’s runtime.

5.8 Impact on Time Series Forecasting
We now investigate our original hypothesis: preserving the ACF
during compression is beneficial for forecasting analytics. To test
this hypothesis, we conduct four complementary experiments.
These experiments use different preprocessing steps, datasets,
and forecasting models to cover multiple analytical scenarios.
Experiments (1) and (2) leverage linear forecasting models ap-
plied to subsets of the Pedestrian dataset [42] comprising 66 time
series of varying lengths and statistical properties. Experiment
(1) involves controlled preprocessing (segmentation, Box-Cox
transform, and standardization) generating a total of 3,400 series.
In this setting, we explicitly vary the compression ratio from 2 to
10 and test multiple CAMEO’s ACF preservation metrics (MAE,
RMSE, and Chebyshev Distance (CHEB) [13]) against baseline
line simplification methods (VW, TP, PIP). In contrast, Experi-
ment (2) closely replicates the standard forecasting benchmark
established by Godahewa et al. [42], applying STL-ETS and STL-
ARIMA models without additional preprocessing. Since standard
lossy compressors do not allow setting the compression ratios, we
evaluate these compressors separately under their typical trial-
and-error conditions until reaching a similar compression ratio
of 10. Experiment (3) focuses explicitly on datasets (UKElecDem,
SolarPower, MinTemp) with high seasonal strength [100]. We
evaluate Dynamic Harmonic Regression (DHR), ARIMA [49, 109],
LSTM [41], and Transformer [97] models. Finally, Experiment (4)
reuses the setup of Experiment (2), and compares CAMEO with
SZ3 and Mix-Piece using the Bits/value metric.

Linear Forecasting Models Accuracy (1/2): Figure 13(a)
compares the forecasting accuracy under moderate compression
ratios (up to 10x) across the CAMEO configurations and baselines.
We only report MSE and mSMAPE [42], but we observed similar
or even better results across other metrics. The results show that
CAMEO variants outperform traditional line-simplification and
lossy baselines. Among CAMEO’s variants, CAMEO(CHEB) was
the best in both subexperiments. Intuitively, CHEB distributes
the ACF error evenly, avoiding distortion on specific lags. Among

24

CAMEO: Autocorrelation-Preserving Line Simplification EDBT ’26, 24-27 March 2026, Tampere (Finland)

(a) Linear Forecasting Models Accuracy under Moderate Compression.

(b) Forecasting Accuracy on Highly Seasonal Time Series.

Figure 13: Impact on Forecasting Accuracy of CAMEO and
Baselines as the Compression Ratio Increases under Dif-
ferent Configurations, Quality Metrics, and Time Series.

the baselines, PMC shows better results than the rest of the lossy
compression baselines. Accordingly, we select PMC, and VW (as
a close line simplification baseline) to conduct additional tests
with higher compression ratios and non-linear models.

In-Depth Forecasting Accuracy Analysis (3): Figure 13(b)
compares the impact on forecasting accuracy using non-linear
and linear models of CAMEO, VW, and PMC. Across the three
highly seasonal datasets, CAMEO consistently preserves fore-
casting accuracy, even under aggressive compression of 100x.
We attribute this robustness to CAMEO’s effective point selec-
tion strategy, which retains key seasonal patterns. Overall, the
results show that preserving the ACF is beneficial for forecasting
accuracy even when using non-linear models. To statistically
validate these results, we conducted a Friedman test followed by
a Nemenyi post-hoc analysis [25] interpolating forecasting errors
across compression ratios from 2x to 100x. CAMEO achieved the
lowest median forecasting error and the lowest mean rank (1.45),
significantly outperforming both PMC and VW according to the
Nemenyi test. We obtain the same results when applying the test
using RMSE as the metric.

Forecasting Accuracy vs. Bits/value (4): Figure 14 illus-
trates the trade-off between forecasting accuracy and compres-
sion efficiency (measured in Bits/Value) for the lossy compres-
sors CAMEO, SZ3, and MXP, evaluated on the STLF-ETS and
STLF-ARIMA models. We refined our experimental setup from
Section 5.1 by applying a simple bit-packing step before using
Zstd to compute CAMEO’s effective Bits/Value. The results show
that all lossy compressors maintain forecasting accuracy while
significantly reducing the number of bits per value to about half
compared to the lossless baselines CHIMP and Zstd. Notably,

Figure 14: Impact on the Forecasting Accuracy for Linear
Models versus the Bits/Value Compression Metric.

Figure 15: NRMSE and ACF Impact on Pedestrian.

MXP and CAMEO even improve the forecasting accuracy in a
few instances. For STLF-ETS, SZ3 and CAMEO yield comparable
results, whereas for ARIMA, CAMEO clearly outperforms the
other compressors. More advanced physical compression layouts
are orthogonal to logical line simplification, and could further
reduce CAMEO’s bits/value without affecting the forecasting
accuracy, which remains an interesting direction for future work.

Discussion: These results demonstrate that CAMEO consis-
tently outperforms the baselines across datasets, forecasting mod-
els, and evaluation metrics. In more detail, we compared CAMEO
and PMC on the Pedestrian dataset at a moderate compression
ratio (5x) across the 66 time series. We evaluated two dimensions:
the decompression error (NRMSE), and the ACF preservation
(MAE). As shown in Figure 15, CAMEO achieves slightly lower
NRMSE than PMC on average, yielding low pointwise recon-
struction errors. Additionally, CAMEO’s ACF distortions are at
least an order of magnitude smaller than for PMC. This combina-
tion of pointwise reconstruction accuracy and preservation of
temporal dependencies leads to CAMEO’s very good forecasting
accuracy. Error propagation from compression to forecasting
models is not straightforward to predict though. We observe a
few cases where the baselines achieve better forecasting results in
Figure 13. Therefore, there is "no such thing as a free lunch" [103],
and CAMEO should be just regarded as an additional tool.

5.9 Impact on Anomaly Detection
Finally, we investigate two alternative hypotheses: (1) preserving
the ACF during compression is beneficial for anomaly detection,
and (2) CAMEO execution time is amortized if the downstream
analytics can exploit the resulting (much smaller) irregular time
series. First, we use the UCR dataset [104] consisting of 250 time
series and the Matrix Profile (MP) algorithm [107]. We measure
the accuracy using the UCR-score [104], where higher scores
indicate better detection. We detect all discords using the MP al-
gorithm with segment sizes ranging from 75 to 125 and select the
one with the maximum distance [87]. Second, we implement an
algorithm that calculates the Euclidean distance between all pairs
of segments of size𝑚— MP’s core idea—over the irregular time
series (iMP). iMP avoids materializing the data and directly com-
putes distances with linear interpolation during decompression
using the remaining𝑚′ points per segment. This method reduces

25

EDBT ’26, 24-27 March 2026, Tampere (Finland) Muniz-Cuza et al.

Figure 16: (left) Impact on the Anomaly Detection Accuracy
as the Compression Ratio Increases. (right) Execution Time
of the MP Algorithm over the Irregular Time Series.

the complexity from O(𝑁 2𝑚)—the complexity of naive imple-
mentation over regular time series (rMP)—to O(𝑁 2𝑚′), where
𝑚′ ≪ 𝑚 and 𝑁 is the time series length. We conduct tests on
synthetically generated data of size 2𝑝 , where 𝑝 ranges from 10
to 16, and segment size𝑚 = 150.

Accuracy Results Analysis: Figure 16 (left) illustrates the
UCR-score as the compression ratio increases. The results show
that CAMEO preserves the UCR score more effectively than
lossy compression baselines, achieving a compression ratio of
≈ 28x while minimally impacting accuracy. The results support
our hypothesis (1) that preserving the ACF is advantageous for
forecasting analytics and other applications such as anomaly
detection. However, it is noteworthy that the effectiveness of
preserving the ACF diminishes at higher compression ratios, as
shown in Figure 16 (left) beyond a 30x ratio. This trend is likely
because removing extreme outliers has a negligible impact on
the ACF since these points do not significantly affect temporal
dependencies. Thus, removing these points negatively affects
the Euclidean distance computation. In contrast, the VW strat-
egy implicitly retains such points, as an outlier typically has a
significant triangular area.

Execution Time Results Analysis: Figure 16 (right) displays
the execution time results for iMP as the compression ratio in-
creases, specifically for 𝑝 = 14. The results reveal a significant
reduction in execution time, decreasing from 550 seconds with
the naive implementation rMP to 250 at a compression ratio of
20x. Furthermore, the compression process with CAMEO is negli-
gible, requiring only 0.94 seconds to complete at that compression
ratio and less than 1.2 seconds at ratio 100x. Experiments for dif-
ferent 𝑝 values show similar results. This improvement of the
end-to-end runtime of the analytics, coupled with the minimal
impact on detection accuracy, highlights the substantial benefits
of using compression algorithms like CAMEO that preserve key
statistical features while significantly reducing the data size.

6 Additional Related Work
Here we position CAMEO in the context of additional work,
including time series segmentation, representation, lossless com-
pression, and matrix compression.

Time Series Segmentation and Representation: In con-
trast to lossy time series compression, time series segmentation
and representation techniques focus on extracting patterns while
also reducing data. Prominent methods like SWAB [57] segment
time series to enhance analytics, while SAX [69] transforms data
into symbolic representations for efficient indexing and pattern
recognition. More recently, GRAIL [81] introduces compact repre-
sentations preserving user-specific comparison functions, while
ASAX_EN [26] proposes segmentation based on entropy mea-
surement to maximize information gain. While these methods

reduce storage and retain useful patterns, these works do not
address forecasting analytics. In contrast, CAMEO’s preservation
of the ACF retains good accuracy of forecasting models even at
high compression levels. There are comprehensive surveys on
these two topics [94, 99].

Lossless Time Series Compression: Work on lossless time
series compression yielded increasing improvements and shows
a balance of good compression ratios and computational effi-
ciency [1, 6, 12, 86, 106]. Gorilla [82], widely known for its im-
plementation within Facebook’s time-series database, is simple
yet very efficient, making it amenable for real-time applications.
Gorilla’s XOR operator has recently inspired the Chimp [67] and
Elf [66] lossless compression algorithms. Both methods preserve
Gorilla’s linear time complexity while improving its compression
ratio for time series without many repeating values. However, the
achieved compression ratios of these methods are still limited.
In contrast, CAMEO is positioned between lossless and lossy
compression by preserving key statistical features while yielding
very good compression ratios.

Lossless Matrix and Workload-aware Compression: Be-
sides lossy matrix compression, which are mainstream in ML
model training and inference, there is also work on lossless ma-
trix compression. Examples are compressed linear algebra [30, 31]
and tuple-oriented coding [65], which also apply to time series
data but only in combination with binning or quantization. Re-
cent work also explored workload-aware lossless compression [4]
and workload-aware dimensionality reduction [91], which are re-
lated to compressing for downstream analytics. A holistic, unified
strategy that dynamically applies the principles of lossless com-
pression, lossy compression, and workload-aware compression
(especially for statistical features) is non-existent so far.

7 Conclusions
We introduced CAMEO, a lossy time series compression frame-
work that guarantees a user-provided maximum deviation of
the original ACF/PACF. Inspired by line simplification methods,
CAMEO iteratively removes points while continuously validat-
ing the error constraint. To improve efficiency, CAMEO utilizes
incremental maintenance, blocking, and parallelization strategies.
Based on our experimental evaluation, we draw the following
conclusions: 1) CAMEO obtains higher compression ratios than
existing line-simplification techniques while keeping the same
ACF deviation. 2) CAMEO provides a competitive alternative to
the well-known lossy compressors SWAB, PMC, SWING, and SP
with better compression ratios and direct guarantees on the ACF.
3) Preserving the ACF during compression yields better accu-
racy across different time series analytics. Together, these results
make a great case for lossy compression under awareness of sta-
tistical properties and downstream applications, which helps to
remove trust concerns and tedious semi-manual trial-and-error
exploration. Future work includes the extension of CAMEO to
other time series properties such as entropy (which might be
highly correlated to classification or clustering), and seasonal-
strength, as well as runtime improvements for high-performance
compression and approximation analyses [96].

Acknowledgments
We thank our anonymous reviewers for constructive suggestions,
and acknowledge funding from the German Federal Ministry of
Education and Research (under research grant BIFOLD25B) and
MORE project funded by EU Horizon 2020 (grant no. 957345).

26

CAMEO: Autocorrelation-Preserving Line Simplification EDBT ’26, 24-27 March 2026, Tampere (Finland)

Artifacts
The code, datasets, artifacts, and instructions for running our
method can be found at https://github.com/cmcuza/cameo and
a reproducibility repository can be found at https://github.com/
damslab/reproducibility/tree/master/edbt2026-CAMEO.

References
[1] Azim Afroozeh, Leonardo X. Kuffo, and Peter A. Boncz. 2023. ALP: Adaptive

Lossless floating-Point Compression. Proc. ACM Manag. Data 1, 4 (2023),
230:1–230:26. doi:10.1145/3626717

[2] Nasir Ahmed, T_ Natarajan, and Kamisetty R Rao. 1974. Discrete cosine
transform. IEEE Trans. on Computers 100, 1 (1974), 90–93.

[3] Depei Bao and Zehong Yang. 2008. Intelligent stock trading system by turning
point confirming and probabilistic reasoning. Expert Syst. Appl. 34, 1 (2008),
620–627. doi:10.1016/j.eswa.2006.09.043

[4] Sebastian Baunsgaard and Matthias Boehm. 2023. AWARE: Workload-aware,
Redundancy-exploiting Linear Algebra. Proc. ACM Manag. Data 1, 1 (2023),
2:1–2:28. doi:10.1145/3588682

[5] Kristiyan Blagov, Carlos Enrique Muñiz-Cuza, and Matthias Boehm. 2025.
Fast, Parameter-free Time Series Anomaly Detection. In BTW. 453–474.

[6] Davis W. Blalock, Samuel Madden, and John V. Guttag. 2018. Sprintz: Time
Series Compression for the Internet of Things. Proc. ACM Interact. Mob.
Wearable Ubiquitous Technol. 2, 3 (2018), 93:1–93:23. doi:10.1145/3264903

[7] Tulika Bose, Soma Bandyopadhyay, Sudhir Kumar, Abhijan Bhattacharyya,
and Arpan Pal. 2016. Signal Characteristics on Sensor Data Compression in
IoT -An Investigation. In SECON. doi:10.1109/SAHCN.2016.7733016

[8] George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung.
2015. Time series analysis: forecasting and control. John Wiley & Sons.

[9] Chiranjeeb Buragohain, Nisheeth Shrivastava, and Subhash Suri. 2007. Space
Efficient Streaming Algorithms for the Maximum Error Histogram. In ICDE.
1026–1035. doi:10.1109/ICDE.2007.368961

[10] Peter A. Businger and Gene H. Golub. 1969. Algorithm 358: singular value
decomposition of a complex matrix [F1, 4, 5]. CACM 12, 10 (1969), 564–565.
doi:10.1145/363235.363249

[11] Yuhan Cai and Raymond T. Ng. 2004. Indexing Spatio-Temporal Trajectories
with Chebyshev Polynomials. In SIGMOD. 599–610. doi:10.1145/1007568.
1007636

[12] Giuseppe Campobello, Antonino Segreto, Sarah Zanafi, and Salvatore Serrano.
2017. RAKE: A simple and efficient lossless compression algorithm for the
Internet of Things. In EUSIPCO. doi:10.23919/EUSIPCO.2017.8081677

[13] Cyrus D Cantrell. 2000. Modern mathematical methods for physicists and
engineers. Cambridge University Press.

[14] Franck Cappello, Sheng Di, and Ali Murat Gok. 2020. Fulfilling the Promises
of Lossy Compression for Scientific Applications. In SMC, Vol. 1315. 99–116.
doi:10.1007/978-3-030-63393-6_7

[15] Shubham Chandak, Kedar Tatwawadi, Chengtao Wen, Lingyun Wang,
Juan Aparicio Ojea, and Tsachy Weissman. 2020. LFZip: Lossy Compression
of Multivariate Floating-Point Time Series Data via Improved Prediction. In
DCC. 342–351. doi:10.1109/DCC47342.2020.00042

[16] Qiuxia Chen, Lei Chen, Xiang Lian, Yunhao Liu, and Jeffrey Xu Yu. 2007.
Indexable PLA for Efficient Similarity Search. In PVLDB. 435–446. http:
//www.vldb.org/conf/2007/papers/research/p435-chen.pdf

[17] Giacomo Chiarot and Claudio Silvestri. 2023. Time Series Compression
Survey. ACM Comput. Surv. 55, 10 (2023), 198:1–198:32. doi:10.1145/3560814

[18] Fu Lai Korris Chung, Tak-Chung Fu, Wing Pong Robert Luk, and Vincent
To Yee Ng. 2001. Flexible time series pattern matching based on perceptually
important points. In IJCAI (Workshop).

[19] Robert B Cleveland, William S Cleveland, Jean E McRae, and Irma Terpenning.
1990. STL: A seasonal-trend decomposition. J. Off. Stat 6, 1 (1990), 3–73.
http://www.nniiem.ru/file/news/2016/stl-statistical-model.pdf

[20] Yann Collet and Przemyslaw Skibinski. 2015. Zstandard - Fast real-time
compression algorithm. https://facebook.github.io/zstd/.

[21] James W Cooley and John W Tukey. 1965. An algorithm for the machine
calculation of complex Fourier series. Mathematics of computation 19, 90
(1965), 297–301. https://community.ams.org/journals/mcom/1965-19-090/
S0025-5718-1965-0178586-1/S0025-5718-1965-0178586-1.pdf

[22] Patrick Damme et al. 2022. DAPHNE: An Open and Extensible System
Infrastructure for Integrated Data Analysis Pipelines. In CIDR. https://www.
cidrdb.org/cidr2022/papers/p4-damme.pdf

[23] Patrick Damme, Dirk Habich, Juliana Hildebrandt, and Wolfgang Lehner.
2017. Lightweight Data Compression Algorithms: An Experimental Survey
(Experiments and Analyses). In EDBT. 72–83. doi:10.5441/002/edbt.2017.08

[24] Julio Cesar Stacchini de Souza, Tatiana Mariano Lessa Assis, and Bikash Chan-
dra Pal. 2017. Data Compression in Smart Distribution Systems via Sin-
gular Value Decomposition. IEEE Trans. Smart Grid 8, 1 (2017), 275–284.
doi:10.1109/TSG.2015.2456979

[25] Janez Demšar. 2006. Statistical comparisons of classifiers over multiple data
sets. Journal of Machine Learning Research 7 (2006), 1–30.

[26] Lamia Djebour, Reza Akbarinia, and Florent Masseglia. 2023. Variable-Size
Segmentation for Time Series Representation. Trans. Large Scale Data Knowl.
Centered Syst. 53 (2023), 34–65. doi:10.1007/978-3-662-66863-4_2

[27] David H Douglas and Thomas K Peucker. 1973. Algorithms for the reduction
of the number of points required to represent a digitized line or its caricature.
Int. J. for Geog. Inf. and Geov. 10, 2 (1973). doi:10.1002/9780470669488.ch2

[28] J. Durbin. 1960. The Fitting of Time-Series Models. Review of the International
Statistical Institute 28, 3 (1960).

[29] Frank Eichinger, Pavel Efros, Stamatis Karnouskos, and Klemens Böhm. 2015.
A time-series compression technique and its application to the smart grid.
PVLDB 24, 2 (2015), 193–218. doi:10.1007/s00778-014-0368-8

[30] Ahmed Elgohary, Matthias Boehm, Peter J Haas, Frederick R Reiss, and
Berthold Reinwald. 2016. Compressed linear algebra for large-scale machine
learning. VLDB J. 9, 12 (2016), 960–971. doi:10.1007/s00778-017-0478-1

[31] Ahmed Elgohary, Matthias Boehm, Peter J. Haas, Frederick R. Reiss, and
Berthold Reinwald. 2018. Compressed linear algebra for large-scale machine
learning. VLDB J. 27, 5 (2018), 719–744. doi:10.1007/s00778-017-0478-1

[32] Hazem Elmeleegy, Ahmed K. Elmagarmid, Emmanuel Cecchet, Walid G. Aref,
and Willy Zwaenepoel. 2009. Online Piece-wise Linear Approximation of
Numerical Streams with Precision Guarantees. PVLDB 2, 1 (2009), 145–156.
doi:10.14778/1687627.1687645

[33] Arik Ermshaus, Patrick Schäfer, and Ulf Leser. 2022. Window Size Selection
in Unsupervised Time Series Analytics: A Review and Benchmark. In ECML
PKDD, AALTD, Vol. 13812. 83–101. doi:10.1007/978-3-031-24378-3_6

[34] Charles R. Harris et. al. 2020. Array programming with NumPy. Nature 585,
7825 (2020), 357–362. doi:10.1038/s41586-020-2649-2

[35] Charles R. Harris et al. 2020. Array programming with NumPy. Nat. 585
(2020), 357–362. doi:10.1038/S41586-020-2649-2

[36] Robert W Floyd. 1964. Algorithm 245: treesort. CACM 7, 12 (1964).
[37] Electricity System Operator for Great Britain. 2023. Historic Demand Data

2021. https://www.nationalgrideso.com/data-portal/historic-demand-data/
historic_demand_data_2021.

[38] Tak-Chung Fu, Korris Fu-Lai Chung, Robert Wing Pong Luk, and Chak-man
Ng. 2008. Representing financial time series based on data point importance.
Eng. Appl. Artif. Intell. 21, 2 (2008). doi:10.1016/j.engappai.2007.04.009

[39] Tak-chung Fu, Fu-lai Chung, Robert Luk, and Chak-man Ng. 2004. A special-
ized binary tree for financial time series representation. In TDM-SIGKDD.

[40] Tak-chung Fu, Ying-kit Hung, and Fu-lai Chung. 2017. Improvement algo-
rithms of perceptually important point identification for time series data
mining. In ISCMI. 11–15. doi:10.1109/ISCMI.2017.8279589

[41] Felix A. Gers, Jürgen Schmidhuber, and Fred A. Cummins. 2000. Learning
to Forget: Continual Prediction with LSTM. Neural Comput. 12, 10 (2000),
2451–2471. doi:10.1162/089976600300015015

[42] Rakshitha Godahewa, Christoph Bergmeir, Geoffrey I. Webb, Rob J. Hyndman,
and Pablo Montero-Manso. 2021. Monash Time Series Forecasting Archive. In
NeurIPS, Vol. 1. https://datasets-benchmarks-proceedings.neurips.cc/paper/
2021/hash/eddea82ad2755b24c4e168c5fc2ebd40-Abstract-round2.html

[43] Robert M. Gray and David L. Neuhoff. 1998. Quantization. IEEE Transactions
on Information Theory 44, 6 (1998), 2325–2383. doi:10.1109/18.720541

[44] Taimur Hafeez and Gavin McArdle. 2022. Using Dynamic Perceptually
Important Points for Data Reduction in IoT. In Internet of Things. 33–39.
doi:10.1145/3494322.3494327

[45] Georges Hebrail and Alice Berard. 2012. Individual household electric power
consumption. doi:10.24432/C58K54 UCI MLR.

[46] Jose Antonio Martinez Heras and Alessandro Donati. 2013. Fractal resam-
pling: time series archive lossy compression with guarantees. PV ESRIN
(2013).

[47] Gregor Hollmig et al. 2017. An evaluation of combinations of lossy com-
pression and change-detection approaches for time-series data. Inf. Syst. 65
(2017), 65–77. doi:10.1016/j.is.2016.11.001

[48] Nguyen Quoc Viet Hung, Hoyoung Jeung, and Karl Aberer. 2013. An Evalua-
tion of Model-Based Approaches to Sensor Data Compression. TKDE 25, 11
(2013), 2434–2447. doi:10.1109/TKDE.2012.237

[49] Rob J Hyndman and George Athanasopoulos. 2018. Forecasting: principles
and practice. OTexts. http://OTexts.com/fpp3

[50] Tetsunari Inamura, Hiroaki Tanie, and Yoshihiko Nakamura. 2003. Keyframe
compression and decompression for time series data based on the continuous
hidden Markov model. In IROS, Vol. 2. 1487–1492.

[51] InfluxData. 2023. InfluxDB. https://www.influxdata.com/.
[52] Søren Kejser Jensen, Torben Bach Pedersen, and Christian Thomsen. 2017.

Time Series Management Systems: A Survey. IEEE Trans. KDE 29, 11 (2017),
2581–2600. doi:10.1109/TKDE.2017.2740932

[53] Søren Kejser Jensen, Christian Thomsen, and Torben Bach Pedersen. 2023.
ModelarDB: Integrated Model-Based Management of Time Series from Edge
to Cloud. TLSDKS 53 (2023), 1–33. doi:10.1007/978-3-662-66863-4_1

[54] Uwe Jugel, Zbigniew Jerzak, Gregor Hackenbroich, and Volker Markl. 2014.
M4: A Visualization-Oriented Time Series Data Aggregation. PVLDB 7, 10
(2014), 797–808. doi:10.14778/2732951.2732953

[55] Samsul Ariffin Abdul Karim et al. 2011. Wavelet Transform and Fast Fourier
Transform for signal compression: A comparative study. In ICEDSA. 280–285.
doi:10.1109/ICEDSA.2011.5959031

[56] Eamonn J. Keogh, Kaushik Chakrabarti, Sharad Mehrotra, and Michael J.
Pazzani. 2001. Locally Adaptive Dimensionality Reduction for Indexing Large
Time Series Databases. In SIGMOD. 151–162. doi:10.1145/375663.375680

[57] Eamonn J. Keogh, Selina Chu, David M. Hart, and Michael J. Pazzani. 2001.
An Online Algorithm for Segmenting Time Series. In ICDM. 289–296. doi:10.
1109/ICDM.2001.989531

27

EDBT ’26, 24-27 March 2026, Tampere (Finland) Muniz-Cuza et al.

[58] Abdelouahab Khelifati, Mourad Khayati, and Philippe Cudré-Mauroux. 2019.
Corad: Correlation-aware compression of massive time series using sparse
dictionary coding. In Big Data. 2289–2298. doi:10.1109/BigData47090.2019.
9005580

[59] Xenophon Kitsios, Panagiotis Liakos, Katia Papakonstantinopoulou, and
Yannis Kotidis. 2023. Sim-Piece: Highly Accurate Piecewise Linear Approxi-
mation through Similar Segment Merging. PVLDB 16, 8 (2023), 1910–1922.
doi:10.14778/3594512.3594521

[60] Xenophon Kitsios, Panagiotis Liakos, Katia Papakonstantinopoulou, and
Yannis Kotidis. 2024. Flexible grouping of linear segments for highly accurate
lossy compression of time series data. The VLDB Journal 33, 5 (2024), 1569–
1589. doi:10.1007/s00778-024-00862-z

[61] Maciej Krawczak and Grazyna Szkatula. 2014. An approach to dimensionality
reduction in time series. Inf. Sci. 260 (2014). doi:10.1016/j.ins.2013.10.037

[62] Barry J Kronenfeld, Lawrence V Stanislawski, Barbara P Buttenfield, and
Tyler Brockmeyer. 2020. Simplification of polylines by segment collapse:
Minimizing areal displacement while preserving area. Int. J. of Cartography
6, 1 (2020), 22–46. doi:10.1080/23729333.2019.1631535

[63] Iosif Lazaridis and Sharad Mehrotra. 2003. Capturing sensor-generated time
series with quality guarantees. In ICDE. 429–440.

[64] Michal Lewandowski, Jesús Martínez del Rincón, Dimitrios Makris, and Jean-
Christophe Nebel. 2010. Temporal Extension of Laplacian Eigenmaps for
Unsupervised Dimensionality Reduction of Time Series. In ICPR. 161–164.
doi:10.1109/ICPR.2010.48

[65] Fengan Li et al. 2019. Tuple-oriented Compression for Large-scale Mini-batch
Stochastic Gradient Descent. In SIGMOD. 1517–1534. doi:10.1145/3299869.
3300070

[66] Ruiyuan Li, Zheng Li, Yi Wu, Chao Chen, and Yu Zheng. 2023. Elf: Erasing-
Based Lossless Floating-Point Compression. PVLDB 16, 7 (2023), 1763–1776.
doi:10.14778/3587136.3587149

[67] Panagiotis Liakos, Katia Papakonstantinopoulou, and Yannis Kotidis. 2022.
Chimp: Efficient Lossless Floating Point Compression for Time Series
Databases. PVLDB 15, 11 (2022). https://www.vldb.org/pvldb/vol15/p3058-
liakos.pdf

[68] Xin Liang, Kai Zhao, Sheng Di, Sihuan Li, Robert Underwood, Ali M. Gok,
Jiannan Tian, Junjing Deng, Jon C. Calhoun, Dingwen Tao, Zizhong Chen,
and Franck Cappello. 2023. SZ3: A Modular Framework for Composing
Prediction-Based Error-Bounded Lossy Compressors. IEEE Transactions on
Big Data 9, 2 (2023), 485–498. doi:10.1109/TBDATA.2022.3201176

[69] Jessica Lin, Eamonn J. Keogh, Stefano Lonardi, and Bill Yuan-chi Chiu. 2003.
A symbolic representation of time series, with implications for streaming
algorithms. In SIGMOD. 2–11. doi:10.1145/882082.882086

[70] Jessica Lin, Eamonn J. Keogh, Li Wei, and Stefano Lonardi. 2007. Experiencing
SAX: a novel symbolic representation of time series. Data Min. Knowl. Discov.
15, 2 (2007), 107–144. doi:10.1007/s10618-007-0064-z

[71] Ge Luo, Ke Yi, Siu-Wing Cheng, Zhenguo Li, Wei Fan, Cheng He, and Yadong
Mu. 2015. Piecewise linear approximation of streaming time series data with
max-error guarantees. In ICDE. 173–184. doi:10.1109/ICDE.2015.7113282

[72] James Manyika, Michael Chui, Peter Bisson, Jonathan Woetzel, Richard
Dobbs, Jacques Bughin, and Dan Aharon. 2015. Unlocking the Potential
of the Internet of Things. McKinsey Global Institute 1 (2015).

[73] Alice Marascu et al. 2014. TRISTAN: Real-time analytics on massive time
series using sparse dictionary compression. In BigData. 291–300. doi:10.1109/
BigData.2014.7004244

[74] Aekyeung Moon, Jaeyoung Kim, Jialing Zhang, and Seung Woo Son. 2018.
Evaluating fidelity of lossy compression on spatiotemporal data from an IoT
enabled smart farm. Comput. Electron. Agric. 154 (2018), 304–313. doi:10.
1016/j.compag.2018.08.045

[75] Pedro A Morettin. 1984. The Levinson algorithm and its applications in time
series analysis. Int. Statistical Review (1984), 83–92.

[76] Carlos Enrique Muñiz-Cuza, Søren Kejser Jensen, Jonas Brusokas, Nguyen Ho,
and Torben Bach Pedersen. 2024. Evaluating the Impact of Error-Bounded
Lossy Compression on Time Series Forecasting. In EDBT. OpenProceed-
ings.org, 650–663. doi:10.48786/EDBT.2024.56

[77] National Ecological Observatory Network (NEON). 2021. IR biological tem-
perature (DP1.00005.001). doi:10.48443/JNWY-B177

[78] National Ecological Observatory Network (NEON). 2023. Relative humidity
(DP1.00098.001). doi:10.48443/G2J6-SR14

[79] Idoia Ochoa, Mikel Hernaez, Rachel L. Goldfeder, Tsachy Weissman, and
Euan A. Ashley. 2017. Effect of lossy compression of quality scores on variant
calling. Briefings Bioinform. 18, 2 (2017), 183–194. doi:10.1093/bib/bbw011

[80] Australian Bureau of Meteorology. 2023. Minimum Daily Temperatures
in Melbourne (1981-1990). https://www.kaggle.com/datasets/paulbrabban/
daily-minimum-temperatures-in-melbourne.

[81] John Paparrizos and Michael J. Franklin. 2019. GRAIL: Efficient Time-Series
Representation Learning. PVLDB 12, 11 (2019), 1762–1777. doi:10.14778/
3342263.3342648

[82] Tuomas Pelkonen, Scott Franklin, Paul Cavallaro, Qi Huang, Justin Meza,
Justin Teller, and Kaushik Veeraraghavan. 2015. Gorilla: A Fast, Scalable,
In-Memory Time Series Database. PVLDB 8, 12 (2015), 1816–1827. doi:10.
14778/2824032.2824078

[83] James Pope, Antonis Vafeas, Atis Elsts, George Oikonomou, Robert J.
Piechocki, and Ian Craddock. 2018. An accelerometer lossless compres-
sion algorithm and energy analysis for IoT devices. In WCNC. 396–401.

doi:10.1109/WCNCW.2018.8368985
[84] U Rammer. 1972. An iterative procedure for the polygonal approximation of

plane closed curves. Comput. Graph. Image Process. (1972), 244–256. doi:10.
1016/S0146-664X(72)80017-0

[85] Paulo Raposo. 2013. Scale-specific automated line simplification by vertex
clustering on a hexagonal tessellation. Cartog. and Geog. Inf. Science 40, 5
(2013), 427–443. doi:10.1080/15230406.2013.803707

[86] Paruj Ratanaworabhan, Jian Ke, and Martin Burtscher. 2006. Fast Lossless
Compression of Scientific Floating-Point Data. In DCC. 133–142. doi:10.1109/
DCC.2006.35

[87] Ferdinand Rewicki, Joachim Denzler, and Julia Niebling. 2023. Is It Worth It?
Comparing Six Deep and Classical Methods for Unsupervised Anomaly De-
tection in Time Series. Applied Sciences 13, 3 (2023). doi:10.3390/app13031778

[88] Jin Shieh and Eamonn J. Keogh. 2008. iSAX: indexing and mining terabyte
sized time series. In SIGKDD. 623–631. doi:10.1145/1401890.1401966

[89] Yain-Whar Si and Jiangling Yin. 2013. OBST-based segmentation approach
to financial time series. Eng. Appl. Artif. Intell. 26, 10 (2013), 2581–2596.
doi:10.1016/j.engappai.2013.08.015

[90] Qizhou Sun and Yain-Whar Si. 2020. An Efficient Segmentation Method:
Perceptually Important Point with Binary Tree. In DEXA, Vol. 12392. Springer,
350–365. doi:10.1007/978-3-030-59051-2_24

[91] Sahaana Suri and Peter Bailis. 2019. DROP: A Workload-Aware Optimizer
for Dimensionality Reduction. In DEEM@SIGMOD. 1:1–1:10. doi:10.1145/
3329486.3329490

[92] Dingwen Tao, Sheng Di, Hanqi Guo, Zizhong Chen, and Franck Cappello.
2019. Z-checker: A framework for assessing lossy compression of scientific
data. Int. J. HPC Appl. 33, 2 (2019). doi:10.1177/1094342017737147

[93] Seshu Tirupathi et al. 2022. Machine Learning Platform for Extreme Scale
Computing on Compressed IoT Data. In IEEE Big Data.

[94] Patara Trirat et al. 2024. Universal Time-Series Representation Learning:
A Survey. CoRR abs/2401.03717 (2024). doi:10.48550/ARXIV.2401.03717
arXiv:2401.03717

[95] Mees van de Kerkhof, Irina Kostitsyna, Maarten Löffler, Majid Mirzanezhad,
and Carola Wenk. 2019. Global Curve Simplification. In ESA, Vol. 144. 67:1–
67:14. doi:10.4230/LIPIcs.ESA.2019.67

[96] Marc J. van Kreveld, Maarten Löffler, and Lionov Wiratma. 2020. On optimal
polyline simplification using the Hausdorff and Fréchet distance. J. Comput.
Geom. 11, 1 (2020), 1–25. doi:10.20382/jocg.v11i1a1

[97] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is
All you Need. In NeurIPS. 5998–6008. https://proceedings.neurips.cc/paper/
2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html

[98] Maheswari Visvalingam and James D Whyatt. 1993. Line generalisation
by repeated elimination of points. The Cartographic J. 30, 1 (1993), 46–51.
doi:10.1179/000870493786962263

[99] Chengyu Wang, Xionglve Li, Tongqing Zhou, and Zhiping Cai. 2024. Unsu-
pervised Time Series Segmentation: A Survey on Recent Advances. Comp,
Mat & Cont 80, 2 (2024), 2657–2673. doi:10.32604/cmc.2024.054061

[100] Xiaozhe Wang, Kate Smith, and Rob Hyndman. 2006. Characteristic-based
clustering for time series data. Data mining and knowledge Discovery 13
(2006), 335–364. doi:10.1007/s10618-005-0039

[101] Abdul Wasay, Xinding Wei, Niv Dayan, and Stratos Idreos. 2017. Data
Canopy: Accelerating Exploratory Statistical Analysis. In SIGMOD. 557–572.
doi:10.1145/3035918.3064051

[102] Norbert Wiener. 1930. Generalized harmonic analysis. Acta mathematica 55,
1 (1930), 117–258.

[103] David H Wolpert and William G Macready. 1997. No free lunch theorems
for optimization. IEEE transactions on evolutionary computation 1, 1 (1997),
67–82.

[104] Renjie Wu and Eamonn J. Keogh. 2022. Current Time Series Anomaly De-
tection Benchmarks are Flawed and are Creating the Illusion of Progress
(Extended Abstract). In ICDE. 1479–1480. doi:10.1109/ICDE53745.2022.00116

[105] Jinzhao Xiao, Yuxiang Huang, Changyu Hu, Shaoxu Song, Xiangdong Huang,
and Jianmin Wang. 2022. Time Series Data Encoding for Efficient Storage: A
Comparative Analysis in Apache IoTDB. PVLDB 15, 10 (2022), 2148–2160.
https://www.vldb.org/pvldb/vol15/p2148-song.pdf

[106] Yuanyuan Yao, Lu Chen, Ziquan Fang, Yunjun Gao, Christian S. Jensen, and
Tianyi Li. 2024. Camel: Efficient Compression of Floating-Point Time Series.
Proc. ACM Manag. Data 2, 6 (2024), 227:1–227:26. doi:10.1145/3698802

[107] Chin-Chia Michael Yeh et al. 2016. Matrix Profile I: All Pairs Similarity
Joins for Time Series: A Unifying View That Includes Motifs, Discords and
Shapelets. In ICDM. 1317–1322. doi:10.1109/ICDM.2016.0179

[108] Jiangling Yin, Yain-Whar Si, and Zhiguo Gong. 2011. Financial time series
segmentation based on Turning Points. In ICSSE. 394–399. doi:10.1109/ICSSE.
2011.5961935

[109] Peter C Young, Diego J Pedregal, and Wlodek Tych. 1999. Dynamic harmonic
regression. Journal of forecasting 18, 6 (1999), 369–394. doi:10.1002/(SICI)1099-
131X(199911)18:6<369::AID-FOR748>3.0.CO;2-K

[110] Feng Zhang et al. 2022. CompressDB: Enabling Efficient Compressed Data
Direct Processing for Various Databases. In SIGMOD. 1655–1669. doi:10.1145/
3514221.3526130

[111] Zig Software Foundation. [n. d.]. The Zig Programming Language. https:
//ziglang.org/

28

