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Abstract

Many SQL database engines support user-defined functions (UDFs)
for complex in-database computations. However, UDFs often
suffer from high execution overhead and limited optimization,
as query planners treat them as black boxes. In this paper, we
introduce QFusor, a pluggable optimizer that enhances UDF per-
formance in SQL databases by: (a) reducing overhead through
operator fusion, inlining, and stateful, JIT-compiled execution,
(b) fusing different UDF types (scalar, aggregate, table) and blend-
ing them with relational operators, (c) exposing new optimiza-
tion opportunities, and (d) enabling longer JIT compilation traces.
QFusor integrates with various SQL databases and delivers up
to 40x speedup over current research and commercial systems.
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1 Introduction

SQL databases have been the backbone of data analysis for over
four decades, offering key advantages like query optimization,
robust execution, scalable storage, and ACID guarantees. How-
ever, one of their core strengths, the declarative, set-oriented SQL
language, also limits their ability to express complex analytical
logic. To overcome this, modern databases support user-defined
functions (UDFs), allowing developers to implement custom logic
in languages like C/C++, Java, or Python [e.g., 3, 48, 51, 56, 60, 85].
While UDFs enhance expressiveness and usability, they often suf-
fer from a performance mismatch with relational processing. In
queries with UDFs, the bottleneck will most likely be the UDF,
irrespective of the complexity of the calling query or the size of
the data [33].

The performance challenges are exacerbated in queries with
many UDFs. A common pattern in data science applications is the
use of long pipelines composed of multiple UDFs [54, 55]. Data
scientists often break down complex algorithms into multiple,
modular UDFs for better reusability and productivity. However,
this design limits performance even further as modern databases
excel at fast, vectorized execution, and isolated UDFs running
in separate contexts prevents aggressive compiler optimizations
and underutilizes database capabilities.

In this paper, we deal with the following problem: “How to
optimize SQL queries containing UDFs (a.k.a. UDF queries) and
execute them efficiently in a SQL database engine”. Toward this
direction, we present QFusor, a stateful approach to optimizing
UDF performance in SQL databases by blending together UDF
operators (currently, Python UDFs) and/or UDF and relational
operators, potentially enabling additional query optimizations,
at a very low execution cost through stateful and just-in-time
(JIT) execution.
∗Work done while with Athena Research Center.
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JIT execution. JIT compilation boosts performance of a pro-
gram by compiling parts of it to machine code at runtime. In con-
trast to method-based JIT compilers that translate one method at
a time, tracing JIT can be more efficient as it uses frequently exe-
cuted loops –hot loops– as the unit of compilation [e.g., 27, 71, 79].
This concept fits perfectly to UDFs, as they typically execute fre-
quent calculations iteratively through the tuples of a table. Still,
in order to fully exploit the benefits of tracing JIT, one needs to
feed it with long traces –i.e., longer sequences of instructions.

Operator fusion. We enable this with operator fusion. Oper-
ator fusion combines multiple operators into one, and in the
same loop, hence eliminating context switches, materialization
of intermediate results (when applicable), data conversions and
copies between the data engine and the UDF’s execution envi-
ronment, and also provides the UDF tracing JIT compiler with
larger chunks of code enabling more holistic optimization of
UDF execution, especially for long UDF pipelines, and thus, fully
exploiting its tracing feature.

Query optimization. Operator fusion opens up opportunities
for query optimization as well. Most database optimizers treat
UDFs as black boxes. Hence, a UDF in a query plan frequently
becomes a barrier for query optimization, which could result in
missing potentially better execution plans. We argue that fus-
ing UDF and relational operators all together could alleviate to
some extent this barrier and provide query optimization with
extra opportunities. But this also creates opportunities for op-
erator fusion. A relational operator in between two UDFs may
block their fusion. This could be fixed if for example the two
UDFs and the relational operator could be fused into a single
one. We achieve this functionality by enabling the execution of a
relational operator in the UDF execution environment by either
implementing the operator in the UDF language or by export-
ing the internal functions of the database codebase to the UDF
environment through a foreign function interface that adds no
overhead to the operator execution, but still benefits by allowing
fusion to remove all the intermediate execution overheads.

Pluggable architecture. We opted for a general solution that
can be plugged to existing SQL databases. We provide a dynamic
UDF registration mechanism that automatically wraps, embeds,
and registers UDFs in a data engine. Expensive overheads stem-
ming from operations such as serialization and deserialization of
complex data types (e.g., lists, dictionaries, nested structures) are
eliminated at the wrapper layer. Our mechanism supports also
stateful execution of the most popular UDF types.

While techniques as operator fusion and JIT compilation have
been used to improve SQL query performance [30, 43, 44, 70],
they have been studied for queries without UDFs. Approaches
that employ fusion via intermediate representations (e.g., LLVM)
and compile entire pipelines into single programs that run outside
a database, are not suited for in-database execution [15, 18, 79].
Our work is the first to deeply explore how to integrate opera-
tor fusion and JIT compilation to optimize UDF queries within
SQL databases. Though our pluggable design supports multiple
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systems, our techniques could be further optimized by integrat-
ing directly within a specific engine. In summary, we make the
following novel contributions:

(a) A stateful, modular optimization mechanism that is plug-
gable into popular databases, with most components being engine-
agnostic. As a proof of concept, we have integrated QFusor with
six database engines.

(b) A holistic operator fusion approach that combines rela-
tional operators with all major UDF types (scalar, aggregate, and
table UDFs) via a simple yet effective code-blending mechanism.

(c) A cost-based and rule-based optimizer that discovers and
creates fusion opportunities in query plans, weighing the trade-
offs between UDF overhead and in-database operator execution.

(d) Techniques to address practical but so far overlooked chal-
lenges, including handling complex data types (e.g., lists, dictio-
naries) and reducing serialization/deserialization overhead.

(e) Significant performance gains, achieving up to 40x speedup
over state-of-the-art (SOTA) research and commercial systems.

Outline. Section 2 discusses related work. Section 3 presents
an overview of QFusor. Section 4 describes the UDF registration
mechanism and the UDF design specifications. Section 5 presents
the QFusor pipeline, the fusion optimizer and code generation.
Sections 6 and 7 present our experiments and our final remarks.

2 Related Work

Algebraic style UDF optimization. An early approach to optimiz-
ing queries with foreign functions [11] proposed a declarative
rule language to express semantic information about foreign
functions and model them as foreign tables. Then query opti-
mization falls back to traditional cost-based techniques (similar
to join enumeration) to produce equivalent queries. Follow up
work on optimizing queries with user-defined predicates inves-
tigated techniques such as pushdown and pullover rules with
respect to join trees [12, 13], predicate placement [36], and predi-
cate migration [37]. Although elegant, and conceptually relevant,
these early approaches neither suffice to capture the complexity
and variety of types of the modern UDFs, nor consider boosting
techniques such as JIT compilation.

UDF integration with the database. Beside in-engine UDF sup-
port in data engines [e.g., 51, 60, 63], research has also dealt with
low-level, in-engine optimization of UDF queries. [45] studies
strategies to enable dynamic loading of compiled, out-process
UDFs in a database, comparing interpreted CPython UDFs against
compilation with Cython [5], Nuitka [53], Numba [46], vector-
ized UDF [44], and multiprocessing parallelization. Our work is
closer to efforts considering, as we do, in-process UDF execu-
tion that eliminates data import/export between processes [e.g.,
27, 65, 72]. [65] integrates NumPy with MonetDB exploiting its
vectorized execution. UDO [72] integrates user-defined C++ op-
erators compiled in shared libraries into existing query plans,
without considering operator fusion as we do. YeSQL [27] em-
ploys a JIT, tuple-at-a-time model for Python UDFs. It supports
fusion primarily for scalar UDFs. Our work differs as it presents
a principled method to enable fusion of scalar, aggregate and
table UDFs along with relational operators, driven by a fusion
optimizer. GOLAP [38] considers fusion at a higher-level than
our focus, and modifies external pipelines to eliminate overheads
derived from (de-)serialization steps.

Translating UDFs into SQL. Several approaches aim at trans-
lating UDFs to semantically equivalent SQL [16, 19–21, 34, 41,
66, 67, 74]. The related work has focused on various translation
aspects, such as (a) rewrite T-SQL scalar UDFs into SQL (loop-less

in Froid [66], cursor loops in Aggify [32]), (b) convert PL/SQL
with iterations into regular SQL queries by employing a recur-
sive common table expression (PLSQL/AWAY [21]), (c) extend
PostgreSQL’s JIT compiler to inline lambda expressions in table
functions [67], and (d) map algorithmic primitives (e.g., vari-
ables, functions, conditions, loops) of procedural languages to
PostgreSQL’s declarative syntax [7]. Recent systems push the
boundaries of UDF to SQL translation: FLummi [24] builds control
flow graphs for batch evaluation and parallel execution across
DuckDB, Umbra, and PostgreSQL; Franz et al. [29] propose a
hybrid strategy to selectively apply inlining or batching based
on the UDF’s complexity, PRISM [4] introduces UDF outlining
and restructuring, enabling optimizations like predicate hoisting
and subquery elision, and QURE [73] leverages large language
models (LLMs) to translate UDFs to native SQL. The obvious
benefit of translating UDF code into SQL is that the translated
program enjoys the full power of database optimization and ex-
ecution. However, the translation is not trivial and it is limited
by the scope of the UDF translation (e.g., support for specific
packages, libraries). To date, primarily procedural SQL UDFs has
been considered. There is also limited support for UDF types and
expressions. Our work follows a generic approach targeting the
full spectrum of Python programming (i.e., it is not limited to spe-
cific packages), hence offering a significantly richer expressivity
at the cost of dealing with more complicated query optimization.

Translating UDFs into an IR. IR-based approaches rewrite UDFs
implemented with specific libraries (e.g., Matlab, NumPy) in an
intermediate representation. Supporting only specific libraries
poses an important limitation regarding how practical these
works can be in real use cases. There are two approaches: employ
a custom IR or use generic frameworks (e.g., LLVM) as an IR.

The fist category focuses on issues such as: (a) data movement
optimizations for data-parallel operators, e.g., relational, linear
algebra (Weld [57]), (b) array-based applications with MATLAB
UDFs (HorsePower [14, 35]), (c) extract SQL with two IRs, one
for applications and one for functional representation, and check
for simple optimizations as push down computations [22], (d) in-
vestigate cost-based optimization for fusing plans over DAGs of
linear algebra operations to produce Java code for each opera-
tor [8], (e) analyze Spark plans, perform relational processing
with frameworks like Tensorflow, and execute on custom run-
time (Flare [23]), (f) deal with polyglot queries (Java, Javascript,
Python) and perform IR-based fusion of built-in operators and
UDFs (Babelfish [31]), (g) translate Pandas to IR and then to C++
(SDQL.py [68, 69]), and (h) generate a statically-typed IR from
high-level semantics of Python UDFs [42].

The second category focuses on compiling end-to-end Python
pipelines into a single program, e.g., using LLVM compilation [47].
Two representative systems in this area are Tuplex and Tupleware.
Tuplex [79] is a data analytics framework utilizing a performant
end-to-end, tuple-at-a-time, prototype tracing JIT compiler. A de-
veloper creates a pipeline using a series of high-level, LINQ-style
operators[49] (e.g., map, filter, join) and passes UDFs as parame-
ters to these operators. It supports operator fusion via LLVM IR.
In Tupleware [17, 18], a developer defines workflows in a host
language (e.g., C++, Python) by passing UDFs to API operators
similar to Apache Spark[78] or DryadLINQ[88]. Tupleware com-
piles the entire workflow, including UDFs, into a fully compiled,
self-contained program, which is then deployed for execution. In
doing so, it blends high-level optimization (e.g., operator push-
down, join reordering) with low-level compiler techniques (e.g.,
inline expansion, SIMD vectorization) using LLVM to provide
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a language-agnostic front-end for map-reduce style operators
and introspect UDFs [9, 39, 40]. But it only supports UDFs for
which types can be inferred statically, only numerical types, no
polymorphic types (e.g., NULL) [79]. Note also that both systems
lack support for table returning UDFs.

A critical difference from IR-based efforts is that we focus on
the fusion of relational and procedural UDF operators directly
without any intermediate medium. And our generated UDF query
runs in a SQL database. Low-level compilation techniques are
also considered in other works, e.g., Tuplex, Tupleware. But our
architecture is very different, as we deal with the non-trivial
impedance mismatch between two different execution environ-
ments: Python and the database (usually, C/C++). For example,
Tuplex does not have to deal with data/type conversions or se-
rialization overheads, as the entire pipeline runs in the same
context, making it an excellent baseline as it offers presumably
the best possible execution of (out-of database) Python pipelines.
Tupleware and Tuplex are end-to-end systems that compile the
entire pipeline into a single program and then execute it, rely-
ing on their optimization and execution capabilities. Our work
follows an engine agnostic design to integrate a UDF execution
environment into a SQL database. It compiles each UDF sepa-
rately and then integrates it to the query plan. This non-intrusive
way to optimize UDF execution leaves query optimization and
execution to the SQL database. It is also worth noting that even
if one tried to integrate the logic of Tuplex and Tupleware into a
database, not all engines support LLVM and LLVM introduces
substantial compilation latencies, which are especially crucial for
short queries [30, 52]. We investigate this aspect further in the
experimental evaluation in Section 6.4.5.

To the best of our knowledge, QFusor is the first in-database
UDF integration approach that (a) considers JIT-compiled fusion
of all popular UDF types scalar, aggregate, table (prior art has
focused primarily on scalar functions) along with relational op-
erators, (b) offers a principled, optimization strategy to operator
fusion, and (c) can be plugged into existing SQL database engines.

3 The Case for QFusor

3.1 Example UDF Query

Consider a real-world analytics use-case on publication and fund-
ing data, aiming to assess how research projects influence col-
laboration among scientists. The data, collected from sources
such as PubMed, arXiv, crossref, and Zenodo, needs cleansing
and homogenization. The query (see Figure 1) processes each
publication to extract author pairs, then computes per project
the number of author pairs who collaborated during the project,
before it began, and after it ended.

The query contains several cleansing UDFs to (a) avoid false
negatives, (b) normalize authors names (lower) and remove short
terms, (c) sort the authors, (d) flatten author pairs to multiple
rows (combinations), (e) retrieve funding information, and (f)
standardize dates (cleandate). Finally, it retrieves all publica-
tions authored by each author pair and aggregates the result
by funder, funding class, and project. This query suffers from sev-
eral UDF related overheads. Authors are stored in JSON, which
requires multiple (de-)serializations to process it. The query is
UDF-heavy, with expensive operators such as regular expressions
(removeshortterms), string sorting (jsort, jsortvalues), and au-
thor pair generation with a table UDF (combinations). Frequent
C↔Python context switches between the database and UDF ex-
ecution environments add further overhead, especially, in the

1 WITH pairs(pubid,pubdate,projectstart,projectend,funder,class,project,authorpair) AS (
2 SELECT pubid,pubdate, projectstart, projectend,
3 extractid(project) AS projectid,
4 extractfunder(project) AS funder,
5 extractclass(project) AS class,
6 combinations(jsort(jsortvalues(removeshortterms(lower(authors)))),2) AS authorpair
7 FROM pubs
8 )
9 SELECT funder, class, projectid,

10 SUM(CASE WHEN cleandate(pubdate) between projectstart and projectend
11 THEN 1 ELSE NULL END) AS authors_during,
12 SUM(CASE WHEN cleandate(pubdate) < projectstart
13 THEN 1 ELSE NULL END) AS authors_before,
14 SUM(CASE WHEN cleandate(pubdate) > projectend
15 THEN 1 ELSE NULL END) AS authors_after
16 FROM (
17 SELECT projectpairs.funder, projectpairs.class, projectpairs.projectid, pairs.pubdate,
18 projectpairs.projectstart, projectpairs.projectend, pairs.authorpair
19 FROM (
20 SELECT * FROM pairs WHERE projectid IS NOT NULL
21 ) AS projectpairs, pairs
22 WHERE projectpairs.authorpair = pairs.authorpair
23 )
24 GROUP BY funder, class, projectid;

Figure 1: Example UDF query

1 WITH pairs(pubid,pubdate,projectstart,projectend,funder,class,project,authorpair) AS (
2 SELECT * FROM FUSED_UDF1((SELECT * FROM pubs))
3 )
4 SELECT * FROM FUSED_UDF2((
5 SELECT projectpairs.funder, projectpairs.class, projectpairs.project, pairs.pubdate,
6 projectpairs.projectstart, projectpairs.projectend, pairs.authorpair
7 FROM (SELECT * FROM pairs WHERE project is not null) AS projectpairs, pairs
8 WHERE projectpairs.authorpair = pairs.authorpair
9 ));

Figure 2: Example fused UDF query

lower part of the query that involves scalar operations with filters,
case expressions, and aggregations.

3.2 Overview of QFusor

Figure 3 illustrates an overview of the QFusor architecture. QFu-
sor connects as a plugin to a SQL database, either embedded (e.g.,
SQLite, DuckDB) or server-based (e.g., MonetDB, PostgreSQL). It
requires that the database supports: (a) a plan generation mecha-
nism (e.g., a query optimizer), and (b) a UDF registration mecha-
nism and support for C UDFs. UDF developers create their user-
defined functions and register them in the database. At query
time, the user submits a SQL query. QFusor adds a client layer
to interact with the database (shown in the figure as a thin blue
line left and right of the DBMS). If the query involves UDFs, the
client propagates the plan produced by the optimizer to QFusor.
Queries without UDFs are processed as usual. QFusor comprises
a pipeline of four steps.

Discover fusible operators. First, it analyzes the query plan to
discover UDFs and relational operators that have data depen-
dency to each other and could potentially be fused together (see
Section 5.1).

Fusion optimization. Then, it employs rule-based and cost-
based techniques to decide what operators should be fused (see
Section 5.2).

JIT code generation. Next, it generates just-in-time the code
implementing the new execution plan and registers the produced
fused UDF(s) as new UDF(s) in the UDF registry (see Section 5.3).

Query rewrite. Finally, it rewrites the SQL query by replacing
the affected operators in the query with the newly produced
fused UDF(s). It produces either a rewritten SQL statement that is
resubmitted to the database (path 1) or, for selected data engines,
a valid execution plan that is sent directly to the execution engine
(path 2). In the former case, in our current implementation, the
query does not undergo another QFusor process. This scenario
would be helpful in case the optimizer reorders the operators
in the plan enabling thus additional fusion opportunities, an
interesting direction for future work (see Section 5.4).
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Figure 3: Pluggable architecture of QFusor

Example Revisited. The example query presents various fu-
sion opportunities. Several of its UDFs could be fused, such
as extractid, extractfunder, extractclass, lower, jsortvalues,
removeshortterms, jsort, and combinations. Another option is to
fuse the functions cleandate and sum with the relational oper-
ators, i.e, filters and case, which can be JIT implemented as
UDFs and run in a fused UDF. Figure 2 shows a fused version of
the query (see also Section 6.4.1).

4 Enabling QFusor

There are two key enablers for QFusor: the UDF registration
mechanism and the UDF design specifications.

4.1 UDF Registration

TheQFusor client employs a UDF registration mechanism, which
is responsible for automatically wrapping, embedding, and reg-
istering the UDFs to the data engine. When the UDF developer
submits a new UDF decorated with its type (i.e., scalar, aggregate,
table) and its output data types, a function that wraps the UDF is
automatically created by our registration mechanism. The wrap-
per function converts the input data to C data objects, includes a
call to the UDF submitted by the developer, and finally assigns the
results to a C data object, which is accessible to the data engine.
The wrapper function is then compiled into dynamically loadable
objects that are embedded into a C UDF. The latter is registered
in the data engine via a CREATE FUNCTION statement which is also
automatically generated by our registration mechanism.

As an example, let us examine the lower function of the run-
ning example. The UDF developer submits the following UDF:

@scalarudf
def lower(val)->str:

return val.lower()

The UDF registration mechanism wraps the UDF as follows:
def lower_wrap(input,size,result):
for i in range(size):
inval = ffi.string(input[i]) <- convert input c data object
resval = lower(inval) <- call original UDF
result[i] = ffi.from_buffer(resval) <- convert result

Here, ffi is a foreign function interface that is used to convert
the data format between the data engine and the UDF’s execu-
tion environment. Next, lower_wrap is compiled into a shared
library and is registered in the data engine via a CREATE FUNCTION

statement, as a C UDF following the data engine’s specifications.
In this example, the registration mechanism wraps and reg-

isters a single UDF. The same mechanism is used to generate
functions that loop-fuse multiple pipelines of UDFs (see Sec-
tion 5.3.1). The mechanism that creates this wrapper function is
called when a new UDF or a fused UDF is registered and requires

the following parameters: (a) the UDF object or a list of UDF ob-
jects ordered by their data dependencies (discussed shortly), (b)
the input arguments and their data types, (c) the return data types,
(d) the UDF types (i.e., scalar, aggregate, table). Then, it generates
the wrapping code according to the UDF design specifications
presented next.

4.2 UDF Design Specifications

To enable effective fusion strategies, we expect the UDFs to abide
by the design specifications we describe next.

4.2.1 Scalar UDFs. A scalar UDF returns a single value for each
row of data it reads. It can get one or more arguments (treated as
a row of data), and returns one value as the result of the Python
function onto the processed row. An example scalar UDF follows.

def inc1(x):
return x + 1

4.2.2 Aggregate UDFs. An aggregate function is invoked once
per group (i.e., a set of rows) produced by an external grouping
operator, it performs an operation on this set of rows and returns
one value. We adopt the incremental init-step-final model, which
avoids group materialization. This model works by initializing
a state (init), then updating the state as each successive input
row is processed (step) until the whole input is consumed, and
finally, returning a single value (final). We implement aggregate
UDFs as Python classes. An example summation aggregate can
be formed as follows.

class SumAggregate:
def __init__(self): <- initialize state
self.s = 0

def step(self, v): <- update state
self.s += v

def final(self): <- return the final state
return self.s

4.2.3 Table UDFs. A table UDF reads one or more arguments
(treated as a row of data), and returns zero or more rows con-
sisting of one or more columns. To enable fusion and loop fu-
sion [28, 70] for table UDFs, we implement fully pipelined table
UDFs using Python generators, which produce a lazy iterator
that does not materialize data and use yield instead of return
to preserve the function state. The generator is suspended and
resumed after yield, which boosts pipelines for large datasets.
Consider the example:

def tuple_gen(inp_datagen, *args):
for inp in inp_datagen(*args):
yield outp[0], outp[1]

tuple_gen is a generator function modeling a table UDF that
takes an arbitrary number of input columns (*args), performs
an operation, and outputs a table with two columns (outp[0],

outp[1]). inp_datagen is also a generator function that provides
input rows to the table UDF. For example, assuming that this
table UDF inputs two columns, inp_datagen would be as follows.

def inp_datagen(col1, col2, count):
for i in range(count):
yield col1[i], col2[i]

This approach allows the developer to iterate over the input
columns once, without requiring materialization. However, if a
table UDF requires a fully materialized column, then we convert
the generator into a materialized list. An example follows.

mat_input = list(inp_datagen(*args))

These are the most frequently supported UDF types in mod-
ern data engines [e.g., 61, 81, 85]. Supporting additional UDF
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types, such as user-defined analytical functions or window func-
tions that allow advancing the input and the output processing
independently, is an interesting future direction.

4.2.4 Complex data types. UDFs typically support a limited set
of datatypes aligned with the underlying data engine. However,
Python pipelines often require complex data types like lists or dic-
tionaries. Most databases represent complex datatypes as JSON
objects, which introduce a (de-)serialization overhead. Our ap-
proach allows UDFs to return complex Python data types (e.g.,
lists, dictionaries) without serialization. The serialization is han-
dled by the wrapping code that interacts with the database. This
presents an optimization opportunity: the (de-)serialization steps
can be eliminated at the wrapper layer, leading to a substantial
reduction in execution time.

Let us consider an example. The snippet on the left shows a
typical Python UDF implementation. The snippet on the right
shows an implementation following our specifications. Here, we
assume annotated types, but we also support dynamic types
and type definition at query time (details are omitted for space
considerations).
def tokens(val) -> str: | def tokens(val) -> list:

return json.dumps(val.split()) | return val.split()
|

def counttokens(val) -> int: | def counttokens(val) -> int:
return len(json.loads(val)) | return len(val)

The wrapping code produced for tokens would be:
@ffi.def_extern()
def wrapper_tokens(input, insize, result):

ts = [tokens(ffi.string(input[i])) for i in range(insize)]
for i in range(insize):

result[i] = ffi.from_buffer(memoryview(serialize(ts[i])))

In a fusion case (e.g., counttokens(tokens(val))), the wrapper
function is JIT created removing (a) (de-)serialization calls, (b)
excessive C to JIT conversions, and (c) materialization of inter-
mediate results.

@ffi.def_extern()
def wrapper_counttokens_tokens(input, insize, result):

for i in range(insize):
result[i] = counttokens(tokens(ffi.string(input[i])))

4.2.5 DML queries. SQL databases routinely support UDFs in
DML queries (inserts, updates, deletes), as for example:
update table set col1=udf1(col2) where udf2(udf3..udfN(col1,..,colN))

Our techniques apply to DML queries with UDFs as well, similar
to our handling of UDF queries. This critical functionality is not
supported by SOTA approaches (e.g., PySpark, Tuplex).

5 The QFusor Pipeline

The QFusor pipeline operates at runtime on queries containing
UDFs. For such a query, our client probes the optimizer using
an EXPLAIN statement and propagates the plan generated to the
QFusor pipeline (see also Sect. 3.2). Next, we present this pipeline.

5.1 Discover Fusible Operators

5.1.1 Fusibility conditions. Two operators in a query plan have
a data dependency, when the output of the first is propagated
to the input of the second. Formally, the dependency between
two consecutive operators 𝑜1 and 𝑜2 is defined by the Bernstein
condition [6]:

[𝑜1.in ∩ 𝑜2.out] ∪ [𝑜1.out ∩ 𝑜2.in] ∪ [𝑜1.out ∩ 𝑜2.out] ≠ ∅
And in particular, if [𝑜1.out ∩ 𝑜2.in] ≠ ∅ holds, then there is a
data dependency (a.k.a. read-after-write, RAW) between 𝑜1 and

Algorithm 1 Create DFG
Require: Query plan 𝑄 = (𝑉𝑄 , 𝐸𝑄 )

1: 𝐺 ← {}
2: for all 𝑣 ∈ 𝑉𝑄 do

3: for all 𝑢 ∈ 𝑉𝑄 do

4: if 𝑣 = 𝑢 then continue end if

5: if Bernstein condition holds for 𝑢, 𝑣 then𝐺 ← (𝑢, 𝑣) end if

6: end for

7: end for

8: return DFG 𝐺

𝑜2, denoted as 𝑜1→ 𝑜2. Operators that have a data dependency
are candidates for fusion, and we refer to them as fusible operators.
If two fusible operators, 𝑜1 and 𝑜2, are fused into a single operator
𝑜 𝑓 , we write 𝑜1→𝑜2⇒ 𝑜 𝑓 , where the input and output of 𝑜 𝑓 are
𝑜1.in and 𝑜2.out, respectively. We refer to 𝑜 𝑓 as a fused operator.
Two or more consecutive fusible operators in a plan form a fusible
section. A plan may contain more than one fusible section.

In our approach, we treat both UDFs and relational operators
as potentially fusible operators. And under some conditions, we
enable fusion between both UDFs and relational operators (see
Section 5.3). Currently, we support the following cases of operator
fusion involving UDF (udf) and relational (rel) operators:

(F1) udf→udf ⇒ f_udf

(F2) udf→rel ⇒ f_udf (or rel→udf ⇒ f_udf)
(F3) udf→rel→udf ↬ rel→udf→udf ⇒ rel→f_udf

The first case involves two UDFs with a data dependency,
which we fuse into a single UDF f_udf that combines their func-
tionality. The type of the resulting UDF depends on the types of
the original functions. The cases of UDF fusion we support, with
the types of UDFs composed and returned, are listed in Table 2.

The second case involves encapsulating a relational operator
into a Python UDF, allowing it to be fused with UDFs it has a
data dependency with. This can remove optimization barriers
caused by black-box UDFs in the query plan. A promising future
direction is to explore the reverse transformation: express a UDF’s
functionality using one or more relational operators [7].

The third case introduces a commutative property in our oper-
ator fusion approach. By analyzing UDF code alongside operator
schemata and types (e.g., scalar, aggregate), we determine when
operator reordering (↬) is valid. Building on prior formal defi-
nitions [75–77], we conservatively allow reordering only when
operators do not operate on the same fields. Consider a schema
(a,b,c), two scalar UDFs 𝑢1(a,b) and 𝑢2(a,b,c) operating on the
fields a,b and a,b,c, respectively, and a filter flt(c) on the field
c. The query plan 𝑢1(a,b)→flt(c)→ 𝑢2(a,b,c) is semantically
equivalent to flt(c)→ 𝑢1(a,b)→ 𝑢2(a,b,c). Future work could
apply techniques such as symbolic execution to unravel more
reordering opportunities [40, 84, 87]. While operator reordering
is a query optimizer’s function, our goal with F3 is twofold. (a) En-
able additional fusion opportunities, as reordering can eliminate
blockers between fusible UDFs. (b) Assist query optimization
by enabling optimizations such as filter push-down [87] or UDF
push-up [37], which are otherwise impossible if UDFs are treated
as black boxes.

5.1.2 Discover fusible operators. Drawing from compiler theory,
we model the problem of identifying fusible operators in a query
plan as a dependence analysis problem and construct a data flow
graph (DFG) to capture operator dependencies [2]. The process
is formally described in Algorithm 1.
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5.2 Fusion Optimization

Fusion Optimization (FO) uses a hybrid cost-based and rule-based
strategy to decide which operators to fuse. Its primary goal is
to reduce the overhead from the interaction between SQL’s rela-
tional processing and the procedural execution of UDFs.

5.2.1 Discover fusible sections. To achieve this, we use dynamic
programming to traverse the DFG, identifying patterns that
match fusion cases (F1)–(F3). This approach can be extended
to support additional fusion patterns. The result of this step is a
set of fusible sections. Note that in some queries the DFG may
be the entire plan.

The process is formally described in Algorithm 2. First, we
perform a topological sort of the DFG to respect dependencies.
Then, we check whether an operator should be considered for
fusion. Note that operators that are too expensive or even infea-
sible to fuse carry an infinite cost. The core of the algorithm (ln:
8-16) attempts to extend previously computed fusible sections by
appending more operators following the fusion cases (F1)-(F3).
For an operator 𝑣 , we examine its producers 𝑢. If 𝑣 , 𝑢 are either
fusible or could be reordered (FusibleOrReorderable), we explore
whether 𝑣 could be added to the section containing 𝑢 and form a
new section 𝑆 . If 𝑆 is valid, i.e., contains consecutive fusible oper-
ators, (IsValidSection) and its cost could have a potential gain
compared to not fusing 𝑣 , we identify the most promising per-
mutation for 𝑆 according to reordering opportunities guided by
the cases (F1)-(F3) (OptimPermutation). The decisions are driven
by a function 𝐹 that evaluates the cost of fusing a sequence of
operators (discussed shortly). Finally, we produce maximal non-
overlapping sections ready to be fused. The algorithm is correct
as data dependencies are preserved due to the use of Bernstein
conditions and reordering constraints. Its worst-case time com-
plexity is exponential in the length of the fusible sections, due to
checking all valid permutations (factorial in section length). But
in practice, memoization, bounded dynamic programming steps,
and heuristic pruning make the algorithm efficient.

5.2.2 Operator cost analysis, 𝐹 (𝑣). The cost of relational opera-
tors is computed using engine-provided statistics, such as row
estimates and cost units derived from the query plan.

The UDF cost encapsulates two quantities. The processing cost
of the UDF itself and the wrapping cost, the cost of the wrapper
function that handles data copying, transformation, and mate-
rialization to interface with the data engine. Since the wrapper
functionality is concrete and measurable, its cost can be accu-
rately estimated. A key objective of FO is to minimize at least
this wrapping overhead.

Estimating the UDF processing cost is more challenging, as
most data engines provide little or no statistics. Some engines
allow developers to supply cost-related metadata during UDF
registration (e.g., via CREATE FUNCTION options for estimated cost
and row count [62]. In many cases though, the UDF cost is un-
known. To address this, FO maintains a lightweight dictionary of
average execution statistics for UDFs, such as execution time and
selectivity. For scalar and aggregate UDFs, selectivity is known:
the output size of a scalar UDF equals its input size, and aggregate
UDFs return a single value. FO gradually builds a cost model by
learning from past UDF executions, using coarse-grained esti-
mate buckets instead of precise values. It profiles UDFs using
Bayesian Optimization, a method well-suited for tuning black-
box functions with limited test runs, inspired by CherryPick [1].
This adaptive process is facilitated by the stateful implementation

Algorithm 2 Discover Fusible Sections
Require: DFG 𝐺 = (𝑉 , 𝐸 ) , cost function 𝐹

1: 𝑉sorted ← TopologicalSort(𝐺 )
2: 𝑑𝑝 [𝑣 ] ← ∞, 𝑠𝑒𝑐𝑡𝑖𝑜𝑛[𝑣 ] ← [ ] for all 𝑣 ∈ 𝑉 ⊲ Initialization
3: for all 𝑣 ∈ 𝑉sorted do ⊲ Update
4: if 𝐹 ({𝑣}) < 𝑑𝑝 [𝑣 ] then
5: 𝑑𝑝 [𝑣 ] ← 𝐹 ({𝑣}) ⊲ Min cost of a section ending at 𝑣
6: 𝑠𝑒𝑐𝑡𝑖𝑜𝑛[𝑣 ] ← [𝑣 ] ⊲ Operators forming this section
7: end if

8: for all 𝑢 ∈ Predecessors(𝑣) do
9: if FusibleOrReorderable(𝑢, 𝑣) then ⊲ Check fusion cases

10: 𝑆 ← 𝑠𝑒𝑐𝑡𝑖𝑜𝑛[𝑢 ] + [𝑣 ]
11: if IsValidSection(𝑆 ) and 𝐹 (𝑆 ) < 𝑑𝑝 [𝑣 ] then
12: 𝑑𝑝 [𝑣 ] ← 𝐹 (𝑆 ) ⊲ (Compute potential gain)
13: 𝑠𝑒𝑐𝑡𝑖𝑜𝑛[𝑣 ] ← 𝑂𝑝𝑡𝑖𝑚𝑃𝑒𝑟𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 (𝑆 ) ⊲ Check (F3)
14: end if

15: end if

16: end for

17: end for

18: 𝑉𝑖𝑠𝑖𝑡𝑒𝑑 ← ∅, 𝑆𝑒𝑐𝑡𝑖𝑜𝑛𝑠 ← [ ]
19: for all 𝑣 ∈ reverse(𝑉sorted ) do ⊲ Section selection
20: if 𝑠𝑒𝑐𝑡𝑖𝑜𝑛[𝑣 ] ∩𝑉𝑖𝑠𝑖𝑡𝑒𝑑 = ∅ then
21: 𝑆𝑒𝑐𝑡𝑖𝑜𝑛𝑠 ← 𝑆𝑒𝑐𝑡𝑖𝑜𝑛𝑠 ∪ 𝑠𝑒𝑐𝑡𝑖𝑜𝑛[𝑣 ]
22: 𝑉𝑖𝑠𝑖𝑡𝑒𝑑 ← 𝑉𝑖𝑠𝑖𝑡𝑒𝑑 ∪ 𝑠𝑒𝑐𝑡𝑖𝑜𝑛[𝑣 ]
23: end if

24: end for

25: return 𝑆𝑒𝑐𝑡𝑖𝑜𝑛𝑠 ⊲ Ready for code-gen

of the UDF mechanism, which helps keep track of the collected
statistics at UDF runtime. For new UDFs lacking data, FO falls
back on heuristics (discussed next) to avoid cold starts. Over
time, as more data is collected, the cost model becomes more
accurate, balancing exploration and exploitation, as typically hap-
pens in learning tasks. Note that the choice of a particular cost
model is orthogonal to our approach, as different models may
be preferable for different applications or engines. Accordingly,
QFusor could integrate any alternative cost modeling approach
(e.g., GNN based UDF cost estimation [86]).

5.2.3 Section cost analysis, 𝐹 (𝑆). Starting from the fusible sec-
tions identified in the discovery step, FO determines which oper-
ators within each section should be fused. There are two main
cases (F1) and (F2); with (F3) reducing to (F1) after reordering.
In (F1), which involves only procedural UDFs, FO always recom-
mends fusion as (a) it eliminates at least the wrapping cost, and
(b) it produces longer traces for the tracing JIT compiler, enabling
better runtime optimization. In (F2), which involves both UDFs
and relational operations, fusion decisions are more complex.

FO considers two execution strategies for relational operators.
Executing them in the UDF environment to avoid intermediate re-
sult materialization and enable optimizations such as loop fusion.
Or executing them in the data engine, which may offer a more
optimized implementation. The decision relies on two aspects:
(a) Operator complexity, performance-critical or complex opera-
tors are better handled by the engine. (b) Selectivity, operators
with low selectivity (returning many values) could benefit from
in-UDF execution, as the more data the operator processes, the
larger the fusion benefit is due to the eliminations of data copy
and transformation.

Hence, in an (F2) case FO considers the following factors:
(a) the cost of a relational operator if executed in the data engine,
(b) its cost if it runs in the UDF execution environment, (c) the
overall benefits for the fusible section (e.g., a relational operator
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|u|, |𝑢𝑓 | , |r| input cardinality for UDFs, the fused UDF, and 𝑟

𝜎𝑢 , 𝜎𝑢𝑓
, 𝜎𝑟 selectivity estimates for UDFs, the fused UDF, and 𝑟

𝑊𝑖𝑛 ,𝑊𝑜𝑢𝑡 cost per tuple for the wrapper functions’ input and
output

𝐶𝑟 , 𝐶𝑟𝑢 cost per tuple for 𝑟 if executed in the data engine or
the UDF environment

Table 1: Notation used in the cost model

in between two UDFs may block their fusion, but if it runs on
the UDF environment, presumably all three operators can be
fused into one). Collectively, these factors formulate the following
inequality that FO uses to determine how to treat the fusion of
UDF and relational operators: if the inequality holds for a given
relational operator 𝑟 , then we execute 𝑟 in the UDF environment
(see also Table 1).∑𝑁

𝑢=1(|u|*(𝑊𝑖𝑛+𝑊𝑜𝑢𝑡 *𝜎𝑢 )) - |𝑢𝑓 |*(𝑊𝑖𝑛+𝑊𝑜𝑢𝑡 *𝜎𝑢𝑓
) > |r|*(𝐶𝑟𝑢*𝜎𝑟 -𝐶𝑟 *𝜎𝑟 )

The inequality checks if the gain of running 𝑁 UDFs in iso-
lation vs. as a single fused UDF (left) is greater than the loss of
running 𝑟 in the UDF environment vs. in the data engine (right).
If the right portion of the inequality is negative (i.e., it is a gain,
not a loss) then we run 𝑟 in the UDF environment. The number
𝑁 of UDFs considered here is the maximum set of UDF operators
affected by 𝑟 in the fusible section we examine.

5.2.4 Heuristics. To mitigate cold-start issues with newly regis-
tered UDFs, FO applies a set of heuristics; some generic, others
engine-specific (not shown here). These are derived from com-
mon practices and extensive experimentation. They are especially
valuable for rule-based engines that lack cost-based optimization.
Due to space constraints, we list here a few example heuristics:
• Fuse all fusible scalar, aggregate, and table UDFs.
• If there is a data dependency between a relational filter and

a UDF (or multiple UDFs), fuse the filter with the UDF(s)
if the filter is not highly selective; e.g., it filters out less
than 20% of its input.
• Fuse group-by operators if possible. (We elaborate on ag-

gregate UDFs and group-by later.)
• Fuse a distinct operator, if it is highly selective (e.g., filters

out more than 90% of its input), otherwise do not.
• Avoid fusing join and sort operators; the performance gain

is typically minimal.

5.3 JIT Code Generation

Next, we generate the code to implement the fused UDFs and
relational operators, considering standard optimizations such
as function inlining and loop fusion to avoid intermediate result
materialization and redundant looping across all UDF types. The
fused logic is JIT-implemented inside a wrapper function, which
is then JIT-compiled and registered as a new UDF in the database
(Section 4.1).

Empowered by the UDF design specifications, the JIT creation
of loop fused UDFs is a deterministic process. UDF fusion takes
place inside the main for-loop of the wrapper function. This loop
coordinates the UDFs according to the query plan.

Loop fusion is supported across all types of operator fusion.
For aggregate UDFs, the init-step-final model enables pipelined
execution, while table UDFs use a generator-style input/output
model to achieve the same (see Section 4.2). However, if a UDF

includes a blocking operation (e.g., table transpose, median), ma-
terializing input becomes necessary, and loop fusion no longer
applies. Table 2 illustrates the applicability of loop fusion across
all fusion scenarios. One special case is Expand, a variant of
table UDFs that consumes a single tuple at a time and returns
multiple rows per input tuple [87]. It is always loop-fusible and
typically follows a scalar or aggregate operator to split its result
into multiple rows.

5.3.1 Loop Fusion Implementation. Next, we present how fusion
is JIT-implemented for various combinations of UDF types, using
references from our running example.

Scalar - Scalar. Let us consider the following example SQL
query:

SELECT removeshortterms(lower(authors)) FROM pubs;

lower and removeshortterms are two scalar UDFs that operate on
the same field authors. Since they are data dependent UDFs they
can be executed inside a single for-loop. In the wrapper function,
the part of the loop which fuses the two UDFs using here the
(TF1) template would be as follows:

for i in range(tuples):
resultval = removeshortterms(lower(authors[i]))

When this code is compiled with the tracing JIT compiler, the com-
piler automatically inlines and vectorizes function calls before
locating hot traces for JIT compilation. Hence, this code snippet
does not involve function call overheads. Additional scalar UDFs
can be fused if they are added in the pipeline inside the for-loop.

Scalar - Aggregate. Let us consider the following example SQL
query:

SELECT funder, countauthors(removeshortterms(authors))
FROM pubs GROUP BY funder;

countauthors is an aggregate UDF, and removeshortterms is a
scalar UDF. Since both UDFs operate on the same column they
can be fused into a single loop. Using the (TF2) template, the
fusion code in the wrapper function would be as follows:

aggrs = [countauthors() for _ in range(g)]
for i in range(tuples):

aggrs[aggr_group_data[i]].step(removeshortterms(col[i]))
for i in range(g):

result[i] = aggrs[i].final()

g is the number of groups and aggr_group_data is a C-array of
type size_t indicating the group assignment for each row. We in-
stantiate g aggregate UDFs, one per group, and apply any number
of scalar UDFs to each row of the table inside the step method,
before updating the state of aggregate UDFs. Finally, we populate
the result array with the final output from each aggregate.

Scalar - Table. Loop fusion is possible in this case, as shown in
(TF3) and (TF5) in Table 2, because table UDFs are implemented
as Python generators with lazy iterators to avoid a full material-
ization of the output column. Using the (TF5) template the fusion
of scalars executed on the result of a table UDF takes place during
the materialization of the result array. On the other hand, for
scalar UDFs executed before a table UDF (TF3), loop fusion of
scalar UDFs occurs within the lazily evaluated generator function
that implements the table UDF; see also Section 4.2.

Aggregate - Table. In this case, loop fusion is possible if there
is no group-by between the UDFs. The fused UDF will resemble
the UDF in Scalar-Table case. If there is a group-by, then loop
fusion is not applicable as the output column of the table UDF
is processed independently of the aggregate UDF in order to
calculate the groups.
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(TF1) (TF2) (TF3) (TF4) (TF5) (TF6) (TF7) (TF8)
1st 
operator

scalar scalar scalar table table table aggregate  aggregate 

2nd 
operator

scalar aggregate  table table  scalar aggregate  scalar  table 

result scalar aggregate table (or scalar+expand) table table aggregate aggregate table (or aggregate+expand)
fusion for tuple in input: aggr.init() def inputgen(sc, input, count): def inputgen(input, count): def inputgen(input, count): def inputgen(input, count): aggr.init() aggr.init()

    return sc2(sc1(tuple))) for tuple in input:     for i in range(count):     for i in range(count):     for i in range(count):     for i in range(count): for tuple in input: for tuple in input:
    aggr.step(sc(tuple))         yield sc(input[i]))         yield input[i]         yield input[i]         yield input[i]     aggr.step(tuple)     aggr.step(tuple)
return aggr.final() return sc(aggr.final()) tblgen = tbl(aggr.final())

datagen = inputgen(sc, input, count) inputgen = inputgen(input, count)   inputgen = inputgen(input, count)  aggr.init() for tuple in tblgen:
for tup in tbl(datagen): tblgen = tbl2(tbl1(inputgen)) for tuple in tbl(inputgen): for tuple in tbl(inputgen(input,count)):     return tuple
    result.append(tup) for tuple in tbl2gen:     return sc(tuple)     aggr.step(tuple)

     return tuple return aggr.final()

loop 
fusion

yes yes, unless aggregate 
materializes its input

yes, unless tbl materializes its input yes, unless tbl2 materializes its 
input

yes yes, unless aggregate materializes its 
input

yes yes, unless tbl materializes its 
input

Legend: sc{1,2}: scalar function object  |  aggr: object of aggregate class  |  tbl{1,2}: table function object  |  tblgen: table returned generator  |  inputgen: input data generator

Table 2: Loop fusion templates

5.3.2 Fusion of relational operators. Relational operators, like
UDFs, can be fused based on their semantics. We classify each
operator as scalar, aggregate, or table-returning, depending on its
input and output. This classification guides how they are fused
with various UDF types. After rewriting the operator code in
Python, we apply the fusion rules from Table 2 and inline the
code into the fusion wrapper function. Table 3 lists example
relational operators supported in QFusor, along with their types,
their input/output, and whether they are loop fusible with other
operators. Outputs include bool, single row, or resultset (full table
or nested subquery results).

The operators listed in Table 3 are fusible, i.e., they may be
fused with other operators. Whether they are also loop fusible
would enable a performance optimization allowing the fused
operators to be executed in the same hot-loop [70] (see also
Section 6.4.3). In general, pipelined operators are loop fusible
(e.g., filter, join), whereas blocking operators (e.g., group, order)
are not. However, if a blocking operator is last in a series of
operators that can be fused all together, then it may participate
in the same hot-loop, as long as it can consume its input in a
pipelined fashion (e.g., order vs. pivot).

Fusion of relational operators is achieved through the UDF
registration mechanism (see Section 4.1). We support two ap-
proaches: (a) rewriting (a.k.a. offloading) the relational operator
in the UDF’s language, and (b) via a call to the database source
code, for engines offering this option [10]. Next, we explore rep-
resentative cases of both mechanisms: filter and distinct as
in-UDF implementation, and group-by as a case of an external
call to the data engine.

Filter. A filter can be modeled as a scalar UDF that returns
a single boolean value for each row. It evaluates to true if the
row meets the filter condition, and false otherwise. Consider the
following example query:

SELECT udf2(udf1_col)
FROM ( SELECT udf1(col1) as udf1_col FROM table )
WHERE udf1_col != 10;

In this case, udf1 and udf2 are fusible only if the filter between
them is also fused. Fusion of the relational operator is done as
follows:

def not_equal(val, noteq):
True if val != noteq else False

for i in range(tuples):
udf1_res = udf1(col[i])
if not_equal(udf1_res, 10):

result[j] = udf2(udf1_res)
j += 1

Distinct. Distinct can be modeled as a table UDF, which in-
puts a number of columns and outputs a number of columns,
often with differing sizes. It can be implemented in the UDF’s

relational operator type loop fusible input / output

filter scalar yes row → bool

inner join scalar yes row1, row2 → bool

distinct table yes resultset1 → resultset2

case scalar yes row → row

order by  table no resultset1 → resultset2

group by table no resultset1 → resultset2

pipelined aggregates (e.g., count, sum) aggregate yes resultset → row

blocking aggregates (e.g., median) aggregate no resultset → row

union all table  yes resultset1, resultset2 → resultset

union/intersect/except table no  resultset1, resultset2 → resultset

arithmetic (e.g., +-%*) scalar yes row → row

pivot/unpivot table no resultset1 → resultset2

is null / is not null scalar yes row → bool

Table 3: Loop fusion for relational operators

language and JIT-compiled to enable fusion with other UDFs.
Consider an example:

SELECT distinct col1 FROM SELECT udf(col1) AS col1 FROM table;

In this case, the distinct operator is fused with the udf as follows:
distinctset = set()
for i in range(tuples):

distinctset.add(udf(col[i]))

Group-by. Group-by can be modeled as a table UDF return-
ing two columns: one with the grouped attribute and another
with integer pointers indicating each tuple’s group assignment.
Group-by fusion is implemented via a call to the database source
code through a foreign function interface (FFI), enabling its use
within the tracing JIT. Since this approach is database-specific,
we describe it here using MonetDB. MonetDB provides a C API
for UDFs, supporting dynamic creation, compilation, linking, and
execution of C-UDFs, as well as in-process UDF execution. We
extended this API to export internal MonetDB functions that
handle grouping, BATs (MonetDB’s data columns) initialization,
value insertion, and memory storage/loading of BATs. These
functions are invoked from within the tracing JIT to allow direct
interaction with MonetDB at runtime. We showcase this process
using an example SQL query that involves a table UDF (tudf) and
an aggregate UDF (audf):

SELECT audf(t.tcol)
FROM tudf( (SELECT col FROM table) ) AS t
GROUP BY t.gattr;

To fuse the aggregate UDF audf with the table UDF tudf, we
must execute a group-by on gattr within the fused UDF. Imple-
menting group-by in Python would be an option, but this would
be an inefficient operation that negates the performance bene-
fits of tracing JIT, UDF fusion, and loop fusion. Using Python
C foreign function interface (CFFI), we enable Python code to
interact with external C code, and here, with MonetDB’s shared
libraries. In QFusor, we leverage this by exporting MonetDB’s
internal functions (e.g., to create, modify, and group BATs), hence
enabling the execution of group-by operations from a Python
UDF with no additional overhead, whilst we still leverage data-
base optimizations (e.g., indexes, cached data). Since we operate
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on raw memory pointers and access MonetDB’s internal stack
through exported functions, neither the data nor the functions
on it ever leave the engine. The same strategy applies for all re-
lational operations (e.g. join, order-by). Naturally, the optimizer
may decide not to fuse some relational operators. For example,
join will likely run in the data engine in most cases.

Note that this functionality is applicable to engines support-
ing in-process execution of C UDFs, either embedded or server
DBMSs such as MonetDB and Vertica (with fenced mode). In QFu-
sor, wrapper functions run in the same process as the data engine,
eliminating inter-process communication overheads between the
engine and UDFs. To ensure robustness, these wrapper functions
invoke the UDF logic within a try-except block, allowing graceful
handling of potential UDF execution errors.

Preserving semantics. Modeling a relational operator as a pro-
cedural UDF requires careful handling to ensure semantic equiv-
alence. Currently, we rewrite simple operators as UDFs, where
maintaining correct semantics is safe. When we use a call to
the operator’s data engine source code, the operator runs in the
engine’s context, which has no implication with the semantics.
Clearly, for production-level maturity we need to fine tune issues
such as rounding, type conversions, casts, operator precedence,
null-handling, and so on.

5.4 Query rewrite

The QFusor pipeline completes with creating a new query com-
prising the fused operator(s) that replace the operators that have
been fused. All necessary UDFs, including the newly fused ones,
have already been created, compiled, and registered to the SQL
database. The task at hand is to perform query rewrite. QFusor
offers two options. The first is to create a new SQL statement and
submit it to the database. An alternative database specific option
is to generate a new execution plan, express it in the low-level
representation of the database (e.g, MAL in case of MonetDB)
and dispatch it directly to the execution engine for execution.

5.5 Pluggability

QFusor is built for portability, requiring minimal engine-specific
adjustments. Its main dependency lies in parsing the query plan
to construct a DFG (Section 5.1). While parsing raw SQL is pos-
sible, this would sacrifice the optimizer decisions and statistical
insights available in the plan. Both fusion optimization and query
rewriting are engine-agnostic; the rewritten queries are expressed
in standard SQL. If necessary, adaptations to specific SQL dialects
can be handled externally, using tools like SQLGlot [80].

JIT code generation (Section 5.3) includes engine-specific steps
for code registration, which are handled as follows. The design
specifications (Section 4.2) and CFFI wrappers enable pluggable
integration with different SQL engines. Integration requires an
engine-specific implementation of CREATE FUNCTION to regis-
ter a C UDF (one per UDF type), which should invoke a standard
wrapper function with the following prototype:

extern int udfwrapper(char* name, int n_inputs, InputData* inputs,
int n_outputs, ResultData* outputs,
char* extras, char** errormessage);

Each input or output is described using the following structure:
typedef struct {

int type; // 1: char**, 2: int*, 3: double*, etc.
void* array; // pointer to data array
int size; // number of elements

} InputData;

Pluggability across engines is facilitated by a db_dialect.py file,
which defines engine-specific CREATE FUNCTION statements and
data type mappings. Based on our experience with several data
engines, this file typically contains 300–400 lines of Python code.

6 Experiments

6.1 Implementation and Deployment

QFusor implements a stateful UDF mechanism that wraps each
Python UDF with CFFI (v.1.14.6) and then embeds it into a C
UDF; C UDFs are supported by most databases. Then, UDFs are
registered into the database with a CREATE FUNCTION statement,
whose syntax is engine specific. QFusor has been prototyped on
MonetDB, PostgreSQL, SQLite, DuckDB, PySpark, and a commer-
cial database. We use PyPy (v.7.3.6 with GCC 7.3.1) as a tracing
JIT compiler, which supports most popular Python packages.

6.2 Experimental Setup

6.2.1 Hardware and software. All experiments ran on a server
(Intel i7-4930K, 64GB memory) running Ubuntu 22.04. Unless
otherwise stated, we report the average of 5 executions with cold
caches on HDD disks. Software used: PostgreSQL (v.17.6), Pandas
(v.1.3.5), Spark (PySpark, v.2.4.7), MonetDB (v11.44.0 - NumPy/C
UDFs), SQLite (v. 3.31.1), DuckDB (v.1.3.2), NumPy (v1.21.5), CFFI
(v1.13), nltk (v.3.6.7), and a commercial analytics database (dbX).

6.2.2 Datasets and queries. (a) udfbench is obtained from the
UDFBench repository [25, 26, 83]. (b) zillow is obtained from
Tuplex’s repository and it is enhanced with aggregations and
group-by’s [79]. (c) weld comprises two queries introduced in the
Weld paper [57]. (d) udo comprises two pipelines introduced in
the UDO paper [72]. Figure 4 shows statistics of the queries used
in the experiments.

6.2.3 Methodology. Our analysis has two parts. The first com-
pares QFusorwith state-of-the-art approaches such as Tuplex [79],
UDO [71], Weld [57], YeSQL [27], MonetDB[50] with NumPy
and C-UDF, Pandas [58], and data engines such as SQLite [82],
PostgreSQL/pl-python [59], PySpark [63], and dbX. We investi-
gate how performant various technologies are in running queries
with UDFs. As discussed, Tuplex and Tupleware (not publicly
available) do not employ a SQL database, but as they JIT com-
pile end-to-end Python pipelines comprise and excellent baseline
for our work. The second part presents micro experiments to
test QFusor for scenarios including hot vs. cold caches, disk vs.
memory, parallelization, compilation, resource utilization, etc.
Unless otherwise stated, we present results based on our QFusor
implementation on top of MonetDB.

6.3 Systems Comparisons

6.3.1 UDFBench. UDFBench [26] comprises 21 queries that use
42 scalar, aggregate, and table UDFs. The queries are grouped
into four query classes (QC-1 to QC-4) based on their complex-
ity. However, not all systems considered here support the full
benchmark suite. A detailed compatibility matrix can be found
in our artifacts repository [64]. For our evaluation, we selected
three representative UDFBench queries supported by most sys-
tems: (Q1): UDFBench’s Q1 (QC-1) is a simple query with 3 scalar
UDFs and no beneficial fusion opportunity. (Q2): UDFBench’s
Q12 (QC-2) combines complex relational logic with scalar UDFs.
(Q3): UDFBench’s Q16 (QC-3) blends complex relational logic
with complex UDFs. Q1 and Q2 are natively supported by all
systems except UDO and Weld. For completeness, we adapted
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origin
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18

#udfs 3 3 16 5 3 6 4 1 2 2 14 3 4 32 4 1 1 1
#scalar 3 2 12 2 2 5 4 1 2 2 9 3 3 26 2 0 0 0
#aggr 0 1 3 2 0 1 0 0 0 0 5 0 1 8 1 0 0 0
#table 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 1
nest-dpth 1 2 5 3 2 6 4 1 2 2 3 3 3 4 2 1 1 1
#fused 0 2 14 4 2 5 3 1 1 1 9 2 2 23 2 0 0 0
fus-optim 0.198 0.52 0.74 0.33 0.298 0.82 0.399 0.287 0.345 0.33 0.258 0.252 0.402 0.853 0.52 0.201 0.344 0.451
code-gen 0 0.2 0.57 0.295 0.374 0.345 0.205 0.345 0.382 0.396 0.173 0.441 0.355 0.966 0.391 0 0 0
compil 0 540 527 540.3 525 585.2 367.4 557.7 564 542.5 728.8 544 508.5 597.1 577.1 0 0 0
runtime 700 45234 121312 980 940 12100 16300 12211 2729 13212 61977 20169 1349 45198 16161 5495 23092 6156

udfbench zillow weld udo

Figure 4: QFusor vs. SOTA: on udfbench (top) and zillow

(middle) datasets, and the queries used in the experiments

Q1 for both. In UDO, which only supports table UDFs, we imple-
mented its scalar UDFs as table UDFs. In Weld, which supports
NumPy-native operations rather than general Python UDFs, Q1
was rewritten into WeldIR. Q3 is supported natively only on a
subset of the evaluated systems.

Figure 4(top) shows a comparison of QFusor with the other
systems using the large UDFBench dataset [26]. Despite Q1 offers
no fusion opportunities, QFusor still outperforms most engines
due to its scalable UDF specifications and tracing JIT, performing
on par with YeSQL that also executes Python UDFs on tracing JIT.
MonetDB with C-UDF (mdb/c-udf) performs excellent by avoid-
ing context switching through in-process execution in the same
language as the engine. Weld and UDO show weaker performance
in Q1, as they lack native support for UDFBench’s scalar UDFs.
In Q2, however, mdb/c-udf incurs overhead from intermediate
materialization caused by operator-at-a-time execution. QFusor
eliminates this cost via fusion optimization. SQLite’s tuple-at-
a-time model leads to numerous foreign function calls, while
PostgreSQL introduces inter-process communication overhead
by running UDFs in separate processes. By contrast, QFusor
combines operator fusion with tracing JIT, avoiding these bottle-
necks and achieving consistently superior performance. Pandas,
DuckDB, PySpark with Pandas, and MonetDB with NumPy UDFs
(mdb/numpy) also suffer from intermediate materialization. QFu-
sor outperforms Tuplex, whose row-store layout forces unneces-
sary data processing. While YeSQL achieves good results through
JIT compilation of fused scalar UDFs, QFusor extends fusion to
relational operators yielding faster execution. Finally, dbX sur-
passes all engines except QFusor in Q2 due to strong parallelism,
but its lack of UDF JIT compilation and context switches between
relational and UDF operators limit performance. UDO and Weld

do not support Q2 (n/a). In Q3, QFusor’s integration with Mon-
etDB outperforms the other engines from 2x (YeSQL) up to 40x
(PostgreSQL) due to aggressive fusion of relational operators sum,
case, and filter with the cleandate UDF and the fusion of the
preprocessing UDF pipeline which consists of scalar and table
UDFs. Q3 is not supported (n/a) in all systems.

Figure 5: sys vs. Weld: get_population_stats (left) and

data_cleaning (middle), and QFusor vs. UDO (right)

6.3.2 Zillow dataset. Figure 4(middle) shows results for the Zillow
pipeline (Q11 query), which mainly involves string operations.
QFusor clearly outperforms all other systems. While numpy, pandas,
and mdb/numpy perform well with numeric data, they lack support
of complex string operations, which are executed by CPython’s
interpreter leading to slower execution. PostgreSQL, UDO, Sqlite,
and MonetDB do not employ fusion and suffer from data copies,
conversions, materializations, and function call overheads due
to their tuple-at-a-time execution model. These issues are exac-
erbated with string data due to its higher conversion cost. We
tested two variants of UDO: non-fused (the default) and manually
fused by us. The non-fused failed on medium (10GB) and large
(15GB) datasets, requiring 96GB of memory for the medium case
(our server has 64GB) showing that it is particularly memory
demanding (see also Figure 7). The manually fused version run
efficiently with less memory (18GB), showing the effectiveness
of operator fusion when paired with UDO’s C++ UDFs. tuplex
supports parallelism via data partitioning, but this introduces
overhead compared to MonetDB, which parallelizes operators
without partitioning. YeSQL fuses only scalar UDFs, which is not
sufficient in this pipeline. Note that Q11 includes relational op-
erators (e.g., filters, group by’s, native aggregations) executed
before or after UDFs. QFusor effectively fuses these operators
and offloads the relational operators in the UDF environment,
delivering substantial performance gains in this experiment.

6.3.3 QFusor vs. Weld. As Weld does not support natively UDF-
Bench, for fairness, we compared it with QFusor, using two Weld
queries [57]: (Q15) get_population_stats and (Q16) data_cleaning,
on their respective datasets across three sizes: small (7M/7.5M
rows), medium (15M/15M rows), and large (30M/22M rows). Fig-
ure 5 shows that QFusor outperforms Weld, showing with hot
caches an average speedup in total compute time 2.83x and 7x for
get_population_stats and data_cleaning, respectively. Note that
Weld loads data in two phases. In the first phase, an external CSV
file is read and parsed (preprocessing) into a Python dataframe. In
the second phase, the data is loaded into the Weld runtime during
execution. In contrast, QFusor follows a different architecture,
with corresponding phases labeled read and execute.

6.3.4 QFusor vs. UDO. For fairness, we compared QFusor with
UDO using two pipelines from UDO’s repo: (Q17) split arrays and
(Q18) contains-database. These pipelines have no fusion oppor-
tunities. Hence, we measure the performance of our JIT compiled
execution vs. the out-of-the box UDO execution. Figure 5(right)
shows that with hot caches, on average QFusor is 27% and 39%
faster than UDO.

6.4 Scrutinizing QFusor

6.4.1 Physio-logical optimization. We use Q3 (our running ex-
ample) on the large UDFBench dataset and compare QFusor inte-
grated with MonetDB, PostgreSQL, and SQLite (see Figure 6a).
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(a) Physio-logical optimization (b) Offloading operators (c) Performance breakdown (d) Compilation + run times

(e) Fusion of UDF types (f) Disk/memory, hot/cold cache (g) Parallelism

Figure 6: Scrutinizing QFusor

We evaluate five techniques: (a) default Python UDF execution
(no fusion/JIT); (b) JIT only (JIT, no fusion); (c) add fusion of
scalar+table functions; (d) add offloading of scalar relational
operators and operator reordering (case, filter); and (e) add of-
floading of aggregations (sum, groupby), with exporting internal
functions in MonetDB (Section 5.3.2). After applying these tech-
niques, we create the fused query of Figure 2. Different execution
models (PostgreSQL’s out-of-process UDFs, SQLite’s in-process
UDFs, MonetDB’s in-process vectorized UDFs) and different re-
ordering of the UDF cleandate account for performance differ-
ences among the databases. Specifically, PostgreSQL does not
push down the UDF cleandate, resulting in 3x more UDF invoca-
tions than MonetDB. In contrast, SQLite stalls under the native
CPython execution and completes in 1042s only when the query
is decomposed into two parts using create temp table. Still, QFu-
sor delivers up to a 18x speedup, demonstrating its applicability
and effectiveness across database systems.

6.4.2 Operator offloading. To study further the impact of of-
floading relational operators to the UDF environment, we crafted
query Q8 and ran it on the large UDFBench dataset [26] with
varying selectivities (1%–100%). Q8 is based on a subexpression of
Q2 applying the cleandate UDF before a range filter. Figure 6b
shows that in MonetDB, non-fused (no-fus) JIT execution presents
constant runtime due to the overhead of copying UDF results
back to the engine. Fusing the filter with the UDF in the UDF
runtime avoids unnecessary materialization for low selectivity,
yielding up to 2.4x speedup. For high selectivity, fusion yields
diminishing returns. PostgreSQL starts faster for low selectivity
due to parallelism, and benefits from filter offloading due to re-
duced UDF output materialization. But for high selectivity, the
inter-process communication takes a toll.

6.4.3 Physical optimization. To measure the impact of physi-
cal optimizations, we crafted two queries Q9 and Q10 based on
udfbench (large). Q9 uses two UDFs (cleandate, extractmonth)
from UDFBench to expose compilation overheads. Q10 involves
complex data structures (Python lists serialized using json) and
two UDFBench UDFs: (a) jpack: tokenizes an input string and
packs it in a json array, and (b) jsoncount: parses the json ar-
ray and counts the tokens. We test the following techniques on
MonetDB (column store, operator-at-a-time) and PostgreSQL (row
store, tuple-at-atime): (a) Baseline: native Python UDFs in MonetDB

and PostgreSQL. (b) JIT-noFusion: QFusor with tracing JIT UDFs
and fusion disabled. (c) Same process: run UDFs in-process; de-
fault in MonetDB, in PostgreSQL, the UDFs are called from the same
C UDF. (d) Same JIT: run the UDFs in the same tracing JIT execu-
tion trace, with a wrapper Python function that calls the UDFs se-
quentially. (e) Remove C↔JIT conversions: skip data conversions
by passing the output of one UDF directly to the second using a
wrapping function. (f) Loop fusion [70]: eliminate intermediate
materializations; in MonetDB, a wrapper function calls the UDFs se-
quentially in a single loop, whereas in PostgreSQL, pipeline execu-
tion is the default operation. (g) Remove serialization: eliminate
serialization overheads in fusion code generation.

Figure 6c shows that all techniques yield performance im-
provements, leading to an overall speedup of 20x in MonetDB

and 4.6x in PostgreSQL. In Q10, PostgreSQL’s native performance
(35s) surpasses MonetDBs (53s) as it executes the more demanding
Python UDFs (involving JSON serialization) in separate processes,
thereby avoids acquiring the GIL. However, in Q9 that applies
lightweight UDFs over a large table, Postgres (385s) suffers from
inter-process communication overheads and runs slower than
MonetDB (212s). After applying our optimizations, MonetDB (Q9:
13.2, Q10: 2.7s) accelerates query execution more aggressively
than PostgreSQL (Q9: 169s, Q10: 7.6s). This is due to MonetDB’s
vectorized execution and our techniques that enable longer JIT
traces and eliminate intermediate results through loop fusion.
Our method for handling complex data types (Section 4.2) greatly
reduces serialization overhead, leading to substantial perfor-
mance gains for Q10 across both engines.

6.4.4 Fusion optimization overhead. Figure 4 (bottom) shows
the overhead (in msec) of the QFusor steps: fus-optim = finding
fusible operators + fusion optimization, and code-gen = query
and fused UDF code generation, for all queries used in the ex-
periments. As we observe, these overheads do not affect much
query runtime.

6.4.5 Fusion compilation latency. We study the efficiency of fu-
sion compilation across three cases: QFusor with tracing JIT,
tuplex with LLVM, and YeSQL without fusion that performs no
online compilation. For compatibility with tuplex, here we use
the zillow dataset. To isolate and highlight compilation over-
head, which is particularly relevant in short-lived queries, we
run two queries, a small one (Q13) and a complex one (Q14), on a
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Figure 7: QFusor (top-left), Tuplex (top-right), UDO

(bottom-left), PySpark (bottom-right): resource utilization

tiny zillow snapshot (785K rows/ 0.14GB). QFusor compilation
and optimization lasts 510ms and 520ms with runtime 1.349s
and 2.573s, for Q13 and Q14, respectively. tuplex compilation is
396ms and 2.48s with runtime 2.647s and 8.111s. YeSQL’s runtime
is 1.668s and 6.676s. Hence, the QFusor compilation overhead
remains low regardless of query complexity whilst LLVM gets
more expensive for complex queries.

Next, we investigate fusion gains and latency of QFusor in
a workload of 100 short-running queries involving scalar and
aggregate UDFs (variants of Q11, Q12, Q13, and Q14) on tiny zillow.
We compare QFusor, tuplex, and YeSQL, with varying parallelism.
Figure 6d shows that QFusor executes the workload faster than
tuplex, with fusion benefits outweighing compilation latency,
with the expected exception of single threaded execution. QFusor
cache is a variant that caches previously compiled UDFs and
examines potential re-use benefits (zero compilation cost) in
future queries. The results show an excellent potential for such
an approach.

6.4.6 UDF types. We investigate the effect of fusing various UDF
types using queries Q4, Q5, Q6, and Q7 on the artifacts table of UDF-
Bench (large) [26]. Figure 6e presents the results with hot caches.
QFusor achieves speedups up to 6x in all cases, providing further
evidence that UDF loop fusion effectively reduces unnecessary
overhead. For brevity, we omit results with cold caches; however,
the trends are consistent with those observed for hot caches.

6.4.7 Disk vs. main-memory. We compare QFusor vs. tuplex,
UDO, and PySpark on zillow (Q2 query) stored on disk and in main
memory. Figure 6f shows execution times for cold and hot caches.
QFusor outperforms PySpark by 5.75x and UDO (manually fused
query) by 1.76x, on average, regardless of storage or caching
mode. When reading from disk-based tables, QFusor is 3.64x
faster than tuplex, which reads from disk-based CSV files. Clearly,
the read/load phase of tuplex takes a toll. With hot caches or
in-memory data, we measure only the compute part of tuplex,
which is ∼1.33x slower than QFusor. Given that tuplex was
expected to provide the best possible, out-of-database Python
execution due to its end-to-end JIT compilation, this is an excel-
lent result. The QFusor speedup is justified by (a) the benefit
of query optimization (tuplex does not exploit this) as QFusor
works in synergy with a database, and (b) the faster compilation
method, as we discussed in Section 6.4.5.

Figure 8: QFusor pluggability to data engines

6.4.8 Parallelism. Figure 6g shows how QFusor, tuplex, and
UDO scale with 1 to 12 pthreads on zillow (Q2 query). QFusor
is faster than tuplex and UDO. Its performance increases with
more threads and achieves a 45% speedup for 12 threads. Multi-
threaded parallelism is limited by Python’s GIL and is more ef-
fective for relational operators run in the database. tuplex has
speedups up to 3.6x for 4 threads. However, when utilizing more
threads, data partitioning adds significant overheads and its per-
formance reaches a plateau. UDO seem to reap marginal benefit
from multi-threaded execution.

6.4.9 Resource utilization. We compare resource usage (CPU,
memory, disk I/O) of QFusor with tuplex, UDO, and PySpark using
the Q2 query on the large zillow data in multi-threaded execution
(Figure 7). QFusor finishes in 92sec with CPU usage mainly below
20% (due to Python’s GIL), moderate memory usage up to 2GBs,
and fast loading (11sec). Notably, it starts query processing with
data loading. tuplex runs in 378sec, uses 1-3GB of memory and
exhibits sustained I/O activity. It also overlaps data loading with
query processing, and as an optimization it generates a CSV
parser that inlines the function logic [79]. UDO runs in 190sec with
low CPU usage, high disk I/O, and aggressive use of memory (2-
4GB). PySpark runs in 460sec with high CPU usage and memory
up to 2GBs.

6.4.10 Pluggability to other engines. We test QFusor integration
with various data engines, using Q12 that comprises 3 UDFs on
the url column of zillow for 7M and 14M rows. On each engine,
we test two modes: native (run Q12 as is) and enhanced (run a
hand-crafted fused version of Q12)). On engines integrated with
QFusor, JIT compilation is always on, and the two modes indicate
whether fusion is ‘off’ (native) or ‘on’ (enhanced). Figure 8 shows
the results of the test, and also shows the speedup of QFusor
(on 14M rows). The benefit of QFusor is evident across engines.

7 Conclusions

We presented QFusor, a novel stateful system that enables the
fusion of UDFs and relational operators within SQL databases.
Supporting scalar, aggregate, and table UDFs, QFusor leverages
a tracing JIT compiler to significantly accelerate UDF execution.
Its optimizer complements the database’s native query optimizer,
dynamically generating efficient execution plans at runtime. De-
signed to be easily integrated with a range of popular databases,
QFusor delivers substantial performance improvements, achiev-
ing up to 40x speedup over state-of-the-art alternatives.
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Artifacts

The datasets and the queries used in the experiments can be
found here: https://github.com/athenarc/QFusor.
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