O

proceedings

Fast Landmark Reconfiguration for Highway Cover Indexes

David Coudert”
Université Cote d’Azur, CNRS, Inria, I3S
Sophia Antipolis, France
david.coudert@inria.fr

Mattia D’Emidio*
DISIM and Centre of Excellence EX-EMERGE,
University of L’Aquila
L’Aquila, Italy
mattia.demidio@univaq.it

Abstract

The highway cover labeling (HCL) is an indexing method for
weighted digraphs that enables fast queries on important graph
properties such as distances and constrained shortest paths. Orig-
inally introduced by [Farhan et al., EDBT 2019], the HCL has
gained popularity in the field of large-scale graph mining due
to its efficiency: in fact, an HCL index can be computed with
reasonable preprocessing computational effort, answers queries
in near real time, and has low space overhead — even for graphs
with tens of millions of arcs. Such a remarkable performance is
obtained by carefully selecting, during the preprocessing phase,
a subset of the vertices of the input graph, called landmarks, and
by computing a suitable collection of paths and distances from/to
landmarks to be used to reconstruct graph properties of interest
upon query.

Recent work has shown how to adapt the HCL method to
dynamic graphs, allowing updates to the graph topology without
full recomputation, by identifying and updating, efficiently, the
portion of the index that is altered by a modification. However,
no prior dynamic methods, to efficiently handle changes to the
landmark set itself, are known. This paper addresses this limi-
tation by introducing two new dynamic algorithms specifically
designed for landmark updates. Our experiments show that these
methods can update an HCL index in seconds even in massive
graphs — achieving speedups of several orders of magnitude over
full reprocessing and enabling the use of HCL indices in fully
dynamic settings.

Keywords
Graph Algorithms, Shortest Paths, Graph Databases

1 Introduction

Answering shortest-path queries is a fundamental operation on
graph data, as countless optimization and information-retrieval
tasks rely on fast and effective responses. Examples include rout-
ing in multihop networks, trip planning, web analytics, and graph
database management [7, 19, 42]. Consequently, extensive re-
search has focused on designing efficient algorithms to compute
shortest paths and related properties (e.g., distances, centralities,
constrained paths) [7, 22, 28, 43]. A key challenge, studied over

*All authors contributed equally to this research.
1LConresponding author. Part of the author’s work was carried out during his re-
search tenure at Luiss University in Rome, Italy.

EDBT °26, Tampere (Finland)

© 2025 Copyright held by the owner/author(s). Published on OpenProceedings.org
under ISBN 978-3-98318-103-2, series ISSN 2367-2005. Distribution of this paper is
permitted under the terms of the Creative Commons license CC-by-nc-nd 4.0.

208

oS
Andrea D’Ascenzo*’

Gran Sasso Science Institute
L’Aquila, Italy
andrea.dascenzo@gssi.it

Giuseppe F. Italiano”
Luiss University
Rome, Italy
gitaliano@luiss.it

the past two decades in this area of research, has been the scala-
bility of classical polynomial-time methods, which often perform
poorly either on large graphs or under high query loads [2, 19, 30].
Many standard well-established algorithms, in fact, yield average
query times impractical for applications involving millions of ver-
tices or thousands of queries per minute [2, 21, 30]. To overcome
this, considerable effort has been put into developing heuristic
methods that accelerate baseline algorithms, achieving query
times are suitable for large-scale, real-time use [2, 21, 22, 30]. A
particularly successful family of approaches is that of labeling
schemes, which rely on a two-phase process: (i) a preprocessing
step builds a compact data structure called a labeling (or index),
assigning labels to vertices that encode selected paths and/or
distances; (ii) a specialized query routine exploits this structure
to answer shortest-path queries orders of magnitude faster than
traditional methods (2, 7, 19, 21, 22, 30].

A notable recent advancement in this family is the Highway
Cover Labeling (HCL) method by Farhan et al. [30], which gained
significant attention in path mining because of its ability to bal-
ance query efficiency, index compactness, and scalability. Its core
idea is a preprocessing strategy that selects a subset R of ver-
tices of the graph, called landmarks, and constructs an HCL index.
This index consists of a small matrix (storing distances between
landmarks) and a collection of vertex labels (storing paths to
landmarks and their distances). This index can then be exploited
to return extremely fast a shortest path for a given vertex pair.
This is achieved by first extracting from the index, via an appro-
priate query routine, a landmark-constrained shortest path - that
is, a shortest path passing through at least one landmark — and
then by using such information as a powerful heuristic to guide
a lightweight local search that identifies the exact shortest path.
Thanks to an effective pruning mechanism during construction,
HCL avoids redundant storage of paths traversing multiple land-
marks, keeping the index compact while fully covering relevant
paths. This design translates into excellent practical performance:
empirical studies have demonstrated that HCL produces compact
indexes requiring only a few gigabytes of memory, built within
hours, even for graphs with billions of edges [30]. At query time,
it enables response times several orders of magnitude faster than
traditional algorithms, and it outperforms other indexing meth-
ods for shortest paths in terms of query speed, preprocessing
effort, and space overhead [2, 13, 21].

Beyond standard shortest-path queries, the flexibility of HCL
has recently been showcased in more complex tasks. In particular,
Coudert et al. [13] extended the HCL framework to support short-
est beer path queries — an important generalization of shortest
paths that requires computing optimal paths connecting vertex

10.48786/edbt.2026.18

https://OpenProceedings.org/
https://orcid.org/0000-0002-3306-8314
https://orcid.org/0000-0001-5612-0798
https://orcid.org/0000-0001-7833-9520
https://orcid.org/0000-0002-9492-9894
OpenProceedings.org
https://dx.doi.org/10.48786/edbt.2026.18

EDBT 26, 24-27 March 2026, Tampere (Finland)

pairs and passing through designated vertices called beer vertices.
As well documented in the literature [5, 6], answering quickly to
such queries at scale is crucial for many applications in logistics,
transportation, and telecommunications. For example, shortest
beer paths are used for adaptive route planning (e.g. when, on a
given trip, users must stop at a gas station), for vehicle routing
(e.g., transporting packages that require an inspection stop), or for
data transmission (e.g. to route packets through specific network
nodes). The extension of [13] showed that shortest beer paths
and distances can be computed efficiently by precomputing and
querying, for landmark-constrained shortest paths, a suitably
precomputed HCL index. Thus, the extended framework pre-
serves the performance of the original HCL while enabling more
realistic decision-making in practical domains [5, 13]. Besides
speed and applicability, HCL has also proven to be adaptable
to dynamic graph settings. Unlike many preprocessing-based
methods that assume static inputs, recent work has introduced
algorithms to update the HCL index under edge or vertex inser-
tions and deletions [28, 29, 31]. These dynamic algorithms avoid
the time-consuming full recomputation, making HCL usable in
real-world scenarios where graph data evolve continuously. How-
ever, efficiently updating an HCL index when the landmark set
changes remains an open problem. Recent works [13, 29, 31]
emphasize that supporting landmark modifications is critical, as
they strongly affect both the effectiveness and applicability of
the index. In fact, in standard shortest-path queries, landmark
changes impact index size and performance [28, 29]. In more ad-
vanced scenarios, such as shortest beer path queries, landmarks
correspond to beer vertices — entities that are inherently dynamic
(e.g., stores with fluctuating availability or infrastructure nodes
like routers/servers that may go temporarily offline) [13]. There-
fore, updating the index under landmark changes is essential to
preserve query correctness and real-time responsiveness [13, 16].
Figure 1 illustrates a graph and the effect of changing landmarks
on an HCL index. We refer the reader to [30] and the next section
for details on the shown data structures.

Our Contribution. In this paper, we tackle the open prob-
lem identified in [13, 29, 31] by introducing the first dynamic
algorithms for updating HCL indexes when the landmark set
changes. Specifically, we propose algorithms UPGRADE-LMK and
DOWNGRADE-LMK that efficiently maintain the index when land-
marks are added or removed. We evaluate our methods through
an extensive experimental evaluation on large-scale, real-world
and synthetic graphs. Our results show that they outperform
existing solutions by achieving update times up to several orders
of magnitude faster than full recomputation, while preserving
the low memory overhead and query performance of HCL. Our
experiments also show that the HCL, combined with our dy-
namic algorithms, provides superior query performance also
compared to other strategies — not based on the HCL construc-
tion (e.g., [43]). - for retrieving landmark-constrained shortest
paths under dynamically changing landmark sets.

1.1 Related Work

The design of scalable frameworks for computing graph proper-
ties has been an active research area over the past two decades,
driven by the growing need to analyze massive real-world net-
works. Many practical approaches combine classical speed-up
techniques - such as preprocessing, sampling, and parallelization
- to accelerate baseline algorithms [2, 8, 21, 22, 46]. Among these,
preprocessing-based methods have been proven to be especially

209

David Coudert et al.

effective, enabling sub-millisecond query times on large graphs
while maintaining reasonable preprocessing cost and memory
overhead for a variety of graph properties, including shortest
paths, distances, and centrality measures [2, 17, 47]. Within this
area, labeling-based techniques have gained unprecedented pop-
ularity due to their performance and simplicity of implementa-
tion [1, 2, 12, 13, 21, 22, 40].

A prominent example is the hub-labeling approach, origi-
nally introduced for reachability queries by Cohen et al. [12],
and later extended to support various graph mining queries at
scale with strong practical performance. These include short-
est paths [21, 30], shortest path counts [47], top-k distances [1],
K-reach [42], shortest cycles [32], and minimum weight con-
strained paths [13, 40]. For distance and shortest-path queries,
the HCL method [30] offers an excellent trade-off between pre-
processing time, index size, and query speed. Avoiding to store
shortest paths passing through multiple landmarks makes it
more space-efficient than alternatives (e.g. Transit Node Rout-
ing) while at the same time faster at query answering than ap-
proaches with lower preprocessing effort (e.g. Contraction Hier-
archies) [2, 4, 30, 37, 45].

The problem of computing shortest beer paths was recently
formalized by Bacic et al. [5]. Given a source and target vertices,
and a vertex category (e.g., supermarkets, routers), the goal is to
find a shortest path passing through at least one such vertex. This
is a special case of the generalized shortest-path problem which,
for a given vertex pair, asks to determine a connecting path of
minimum total cost that visits at least one location from each of
a set of specified location categories in a specified order [38, 43].
Several works followed that of Basic et al. [5], mostly focusing
on methods to efficiently compute shortest beer paths (and beer
distances) in special graph classes with various performance
guarantees (see [6, 16, 34, 35] and references therein). For general
graphs, instead, the HCL-based approach of Coudert et al. [13]
currently offers the most scalable and efficient solution, achieving
sub-millisecond query times. In addition to the above, the notion
of beer distance has recently been generalized in [9].

A related problem in this context is that of answering point-of-
interest (POI) queries: together with an input weighted digraph, a
set of POl locations is given that lie along arcs of the graph and the
objective is to find the cheapest paths that traverse at least a POI
arc [23]. Although easily adaptable to shortest beer path queries,
with some polynomial-time computational overhead, methods for
answering POI queries in the literature are significantly slower
than the HCL-based solution of [13], especially on large graphs.

Nearly all studies on methods that achieve fast responses to
graph mining queries through preprocessing have been followed
by research into the design of corresponding dynamic algorithms,
to maintain precomputed data structures efficiently under graph
updates, enabling fast query answering even when the input
changes over time. Such algorithms typically avoid costly full
recomputation by amortizing update costs. Examples include
dynamic methods for 2-hop covers [3, 15], matching and vertex
cover problems [8], point-to-point shortest paths [20], k-2-hop
cover labelings [17, 18], public transit labelings [25], and between-
ness centrality [36]. For HCL, dynamic algorithms that support
topological updates (vertex and edge insertions/deletions) have
been introduced in [28, 29, 31], but these approaches do not sup-
port changes to the landmark set, a crucial feature for adapting
HCL to entirely dynamic scenarios such as shortest beer path
queries or evolving query patterns.

Fast Landmark Reconfiguration for Highway Cover Indexes

O Landmark

[sabueyd yJewpue J

[Label | _Entries |
L() (5,2, (7,)
Lo 6,0
L(7) (7]
L®) G

EDBT 26, 24-27 March 2026, Tampere (Finland)

. Affected vertex

[ajepdn pue uonpaelaQ J

[1 | o] s W Label | Entries |
En :

0 1 L(1) (3,1)

“ 1 0 L(6) (5,0, (3.1)
L(7) (3.2), (5,2
L(8) (5,1

Figure 1: Effects of modifying the landmark set from R = {5,7} to R’ = {3,5} for an HCL index I = (H, L) covering a graph G:
(left) the index with landmarks R (H is the highway, storing the distance decoding function Jy); (right) the updated index
with landmarks R’ (changes are highlighted in orange). The labeling L is shown for a subset of the vertices for readability.

2 Background

We are given a weighted graph G = (V, E, w) where V is a set
of n vertices, E C V X V is a set of m edges and w is a weight
function w : E — R* that assigns a positive, real value to each
edge of G. A path P = (s = 01,05,...,t = vy) in G, connecting
a pair of vertices s,t € V, is a sequence of n vertices such that
(vi,vi41) € Eforalli € [1,n — 1]. The weight w(P) of a path
P is the sum of the weights of its edges. A shortest path, for a
pair s, t € V, is a path having minimum weight among all paths
in G that connect s and ¢. The distance d(s, t) from s to t is the
weight of a shortest path connecting s and t. Given a vertex
v € V, notation N(v) = {u € V| (v,u) € E} identifies the set of
neighbors of v. For simplicity and w.l.o.g., we assume graphs are
undirected. Nonetheless, all methods described in this paper can
be adapted to directed graphs, by considering edge orientations
and partitions of the neighbors of a vertex into outgoing and
incoming neighbors, as in other works on labelings [2, 12, 15].

Highway Cover Labeling (HCL). The HCL framework is a
customization of the 2-hop-cover labeling [12], a well-known
method for shortest paths and distances [2, 21], introduced in [30]
with the goal of reducing the preprocessing time and space re-
quirements of the original method while preserving or slightly
increasing the offered average query time. In detail, given a graph
G = (V,E,), and a subset of its vertices R C V (called land-
marks), a highway H = (R, dy) of G over landmarks R C V is
a pair (R, 8y), where 8y is a distance decoding function, i.e. a
function dy : R X R +— R* such that, for every pair r;, rj € R,
we have 8y (r;,r;) = d(ri,r;). Given a vertex r € R C V and
two vertices s,t € V \ R, an r-constrained shortest path from
s to t in G is a path that passes through r and has minimum
weight. The weight of an r-constrained shortest path is called
r-constrained distance. Let H = (R, 6pr) be a highway for a graph
G with landmarks R C V. A highway cover labeling index (or sim-
ply highway labeling) of G is a pair I = (H = (R, 8g), L) where
H is a highway and L is a (landmark) labeling (or simply label-
ing) i.e. a collection L = {L(v) }yev such that a label L(v) stores
(label) entries in the form (r;, d(r;,v)) where r; € R. Algorithm
BUILDHCL, proposed in [30] and extended to weighted graphs
in [13], is the reference method to build HCL indexes. Observe

210

that an HCL index, as many other shortest-path based data struc-
tures [15], can be adapted to retrieve paths by adding a third field
to each entry, storing a predecessor vertex. For simplicity, we
focus on distance retrieval only, as in most studies on indexed
data structures [2, 13, 30].

Applications of the HCL. The original motivation behind the
design of the HCL method was to obtain very fast and scalable
responses to shortest-path queries [30]. In fact, if properly com-
puted, an HCL index of a graph G = (V, E, w), with landmark set
R, allows to determine an upper bound c?(s, t) on the distance,
for each pair s,t € V, by computing d~(s, t) = QUERY(s,t,H, L),
where QUERY(s, t, H, L) is a query routine that returns the mini-
mum r-constrained distances for all r € R, defined as:

i d(ri,s) + S (ri,rj) +d(rj, t)}.
V(ri,d(rr?,lsr;)eL(s){ (ri,s) H(rhr]) (rj:)}
V(rd(rj.t))eL(d)

QUERY(s, t,H,L) =

Such value, often referred to as landmark-constrained distance,
corresponds to the weight of the shortest of the paths from s to ¢
that pass through any pair of landmarks r; and r;. By combining
the upper bound with a distance-bounded bidirectional search
on the subgraph of G induced by vertices in V \ R, one can
retrieve the distance between s and ¢ within microseconds, even
at large scale. Specifically, an HCL index is said to satisfy the
highway cover property when, for any two vertices s,t € V \ R,
and for any r € R, the r-constrained distance for s and ¢ can be
determined by accessing the function 8 and labels L(s) and L(t)
only. In this case, the highway labeling is said to cover the graph
(symmetrically, the graph is said to be covered by the labeling). In
more details, this highway cover property is guaranteed when:
(i) for every pair r;,r; € R, we have Sy (r;,r;) = d(r;,rj); (ii)
for any two vertices s,t € V' \ R and for any r € R, there exist
(ri,d(ri,s)) € L(s) and (rj,d(rj,t)) € L(t) such that r; € P,
for some shortest path P,; from r to s, and r; € P, for some
shortest path P,; from r to t, where r; and r; may be equal to r.
Therefore, given any two vertices s and ¢, an HCL index built as
above allows to find any r-constrained distance by computing
d(ri,s) + 0u(ri,r;) + d(rj,t) where r; = r or r; = r and for
(ri,d(ri,s)) € L(s) and (r;,d(rj,t)) € L(t). Whenever, for a
given landmark r, we have (r,d(r,t)) € L(v) for a vertexv € V,
we say v is covered by r or r covers v. We refer the interested
reader to [30] for full details about the HCL framework.

EDBT 26, 24-27 March 2026, Tampere (Finland)

A very recent application of the HCL is answering queries
on shortest beer paths [13], a problem concerned with the iden-
tification of optimal detours of significant practical relevance,
formalized and rigorously investigated for the first time in [5]
through the concept of beer graphs. A beer graph is a weighted
graph G = (V, E, w) with a weight function : E — R* and a
set of special vertices B C V, called beer vertices. A beer path,
between two vertices s and t of a beer graph, is any path of G
from s to t that visits at least one vertex in B while a shortest
beer path for two vertices s and t is a beer path having minimum
total weight (called beer distance). Although a beer path may be
a non-simple path (i.e. it might self-intersect), it can be easily
shown that any shortest beer path, for a pair of vertices s, t, al-
ways consists of two shortest paths: one from s to a beer vertex,
say w, and one from w to ¢t. In other terms, a beer distance is
always equal to the minimum, overall beer vertices w; € B, of
the sums of the shortest path distances from s to w; and from
w; to t. This characterization provides a baseline algorithm for
computing shortest beer paths and beer distances for a pair s, ¢,
that is: grow two shortest-path trees rooted, respectively, at s
and t and select the beer vertex that minimizes the sum of the
distances from s and to ¢t [5, 6]. Currently, the fastest known
approach to answer queries on shortest beer paths and distances
at scale on general digraphs is that in [13]. Their method builds
an HCL index (H, L) where the beer vertex set B is used as the
landmark set R. Using this index, beer distances can be computed
without any graph traversal at query time: given a vertex pair
(s, 1), the beer distance is retrieved as the landmark-constrained
distance QUERY(s, ¢, H, L). Figure 1 (left) visually illustrates how
beer distances can be efficiently derived from an HCL index when
beer vertices are used as landmarks.

3 Dynamic Algorithms

In this section, we design two dynamic algorithms to update a
given HCL index I = (H, L), covering a graph G with landmark
set R C V, so that the resulting index covers G through a different
set of landmarks R’. Specifically, we present algorithm UPGRADE-
LMK (DOWNGRADE-LMK, respectively) that updates an HCL index
when the new set R’ is larger (smaller, respectively) than R by
one landmark.

3.1 Algorithm UPGRADE-LMK

The strategy of algorithm UPGRADE-LMK is to enrich a given
HCL index (both the highway and the labeling) with enough
information to ensure that the highway cover property holds
with the enlarged set of landmarks. For efficiency, this enrichment
is performed by leveraging the data already stored in the index.
The first step is to determine the distance from the newly added
landmark, say r, to other landmarks, to be added to H: this is
either retrieved directly from L(r) (for landmarks that cover r) or
derived from the highway H (otherwise). Next, a traversal of G
is initiated from r with a twofold objective: (i) to determine any
landmark r” € R\ {r} that covered r before the update (i.e., for
which there exists a shortest path from r to r’ not intersecting
other landmarks); (ii) to find vertices that are covered by the new
landmark r (any vertex u such that a shortest path from r to u, not
traversing other landmarks, exists). For efficiency, this traversal
discovers only r-constrained shortest paths, by suitably executing
the QUERY routine on the HCL index and pruning whenever a
non-shortest path is found. Finally, for each vertex v covered by
r, the algorithm checks whether the entries associated with other

211

David Coudert et al.

Algorithm 1: Algorithm UPGRADE-LMK.
Input: Graph G = (V,E,»),HCL index I = (H = (R, 8),L)
covering G with landmarks R C V, a vertex r € V \ R.
Output: HCL index I = (H = (R’, 8g), L) covering G with
landmarks R = RU {r}
foreach (r’,8) € L(r) do
Sy (r,r’) « &; vUpdate H to include each r’ that covers

IS

B
R—{reR|(r,8) eL(r};
foreach r’ € R\ R do
‘ ou(r,r’) « min{Su (r,#) + S (F,1') };
FER

>Landmarks that cover r

w

[T

6 L(r) « 0; >Reset L(r)
7 foreach r’ € R do REACHED-VER[r'| « 0;

8 RF < RU{r};

9 REACHED-LAN « ();

10 Q — 0; >Empty priority queue, e.g. min-heap

11 Q.enqueue(r,0);
foreach v € V \ R’ do
13 ‘ Plo] « oo;
14 P[r] « 0;

15 while Q # 0 do
16 (u,8) « Q.dequeueMin();
17 ifu € R\ {r} then

18 Add u to REACHED-LAN;

>Add r to Q with priority d(r,r) =0

>Init distance from r to other vertices

>Here Plu] equals &

19 continue;
20 if QuERY(r,u, H,L) < § then continue;

21 foreach (r’,8") € L(u) do Add u to REACHED-VER[7'];
22 Add (r,6) to L(u);

23 foreach w € N(u) : P[w] > Plu] + w(u, w) do

24 if P[w] = oo then Q.enqueue(w, P[u] + w(u, w));
else Q.decreaseKey(w, Plu] + w(u, w));

P[w] « Plu] + w(u, w);

foreach r’ € REACHED-LAN do

25

26

27

28 Q<— 0; >Empty priority queue, e.g. min-heap
29 foreach x € REACHED-VER[r'] do »x € reached-ver[r’]
30 Find (v, p) in L(x); > = x covered by r’
31 Q.enqueue(x, p);

32 while Q # 0 do

33 (u,8) « Q.dequeueMin(); reHere & equals d(r',u)
34 ifAweN@u) : (,p) e L(w) A §=p+w(u,w)

then L(u) « {(Lo) e L(u) |l +7r'};

landmarks must be removed from L(v), i.e., whether a landmark
r’ € R\ {r} still covers v after the addition of r to R. The latter
occurs when there exists, in the graph, a shortest path from r’ to
v that does not traverse r. To test this property, vertices covered
by r’ are analyzed in order of distance from r’ (for efficiency,
they are tracked during the traversal of the graph in the previous
phase).

In more detail, Algorithm UPGRADE-LMK, whose pseudocode
is given in Algorithm 1, takes as input a weighted graph G =
(V,E,w), an HCL index I = (H = (R, dy),L) with landmark
set R € V, and a vertex r € V \ R to be promoted as a new
landmark (hence added to R). It computes a highway labeling
I = (H = (R, 8n),L) such that H is a highway for the set of
landmarks R = R U {r}, L is a landmark labeling, and I cov-
ers G with landmark set R’. Specifically, the algorithm works
as follows: first, in Lines (1)-(5) we update the highway H by
storing in 8y the distance from r to every other landmark in R.
On the one hand, for each landmark r’ that covers r, we obtain
the distance to r from entry (r’, §) € L(r). On the other hand, for

Fast Landmark Reconfiguration for Highway Cover Indexes

each landmark r’ that does not cover r, we compute d(r,r’) as
min{8y (r, F)+Sy (F,r)}overallf €e R = {+' € R| (+',8) € L(r)}.
Note that no graph search is required to update H. Next, all en-
tries in L(r) are deleted and, to check whether a vertexv € V\ R’
is covered by the new landmark r, we perform a Dijkstra-like
search rooted at r, using a min-priority queue Q (with initial
priority and distance of r set to 0). When a vertex u is found at
distance § from r (i.e., when u is dequeued from Q with prior-
ity J), the visit is pruned and no entry is added to L(u) in two
cases: (i) u is a landmark different from r; or (ii) ¢ is larger than
the value returned by the routine QUERY for (r,u) on the HCL
index. If neither condition holds, then it follows that there ex-
ists a shortest path from r to u: (i) that does not traverse any
landmark r’ # r; and (ii) whose weight is smaller than all values
d(r,s)+d(s,u) with (s,d(r,s)) € L(r) and (s,d(s,u)) € L(u), i.e.,
smaller than any path obtained by concatenating shortest paths
through s. Therefore, entry (r, §) is added to L(u), and r covers
non-landmark vertex u. Simultaneously, we add u to each set
REACHED-VER|r’] (initially empty) for every (r’, ") € L(u) with
r’ # r. This tracks the landmarks that covered u before adding
(r,6) to L(u). The visit then continues by enqueueing neighbors
of u or decreasing their priority in Q. Finally, after the Dijkstra-
like visit, we post-process each vertex x € REACHED-VER[r'],
for each r’ € REACHED-LAN, to preserve the minimality of the
HCL index and the order-invariance of UPGRADE-LMK. These two
properties, defined by Farhan et al. [30], positively impact query
performance and space usage. Minimality ensures that no en-
try in the index can be removed without breaking the highway
cover property, while order-invariance guarantees that the index
size does not depend on the order of landmarks in the labeling
process. To enforce minimality and order-invariance, we delete
superfluous label entries from each L(x), i.e., entries removable
without breaking the highway cover property. In other words,
these are entries that would inflate the index size compared to
recomputing it from scratch or considering a different labeling
order (cf. Line 27). Formally, an entry (r/, p) € L(x) is super-
fluous if and only if: (i) there exists at least one shortest path
from r’ to x not traversing other landmarks before adding r (so
r’ covered x); and (ii) all shortest paths from r’ to x pass through
the new landmark r. To identify and remove superfluous entries,
we proceed as follows: for each r’ € REACHED-LAN and each ver-
tex x € REACHED-VER[r’], we add x to a priority queue Q with
priority equal to its distance from r’. We then process vertices of
REACHED-VER[r’] in order of distance from r’. If x has no neigh-
bor closer to r’ that is covered by r’, then any entry (+’, o) can
be safely removed from L(x); otherwise, the entry remains in the
index. We are now able to prove the correctness of our update
routine.

THEOREM 3.1. Algorithm 1 computes an HCL index1 = (H =
(R, 8y), L) that covers G with landmark set R" = RU {r}.

ProoF. Atthebeginning of the algorithm,I = (H = (R, y), L)
covers G. When r is added to the set of landmarks, to preserve
the highway cover property the algorithm enforces two condi-
tions at termination: (i) 8y is a distance decoding function for
the landmark set, i.e., Sg(r,r’) = d(r,r") for all ¥" € RU {r};
and (ii) for any two vertices s, € V \ R and for any r € R,
labels L(s) and L(¢) store entries sufficient to compute the r-
constrained distance when combined with 6. We now show
thatif I = (H = (R, 8y), L) covers G before execution, then (i)
and (ii) hold at termination.

212

EDBT 26, 24-27 March 2026, Tampere (Finland)

Property (i). Suppose, by contradiction, that there exists a vertex
r’ € RU{r} such that oy (r,r") # d(r,r"). If r’ covered r before
execution, this contradicts the fact that d(r,r’) is stored in L(r).
Otherwise, if r* did not cover r, then since (H, L) covered G, it
follows that all shortest paths between r and r’ traverse at least
one landmark different from r’. Let 7 be the closest such landmark
to r in these paths, in terms of distance. By the cover property,
7 € L(r), and hence 8y (7, r) = d(7,r). By optimal substructure of
shortest paths, we have d(r,r") = d(r,7) + d(7,r’). Since d(#,r")
is stored in Sy (#,r’), Line (5) would have selected d(r,r’) as
the minimum value for (r,r’). Thus, if g (r,r’) # d(r,r’), then
Su (F,r") must be incorrect, contradicting the assumption that
(H,L) covers G.

Property (ii). By (i), H is a highway for " = RU {r} and G.
We must show that for any r’ € R’, any r’-constrained distance
between vertices s,t € V \ R’ can be retrieved from L and H via
QUERY. Observe that the only labels affected by Algorithm 1 are
those of r and of vertices reached by the Dijkstra-like search. En-
tries in L(r) are all removed, and after the first dequeue operation,
(r,0) is added to L(r), since r is now a landmark.

Consider a vertex u reached by the search. If u € R’, then it
is skipped (except for the base case u = r). By (i), the distance
between u and r is stored in H. If u ¢ R’ and is reached by a
shortest path of weight § not traversing other landmarks, then: -
If QuErY(r,u, H, L) < 4, it follows that there exists a shorter path
from r to u passes through a landmark r” # r, and pruning is safe.
- Otherwise, § = d(r, u) and the shortest path does not traverse a
different landmark, so entry (r, §) is correctly added to L(u). Now
consider u € V not reached by the search. Either: - a shortest path
from r to u traverses some landmark r’ # r, and then d(r, u) is
already stored in (H, L); or - the path visits a vertex w where the
search was pruned (Line 20). By optimal substructure, the path
through w would be longer than a shortest path, a contradiction.
Finally, to complete the proof, we show that in Lines (27)—(34)
no entry necessary for the highway cover property is removed.
Observe that, for each ' € REACHED-LAN reached during the
Dijkstra-like search, each set REACHED-VER[r’] contains vertices
v with entries in L(v) for both r’ and r. The procedure checks
whether (r’, p) can be deleted from L(v), depending on whether
r’ still covers v. Vertices are processed in order of distance from
r’ (i.e. starting with a vertex u whose (r’, p) € L(u) is such that p
is minimum and proceeding in non-decreasing order). We prove
by induction on the number of extractions from Q that if (r’, p)
is removed from L(v), the highway cover property remains valid.
Base case. The first extraction is u, § with § = d(r’, u) minimal.
If there exists a neighbor w € N(u) with (+’,p) € L(w) and
p+1 =24, then w ¢ REACHED-VER|[r’] (possibly w = r’). Hence, a
shortest path from r’ to u through w not traversing r still exists, so
(r’,8) cannot be removed. Otherwise, all r’-constrained shortest
paths from r’ to u traverse r, so (r’, §) can be safely removed.
Inductive step. Suppose the property holds after k extractions. For
the (k + 1)-th extraction, the same argument applies: (r/, p) is
removed from L(u) only if no neighbor of u closer to r’ is covered
by r’, i.e., if all shortest paths from r’ to u pass through r. Hence,
the highway cover property holds at termination. O

In what follows, we show that HCL indices computed by

UPGRADE-LMK are minimal and order-invariant.

LEMMA 3.2. The HCL indexI = (H = (R, 8n), L) computed by
Algorithm 1 satisfies minimality.

EDBT 26, 24-27 March 2026, Tampere (Finland)

PRrOOF. Suppose there exists a labeling L” covering G with
landmarks R’, a vertex v, and a landmark 7 € R’ such that (7, §) €
L(v) but (7,8) ¢ L’ (v). Two cases may occur: either (7, §) was
in L(v) before the update, or it was added to L by UPGRADE-
LMK. In the first case, (7,8) ¢ L’(v) implies that all shortest
paths from 7 to v traverse another landmark other than 7. Let
r’ be the landmark closest to 7, in terms of distance, on such
paths. Since the initial HCL index covered G, r’ must be the new
landmark r. Then, UPGRADE-LMK adds 7 to REACHED-LAN and v
to REACHED-VER [7]. As all shortest paths from 7 to v traverse a
different landmark, Line (34) evaluates to true, removing (7, §)
from L(v), which is a contradiction. In the second case, if 7 =r,
the absence of (7, §) in L’ (v) would imply that another landmark
lies on all shortest paths from r to v. However, UPGRADE-LMK
adds entries for r only when shortest paths exist that avoid other
landmarks. Combined with Theorem 3.1, this contradicts the
assumption that (7, §) € L(v). Hence, I is minimal. O

LemMmA 3.3. Algorithm 1 preserves order-invariance.

ProoF. Assume I, before executing Algorithm 1, was built
by some algorithm A that constructs HCL indices in an order-
invariant manner (i.e., the structure of the index does not depend
on landmark order during the labeling process). We show that
applying UPGRADE-LMK to I preserves this property. Observe that
UPGRADE-LMK first explores a shortest-path tree rooted at the new
landmark r. This is the same traversal A would perform since it
follows shortest paths and prunes when encountering other land-
marks. Thus, the entries added to labels, as well as values stored
in 8y for r, are identical to those produced by A, since I already
covers G. Finally, in Lines (27)-(34), for each r’ € REACHED-LAN,
the algorithm removes (r’, §) from L(v) only if v lacks a neighbor
w with (r/, p) € L(w) and p = § + w(v, w), processing vertices
in order of distance from r’. This means entries are removed
only from the labels of vertices in subgraphs of shortest-path
trees rooted at r’ that would not be explored by A. Therefore, the
resulting labeling matches the one A would construct, proving
order-invariance. O

THEOREM 3.4. Algorithm 1 runs in O(|R|(m + n(logn + |R|)))
time and uses O(|R|n) additional space.

ProOF. Assume that the queue Q is implemented as a min-
heap (e.g., a Fibonacci heap), where insert and decrease-key take
constant time and delete-min takes O(logn) time (both amor-
tized). Each label L(v) of a vertex v is stored as an array, and
w.l.o.g. we assume L(v) contains at most one entry per landmark
r € R, ie., |L(v)| < |R|. Hence, adding or removing entries from
a label costs O(|R|). The QUERY routine therefore runs in O(|R|)
time for a pair (s,t) if either s € Ror t € R, and in O(|R|?)
otherwise. Lines (1)-(5) require O(|R|?) time to compute 8y for
landmarks not covering r. During the modified Dijkstra search
(Lines 15-26), each vertex is extracted at most once from Q, and
running QUERY for u # r takes O(|R|) time. This dominates the
cost of adding u to sets REACHED-VER. Thus, this phase costs
O(m + nlogn + n|R|) overall.

Finally, in Lines (27)—(34), for each landmark in REACHED-LAN
(with |REACHED-LAN| = O(|R|)), we insert O(n) vertices into
Q, which takes O(nlogn) time. Extracting O(n) vertices costs
O(log n) per operation, plus scanning neighbors and labels. This
yields O(logn+ |R| + |N(v)|) time per vertex, or O(m+n(logn+
|R|)) total time for all vertices, per landmark. Therefore, this
phase runs in O(|R|(m + n(logn + |R|))) time. Summing up, the

213

David Coudert et al.

time complexity of Algorithm 1 is:

O(|R|2 +m+nlogn+n|R| + [R|(m+n(logn + |R|))) =
O(|R|(m + n(logn + |R|)))-

Concerning the space complexity, the algorithm uses three
auxiliary structures: P, REACHED-LAN, and REACHED-VER. Their
sizes are O(n) (one distance per vertex), O(|R|) (one entry per
landmark), and O(|R|n) (one entry per landmark-vertex pair),
respectively. Since each vertex can appear in Q at most once, the
overall extra space is O(|R|n), as claimed. O

3.2 Algorithm DOWNGRADE-LMK

The strategy of algorithm DOWNGRADE-LMK, in contrast to algo-
rithm UPGRADE-LMK, is to remove from the HCL index (both from
the highway and the labeling) all information related to the down-
graded landmark r and to restore the cover property with the
remaining landmarks, if it is broken by this removal. This is done
by starting a graph search from r, serving two purposes: (i) delete
all entries associated with r from the labels of visited vertices; (ii)
identify landmarks r’ € R\ {r} such that a shortest path from r to
r’ does not traverse other landmarks (i.e., landmarks that might
cover r and vertices reachable from r by shortest paths). At this
point, the distance from r to each such r’ is then retrieved from
L(r) and used to start a second graph search, rooted at r’, from r.
This search locates vertices previously covered by r that can now
be covered by a different landmark r’. In more detail, Algorithm
DOWNGRADE-LMK, whose pseudo-code is given in Algorithm 2,
takes as input a weighted graph G = (V,E,), an HCL index
I =(H = (R,), L) with landmark set R, and a landmark r € R
to be downgraded to be a non-landmark vertex, hence removed
from R. It outputs a highway labeling I = (H = (R’, 8g), L) such
that R = R\ {r}, H is a highway for R’, L is a landmark labeling,
and I covers G with landmark set R’. The algorithm begins by
removing r from R and deleting the corresponding entry in L(r).
Next, a Dijkstra-like search starts from r. When a vertex u is dis-
covered at distance 6 from r (i.e., dequeued from the min-priority
queue Q with priority), the algorithm proceeds as follows: if
u is a landmark, we check whether ¢ is smaller than or equal to
the distance 8y (r, u), stored in H. If so, then landmark u covers
vertex r, so we add entry (u, §) to L(r) and prune the search at
u (i.e., do not continue the traversal to its neighbors). If u ¢ R’,
instead, we check whether r covers u. If true, the entry for r
is removed from L(u), and the search continues by enqueueing
neighbors of u or decreasing their priority in Q. At the end of
the search, all entries in H related to r — that is, values 5y (r, x)
for each x € R’ —are deleted.

Then, for each landmark [reached in the previous phase (iden-
tified by label entries stored in REACHED-ENT), a modified Dijkstra
search is performed. This search is rooted at / and starts from r,
aiming to find vertices previously covered by r that can now be
covered by I. To begin, a min-priority queue Q is initialized with
vertex r at priority p, where p is the distance from [to r. The
search proceeds by dequeuing pairs (8, u), meaning a shortest
path of weight § from [to u has been found. The search is pruned
atu if u € R’ or if the query routine QUERY on the HCL index
for r and u returns a value smaller than &. If neither condition
holds, then there exists a path from [to u that: (i) does not tra-
verse any landmark other than [, and (ii) has weight smaller than
any alternative path encoded in the HCL index (i.e., obtained
by concatenating two shortest paths from [and u to a common
landmark). In this case, entry (I,) is added to L(u), and the

Fast Landmark Reconfiguration for Highway Cover Indexes

Algorithm 2: Algorithm DOWNGRADE-LMK.
Input: Graph G = (V,E,), HCL index I = (H = (R, 81),L)
covering G with landmarks R C V, alandmark r € R.
Output: HCL index I = (H = (R’, 8g), L) covering G with
landmarks R =R\ {r}.

1 R <R\ {r}

2 L(r) « 0; >Initialize new label, add it to L
3 REACHED-ENT « 0);

4 Q — 0 >Empty priority queue, e.g. min-heap

5 Q.enqueue(r,0);
6 foreachv € V do

>Add r to Q with priority d(r,r) =0

7 ‘ P[v] « oo;rInit distance from r to other vertices to oo
s P[r] « 0;

9 while Q # 0 do

10 (u,8) « Q.dequeueMin(); »Here P[u] equals &
1 if u € R’ then

12 if g (r,u) < S then

13 ‘ continue;

14 Add (u, §) to REACHED-ENT;

15 Add (u,8) to L(r);

16 continue;

17 L(u) —{(Lp) eL(u) [l #1}

18 foreach w € N(u) : P[w] > Plu] + w(u, w) do

19 if P[w] = oo then Q.enqueue(w, Plu] + w(u, w));
20 else Q.decreaseKey(w,Plu] + w(u, w));

21 P[w] « Plu] + w(u, w);

22 Delete all entries related to r in 8y;

23 foreach (I, p) € REACHED-ENT do
foreach u € V do

‘ P[u] « oo; »Reset distance from [to other vertices

24
25

26 P[l] « 0;

27 Plr] « p;

28 Q — 0; >Empty priority queue, e.g. min-heap
29 Q.enqueue(r,p); »Add r to O with priority d(Lr)=p
30 while Q # 0 do

31 (u,8) « Q.dequeueMin(); »Here P[u] equals &
32 if u € R’ then

33 ‘ continue;

34 if u # r and QuERY(l,u, H, L) < § then continue;

35 Add (1,5) to L(u);

36 foreach w € N(u) : P[w] > Plu] + w(u, w) do

if P[w] = oo then
Q.enqueue(w, Plu] + w(u, w));

37

38 else Q.decreaseKey(w, Plu] + w(u, w));

P[w] « Plu] + w(u, w);

39

visit continues by enqueueing neighbors of u or decreasing their
priority in Q.
We now prove the correctness of Algorithm 2.

THEOREM 3.5. Algorithm 2 computes an HCL index1 = (H =
(R, 8y), L) that covers G with landmark setR" =R\ {r}.

Proor. When r is removed from R, the algorithm must ensure
two properties to preserve the highway cover property: (i) g
remains a distance decoding function for R’, i.e., Sy (r',r") =
d(r',r"”) forall ¥’,r"” € R” = R\ {r}; (ii) for each pairs,t € V\ R,
and for any r’ € R’, labels L(s) and L(¢) combined with g
suffice to compute the r’-constrained distance. We prove (i) and
(ii) separately. For (i), note that the highway cover property of
I implies that for any r’,r” # r, Sy(r’,r”") = d(r’,r"). Since
Algorithm 2 only deletes entries involving r, all distances for

214

EDBT 26, 24-27 March 2026, Tampere (Finland)

pairs in R X R’ remain unchanged. Thus, at termination, 8y
correctly stores all distances between landmarks in R’.

For (ii), since (i) ensures that H is a highway for R’, we must
show that for any r’ € R’ and non-landmark vertices s,t € V\ R/,
the r’-constrained distance can still be retrieved from H and L.
Specifically, it must hold that

d(ri,s) + Sy (ri,rj) +d(r,t),

where r; = r’ or r; = r’, and entries (r;,d(r;,s)) € L(s) and
(rj,d(rj,t)) € L(t) exist. This guarantees that constrained short-
est paths involving r in the original index are still represented
after its removal. Notice that the only labels modified by algo-
rithm DOWNGRADE-LMK are: (i) L(r); (ii) L(u) for eachu € V\ R’
with r € L(u); (iii) L(v) for each v € V \ R’ reached by the
Dijkstra-like search from r’ for entries (I, p) € REACHED-ENT.
First, we show that, by the end of the algorithm, all entries
related to r are removed from the labeling. Suppose, for contradic-
tion, that there exists a vertex u € V' \ R’ such that (r,d) € L(u).
This would imply that the search initiated from r (in Lines (9)-
(21)) did not reach vertex u. Consequently, the (shortest) path
from r to u traversed during the search must have encountered
another landmark r” # r, which caused the search to be pruned
before reaching u (per Line 16). But the cover property of the
initial index guarantees the existence of a shortest path from r
to u avoiding other landmarks, which leads to a contradiction.
Now assume that the final index I = (H, L) fails at covering G
with the updated landmark set R’. Then there exists u € V \ R’
and r’ € R’ such that (r/,d(r’,u)) ¢ L(u). Three cases arise: (a)
vertex u is the removed landmark r. However, all updates to L(r)
occur solely in Lines (9)-(21), where any missing entry implies
all shortest paths from r to 7 € R’ traverse another landmark,
contradicting the assumption; (b) No pair (r’, p) € REACHED-ENT.
This mirrors case (a), since any landmark added to L(r) during
the first phase is also recorded in REACHED-ENT through entries
added to L(r); (c) entry (1, p) € REACHED-ENT, but the resumed
search from r’ (Lines (23)-(39)) fails to reach u. Then either:
- every shortest path from r’ to u traverses another landmark
7 # r’, contradicting the assumption that (r’,d(r’,u)) should
exist; or — pruning at Line (34) occurs at some vertex u’ € V \ R’
on a shortest path P, whose weight is less than §, again implying
(7,d(7,u)) € L(u) for some 7 # r’, contradicting the absence of
(r’,d(r’,u)). In all cases we reach a contradiction. Hence, the
final HCL index covers G with landmark set R’. O

We now show that HCL indices computed by DOWNGRADE-
LMK are minimal and order-invariant.

LEMMA 3.6. The HCL indexI = (H = (R’, 8y), L), computed by
Algorithm 2 satisfies minimality.

ProoF. Suppose, for contradiction, that there exists a labeling
L’ covering G such that for some vertex v and landmark 7, we
have (7, 6) € L(v) but (7, 8) ¢ L’ (v). Two cases can arise: either
(7,0) was already in L(v) before the update, or it was added by
DOWNGRADE-LMK.

Case 1: (7, §) was in L(v) before the update. If 7 = r, then
(7,0) € L(v) implies the existence of a shortest path from r to v
that does not include other landmarks. Hence, v is reached during
the traversal rooted at r, and (7, §) is removed, a contradiction.
If 7 # r, the absence of (7, §) from L’ (v) implies that all shortest
paths from 7 to v pass through another landmark. This contradicts
the assumption that the index covered G before execution, since
7 should cover v.

EDBT 26, 24-27 March 2026, Tampere (Finland)

Case 2: (7,0) is added by DOWNGRADE-LMK. Entries are
added only if a shortest path exists from the landmark to u with-
out traversing other landmarks. The absence of (7, §) from L’
contradicts the assumption that L’ covers G. In all cases, the
assumption leads to a contradiction, proving minimality. O

LEmMA 3.7. Algorithm 2 preserves order-invariance.

Proor. Assume that I, before executing Algorithm 2, was built
by an order-invariant algorithm A (i.e., an algorithm that outputs
an index whose structure does not depend on landmark order
during the labeling process). We show that applying DOWNGRADE-
LMK to I preserves this property. Specifically, note that the al-
gorithm modifies the index in two phases. In the first phase, a
Dijkstra search of the graph starts from r, the removed land-
mark. This traversal explores the same shortest-path tree as A,
since it is pruned only when landmarks are encountered and
since only shortest paths are traversed. Thus, entries added to
L(r) in Line (15) correspond to shortest paths avoiding other
landmarks, the same as A would add. A similar argument holds
for the corresponding removal of entries, associated with r, in
both the labels of visited vertices and in §y (these would not
be added by A). Hence, order-invariance is guaranteed by this
step. In the second phase, a sequence of Dijkstra searches are
resumed from r, for each landmark [such that, by the highway
cover property holding on I before execution, there exists a short-
est path from [to r not traversing other landmarks. Hence, the
algorithm extends a pruned shortest-path tree, from r, and adds
corresponding entries, as A would do, and therefore the claim
follows. Finally, the last phase of DOWNGRADE-LMK performs a
sequence of Dijkstra searches that are resumed from r, for each
landmark [such that, by the highway cover property holding on
I before execution, there exists a shortest path from [to r not
traversing other landmarks. O

THEOREM 3.8. Algorithm 2 runs in O(|R|(m + nlog(n) +n|R|))
and uses O(n) additional space.

Proor. The most time-consuming components of Algorithm 2
are the two modified Dijkstra searches. The first, in Lines (9)-(21),
prunes entries related to the removed landmark r. This subrou-
tine runs in O(m + nlog n + n|R|) time, since it scans all entries
in L(u) for each vertex u dequeued from Q. The second search,
in Lines (23)-(39), is executed once per landmark identified in the
previous phase. With O(|R|) such landmarks and each search
costing O(m + nlog n+n|R|) time, the total time for this phase is
O(|R|(m + nlogn + n|R|)). This complexity arises because each
execution of QUERY takes O(|R|) time (as [€ R’), and we execute
one QUERY per dequeued vertex (see proof of Thm. 3.4 for support-
ing analysis on the cost of queue operations and queries). Overall,
this second phase’s time complexity dominates the runtime of Al-
gorithm 2. Regarding the space complexity, the algorithm stores:
(i) the distances from the root of each Dijkstra-like search in
array P; (ii) a priority queue with at most n vertices, and (iii) set
REACHED-ENT with at most one entry per landmark. Therefore,
the space complexity is O(n + n + |R|) = O(n). O

In Figure 1 we give a visual representation of the changes an
HCL index undergoes if updated by our dynamic algorithms. In
particular, on the left, we show an input graph G (unweighted,
for readability) and an initial set of landmarks R = {5, 7}. Both
landmarks are at distance 2 one from the other, and this is stored
in H. Label L(1), initially, contains entries (5, 2) and (7, 1), since
(1,3,5) and (1, 7) are two shortest paths to 5 and 7, respectively.

David Coudert et al.

Similarly, vertex 6 is connected to both landmarks by an edge,
hence the corresponding entries with distance equal to 1 are
stored L(6). Finally, L(8) contains only an entry associated with
landmark 5, since the 7-constrained shortest path from landmark
7 to 8 traverses landmark 5. The update begins when vertex 3 is
promoted to be a landmark. Note that, for readability, we show
only a portion of the HCL index, next to the effects of execut-
ing our algorithms when a landmark is added or removed on
such portion. In particular, Algorithm UPGRADE-LMK begins by
scanning label L(3) = {(5,1),(7,2)} to populate the highway
for the new landmark, i.e. to set 85 (3,5) = 1 and 6y(3,7) = 2.
Successively, the algorithm initiates a graph traversal from the
new landmark 3, visits landmark 5 and vertices {1, 2,4, 6} at dis-
tance 1, adds landmark 5 to set REACHED-LAN, and inserts entry
(3,1) into the L(v) Vo € {1, 2,4, 6}. Then, at distance 2, landmark
7 is reached and added to REACHED-LAN, while on vertex 9 the
search adds the label entry (3, 2) to L(9). A similar situation oc-
curs for vertex 10 at distance 3, while the visit is pruned on 8,
at distance 4, since QUERY(3, 8, H, L) returns 2, due to the path
from 3 to 8 traversing vertex 5. As a result of the above, set
REACHED-VER[5] = {1,2,4,6,9,10} as these vertices were cov-
ered by 5, before the addition of 3, and now are covered by 3.
Therefore, in the last phase, UPGRADE-LMK proceeds by testing,
following an order of distance from 5 (dictated by the priority
in Q), whether entries associated with 5 must be kept in the in-
dex or removed (when all shortest paths from 5 to a vertex in
REACHED-VER|5] pass through 3). For example, vertices 9 and 6
are the first two to be extracted from Q, as they are at distance
1 from 5. They have a neighbor closer to 5 (5 itself) and hence
(5, 1) is not deleted from both L(9) and L(6), since there exist two
shortest paths from 5 to 6 that do not traverse any other landmark,
namely (5, 6) and (5,9). Instead, for each v € {1, 2,4, 10} entry
(5, 2) is removed from L(v), since no neighbor, closer to 5, satisfy-
ing the test of Line (34) exists in the graph (all shortest paths from
v to 5 pass through the new landmark 3). Once UPGRADE-LMK
terminates, landmark 7 is downgraded to be non-landmark. Algo-
rithm DOWNGRADE-LMK starts a graph traversal from this vertex
and: at distance 1, it removes entry (7, 1) from both L(1), L(6)
and L(11). When visiting vertices at distance 2, it deletes entry
(7,2) from L(2),L(4) and L(9), while, respectively, adding en-
tries (3,2) and (5, 2) to L(7); these entries are also inserted in set
REACHED-ENT. Finally, vertex 10 is reached at distance 3, and the
entry relative to 7 is removed from L(10). Next, the highway is
updated to delete values 8y (3,7) and 8y (5, 7). Finally, for each
entry (I, p) in REACHED-ENT, the algorithm performs a second
Dijkstra-like visit starting at [with priority p. In the example,
this yields the addition of entries (3, 3) and (5, 3) to L(11). The
only vertex whose label is unchanged is 8. The final result is
shown in Figure 1 (right).

4 Experimental Evaluation

In this section, we present an experimental study to evaluate
the performance of our proposed algorithms UPGRADE-LMK and
DOWNGRADE-LMK. Our investigation pursues two main goals:

(G1) Assessing Dynamic Maintenance Efficiency. We first
evaluate whether UPGRADE-LMK and DOWNGRADE-LMK can
maintain an HCL index more efficiently than recomputing
it from scratch using BUILDHCL, the only baseline method
currently available to update an HCL index when the land-
mark set changes. This comparison is crucial to determine
whether dynamic landmark support is practically feasible

215

Fast Landmark Reconfiguration for Highway Cover Indexes

with HCL. Although BuiLpDHCL has a time complexity of
O(|R|(nlogn + m)), which is asymptotically better than the
O(n®) worst-case time of UPGRADE-LMK and DOWNGRADE-
LMK (when |R| = n), the practical performance picture is
quite different. Our algorithms localize updates by efficiently
identifying only the affected parts of the index — specifically,
modified labels and distances — via few graph traversals. As
our results will show, this leads to substantial real-world
speedups, often by orders of magnitude.

Comparing Dynamic Query Effectiveness. Second, for
completeness, we examine whether the HCL index, com-
bined with our dynamic algorithms, outperforms other ex-
isting methods, not based on HCL, for computing landmark-
constrained distances in dynamic settings. For example, the
frameworks by Rice et al. [43] and Kaffes et al. [38], orig-
inally designed for generalized shortest-path queries, are
adaptable to our setting: by treating landmarks as a single
category, they can compute landmark-constrained distances
on demand and naturally accommodate dynamic changes to
landmarks. Similarly, POI query systems such as [23] can be
extended to support this task with minimal computational
overhead. All of these represent valid alternatives to our HCL-
based dynamic framework and are therefore included in our
comparative analysis.

(G2)

Experimental Setup. To address goals (G1) and (G2), we design
an extensive experimental evaluation, as described below. For
(G1), we implemented the new dynamic algorithms UPGRADE-LMK
and DOWNGRADE-LMK, along with the baseline BurLpHCL for full
recomputation. For (G2), as an alternative to HCL, and motivated
by its status as a state-of-the-art solution for generalized shortest
paths, we implemented the method of Rice et al. [43], which
we denote as cH-GsP. We do not include the method of Kaffes
et al. [38], as it has been empirically shown to be consistently
outperformed by the HCL-based approach in [13]. In the same
work, other natural baselines — such as computing distances via
multiple Dijkstra searches or precomputing and storing the full
distance matrix for landmarks — were also evaluated and found
to be significantly slower and less scalable than HCL. For similar
reasons, we exclude POI query systems like [23], as their per-
formance on landmark-constrained queries was reported to be
orders of magnitude worse than that of HCL [13]. All algorithms
were implemented in two versions to support both weighted and
unweighted graphs. The latter are obtained by replacing Dijkstra-
like traversals with BFS-like traversals (i.e., FIFO queues instead
of priority queues), and by assigning unit weights to all edges.
Our codebase is written in C++ and compiled with G++ 10.5
using -03 optimization. The implementation of cH-GsP builds
on the RoutingKit library, which provides efficient Contraction
Hierarchies for point-to-point shortest paths [26]. To evaluate
the behavior of the proposed solutions under dynamic landmarks,
we simulate environments in which vertices randomly become
or cease to be landmarks. Queries for landmark-constrained dis-
tances are issued on-the-fly using each competing method.

Input Datasets. For our experiments, we select real-world graphs
from publicly available repositories [11, 24, 27, 39, 41, 44], focus-
ing on domains where fast retrieval of landmark-constrained
distances is critical — such as road, social, web, and communi-
cation networks [2, 13, 30]. For completeness, we also include
synthetic instances generated using the Barabasi—Albert algo-
rithm, known to model well real-world networks with power-law

216

EDBT 26, 24-27 March 2026, Tampere (Finland)

Graph Type \4 [E| AW
ERD [10] Uniform 10 000 24998846 4999.77 e
LUX [44] Road 30,647 37773 246 e
cAI [44] Internet 32000 40204 251 e

UK-W [44] Web 129632 11744049 181.19 o

Nw [24] Road 1207945 1410387 233 e
NE [24] Road 1524453 1934010 253 e
YAH [27] Ratings 1625951 256 804 235 31588 o©
ITA [44] Road 2077709 2589431 249 e
DEU [44] Road 4047577 4907 447 242 e

U-BAR [10] Power-Law 50000 000 149985 000 6.00 o
W-BAR [10] Power-Law 50 000 000 149 985 000 6.00 e
UsA [24] Road 23947347 28854312 240 e
TWI [11] Social 52579682 1614106500 61.39 o

Table 1: Summary of datasets: graph name, type, size (num.
of vertices |V| and edges |E|), average degree A, graph is
weighted (W = @) or not (W = 0). Rows are sorted by non-
decreasing |V|.

degree distributions, and the Erdés-Rényi method for generat-
ing uniform random graphs [10]. Details of the graphs used are
provided in Table 1.

Experimental Setup and Methodology. To evaluate our dy-
namic framework (termed DYN-HCL, consisting of algorithms
UPGRADE-LMK and DOWNGRADE-LMK operating on HCL indexes),
we perform the following sequence of tests on each graph of
Table 1:

(1) We first construct an initial HCL index I on the graph using a
landmark set R, built via the BuriLpHCL routine.
(2) In parallel, we preprocess the graph using cH-GsP, following
the approach in [43], and measure the setup time. This step
is restricted to sparse graphs, as Contraction Hierarchy-based
methods suffer significant performance degradation — particu-
larly long preprocessing times — when applied to other types
of networks (e.g., social or dense graphs) [33].
Next, we simulate dynamic behavior by applying o = |R|/4
landmark updates: a randomly interleaved sequence of /2
insertions (moving vertices from V \ R to R) and ¢/2 deletions
(moving vertices from R to V' \ R), with equal probability.
(4) After each insertion or deletion, we invoke UPGRADE-LMK or
DOWNGRADE-LMK to update the index and record the runtime.
(5) Once all o updates have been applied, we recompute a new
HCL index from scratch using BurLpHCL with the final land-
mark set, and measure its execution time. To assess query
performance and pursue objective (G2), we issue ¢ = 10’
queries on randomly selected vertex pairs. We run QUERY using
both the updated and the recomputed HCL index, and exe-
cute the query routine of cH-GsP (the latter for sparse graphs
only). We measure and compare average query times. The
value of g is chosen to cover a sufficiently large fraction of
the total ~ |V|? vertex pairs, averaging around 10* queries per
update [30]. Whenever an index is altered — either by pyn-HCL
or BUILDHCL- we measure its space occupancy. This is done
solely for validation purposes, i.e., to verify that the memory
footprint of the updated index matches that of the newly built
one, as guaranteed by theory. For this reason, corresponding
measurements are omitted.

We vary the initial landmark set size |R| in {20, 40, 80} for all
graphs, as [30] suggests this range is suitable for most networks.
Furthermore, for road graphs and communication networks, we
consider larger values |R| € {800, 1600, 3200}, identified in [13] as

EDBT 26, 24-27 March 2026, Tampere (Finland)

David Coudert et al.

|R| =20 |R| =40 |R| =80

Graph

Tsyup Trpyy SPEED-UP Teoup Tepyy SPEED-UP Tsup Tipyy SPEED-UP
ERD 1676.18 51.34 32.65 3342.40 59.50 56.17 6697.29 82.98 80.71
LUX 0.03 < 0.01 19.21 0.06 < 0.01 39.32 0.12 <0.01 39.29
CAI 0.18 < 0.01 36.23 0.20 < 0.01 61.86 038 <0.01 174.19
UK-W 0.84 < 0.01 1123.68 1.73 < 0.01 1266.68 328 <0.01 1152.99
NW 5.84 0.18 30.99 10.48 0.16 65.31 20.81 0.13 153.47
NE 8.16 0.59 13.66 15.74 0.46 34.09 29.64 0.40 72.36
YAH 94.80 10.27 9.22 234.61 23.39 10.02 560.38 55.90 10.02
ITA 8.58 0.72 11.88 17.42 0.62 27.90 35.00 0.51 68.35
DEU 26.89 2.07 12.98 41.59 0.53 77.04 84.79 1.68 50.43
U-BAR | 1214.05 87.23 13.92 2574.39 162.33 15.86 6711.91 320.63 20.93
W-BAR | 1799.19 129.85 13.86 3758.61 210.92 17.82 307.19 6072.08 19.76
USA 231.56 15.31 15.11 427.74 6.38 67.04 1012.62 17.05 59.36
TWI 2876.37 173.86 16.54 | 6043.94 408.10 14.80 | 12485.80 519.11 24.05

|R| =800 |R] = 1600 |R|] = 3200

Graph

Tsonp Tepyw SPEED-UP Tsumn Tipyx SPEED-UP Tsomn Tipyx SPEED-UP
LUX 1.25 < 0.01 641.50 3.15 <0.01 1501.53 8.86 < 0.01 2287.82
CAI 3.92 <0.01 2717.60 834 < 0.01 5146.90 2046 < 0.01 6346.80
UK-W 33.41 0.02 1242.49 64.28 0.04 1482.26 139.00 0.12 1108.52
NW 205.09 0.25 814.82 418.75 0.39 1053.96 809.16 0.35 2310.98
NE 304.48 2.63 115.71 631.39 2.77 227.24 1132.35 1.18 958.53
ITA 357.68 1.04 341.45 677.71 0.94 718.32 1374.71 1.49 921.28
DEU 802.17 3.33 240.49 1577.84 241 652.02 3058.22 2.21 1383.41
USA 8879.29 42.66 208.15 | 13990.10 43.26 323.40 | 28528.40 82.88 344.21

Table 2: Comparison of bYN-HCL versus full recomputation by BUILDHCL in terms of runtime.

typical for applications using the HCL index for shortest beer path
queries. We adopt standard landmark selection policies based on
degree and approximate betweenness [21, 30]: the former yields
better results for unweighted graphs, while the latter is more
effective for weighted ones. All experiments were conducted
on a workstation equipped with an Intel Xeon E5-2643 @ 3.40
GHz, 96 GB RAM, running Ubuntu Linux. For completeness,
we also tested purely incremental and decremental sequences of
landmark modifications. The observed trends closely match those
of the mixed-update case, and results are omitted for brevity.
Experimental Results and Analysis. The results of our ex-
perimental evaluation are reported in Tables 2 (G1) and 3 (G2).
In Table 2, we analyze the efficiency of DYN-HCL in maintaining
the HCL index under landmark updates, and compare it against
BUILDHCL, which reconstructs the index from scratch. We con-
sider the following performance indicators:

o Tppyw: average runtime per update (insertion or deletion) of
UPGRADE-LMK and DOWNGRADE-LMK, executed once for each
of the o modifications to the landmark set;

® Tyyup: time to rebuild the index from scratch after all updates,
using BUILDHCL;

o sPEED-UP: speedup factor Tyyrp/Trpyn, indicating how faster
the dynamic approach is compared to full recomputation.

The main conclusion drawn from the data in Table 2 is that, de-
spite their worst-case time complexities (see Theorems 3.4 and
3.8), the dynamic algorithms UPGRADE-LMK and DOWNGRADE-LMK
are highly efficient in practice for updating HCL indexes, con-
sistently outperforming full recomputation — by the BurLpHCL
algorithm — by one to three orders of magnitude. Even on mas-
sive datasets and with large landmark sets, our dynamic algo-
rithms maintain high efficiency. For instance, on graph car with
|[R] = 3200, the speedup factor exceeds 6,000x, while on Nw

217

and DEU we observe improvements of approximately 2,300x and
1,300%, respectively. Similarly, for the largest graphs considered
(e.g., YAH, UsA, and TwI), our dynamic framework is consistently
at least two orders of magnitude faster than BUTILDHCL. Remark-
ably, the speed-up tends to increase with the size of the landmark
set and is only weakly affected by changes in the graph size, for
a same topology (see, e.g., in Table 2, graph Usa compared to
ITA or NE, or graph TwI compared to YAH). These results clearly
demonstrate the excellent scalability of our methods in practical
scenarios. This is mostly due to their ability to identify and pro-
cess only the graph regions impacted by a change, rather than
the full graph.

I - CM T,

1004 CM Ty o

10?4

LUX CAI NW NE ITA DEU USA
Figure 2: Cumulative runtimes of pYN-HCL and cH-GsP for

a selection of input graphs, when |R| = 3200.

Importantly, this excellent performance in updating HCL in-
dexes does not come at the cost of compromising index qual-
ity. Lemmas 3.2 and 3.6 guarantee that dynamically updated
indexes have the same space usage as those rebuilt by BUurLbpHCL,
and that the compactness of the index —crucial to achieving

Fast Landmark Reconfiguration for Highway Cover Indexes

EDBT 26, 24-27 March 2026, Tampere (Finland)

IR| = 800 IR] = 1600 IR| = 3200
Graph Cumulative (s) ‘ Amortized (s) Cumulative (s) ‘ Amortized (s) Cumulative (s) ‘ Amortized (s)

CMTipyy CMTenose AMRipywy AMRepase | CMTipyy CMTengse AMRipyy AMRengse | CMTipyy CMTepase AMRipyy AMReygse

LUX 90.22 58285.67 9.0x107° 58x1073 12991 12181427 1.2x10™° 1.2x1072 110.64 24924028 1.1x10™°> 2.4x1072
CAI 36.92 22789.63 3.6x107° 22x1073 40.37 4789893 4.0x107° 4.7x1073 49.64 99008.76 4.9%x107° 9.9x 1073
NW 94350 223760.51 9.4x107° 22x1072 2560.12 466466.28 2.5x107% 4.6x 1072 6931.59 915736.92 6.9x107* 9.1x1072
NE 4464.98 428357.02 4.4x107" 42x107% | 20855.86 867067.34 2.0x107> 8.6x1072 | 2571851 1753043.30 25x1073 1.7x107!
ITA 950.73 379140.34 9.5x 107> 3.7x 1072 2968.71 727541.90 29x107% 7.2x1072 | 20791.94 151512043 2.0x107> 1.5x 107!
DEU 5097.15 1019891.28 5.0x107% 1.0x107' | 14471.19 1984033.10 14X 107> 1.9x107! | 26189.12 3957331.85 2.6x10™> 3.9x107!
UsAa | 2261078 1339209.99 22x1073 13 x107! | 109943.56 264751343 1.0x 1072 2.6x 107! | 163851.92 5301780.44 1.6x107% 53x107!

Table 3: Cumulative and amortized runtimes of DYN-HCL and cH-GSP to retrieve landmark-constrained distances.

millisecond/microsecond-scale query times — is preserved by
DYN-HCL. This is achieved at the cost of only a few seconds of
overhead per operation, compared to thousands of seconds for
full recomputation. Measurements of space occupancy and query
times are consistent with those reported in the literature for HCL
indexes [13, 30] and are therefore omitted for brevity.

Turning to (G2), in Table 3 we compare our dynamic HCL
framework with cH-Gsp from both cumulative and amortized
cost perspectives. The cumulative runtime aggregates the time
required to perform all relevant operations (index construction,
landmark updates, and queries) while the amortized cost is ob-
tained by dividing the cumulative runtime by the total number
of query operations, thereby estimating the average computa-
tional cost per query for each method. Specifically, we report the
following performance indicators:

o CMT;pyy: cumulative runtime for pyN-ucL, defined as the
sum of the time spent by BUILDHCL to construct the initial in-
dex, the time to update it via UPGRADE-LMK and DOWNGRADE-
LMK for each of the o changes, and the time to answer all
queries using QUERY;

® CMTy-csp: cumulative runtime for cH-GsP, given by the sum
of its preprocessing time and the time to answer all queries
using its query routine;

® AMRipyn, AMRey-asp: amortized time per query for the two
methods, obtained by dividing the respective cumulative run-
time by the number of query operations. In this classical
amortized analysis, the time DYN-HCL spends updating the
index o times is charged to the queries, whereas for cH-GsP
the only operations considered are the queries themselves
(preprocessing is distributed on queries for both methods).

The results in Table 3 provide strong evidence of the practicality
of UPGRADE-LMK and DOWNGRADE-LMK: across all datasets and
landmark sizes, CMTypyy is up to three orders of magnitude lower
than CMT cy.csp- Even in the most challenging cases (e.g., DEU or
Usa with |R| = 3200), pyN-HCL remains highly efficient and sub-
stantially faster than cH-GsP in retrieving landmark-constrained
distances. Although DYN-HCL must spend time updating the HCL
index after each landmark change to ensure correct query an-
swers, this overhead is negligible compared to the much larger
query times of cH-GsP. Overall, DYN-HCL proves to be the most
practical solution for computing landmark-constrained distances
under varying landmark sets. This advantage is further high-
lighted by the amortized measures: AMR;pyy ranges from just
a few microseconds (e.g., car with |R| = 800) to a few tens of
milliseconds (e.g., usa with |R| = 3200), depending on graph
size and landmark count. In contrast, CH-GSP incurs significantly
higher per-query costs — often orders of magnitude greater than
DYN-HCL. For example, in 1TA with |R| = 3200, AMR;pyy is 2 ms,

218

whereas AMR y.gsp is approximately 0.2 s. The superior scalabil-
ity of DYN-HCL is also evident in Figure 2, which plots CMTypyy
and CMTy_gsp for a selection of datasets with |R| = 3200 (results
for other |R| values are similar and omitted for brevity). Both
frameworks exhibit roughly linear scaling with graph size — a
desirable property — but pYN-HCL achieves far lower constants
and is at least an order of magnitude faster than cH-GsP in every
tested configuration, making it the more practical choice in all
scenarios considered. In summary, DYN-HCL proves to be a highly
scalable, space-efficient, and query-accurate solution for comput-
ing landmark-constrained distances under dynamic landmark
sets. Compared to static rebuilding or alternative approaches
such as cH-GsP, DYN-HCL offers: a) consistently lower runtimes
for both updates and queries; b) negligible overhead for handling
landmark dynamics; c) robust performance even at scale and
under heavy query loads, while preserving index compactness
and achieving millisecond-level query latencies. These results
establish DYN-HCL as both a practical and theoretically sound
framework for dynamic landmark-constrained distance queries,
and, by extension, for shortest-path or shortest beer path queries
with dynamic landmarks in large-scale networks.

5 Conclusion and Future Work

In this paper, we introduced DYN-HCL, a dynamic framework for
efficiently maintaining highway cover labelings in the presence of
landmark set updates. Our contributions include two novel, non-
trivial algorithms for incrementally and decrementally updating
HCL indexes as landmark vertices are inserted or removed, which:
(i) avoid full recomputation by identifying only the parts of the
index affected by modifications via few graph traversals; and (ii)
preserve the compactness and query performance of the static
HCL structure. Through an extensive experimental evaluation
on both real-world and synthetic graphs, we demonstrated that
DYN-HCL dramatically outperforms static recomputation, achiev-
ing speedups of up to four orders of magnitude, while maintaining
identical memory footprints and microsecond-scale query times.
Compared to state-of-the-art baselines for landmark-constrained
distance queries under dynamically evolving landmarks, DYN-HCL
is substantially more efficient in both cumulative and amortized
runtime, establishing it as a highly practical solution.

As future work, we plan to: (i) generalize our approach to han-
dle directed graphs and path-reporting queries; while these exten-
sions are straightforward from a design perspective (see [15, 29]),
experimental validation is essential to assess their practical per-
formance; (ii) explore the feasibility of adapting pYN-HCL to a
batch-dynamic model, where multiple landmark insertions and
deletions are processed together — building on recent advances
in batch-dynamic indexing [14, 28] to further reduce overhead
in large-scale update scenarios; and (iii) conduct experiments
in fully dynamic settings, where both the graph topology and

EDBT 26, 24-27 March 2026, Tampere (Finland)

the landmark set evolve over time, by combining pyN-HCL with
the techniques in [29] to support more general and realistic sce-
narios. Finally, we are interested in extending HCL to support
multi-category landmark sets, allowing for richer semantic inter-
pretations (e.g., different types of "important" vertices, similarly
to what is modeled through generalized shortest paths), which
would open the door to more expressive query applications and to
further comparisons with methods to solve generalized shortest
paths.

Acknowledgments

Work partially supported by: (i) Italian Ministry of University
and Research through Project "EXPAND: scalable algorithms
for EXPloratory Analyses of heterogeneous and dynamic Net-
worked Data" (PRIN grant n. 2022TS4Y3N), funded by the Eu-
ropean Union - Next Generation EU; (ii) Gruppo Nazionale Cal-
colo Scientifico-Istituto Nazionale di Alta Matematica (GNCS-
INdAM); (iii) European Union under the Italian National Recovery
and Resilience Plan (NRRP) of NextGenerationEU, partnership
on "Telecommunications of the Future" (program RESTART),
project MoVeOver/SCHEDULE (“Smart interseCtions witH con-
nEcteD and aUtonomous vehicLEs”, CUP J33C22002880001); (iv)
French government, through the UCA’*™ Investments in the Fu-
ture project managed by the National Research Agency (ANR,
reference number ANR-15-IDEX-01).

Artifacts

Our experiments can be reproduced using the code available
at https://github.com/D-hash/DynamicHighwayLabelling. It is
written in C++ and can be easily compiled via the provided Make-
file, after installing the NetworKit library for graph processing
(https://networkit.github.io/). Input datasets can be downloaded
from the repositories mentioned in the references.

References

[1] Takuya Akiba, Takanori Hayashi, Nozomi Nori, Yoichi Iwata, and Yuichi
Yoshida. 2015. Efficient Top-k Shortest-Path Distance Queries on Large Net-
works by Pruned Landmark Labeling. In Proc. of 29th AAAI Conference on
Artificial Intelligence. AAAI Press, , 2-8. doi:10.1609/AAALV2911.9154
Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2013. Fast Exact Shortest-path
Distance Queries on Large Networks by Pruned Landmark Labeling. In Proc.
of ACM SIGMOD International Conference on Management of Data (SIGMOD
2013). ACM, , 349-360. doi:10.1145/2463676.2465315

Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. 2014. Dynamic and historical
shortest-path distance queries on large evolving networks by pruned landmark
labeling. In 23rd International World Wide Web Conference, WWW ’14, Seoul,
2014. ACM, , 237-248. doi:10.1145/2566486.2568007

Julian Arz, Dennis Luxen, and Peter Sanders. 2013. Transit Node Routing
Reconsidered. In Experimental Algorithms, 12th International Symposium, SEA
2013, Rome, Italy, June 5-7, 2013. Proceedings (Lecture Notes in Computer Sci-
ence, Vol. 7933), Vincenzo Bonifaci, Camil Demetrescu, and Alberto Marchetti-
Spaccamela (Eds.). Springer, , 55-66. doi:10.1007/978-3-642-38527-8_7

Joyce Bacic, Saeed Mehrabi, and Michiel Smid. 2021. Shortest Beer Path Queries
in Outerplanar Graphs. In Proc. of 32nd International Symposium on Algorithms
and Computation (ISAAC 2021) (LIPIcs, Vol. 212). Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, , 62:1-62:16. doi:10.4230/LIPICS.ISAAC.2021.62
Joyce Bacic, Saeed Mehrabi, and Michiel Smid. 2023. Shortest Beer Path
Queries in Outerplanar Graphs. Algorithmica 85, 6 (2023), 1679-1705. doi:10.
1007/500453-022-01045-4

Hannah Bast, Daniel Delling, Andrew V. Goldberg, Matthias Miller-
Hannemann, Thomas Pajor, Peter Sanders, Dorothea Wagner, and Renato F.
Werneck. 2016. Route Planning in Transportation Networks. In Algorithm
Engineering - Selected Results and Surveys. Lecture Notes in Computer Science,
Vol. 9220. ,, 19-80. doi:10.1007/978-3-319-49487-6_2

Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. 2018. De-
terministic Fully Dynamic Data Structures for Vertex Cover and Matching.
SIAM §. Comput. 47, 3 (2018), 859-887. doi:10.1137/140998925

Davide Bilo, Luciano Guala, Stefano Leucci, and Alessandro Straziota. 2024.
Graph Spanners for Group Steiner Distances. In Proc. of 32nd Annual European
Symposium on Algorithms (ESA 2024) (LIPIcs, Vol. 308). Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, , 25:1-25:17. doi:10.4230/LIPICS.ESA.2024.25

[7

[

8

=

=

219

David Coudert et al.

[10] Béla Bollobas. 2011. Random Graphs, Second Edition. Cambridge Studies in
Advanced Mathematics, Vol. 73. Cambridge University Press, . doi:10.1017/
CB09780511814068

Meeyoung Cha, Hamed Haddadi, Fabricio Benevenuto, and P. Krishna Gum-
madi. 2010. Measuring User Influence in Twitter: The Million Follower Fallacy.
In Proceedings of the Fourth International Conference on Weblogs and Social
Media, ICWSM 2010, Washington, DC, USA, May 23-26, 2010, William W. Cohen
and Samuel Gosling (Eds.). The AAAI Press, , 10-17.

Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. 2003. Reachability
and Distance Queries via 2-Hop Labels. SIAM J. Comput. 32, 5 (2003), 1338—
1355. doi:10.1137/50097539702403098

David Coudert, Andrea D’Ascenzo, and Mattia D’Emidio. 2024. Indexing
Graphs for Shortest Beer Path Queries. In 24th Symposium on Algorithmic
Approaches for Transportation Modelling, Optimization, and Systems (ATMOS
2024) (OASlIcs, Vol. 123). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, ,
2:1-2:18. doi:10.4230/OASICS.ATMOS.2024.2

Annalisa D’Andrea, Mattia D’Emidio, Daniele Frigioni, Stefano Leucci, and
Guido Proietti. 2015. Dynamic Maintenance of a Shortest-Path Tree on Ho-
mogeneous Batches of Updates: New Algorithms and Experiments. ACM 7.
Exp. Algorithmics 20 (2015), 1.5:1.1-1.5:1.33. do0i:10.1145/2786022
Gianlorenzo D’Angelo, Mattia D’Emidio, and Daniele Frigioni. 2019. Fully
Dynamic 2-Hop Cover Labeling. ACM . Exp. Algorithmics 24, 1 (2019), 1.6:1-
1.6:36. doi:10.1145/3299901

Rathish Das, Meng He, Eitan Kondratovsky, J. Ilan Munro, Anurag Murty
Naredla, and Kaiyu Wu. 2022. Shortest Beer Path Queries in Interval Graphs. In
Proc. of 33rd International Symposium on Algorithms and Computation (ISAAC
2022) (LIPIcs, Vol. 248). Schloss Dagstuhl - Leibniz-Zentrum fir Informatik, ,
59:1-59:17. doi:10.4230/LIPICS.ISAAC.2022.59

Andrea D’Ascenzo and Mattia D’Emidio. 2023. Top-k Distance Queries on
Large Time-Evolving Graphs. IEEE Access 11 (2023), 102228-102242. doi:10.
1109/ACCESS.2023.3316602

Andrea D’Ascenzo and Mattia D’Emidio. 2025. On Mining Dynamic Graphs for
k Shortest Paths. In Proc. of 16th International Conference on Advances in Social
Networks Analysis and Mining (ASONAM 2024). Springer Nature Switzerland, ,
320-336. doi:10.1007/978-3-031-78541-2_20

Daniel Delling, Julian Dibbelt, Thomas Pajor, and Renato F. Werneck. 2015.
Public Transit Labeling. In Experimental Algorithms - 14th International Sympo-
sium, SEA 2015, Paris, France, June 29 - July 1, 2015, Proceedings (Lecture Notes
in Computer Science, Vol. 9125), Evripidis Bampis (Ed.). Springer, , 273-285.
d0i:10.1007/978-3-319-20086-6_21

Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato F. Werneck.
2011. Customizable Route Planning. In Experimental Algorithms, Panos M.
Pardalos and Steffen Rebennack (Eds.). Springer Berlin Heidelberg, Berlin,
Heidelberg, 376-387.

Daniel Delling, Andrew V. Goldberg, Thomas Pajor, and Renato F. Werneck.
2014. Robust Distance Queries on Massive Networks. In Proc. of 22th Annual
European Symposium on Algorithms (ESA 2014) (Lecture Notes in Computer
Science, Vol. 8737). Springer, , 321-333. doi:10.1007/978-3-662-44777-2_27
Daniel Delling, Andrew V. Goldberg, Ruslan Savchenko, and Renato F. Wer-
neck. 2014. Hub Labels: Theory and Practice. In Proc. of 13th International
Symposium on Experimental Algorithms (SEA 2014) (Lecture Notes in Computer
Science, Vol. 8504). Springer, , 259-270. doi:10.1007/978-3-319-07959-2_22
Daniel Delling and Renato F. Werneck. 2015. Customizable Point-of-Interest
Queries in Road Networks. IEEE Trans. Knowl. Data Eng. 27, 3 (2015), 686-698.
doi:10.1109/TKDE.2014.2345386

Camil Demetrescu, Andrew V Goldberg, and David S Johnson. 2009. The
shortest path problem: 9th DIMACS implementation challenge. Vol. 74. American
Mathematical Soc., .

Mattia D’Emidio and Imran Khan. 2019. Dynamic Public Transit Labeling. In
Computational Science and Its Applications - [CCSA 2019 - 19th International
Conference, Saint Petersburg, Russia, July 1-4, 2019, Proceedings, Part I (Lecture
Notes in Computer Science, Vol. 11619), Sanjay Misra, Osvaldo Gervasi, Beni-
amino Murgante, Elena N. Stankova, Vladimir Korkhov, Carmelo Maria Torre,
Ana Maria A. C. Rocha, David Taniar, Bernady O. Apduhan, and Eufemia
Tarantino (Eds.). Springer, , 103-117. doi:10.1007/978-3-030-24289-3_9

[26] Julian Dibbelt, Ben Strasser, and Dorothea Wagner. 2016. Customizable Con-
traction Hierarchies. ACM J. Exp. Algorithmics 21, 1 (2016), 1.5:1-1.5:49.
doi:10.1145/2886843

Gideon Dror, Noam Koenigstein, Yehuda Koren, and Markus Weimer. 2012.
The Yahoo! Music Dataset and KDD-Cup ’11. In Proceedings of KDD Cup 2011
competition, San Diego, CA, USA, 2011 (JMLR Proceedings, Vol. 18), Gideon
Dror, Yehuda Koren, and Markus Weimer (Eds.). JMLR.org, , 8-18. http:
//proceedings.mlr.press/v18/dror12a.html

Muhammad Farhan, Henning Koehler, and Qing Wang. 2024. BatchHL*: batch
dynamic labelling for distance queries on large-scale networks. VLDB J. 33, 1
(2024), 101-129. doi:10.1007/S00778-023-00799-9

Muhammad Farhan and Qing Wang. 2023. Efficient Maintenance of Highway
Cover Labelling for Distance Queries on Large Dynamic Graphs. World Wide
Web (WWW) 26, 5 (2023), 2427-2452. doi:10.1007/511280-023-01146-2
Muhammad Farhan, Qing Wang, Yu Lin, and Brendan D. McKay. 2019. A
Highly Scalable Labelling Approach for Exact Distance Queries in Complex
Networks. In Proc. of 22nd International Conference on Extending Database
Technology, EDBT 2019. OpenProceedings.org, , 13-24. doi:10.5441/002/EDBT.
2019.03

[11]

(12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[27]

[28]

[29

[30]

https://github.com/D-hash/DynamicHighwayLabelling
https://networkit.github.io/
https://doi.org/10.1609/AAAI.V29I1.9154
https://doi.org/10.1145/2463676.2465315
https://doi.org/10.1145/2566486.2568007
https://doi.org/10.1007/978-3-642-38527-8_7
https://doi.org/10.4230/LIPICS.ISAAC.2021.62
https://doi.org/10.1007/S00453-022-01045-4
https://doi.org/10.1007/S00453-022-01045-4
https://doi.org/10.1007/978-3-319-49487-6_2
https://doi.org/10.1137/140998925
https://doi.org/10.4230/LIPICS.ESA.2024.25
https://doi.org/10.1017/CBO9780511814068
https://doi.org/10.1017/CBO9780511814068
https://doi.org/10.1137/S0097539702403098
https://doi.org/10.4230/OASICS.ATMOS.2024.2
https://doi.org/10.1145/2786022
https://doi.org/10.1145/3299901
https://doi.org/10.4230/LIPICS.ISAAC.2022.59
https://doi.org/10.1109/ACCESS.2023.3316602
https://doi.org/10.1109/ACCESS.2023.3316602
https://doi.org/10.1007/978-3-031-78541-2_20
https://doi.org/10.1007/978-3-319-20086-6_21
https://doi.org/10.1007/978-3-662-44777-2_27
https://doi.org/10.1007/978-3-319-07959-2_22
https://doi.org/10.1109/TKDE.2014.2345386
https://doi.org/10.1007/978-3-030-24289-3_9
https://doi.org/10.1145/2886843
http://proceedings.mlr.press/v18/dror12a.html
http://proceedings.mlr.press/v18/dror12a.html
https://doi.org/10.1007/S00778-023-00799-9
https://doi.org/10.1007/S11280-023-01146-2
https://doi.org/10.5441/002/EDBT.2019.03
https://doi.org/10.5441/002/EDBT.2019.03

Fast Landmark Reconfiguration for Highway Cover Indexes

[31]

[32]

[33]

Muhammad Farhan, Qing Wang, Yu Lin, and Brendan D. McKay. 2022. Fast
fully dynamic labelling for distance queries. VLDB 7. 31, 3 (2022), 483-506.
doi:10.1007/S00778-021-00707-Z

Qingshuai Feng, You Peng, Wenjie Zhang, Ying Zhang, and Xuemin Lin. 2022.
Towards Real-Time Counting Shortest Cycles on Dynamic Graphs: A Hub
Labeling Approach. In Proc. of 38th IEEE International Conference on Data
Engineering (ICDE 2022). IEEE, , 512-524. doi:10.1109/ICDE53745.2022.00043
Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter.
2012. Exact Routing in Large Road Networks Using Contraction Hierarchies.
Transp. Sci. 46, 3 (2012), 388-404. doi:10.1287/TRSC.1110.0401

[34] Joachim Gudmundsson and Yuan Sha. 2023. Shortest Beer Path Queries in

[35]

[36]

[37

[38]

Digraphs with Bounded Treewidth. In Proc. of 34th International Symposium on
Algorithms and Computation (ISAAC 2023) (LIPIcs, Vol. 283). Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, , 35:1-35:17. do0i:10.4230/LIPICS.ISAAC.2023.
35

Tesshu Hanaka, Hirotaka Ono, Kunihiko Sadakane, and Kosuke Sugiyama.
2023. Shortest Beer Path Queries Based on Graph Decomposition. In Proc. of
34th International Symposium on Algorithms and Computation (ISAAC 2023)
(LIPIcs, Vol. 283). Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, , 37:1-
37:20. doi:10.4230/LIPICS.ISAAC.2023.37

Takanori Hayashi, Takuya Akiba, and Yuichi Yoshida. 2015. Fully Dynamic
Betweenness Centrality Maintenance on Massive Networks. Proc. VLDB
Endow. 9, 2 (2015), 48-59. d0i:10.14778/2850578.2850580

Moritz Hilger, Ekkehard Kéhler, Rolf H. Méhring, and Heiko Schilling. 2006.
Fast Point-to-Point Shortest Path Computations with Arc-Flags. In The Short-
est Path Problem, Proceedings of a DIMACS Workshop, Piscataway, New Jersey,
USA, November 13-14, 2006 (DIMACS Series in Discrete Mathematics and Theo-
retical Computer Science, Vol. 74), Camil Demetrescu, Andrew V. Goldberg, and
David S. Johnson (Eds.). DIMACS/AMS, , 41-72. doi:10.1090/DIMACS/074/03
Vassilis Kaffes, Alexandros Belesiotis, Dimitrios Skoutas, and Spiros Skiadopou-
los. 2018. Finding shortest keyword covering routes in road networks. In
Proceedings of the 30th International Conference on Scientific and Statistical
Database Management, SSDBM 2018, Bozen-Bolzano, Italy, July 09-11, 2018,

220

EDBT 26, 24-27 March 2026, Tampere (Finland)

Dimitris Sacharidis, Johann Gamper, and Michael H. Bohlen (Eds.). ACM, ,
12:1-12:12. doi:10.1145/3221269.3223038

[39] Jérome Kunegis. 2013. KONECT: the Koblenz network collection. In 22nd

[40]

[41]

[42

[43]

[44]

[45]

[46]

[47]

International World Wide Web Conference, WWW ’13, Companion Volume,
Leslie Carr, Alberto H. F. Laender, Bernadette Farias Loscio, Irwin King, Marcus
Fontoura, Denny Vrandecic, Lora Aroyo, José Palazzo M. de Oliveira, Fernanda
Lima, and Erik Wilde (Eds.). International World Wide Web Conferences
Steering Committee / ACM, , 1343-1350. doi:10.1145/2487788.2488173

Ziyi Liu, Lei Li, Mengxuan Zhang, Wen Hua, and Xiaofang Zhou. 2023. Multi-
constraint shortest path using forest hop labeling. VLDB .32, 3 (2023), 595-621.
d0i:10.1007/S00778-022-00760-2

Tiago P Peixoto et al. 2020. The Netzschleuder network catalogue and reposi-
tory.

You Peng, Xuemin Lin, Ying Zhang, Wenjie Zhang, and Lu Qin. 2022. Answer-
ing reachability and K-reach queries on large graphs with label constraints.
VLDB 7. 31, 1 (2022), 101-127. d0i:10.1007/S00778-021-00695-0

Michael N. Rice and Vassilis J. Tsotras. 2013. Engineering Generalized Shortest
Path Queries. In Proc. of 29th IEEE International Conference on Data Engineering
(ICDE 2013). IEEE Computer Society, , 949-960. doi:10.1109/ICDE.2013.6544888
Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Repository with
Interactive Graph Analytics and Visualization. http://networkrepository.com
Dominik Schultes. 2008. Routing in Road Networks with Transit Nodes. In
Encyclopedia of Algorithms - 2008 Edition, Ming-Yang Kao (Ed.). Springer, .
doi:10.1007/978-0-387-30162-4_353

Tim Zeitz. 2022. Fast Computation of Shortest Smooth Paths and Uniformly
Bounded Stretch with Lazy RPHAST. In 20th International Symposium on
Experimental Algorithms, SEA 2022, July 25-27, 2022, Heidelberg, Germany
(LIPIcs, Vol. 233), Christian Schulz and Bora Ugar (Eds.). Schloss Dagstuhl -
Leibniz-Zentrum fiir Informatik, , 3:1-3:18. doi:10.4230/LIPICS.SEA.2022.3
Yikai Zhang and Jeffrey Xu Yu. 2020. Hub Labeling for Shortest Path Counting.
In Proc. of 2020 ACM SIGMOD International Conference on Management of Data
(Portland, OR, USA) (SIGMOD 2020). Association for Computing Machinery, ,
1813-1828. doi:10.1145/3318464.3389737

https://doi.org/10.1007/S00778-021-00707-Z
https://doi.org/10.1109/ICDE53745.2022.00043
https://doi.org/10.1287/TRSC.1110.0401
https://doi.org/10.4230/LIPICS.ISAAC.2023.35
https://doi.org/10.4230/LIPICS.ISAAC.2023.35
https://doi.org/10.4230/LIPICS.ISAAC.2023.37
https://doi.org/10.14778/2850578.2850580
https://doi.org/10.1090/DIMACS/074/03
https://doi.org/10.1145/3221269.3223038
https://doi.org/10.1145/2487788.2488173
https://doi.org/10.1007/S00778-022-00760-2
https://doi.org/10.1007/S00778-021-00695-0
https://doi.org/10.1109/ICDE.2013.6544888
http://networkrepository.com
https://doi.org/10.1007/978-0-387-30162-4_353
https://doi.org/10.4230/LIPICS.SEA.2022.3
https://doi.org/10.1145/3318464.3389737

	Abstract
	1 Introduction
	1.1 Related Work

	2 Background
	3 Dynamic Algorithms
	3.1 Algorithm upgrade-lmk
	3.2 Algorithm downgrade-lmk

	4 Experimental Evaluation
	5 Conclusion and Future Work
	Acknowledgments
	References

