
Everything You Always Wanted to Know About JSON Schema
(But Were Afraid to Ask)

Mohamed-Amine Baazizi
Sorbonne Université, LIP6 UMR 7606

France
baazizi@ia.lip6.fr

Dario Colazzo
Université Paris-Dauphine, PSL -

PRAIRIE PSAI
France

dario.colazzo@dauphine.fr

Giorgio Ghelli
Dipartimento di Informatica

Università di Pisa
Pisa, Italy

ghelli@di.unipi.it

Carlo Sartiani
DiING

Università della Basilicata
Potenza, Italy

carlo.sartiani@unibas.it

Stefanie Scherzinger
University of Passau
Passau, Germany

stefanie.scherzinger@uni-passau.de

ABSTRACT
The last few years have seen the ubiquitous diffusion of JSON
as one of the most widely used formats for publishing and inter-
changing data, as it combines the flexibility of semistructured
data models with well-known data structures like records and
arrays. While various schema languages for describing JSON
data have been proposed in the past, e.g., JSound and Joi, JSON
Schema established itself as de-facto standard schema language
for JSON data.

The main aim of this tutorial is to provide the audience with
the basic notions for exploiting JSON Schema while processing
and manipulating JSON data. This tutorial focuses on four main
aspects: (1) we first describe Classical JSON Schema and intro-
duce the features that are shared with the latest versions of the
specification; (2) we introduce, then, Modern JSON Schema, ex-
plain why it differs from Classical JSON Schema, and discuss
its novel evaluation model; (3) we analyze tools that support
or exploit JSON Schema, like, for example, validators and data
generators; and (4) we highlight open research challenges and
opportunities related to JSON Schema.

1 INTRODUCTION
JSON Schema is a schema language for imposing constraints on
the structure and the admissible values of a family of JSON docu-
ments. In particular, JSON Schema allows users to impose con-
straints on objects, arrays, and primitive values, such as numbers
and strings; these constraints can be richly combined through
traditional logical combiners (e.g., and, or, not, and exclusive or),
and recursive data structures can be specified through recursive
references.

Many versions have been defined for this language, notably
Draft-03 of November 2010, Draft-04 of February 2013, Draft-06
of April 2017 [23], Draft 2019-09 of September 2019 [20], and
Draft 2020-12 of December 2020 [21]. Draft 2019-09 introduces
two important novelties to the evaluation model: annotation-
dependent validation and dynamic recursive references, which
have been generalized as general-purpose dynamic references in
Draft 2020-12. According to the terminology introduced by Henry
Andrews in [5], due to these modifications to the evaluation
model, Draft 2019-09 is the first draft that defines Modern JSON

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the
28th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2025, ISBN 978-3-89318-099-8 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Schema, while the previous drafts define variations of Classical
JSON Schema.

JSON Schema currently represents the de facto standard schema
language to describe JSON data, and its adoption is almost ubiq-
uitous: for instance, OpenAPI 2.0, 3.0, and 3.1 [1] adopt JSON
Schema to describe both input and allowed operations on web ser-
vices. Although widely adopted, JSON Schema remains a complex
language, with a nontrivial semantics and complicated interplays
among different operators. Furthermore, novel features of Mod-
ern JSON Schema have been interpreted in several different ways
by different developers, leading to the development of a plethora
of tools showing slightly different behavior on the same inputs.

In this tutorial proposal, we will present and discuss the most
important and controversial features of Classical and Modern
JSON Schema;wewill also analyze several classes of JSON Schema
tools, ranging from validators to data generators and static analy-
sis tools. The main aim of this tutorial is to provide the audience
and developers with the basic and fundamental concepts to profi-
ciently use JSON Schema and its vast ecosystem of related tools.

Outline. This tutorial is split into five main parts:

(1) JSONprimer. In this very introductory part of the tutorial,
we review the basic notions about JSON and we will also
introduce common notions that we will use throughout
the tutorial.

(2) Classical JSON Schema. In this part of the tutorial we
introduce the basic concepts about JSON Schema and de-
scribe in detail Classical JSON Schema. In particular, we
focus on boolean operators, keywords, and assertions, as
well as static references. We also discuss the implicative
semantics of JSON Schema and present the most impor-
tant complexity results on validation, satisfiability, and
inclusion checking.

(3) Modern JSON Schema. In this part of the tutorial we
shift our attention towards Modern JSON Schema and, in
particular, discuss Draft 2020-12. We begin by introducing
annotations and their impact on validation. We then focus
on "unevaluatedItems", "unevaluatedProperties", and dy-
namic references, the most complex, innovative, but also
controversial features of Modern JSON Schema. We finish
this part by discussing the existing complexity results for
Modern JSON Schema.

(4) Tools and Applications. In this part of the tutorial, we
analyze tools that support the use of JSON Schema, both

Tutorial Paper

Series ISSN: 2367-2005 1170 10.48786/edbt.2025.116

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.116

Classical and Modern, with particular emphasis on valida-
tors, data generators, and static analysis tools.

(5) Future Opportunities. Finally, we outline open research
problems as potential directions for new research in this
area.

In what follows, we describe at a very high level the technical
content covered in each of the last four aforementioned parts.

2 CLASSICAL JSON SCHEMA
In this part of the tutorial we will focus our attention on Classical
JSON Schema, with particular emphasis on the latest classical
draft (Draft 7 [22]), but we will also describe the common foun-
dations shared by both Classical and Modern JSON Schema.

In JSON Schema, a schema is a logical combination of as-
sertions that must be satisfied by a JSON value. JSON Schema
supports a rich set of boolean operators, comprising explicit con-
junction (i.e., "allOf"), implicit conjunction (i.e., {}), disjunction
(i.e., "anyOf"), exclusive disjunction (i.e., "oneOf"), and negation
(i.e., "not").

Object values are described through multiple assertions, com-
prising "properties", "patternProperties", "required", and fur-
ther "additionalProperties". Similarly, arrays are described by
"items", "additionalItems", "contains", and "uniqueItems".

"minProperties"/"maxProperties", "minItems"/"maxItems" can be
further used to define lower and upper bounds on the number of
properties and items, respectively.

A distinctive feature of most JSON Schema assertions is their
implicative semantics. Consider, for example, the following schema:

{"properties" : {"name" : {"type" : "string"}}}

This schema states that, if value 𝐽 is an object and has a property
"name", then the value of this property must be a string; if 𝐽 is not
an object or if it is an object lacking the property "name", then the
schema is trivially satisfied.

Classical JSON Schema supports recursive definitions through
static references. These references can be used to refer to def-
initions inside the same schema or inside an external schema.
References rely on JSON Pointer [13], a rather simple language to
traverse a JSON document and locate a single element. Identifiers
can be associated to schemas to simplify their use in external
schemas.

This part of the tutorial will end with a discussion about the
complexity of validation and satisfiability. Validation for Clas-
sical JSON Schema has been proved to be PTIME-complete by
Pezoa et al. in [19] and by Bourhis et al. in [12], while satis-
fiability is EXPTIME-hard and in 2-EXPTIME [12]. Bourhis et
al. [12] also proved that satisfiability is EXPTIME-complete when
"uniqueItems" is omitted. Since satisfiability and inclusion for
Classical JSON Schema are equivalent, these results also apply
to inclusion and equivalence. These results are summarized in
Table 1.

3 MODERN JSON SCHEMA
Modern JSON Schema represents not only an evolution of Clas-
sical JSON Schema but also, to some extent, a departure from
some of the foundations of the language. Given the significance
of the changes and the unconventional nature of some of the
features that have been introduced, in this part of the tutorial we
will discuss in detail the new draft, already adopted in OpenAPI
3.1 [16], and analyze the differences with Classical JSON Schema.

The first andmost important changewrt Classical JSON Schema
is represented by the introduction of annotations. They are gen-
erated during validation and, in a nutshell, list the properties
and items that have been “evaluated” during the validation pro-
cess. As a consequence, the result of validating a JSON value 𝐽

against a schema 𝑆 is no longer a boolean value, but instead a pair
< 𝜏, 𝑘 >, where 𝜏 is a boolean value, and 𝑘 is a list of annotations.

The introduction of annotations has a very important conse-
quence that we will discuss in detail in this part of the tutorial:
common De Morgan equivalences are no longer valid, and, in
particular, 𝑆 is no longer equivalent to {"not" : {"not" : 𝑆}}. An-
notations drive the behavior of two novel assertions that have
been introduced in Modern JSON Schema to overcome some of
the limitations of "additionalProperties" and "additionalItems":
"unevaluatedProperties" and "unevaluatedItems".

Dynamic references have been added in Modern JSON Schema
as an extension mechanism, allowing one to first define a base
form of a data structure and then to refine it, much in the spirit
of “self” refinement in OO languages.

For example, in the following schema, the reference

"$dynamicRef" : "http://mjs.ex/simple-tree#tree"

is dynamic, meaning that it may change its meaning when this
schema is “accessed” through a different context.
{ "$schema": "https://json-schema.org/draft/2020-12/schema",
"$id": "https://example.com/simple-tree",
"$dynamicAnchor": "tree",
"type": "object",
"properties": {
"data": true,
"children": {

"type": "array",
"items": {

"$dynamicRef": "https://example.com/simple-tree#tree" }
}

}
}

Here we have an example of such a different context: in the
schema below, the tree of the previous schema is refined, and the
meaning of the dynamic reference "$dynamicRef" : ". . . #tree"
that is found inside "http://mjs.ex/simple-tree" is dynamically
modified as a reference to "http://mjs.ex/number-tree#tree". In
the tutorial we will explain how this happens.
{ "$schema": "https://json-schema.org/draft/2020-12/schema",

"$id": "https://example.com/number-tree",
"$dynamicAnchor": "tree",
"properties": {

"data": { "type" : "number" }
},

"$ref": "https://example.com/simple-tree#tree"
}

Similarly to the previous part, this part of the tutorial will also
end with a discussion about complexity results.

4 TOOLS AND APPLICATIONS
In this part of the tutorial we will present several tools for JSON
Schema. We will focus on validators, data generators, and static
analysis tools.

4.1 Validators
There exist several validators for Classical JSON Schema and
slightly fewer for Modern JSON Schema. As of this day, the JSON
Schema web site [17] lists at least 66 different validators for
Classical JSON Schema and at least 39 for Modern JSON Sche-
ma, offering APIs for languages ranging from Java to JavaScript,
C++, and many others, as summarized in Table 2. Some of these

1171

Schema features Validation Satisfiability

No recursion
No "uniqueItems" PTIME-complete PSPACE-complete
"uniqueItems" PTIME-complete PSPACE-hard

In EXPSPACE

Recursion
No "uniqueItems" PTIME-complete EXPTIME-complete
"uniqueItems" PTIME-complete EXPTIME-hard

In 2EXPTIME
Table 1: Complexity results for Classical JSON Schema.

Language Classical JSON Schema Modern JSON Schema
.NET 4 3
C++ 5 2
Go 3 2
Java 9 7
JavaScript 8 6
Kotlin 4 1
Perl 4 2
PHP 3 1
Python 4 3
Ruby 2 1
Rust 2 2
Scala 0 1
Swift 1 1

Table 2: Validators per programming language, as listed on
the JSON Schema website (as of February 2025).

{ "description": "The test case description",
"schema": { "type": "string" },
"tests": [

{ "description": "a test with a valid instance",
"data": "a string",
"valid": true },

{ "description": "a test with an invalid instance",
"data": 15,
"valid": false }

]
}

Figure 1: A sample test case from the JSON Schema Test
Suite.

validators also offer a web-based GUI and helpful companion
tools.

Given the wide number of validators available, it is of para-
mount importance to assess their quality and their conformance
to the specification. To this end, the JSON Schema community
designed the JSON Schema Test Suite [18] and developed the tool
Bowtie [9].

The JSON Schema Test Suite comprises a set of test cases, each
addressing a specific feature or operator of the specification. A
test case is a JSON file containing a schema and an array of tests,
where each test is formed by a JSON value to be validated against
the schema and by a boolean value describing the expected vali-
dation result, as shown in Figure 1. The JSON Schema Test Suite
supports all versions of the specification.

The JSON Schema Test Suite has been designed with the aim
of helping developers implement and debug validators. However,
a user willing to find the proper validator for their specific appli-
cation context should manually run the tests on all the validators

of interest, which can be cumbersome and time consuming. The
Bowtie tool, developed by Julian Berman [9], tries to overcome
these issues by providing an integrated environment to run tests
on multiple validators; developers willing to integrate their own
tool can use a specific API and must provide an OCI container
image. Bowtie coordinates the execution of tests and collects and
summarizes their results. The Bowtie website [10] reports on the
results of almost daily runs of the JSON Schema Test Suite.

4.2 Data Generators
There are several data generators for JSON Schema. They usually
take as input a schema, possibly annotated with further informa-
tion, and return a JSON document that might satisfy the input
schema. A few tools, like [11] and [4] for example, are based
on a trial-and-error approach. In particular, the JSON Schema
Faker [4] takes as input a schema 𝑆 and generates a JSON in-
stance 𝐽 by considering the information in 𝑆 ; if 𝐽 is valid wrt
𝑆 , then generation terminates, otherwise the tool retries. This
repeats until a valid data instance is generated or the maximum
number of iterations has been reached; in the latter case, the last
generated JSON value is returned, although it may be invalid.

Both [11] and [4] generate JSON instances where all the leaves
are random values, and, hence, they cannot generate instances
with realistic values, which may represent a significant obstacle
in some application context. Furthermore, these tools cannot en-
force schema coverage or branch coverage policies. Another class
of tools, that compile a schema into a generation plan, may over-
come these limitations. Hypothesis-jsonschema [3] is an exten-
sion of the popular property-based test generator Hypothesis [2].
This library takes as input a schema and returns an hypothesis
strategy, e.g., a data generation plan for Hypothesis. This strategy
can be further modified by the user to customize its behavior.
This library has been further extended in schemathesis [15], a
tool for generating fuzzers for OpenAPI.

4.3 Static Analysis Tools
In [14], Habib et al. describe a tool for Classical JSON Schema
containment checking. The tool, written in Python and used
within the Lale ML library, takes as input two schemas 𝑆1 and 𝑆2,
and checks whether 𝑆1 is contained in 𝑆2. The tool exploits a
classical rule-based approach; however, the set of rules being
used is incomplete and, therefore, the tool may not be able to
verify the containment.

In [6], Attouche et al. describe a witness generator for Classical
JSON Schema. The tool takes as input a schema 𝑆 , and returns a
value 𝐽 satisfying 𝑆 if and only if 𝑆 is not empty; an error message
is returned in case 𝑆 is unsatisfiable. Since in Classical JSON Sche-
ma 𝑆1 ⊆ 𝑆2 if and only if 𝑆1 ∧ ¬𝑆2 ≠ ∅, this tool can also be used
for containment checking.

1172

To the best of our knowledge there are no static analysis tools
for Modern JSON Schema yet.

5 FUTURE OPPORTUNITIES
We finally discuss several open challenges and research opportu-
nities related to JSON Schema, including the following.

Formalization and Static Analysis for Modern JSON Schema.
Classical JSON Schema has been studied in detail, and its seman-
tics has been formalized in several papers [8, 12, 19]. However,
little has been done with regard to Modern JSON Schema, partly
because of its novelty. The only known formalization for Modern
JSON Schema has been described by Attouche et al. in [7]. Hence,
a promising research direction is to understand how annotations
and dynamic references impact the complexity of important de-
cision problems like inclusion and equivalence.

Data Generation. While there exist several data generators for
JSON Schema, they may produce low-quality output or require
heavy human intervention to improve the quality of the data
instances generated. A major research opportunity is to design
data generation tools that are capable of generating realistic and
high-quality data with little or no human intervention, possibly
by exploiting LLMs to incorporate some world and linguistic
knowledge.

6 DIFFERENCES WITH OTHER VERSIONS
OF THE TUTORIAL

At EDBT 2019 and SIGMOD 2019, we presented two tutorials
on schema languages and tools for JSON data. In those versions
JSON Schema was a very minor topic and much more emphasis
was placed on other languages, including Joi and TypeScript.

7 BIOGRAPHICAL SKETCHES
Mohamed-Amine Baazizi (Ph.D.) is Assistant Professor at Sor-
bonne Université. He received his PhD from Université of Paris-
Sud and completed his postdoctoral studies in Télécom Paristech.
His research focuses on exploiting schema information for opti-
mizing the processing of semi-structured data.

Dario Colazzo (Ph.D.) is Full Professor in Computer Science
at LAMSADE - Université Paris-Dauphine, as well as PRAIRIE
Fellow. He received his PhD from Università di Pisa, and he
completed his postdoctoral studies at Università di Venezia and
Université Paris Sud. His main research activities focus on static
analysis techniques for large scale data management.

Giorgio Ghelli (Ph.D.) is Full Professor in Computer Science,
at Università di Pisa. He was Visiting Professor at École Normale
Supérieure Paris, at Microsoft Research Center, Cambridge (UK),
at Microsoft Co. (Redmond, USA), and at LAMSADE - Université
Paris-Dauphine. He worked on database programming languages
and type systems for these languages, especially in the fields of
object oriented and semistructured data models.

Carlo Sartiani (Ph.D.) is Associate Professor in Computer
Science at Università della Basilicata. He received his PhD from
Università di Pisa, and he completed his postdoctoral studies at
Università di Pisa. He worked on database programming lan-
guages and data integration systems, and his current research
activities focus on semistructured and big data.

Stefanie Scherzinger (Ph.D.) is Full Professor in Computer
Science at the University of Passau, where she chairs the Scalable
Database Systems group. Drawing on her earlier experience as a
software developer at IBM and Google, her research focuses on

schema management tasks, including schema analysis, integra-
tion, discovery, and evolution.

ACKNOWLEDGMENTS
This work has been partially supported by the EU H2020 pro-
gramme under the funding schemes ERC-2018-ADG G.A. 834756
“XAI: Science and technology for the eXplanation of AI decision
making” and by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) – grant #385808805. We also ac-
knowledge the support of the PRIN Project “BioConceptum”
(2022AEEKXS), under the NRRP MUR program funded by the
NextGenerationEU.

REFERENCES
[1] 2024. OpenAPI Initiative. Available online at https://www.openapis.org.
[2] 2025. Hypothesis. Available at https://hypothesis.readthedocs.io/en/latest/.

Retrieved 13 February 2025.
[3] 2025. hypothesis-jsonschema. Available on GitHub at https://github.com/

python-jsonschema/hypothesis-jsonschema. Retrieved 13 Febriary 2025.
[4] 2025. JSON Schema Faker. Available on GitHub at https://github.com/

json-schema-faker/json-schema-faker and as an interactive tool at https:
//json-schema-faker.js.org. Retrieved 13 February 2025.

[5] Henry Andrews. 2023. Modern JSON Schema. Available online at https:
//modern-json-schema.com/.

[6] Lyes Attouche, Mohamed Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo
Sartiani, and Stefanie Scherzinger. 2022. Witness Generation for JSON Schema.
Proc. VLDB Endow. 15, 13 (2022), 4002–4014. https://www.vldb.org/pvldb/
vol15/p4002-sartiani.pdf

[7] Lyes Attouche, Mohamed Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo
Sartiani, and Stefanie Scherzinger. 2024. Validation of Modern JSON Schema:
Formalization and Complexity. Proc. ACM Program. Lang. 8, POPL (2024),
1451–1481. https://doi.org/10.1145/3632891

[8] Mohamed Amine Baazizi, Dario Colazzo, Giorgio Ghelli, Carlo Sartiani, and
Stefanie Scherzinger. 2023. Negation-closure for JSON Schema. Theor. Comput.
Sci. 955 (2023), 113823. https://doi.org/10.1016/J.TCS.2023.113823

[9] Julian Berman. 2024. Bowtie JSON Schema Meta Validator. https://github.
com/bowtie-json-schema/bowtie Online tool. Version 2024.11.7.

[10] Julian Berman. 2025. Bowtie Report. Available at https://bowtie.report.
[11] Jim Blackler. 2022. JSON Generator. Available at https://github.com/

jimblackler/jsongenerator. Retrieved 13 February 2025.
[12] Pierre Bourhis, Juan L. Reutter, Fernando Suárez, and Domagoj Vrgoc. 2017.

JSON: Data model, Query languages and Schema specification. In Proc. PODS.
123–135. https://doi.org/10.1145/3034786.3056120

[13] P. Bryan, K. Zyp, and M. Nottingham. Aprile 2013. JavaScript Object Notation
(JSON) Pointer. Technical Report. Internet Engineering Task Force. https:
//www.rfc-editor.org/info/rfc6901

[14] Andrew Habib, Avraham Shinnar, Martin Hirzel, and Michael Pradel. 2021.
Finding Data Compatibility Bugs with JSON Subschema Checking. In Proc.
ISSTA. 620–632. https://doi.org/10.1145/3460319.3464796

[15] Zac Hatfield-Dodds and Dmitry Dygalo. 2022. Deriving Semantics-Aware
Fuzzers from Web API Schemas. In International Conference on Software En-
gineering: Companion Proceedings, ICSE Companion 2022. 345–346. https:
//doi.org/10.1145/3510454.3528637

[16] Darrel Miller, JeremyWhitlock, Marsh Gardiner, Mike Ralphson, Ron Ratovsky,
and Uri Sarid. 2021. OpenAPI Specification v3.1.0. Available at https:
//spec.openapis.org/oas/v3.1.0.

[17] JSON Schema Org. 2025. JSON Schema. Available at https://json-schema.org.
[18] JSON Schema Org. 2025. JSON Schema Test Suite. https://github.com/

json-schema-org/JSON-Schema-Test-Suite. Retrieved 13 February 2025.
[19] Felipe Pezoa, Juan L. Reutter, Fernando Suárez, Martín Ugarte, and Domagoj

Vrgoc. 2016. Foundations of JSON Schema. In Proc. WWW. 263–273.
[20] A. Wright, H. Andrews, and B. Hutton. 2019. JSON Schema Validation: A

Vocabulary for Structural Validation of JSON - draft-handrews-json-schema-
validation-02. Technical Report. Internet Engineering Task Force. https:
//tools.ietf.org/html/draft-handrews-json-schema-validation-02

[21] A. Wright, H. Andrews, and B. Hutton. 2020. JSON Schema Validation: A
Vocabulary for Structural Validation of JSON - draft-bhutton-json-schema-
validation-00. Technical Report. Internet Engineering Task Force. https:
//tools.ietf.org/html/draft-bhutton-json-schema-validation-00

[22] A. Wright, H. Andrews, and G. Luff. 2018. JSON Schema Validation: A
Vocabulary for Structural Validation of JSON - draft-handrews-json-schema-
validation-01. Technical Report. Internet Engineering Task Force. https:
//json-schema.org/draft-07/draft-handrews-json-schema-validation-01

[23] A. Wright, G. Luff, and H. Andrews. 2017. JSON Schema Validation: A Vocabu-
lary for Structural Validation of JSON - draft-wright-json-schema-validation-01.
Technical Report. Internet Engineering Task Force. https://tools.ietf.org/html/
draft-wright-json-schema-validation-01

1173

