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ABSTRACT
Graph-theoretic algorithms and graph machine learning mod-
els are essential tools for addressing many real-life problems,
such as social network analysis and bioinformatics. To support
large-scale graph analytics, graph-parallel systems have been
actively developed for over one decade, such as Google’s Pregel
and Spark’s GraphX, which (i) promote a think-like-a-vertex com-
puting model and target (ii) iterative algorithms and (iii) those
problems that output a value for each vertex. However, this model
is too restricted for supporting the rich set of heterogeneous op-
erations for graph analytics and machine learning that many real
applications demand.

In recent years, two new trends emerge in graph-parallel sys-
tems research: (1) a novel think-like-a-task computing model that
can efficiently support the various computationally expensive
problems of subgraph search; and (2) scalable systems for learn-
ing graph neural networks. These systems effectively comple-
ment the diversity needs of graph-parallel tools that can flexibly
work together in a comprehensive graph processing pipeline
for real applications, with the capability of capturing structural
features. This tutorial will provide an effective categorization
of the recent systems in these two directions based on their
computing models and adopted techniques, and will review the
key design ideas of these systems. The slides can be found at
https://sites.google.com/view/system4graph-tutorial.

1 TUTORIAL RELEVANCE AND GOALS
Two new trends emerge in graph-parallel systems research that
can flexibly work together in a comprehensive graph process-
ing pipeline for real applications: (1) a novel think-like-a-task
computing model that can efficiently support the various compu-
tationally expensive problems of subgraph search; and (2) scalable
systems for learning graph neural networks. This tutorial will
provide an effective categorization of the recent systems in these
two directions based on their computing models and adopted
techniques, and will review the key design ideas of these systems.

This tutorial is closely relevant to the scope of EDBT. Specif-
ically, graph analytics and graph machine learning have been
important topics with EDBT in recent decades. For example, in
EDBT 2024 alone, there are 12 publications with “graph” in the
title. Besides, 3 out of the 17 demonstration papers, and 1 out
of the 3 tutorials, are related to graph analytics and learning.
However, it is important for graph application researchers to
understand the recent graph systems research and development
so that they can select the right and latest graph analytics and
learning systems to solve their problems at hand, and the current
tutorial is designed to fulfill this demand.
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2 TARGET AUDIENCE & PREREQUISITES
The target audience for this tutorial includes anyone who are
interested in large-scale graph analytics and machine learning,
such as (1) researchers and practitioners who would like to under-
stand how to choose the proper systems for their graph-related
applications at hand, and (2) system developers who want to
learn how to design graph-parallel systems. Our tutorial will be
self-explanatory with minimal prerequisites, including a basic
understanding of graph theory and some familiarity with GNNs.

3 PRIOR TUTORIALS AND DIFFERENCES
We have delivered this tutorial at IJCAI 2024, KDD 2024 [40],
and CIKM 2024 [39]. This tutorial will cover more up-to-date
systems not covered in previous tutorials, such as the systems
for compressed training of graph neural networks. We will also
deliver this tutorial in SDM 2025.

4 DETAILED TUTORIAL SCOPE
4.1 Introduction
Background and Motivation. Pioneered by Google’s Pregel, a
lot of graph-parallel systems have been developed in the past
decade that adopt a think-like-a-vertex (TLAV) programming
model and iterative computation model. However, TLAV systems
are dedicated to scaling those graph problems that output a value
for each vertex, such as random walks (PageRank, single-source
SimRank) and graph traversal (breadth-first search, single-source
shortest path), while many real problems concern subgraph struc-
tures, such as finding functional groups in bioinformatics, and
finding communities in interaction networks for cybersecurity
applications [9].

Figure 1 summarizes a typical pipeline for graph processing,
consisting of a graph analytics phase and an optional graph ma-
chine learning (ML) phase. The analytic tasks either concern
individual vertices (e.g., node scoring or classification), or con-
cern substructures or even an entire graph (e.g., dense/frequent
subgraph mining, graph classification). There are four analytics
paths in the pipeline:

(1) Vertex Analytics, which outputs a score for each vertex,
useful for applications such as biomolecule prioritization
in network biology, or object ranking in recommender
systems.

(2) Vertex Analytics + ML, where the analytics stage out-
puts vertex embeddings for downstream ML tasks. Vertex
embeddings can be learned from the graph topology as in
DeepWalk and node2vec, or the vertex features may come
directly from the applications or be computed based on
the graph topology (e.g., in- and out-degrees, clustering
coefficient).

(3) Structure Analytics, which outputs subgraph structures
(patterns or instances), useful for finding functional groups
in network biology, and community detection.

(4) Structure Analytics +ML, where informative structures
are extracted as features for graph classification/regression.
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Figure 1: A Pipeline for Graph Analytics and Machine Learning

TLAV systems mainly address the scalability issue of vertex an-
alytics (+ ML), with many killer applications in recommender sys-
tems and bioinformatics. However, many real problems concern
subgraph structures, and they are actually more computationally
challenging due to the exponential search space of subgraphs
in a graph, but cannot be effectively accelerated by TLAV sys-
tems. For example, Chu and Cheng [6] noticed that for triangle
counting, the state-of-the-art MapReduce algorithm takes 5.33
minutes using 1636 machines, while their serial external-memory
algorithm takes only 0.5 minute. In fact, given an input graph
G = (V , E), TLAV systems are only efficient for iterative compu-
tations where each iteration has O(|V | + |E |) cost and there are
O(log |V |) iterations, giving a time complexity upper bound of
O
(
(|V | + |E |) log |V |

)
[33].

In recent years, two new trends emerge in graph-parallel sys-
tems research: (1) a lot of novel systems have been recently devel-
oped targeting themore compute-intensive subgraph search prob-
lems, which all adopt a subgraph-centric programming model (in
contrast to vertex-centric); (2) graph neural networks (GNN) have
boomed in various applications, and a number of scalable GNN
systems have been developed. These two directions well cover the
“Graph Structures” and “ML” components of the pipeline shown
in Figure 1, but there currently lacks a comprehensive tutorial to
survey and introduce these exciting new system advancements.

This tutorial aims to fill this gap.We offered a tutorial on graph-
parallel systems in SIGMOD 2016 [32] but it mainly focused on
TLAV systems. There were also recent tutorials on GNNs [2] but
they focused on model design in real applications. In contrast,
this tutorial introduces the parallel/distributed system design
aspects of subgraph search and GNNs, so is unique and timely.

We remark that the two topicswe cover here are related and im-
portant in order to fully explore the potential of various graph an-
alytics tools in a real application pipeline. For example, frequent
subgraph structural patterns have been found informative in con-
ventional models for graph classification and regression [19, 21].
ML applications benefiting from having structural features in-
clude biochemistry [19], bioinformatics [20], and community
detection [24], where structural features are found to outper-
form neural graph embedding methods. There are also works
applying GNNs for approximate subgraph search, such as neu-
ral subgraph matching [41] and neural subgraph counting [27],
where considering subgraph structures were found essential for
good performance. Finally, Subgraph GNNs [3, 8] which model
graphs as collections of subgraphs are found to be more expres-
sive than regular GNNs.

4.2 Systems for Structure Analytics
Programmability is important for a graph-parallel system: the
system should make it easy to implement a broad range of ad-
vanced parallel/distributed analytics, not much more difficult (if

Table 1: Systems for Subgraph Search: Summary of Fea-
tures

✓ ✓ ✓

✓ ✓ ✓

✓ ✓ ✓ EG

✓ ✓ ✓

✓ ✓ ✓

✓ ✓ ✓

✓ ✓

✓ ✓

SE/SM ✓

SE/SM ✓

SE/SM ✓ EG

SE/SM ✓ EG

SE/SM ✓ PT

✓ ✓ PT

✓ ✓

✓ ✓

✓ ✓

✓ ✓

Arabesque

G-Miner

RStream

G-thinker

(Pattern-to-Instance) (Instance-to-Pattern)

Problem Type Search Approach

* SE/SM = Subgraph Enumeration/Matching

Fractal

Pangolin

Peregrine

* EG = Entire Graph (Loaded to GPU)

* PT = A Partition of a Graph

(Loaded to GPU) Each Time

AutoMine

GraphPi

GraphZero

Single Machine / Distributed

Single-GPU / Multi-GPU

SE / SM / SE+SM, symmetry?

Approx? Correct?

GSI, cuTS, 

STMatch, EGSM

PBE, VSGM,

SGSI

ScaleMine

DistGraph

T-FSM

PrefixFPM

G2-AIMD

T-DFS

G-thinkerQ

not easier) than their serial algorithm counterparts. TLAV sys-
tems are a good example, where the user-specified programs are
often easier to implement than a serial algorithm from scratch.

However, TLAV systems are not suitable for subgraph search,
since computations are at individual vertices rather than sub-
graphs, and TLAV systems are for iterative computations with a
time complexity of O

(
(|V | + |E |) log |V |

)
[33].

In this tutorial, we will review a series of new systems pro-
posed recently for subgraph search. Different from TLAV systems,
these systems adopt a think-like-a-graph (TLAG) programming
model, which extends valid small graph structures by one edge (or
vertex) at a time to grow larger valid graph structures. However,
most of these systems such as Arabesque [26], RStream [28] and
Pangolin [5] adopt a breadth-first subgraph extension approach
where subgraphs of size (i + 1) cannot start their generation until
all subgraphs with size i have been generated, which creates
a lot of subgraph materialization cost and restricts scalability
since the number of subgraph instances grows exponentially
with the size. Some recent systems such as G-thinker [34, 35],
G-Miner [4] and Fractal [7] resolve this issue by allowing depth-
first subgraph-instance backtracking without actually material-
izing the instances. While these systems target one-time offline
analytics, G-thinkerQ [43] efficiently supports interactive on-
line querying where users continually submit subgraph queries
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Table 2: Techniques of Distributed Systems for GNNTrain-
ing

✓
✓

✓
✓
✓ ✓ ✓

✓
✓ ✓
✓ ✓
✓ ✓

✓ ✓
✓ ✓ ✓

✓ ✓
✓ ✓

Euler

DGCL

AliGraph

Graph Data 

Communication

ByteGNN

P3

DistDGL
AGL

NeutronStar

BGL
Sancus

Single Machine / Distributed
Single-GPU / Multi-GPU
SE / SM / SE+SM, symmetry?
Approx? Correct?

Dorylus

OptimizationsSystems

Operators Scheduling

Model Computation 

and Synchronization

Other Optimizations

Full-Graph GNN

DistGNN
HongTu

with different query contents. AutoMine [18], GraphPi [22] and
GraphZero [17] focus on subgraph enumeration/matching where
different vertex matching order leads to different costs, and they
adopt a compilation-based approach to generate subgraph enu-
meration code with a favorable vertex matching order.

More recently, some systems begin to explore the use of GPUs
to further accelerate subgraph enumeration/matching, including
BFS solutions such as GSI [47], cuTS [30], PBE [10], VSGM [12],
SGSI [46] and G2-AIMD [42], and DFS solutions such as STMa-
tch [29], T-DFS [44] and EGSM [25].

Table 1 summarizes the key features of existing TLAG systems
that we will cover in this tutorial.

4.3 Systems for Graph Machine Learning
Graph classification and regression have been conventionally
solved by shallow-learning models such as support vector ma-
chines [19–21]. Recent advancement in deep learning has made
graph neural networks (GNNs) (e.g., GCN, GAT) popular as down-
stream models for graph machine learning. GNNs operate by col-
lecting the features of neighboring vertices and connected edges,
and recursively aggregating them and transforming them into
new vertex features. Taking the GraphSAGE model [11] as an
example, where each graph convolution layer can be expressed
as follows:

h(k )
N(v) ← AGGREGATEk

(
{h(k−1)u | ∀u ⊆ N(v)}

)
,

h(k )v ← σ
(
W(k ) · CONCAT

(
h(k−1)v , h(k )

N(v)
) )
,

where N(v) denotes the set of v’s neighboring vertices. For the
k
th

convolution layer, every vertex v first applies the AGGRE-
GATE operation to obtain the feature vectors of its neighbors
from the (k − 1)

th
layer. Then, the aggregated result is merged

withv’s feature vector from the (k −1)
th

layer, followed by linear
transformation with a trainable weight matrixW. A non-linear
activation function σ , such as the sigmoid function, is then ap-
plied to the output to obtain v’s feature vector for the k

th
layer.

Here, we can see the each layer of GNN has two stages: Graph
Data Retrieving, and Model Computation and Synchronization.

A large number of GNN training systems have been proposed
in recent years. However, most of them are single-GPU systems,
which cannot scale to industrial-scale large graphs. In this tuto-
rial, we will focus on distributed GNN training systems. We will
first present the challenges and then introduce a range of rep-
resentative GNN systems with a variety of techniques designed

to address the key performance bottlenecks. These systems are
from both academic and industrial contexts, providing a compre-
hensive coverage.

Distributed GNN training presents unique challenges different
from traditional machine learning tasks. Unlike training tasks in
computer vision or natural language, GNN training requires ac-
cess to neighborhood information that is not independent across
training samples. As a result, the first challenge in distributed
GNN training is the need for efficient (1) Graph Data Com-
munication. Another challenge is (2) Operator Scheduling
which needs to balance tasks among computing nodes, includ-
ing subgraph sampling, neighborhood feature aggregation, and
model learning operations such as loss computation, gradient
calculation and parameter updating, while making optimal use
of available resources. The third task is (3) Model Computa-
tion and Synchronization, where frequent synchronizations
between nodes during training are needed to ensure consistency
in model parameters, which often results in increased synchro-
nization delay and communication overhead.

To tackle the aforementioned major challenges, many tech-
niques have been proposed by various distributed GNN systems
in recent years. Table 2 summarizes the existing distributed GNN
systems that we will cover in this tutorial, along with their tech-
nique categories. We will also introduce recent works for com-
pressed GNN training using various quantization techniques,
such as EC-Graph [23], EXACT [15], F2CGT [16] and Sylvie [48].

5 TUTORIAL OUTLINE
Our tutorial is structured as follows:
Opening: We will motivate this tutorial with the general graph
processing pipeline, briefly mention the TLAV systems and their
application scope, and the two new trends in graph-parallel sys-
tems research, i.e., subgraph search and GNNs.
Systems for Subgraph Finding: We will introduce subgraph
finding (SF) problems and their applications. We will then review
the systems for SF (including dedicated ones for subgraph enu-
meration/matching, some of which support GPUs) and explain
their pros and cons.
Systems for Frequent SubgraphMining (FSM):Wewill intro-
duce FSM and its applications in both single-graph and transaction-
database contexts, and review the systems for FSM and explain
their pros and cons.
An overview on GNN systems: We will first give an overview
on GNN training systems, the history and current trend.
Optimization techniques for GNN systems: We will then
present various optimization techniques for distributed GNN
systems, including optimizations on graph data communication,
operator scheduling, model computation and synchronization.
Closing:We will summarize and envision the future trends of
graph-parallel systems in both research and development.

6 PRESENTERS AND THEIR EXPERTISE
This tutorial will be delivered by Dr. Da Yan from the Depart-
ment of Computer Science at Indiana University Bloomington,
and his graph systems team members Lyuheng Yuan, Akhlaque
Ahmad and Saugat Adhikari. Dr. Yan and his team have developed
graph-analytics systems including G-thinker [9, 13, 34, 35], G-
thinkerQ [43], PrefixFPM [36, 37], T-FSM [14, 45], G2-AIMD [42]
and T-DFS [44], and are the pioneers of the think-like-a-task com-
puting model T-thinker. Dr. Yan also has extensive experience in
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developing think-like-a-vertex (TLAV) graph systems and GNN.
Dr. Yan and his team have a long history of developing graph-
parallel systems, with dozens of related publications in top confer-
ences such as SIGMOD, VLDB, KDD, ICDE, and top journals such
as ACM TODS, VLDB Journal, IEEE TPDS and IEEE TKDE. Dr.
Yan led the development of the BigGraph@CUHK platform [1]
with many well-known systems following the TLAV model, a tu-
torial on TLAV systems in SIGMOD 2016 [32], and related books
with prestigious publishers [31, 38]. Dr. Yan is the sole winner of
HongKong 2015 Young Scientist Award in Physical/Mathematical
science, and his graph systems research was funded by the DOE
Office of Science Early Career Research Program in 2023.
Acknowledgment. This work was supported by DOE ECRP
Award 0000278892, NSFOIA-2229394, OAC-2414474, OAC-2414185,
and South Big Data Innovation Hub 2022 S.E.E.D.S. Award.
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