
Can Operations Research Bring You to the Next Level? Basics
and Applications

Vincent T’kindt
LIFAT, University of Tours

Tours, France
tkindt@univ-tours.fr

Patrick Marcel
LIFO, University of Orléans

Orléans, France
Patrick.Marcel@univ-orleans.fr

ABSTRACT
We focus on some intersections between two research fields: data
management and operations research (OR). More precisely, we
consider how advanced OR techniques can be used to solve opti-
mization problems occurring in databases. We recall the basics
of OR, introduce a few advanced approaches and, next, present
two uses cases: (i) a heuristic stemming from OR for solving the
graph edit distance problem and (ii) a detailed use case on Ex-
ploratory Data Analysis (EDA) where a heuristic stemming from
OR is used to cope with large instances of a database exploration
optimization problem.

1 INTRODUCTION
The literature aboundswithworks on the solution of optimization
problems occurring in data management, like query optimiza-
tion, concurrency control, scheduling in Map-Reduce systems,
aggregation of multiple rankings, etc. Many of these problems
were shown to be N𝑃-hard in the strong sense, ruling out the
existence of exact polynomial-time algorithms to solve them,
and led to the proposition of heuristic algorithms. The topic of
query optimization is probably the best illustration of such prob-
lems, as it involves the solution of many theoretical and practical
problems like testing query containment, choosing a query plan,
choosing a join order, choosing optimization structures to ma-
terialize, choosing the minimum set of structures to answer a
set of queries, to name a few. For instance, exact algorithms,
like dynamic programming, and heuristic algorithms have been
proposed to pick a join order (see e.g. [11, 14]) and are limited
to small instances (e.g., a few dozens of joins, a few thousand
query plans). The following example illustrates another case of
N𝑃-hardness in data warehousing.

Example: derived horizontal partitioning in data warehouses.
Assume we are given a simple data warehouse modeled as a
relational star schema with a single dimension table and𝑚 fact
tables. We are also given a set 𝑄 of selection queries 𝑄 𝑗 which
are frequently ran on this data warehouse. The aim of horizontal
partitioning is to split the fact tables and next the dimension
tables so that the processing of queries in 𝑄 is as fast as possible.
Each query 𝑄 𝑗 is defined by a set of 𝑛 𝑗 predicates 𝑖, 𝑝 𝑗,𝑖,𝑘 =

𝐴𝑖,𝑘𝜃𝑉 with 𝐴𝑖,𝑘 an attribute of dimension table 𝑘 , 𝜃 ∈ {=, <
, >, ≤, ≥} and 𝑉 ∈ 𝐷𝑜𝑚𝑎𝑖𝑛(𝐴𝑖,𝑘). We also assume that to each
query𝑄 𝑗 is associated a weight𝑤 𝑗 reflecting its frequency: more
often the query is ran, higher is the weight. Finally, to limit the
fragmentation of the data warehouse, we assume that a bound𝑊
on the number of partitions to generate from the tables, is given.
This problem is 𝑁𝑃-hard in the strong sense ([3]) thus ruling out
the existence of an exact polynomial-time algorithm to solve it.

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the
28th International Conference on Extending Database Technology (EDBT), 2025,
ISBN 978-3-89318-099-8 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

More recently, in Exploratory Data Analysis (EDA), the prob-
lem of generating an optimized sequence of comparison queries
has been considered in [5–7]. Again, this problem is shown to
be strongly N𝑃-hard and exact as well as efficient heuristics are
proposed.

Notions of N𝑃-hard, exact polynomial-time algorithm and
heuristics are notions stemming from operations research (OR).
OR can be briefly defined as dealing with the development of
advanced analytical methods to solve decision or optimization
problems. It is at the crossroad of mathematics and computer
science and relates to the design of relevant optimization/decision
models and of efficient solution algorithms. Starting with the
basics of OR, recalling the aforementioned notions and more,
the originality of this tutorial is to illustrate how advanced OR
approaches can be used to improve the solution of optimization
problems that occur in databases.

Contributions. This paper contributes by:
(1) providing researchers in data management with elements

of operations research, including a few advanced OR ap-
proaches that can be used to improve the solution of an
optimization problem.

(2) illustrating on two use cases how heuristics stemming
from OR can be used to cope with database optimization
problems: (i) in graph databases, to compute the graph edit
distance, and (ii) in Exploratory Data Analysis, to generate
exploration sessions over large instances.

Outline. The paper is organized as follows. First, we present
the elements of operations research insisting on elements of
complexity and basic and advanced classic solution algorithms
(Section 2). Next, we present a heuristic stemming from OR for
solving the graph edit distance (Section 3). Finally, we detail a
use case occurring in EDA (Section 4) where heuristics stem-
ming from OR can be used to solve the problem of generating
exploration sessions. We conclude in Section 5.

2 OPERATIONS RESEARCH AT A GLANCE
The main part of this tutorial provides elements of operations
research, elaborating but going beyond the previous tutorial at
ADBIS 2023 ([18]).

2.1 Complexity
Assume we are given an optimization problem (𝑃) generically
defined as follows:

Minimize 𝑓 (𝑠)
subject to

𝑠 ∈ S ⊂ R𝑛

with 𝑆 the set of solutions and 𝑓 : S ↦→ R the objective function
to minimize. We will focus on problems (𝑃) for which set S is
a discrete subset of R𝑛 . For the sake of clarity, we will consider
minimization problems.

Tutorial Paper

Series ISSN: 2367-2005 1162 10.48786/edbt.2025.114

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.114

To illustrate what we call an optimization problem (𝑃) , let us con-
sider the following classic Traveling Salesperson Problem (TSP).
Given a set C of 𝑛 cities, and for any cities 𝑖 and 𝑗 their associated
distance𝑑𝑖, 𝑗 , the objective is to find a tour 𝑠 such that: (1) any city
𝑗 ∈ C appears exactly once in 𝑠 and, (2)

∑𝑛
𝑖=1 𝑑𝑠 [𝑖],𝑠 [𝑖+1] is mini-

mum, with 𝑑𝑠 [𝑛],𝑠 [𝑛+1] = 𝑑𝑠 [𝑛],𝑠 [1] and 𝑠 [𝑘] refers to the city in
position 𝑘 in 𝑠 . In the TSP, the set S of solutions is defined as the
set of permutations over {1, ..., 𝑛} and 𝑓 (𝑠) =

∑𝑛
𝑖=1 𝑑𝑠 [𝑖],𝑠 [𝑖+1] .

An instance for this problem is a given data set and its size is the
number of elements, i.e number 𝑛 of cities.

When a problem (𝑃) has to be solved, the first task is to de-
termine its complexity according to complexity theory ([12]).
Roughly speaking, an optimization problem (𝑃) is either:

(1) optimally solvable in polynomial time of the instance size
(we say it belongs to class P), or

(2) optimally solvable but in super-polynomial time of the
instance size (we say it belongs to class N𝑃-hard).

Thus, for any problem (𝑃) ∈ P there exists an exact algorithm
which finds an optimal solution in 𝑂 (𝑝 (𝑛)) time with 𝑛 the in-
put size and 𝑝 a polynomial. Consequently, solving (𝑃) requires
to find such an algorithm. There exists two kinds of N𝑃-hard
problems: weaklyN𝑃-hard problems and stronglyN𝑃-hard prob-
lems. The former can be solved by an exact algorithm running in
pseudo-polynomial time, i.e. in 𝑂 (𝑝 (𝑛, | |𝐼 | |)) with | |𝐼 | | a measure
of the magnitude of the data and 𝑝 a polynomial. For instance,
in TSP, we can set | |𝐼 | | = ∑

𝑖, 𝑗 𝑑𝑖, 𝑗 . The hardest problems are
strongly N𝑃-hard problems, as any exact algorithm requires an
exponential time to compute an optimal solution, i.e. requires
𝑂 (𝑐𝑛), 𝑐 ∈ N, or 𝑂 (𝑛!) time. Solving an N𝑃-hard problem (𝑃)
leaves us two options:

(1) Design an exact algorithm to compute an optimal solution.
In this case, the super-polynomial running time may pre-
vent the algorithm from solving real-life instances of (𝑃)
.

(2) Design a heuristic algorithm that is a polynomial-time
algorithm computing a solution as close as possible to an
optimal one.

The TSP introduced above can be shown to be strongly N𝑃-
hard ([12]) but has been well studied in the literature and is now
optimally solvable for instances with up to thousands cities.

Now, let us introduce a second very classic problem called the
Knapsack problem (KP). Assume we are given a set O of 𝑛 objects
and, for each object 𝑖 a weight 𝑤𝑖 and a profit 𝑝𝑖 , as well as a
knapsack of total capacity𝑊 . The objective is to find selection
𝑠 of objects such that 𝑠 ⊆ O, ∑𝑖∈𝑠 𝑤𝑖 ≤ 𝑊 and 𝑓 (𝑠) = ∑

𝑖∈𝑠 𝑝𝑖
is maximum. This problem is weakly N𝑃-hard and can be opti-
mally solved in 𝑂 (𝑛𝑊) time ([13]). It is computationally easier
to solve than TSP as instances with up to hundreds of thousands
of objects can be optimally solved.

2.2 Exact algorithms
Polynomial problems are not considered hereafter as they are
mainly solved by dedicated algorithms and we rather present
general techniques that are relevant for N𝑃-hard problems.
Mathematical programming ([16]) consists in defining a mathe-
matical model of (𝑃) that is next solved by a black-box solver.
To illustrate, let us consider KP, and let 𝑥 𝑗 , 𝑗 = 1...𝑛, be boolean
variables with 𝑥 𝑗 = 1 if object 𝑗 is selected in the knapsack and 0
otherwise. Thus, KP can be formulated as follows:

Maximize
∑𝑛

𝑗=1 𝑝 𝑗𝑥 𝑗
subject to∑𝑛

𝑗=1𝑤 𝑗𝑥 𝑗 ≤𝑊

𝑥 𝑗 ∈ {0; 1},∀𝑗 = 1..𝑛

Experimentally, it can solve instances with up to several hundreds
of objects. Mathematical programming is very interesting as a
first approach to build an exact algorithm at the cost of, only,
creating a model.

Dynamic Programming is a general technique which relies
on recursively decomposing a problem into sub-problems and
solving them independently ([4]). Let us illustrate this on TSP:
we denote by OPT[ℓ, C′] the optimal solution value when a set
of cities C′ has to be visited after city ℓ . As all cities belong to an
optimal tour, we can assume that we start, e.g., with city number
1. We have:

OPT[ℓ, C′] = min𝑗∈C′
(
OPT[𝑗, C′\{ 𝑗}] + 𝑑ℓ, 𝑗

)
and

OPT[ℓ, ∅] = 𝑑ℓ,1.

Solving TSP for a given set of cities C = {1, .., 𝑛} requires to
compute OPT[1, C\{1}], which can be done in 𝑂 (𝑛2𝑛) time and
space.

To complete this big picture of exact approaches, we put a last
focus on branching algorithms ([10], [15]) that use a search tree to
explore the solutions space. Among them, branch-and-price algo-
rithms are of a particular interest with respect to the case study
developed later on in this tutorial. Often, they make use of column
generation to drive the exploration of the search tree. For the sake
of clarity, we present this technique on a slight generalization of
the TSP: assume we are given 𝑛 cities and two salespeople who
have to visit once and only once each city. Each salesperson has
his own tour and visit a subset of the cities: the goal is to find two
tours visiting all the cities so that the sum of the tour lengths is
minimum. Suppose we want to get a lower bound on the optimal
solution. We make use of a combinatorial mathematical program-
ming formulation relying on binary variables 𝑥𝑠 = 1 if tour 𝑠 is
achieved by one of the salespeople and 0 otherwise. A tour 𝑠 is
an ordered subset of the cities. Then, solving the corresponding
mathematical programming formulation reduces to determining
the only two variables 𝑥𝑠 and 𝑥𝑠′ equal to 1 so that each city is
visited but only once and the total cost is minimum. The issue
with this formulation is that, to build the mathematical program-
ming formulation, we need to enumerate all possible tours thus
leading to create 𝑂 (2𝑛𝑛!) variables: clearly, this formulation is
exponential in size and cannot be solved in practice. Column
generation avoids this issue by starting with a reduced set C of
tours (columns) and iteratively adding improving columns.

The master problem, or restricted problem, consists in solving
the mathematical programming formulation for a known set of
columns/variables C thus leading to a bound on the optimal so-
lution. Next, the pricing problem is solved in order to generate a
column/variable: if this column can lead to improve the solution
of the master problem, then the process is iterated. If not, the
algorithm stops with the last computed bound as being the best
known approximation of the optimal solution.
Usually, branching algorithms are very effective in solving hard
optimization problems but require a real expertise on the prob-
lem.

1163

2.3 Heuristic algorithms
Such algorithms enable to provide good approximate solutions
in a reasonable, polynomial, running time. Very numerous cate-
gories of algorithms can be found in the literature and we rather
focus on some very basic ones which may be relevant in the
context of data management.
The simplest heuristics that can be designed are called greedy
heuristics and compute a solution by iteratively taking a decision
according to a given priority rule. To illustrate this principle, let us
consider a well-known heuristic for KP, running in 𝑂 (𝑛 log(𝑛))
time, which, to any object 𝑗 , associates a priority 𝛼 𝑗 =

𝑝 𝑗

𝑤𝑗
. Next,

this heuristic sorts the objects by decreasing value of their pri-
ority and selects the 𝑘 first ones until the knapsack is filled up.
Greedy heuristics are usually basic ones which can be easily
improved by more elaborated heuristics but at the cost of an
increase in the computational complexity. Their main advantage
is to be able to scale up to very large size instances.
Local search heuristics ([1]) are also often considered as first
heuristics. They take as input an existing solution of problem
(𝑃) and improve it by means of the iterative use of neighborhood
operators. Let us denote by 𝑠𝑡 the solution at iteration 𝑡 and by
N(𝑠𝑡) the neighborhood of 𝑠𝑡 . To define N(𝑠𝑡) we need to use
a neighborhood operator which generates solutions “close” to
𝑠𝑡 . Next, the local search heuristic selects 𝑠𝑡+1 ∈ N (𝑠𝑡) such that
𝑓 (𝑠𝑡+1) improves over 𝑓 (𝑠𝑡). Ideally, we take 𝑠𝑡+1 as being the
best solution in N(𝑠𝑡). This process iterates until no improving
solution is found.
Notice that a lot of different local search heuristics exist like tabu
search, nature-inspired heuristics or matheuristics.
Also, wemention branching heuristicswhich rely on exact branch-
ing algorithms. There are numerous variants like beam search
algorithms, limited discrepancy search or branch-and-greed algo-
rithms to quote a few. All share the common feature of pruning
heuristically the search tree representing the solution space in
such a way that the number of explored nodes is polynomial in
the instance size. Branching heuristics are known to be efficient
and not too computationally demanding.

3 A USE CASE IN GED
In this section we consider a Graph Edit Distance (GED) problem
and show how it can be efficiently solved by a modern heuristic
([8, 9]). A GED problem is a graphmatching problem that consists
in, given two attributed graphs𝐺 and𝐺 ′, determining how much
they are similar. For example, solving such a problem can be used
to compare two patterns (images, molecules, data) and determine
whether or not they are similar: each pattern is modeled by an
attributed graph and the two graphs are next compared.

Problem definition. An attributed and undirected graph is a 4-
tuple𝐺 = (𝑉 ;𝐸; 𝜇; 𝜉) where,𝑉 is the set of vertices, 𝐸 is the set of
edges, such that 𝐸 ⊆ 𝑉 ×𝑉 , 𝜇 : 𝑉 → 𝐿𝑉 (resp. 𝜉 : 𝐸 → 𝐿𝐸) is the
function that assigns attributes to a vertex (resp. an edge), with 𝐿𝑉
(resp. 𝐿𝐸) the set of all possible attributes for vertices (resp. edges).
Given two graphs 𝐺 = (𝑉 ;𝐸; 𝜇; 𝜉) and 𝐺 ′ = (𝑉 ′;𝐸′; 𝜇′; 𝜉 ′), solv-
ing the GED problem accounts for finding the least cost complete
edit path that transforms the source graph𝐺 into the target graph
𝐺 ′. An edit path 𝜆(𝐺,𝐺 ′) = {𝑜1, ...𝑜𝑘 } consists in a series of ver-
tices and edges operations 𝑜 𝑗 (substitution, deletion, insertion)
to transform 𝐺 into 𝐺 ′ (Figure 1).

Figure 1: An edit path to transform 𝐺 into 𝐺 ′ ([8]): substi-
tution of 𝑣1 → 𝑣𝑎 , 𝑣3 → 𝑣𝑏 and 𝑒1,3 → 𝑒𝑎,𝑏 ; deletion of 𝑣2
and 𝑒1,2.

To each operation 𝑜 𝑗 is associated a dissimilarity cost ℓ (𝑜 𝑗)
and solving the GED problem reduces to minimize:

𝑑𝑚𝑖𝑛 (𝐺,𝐺 ′) = min𝜆∈Λ(𝐺,𝐺 ′)
∑
𝑜 𝑗 ∈𝜆 ℓ (𝑜 𝑗),

i.e. to find the minimal dissimilarity cost for matching 𝐺 and 𝐺 ′.
This problem has been shown to N𝑃-hard.

Heuristic solution. It is possible to model the GED problem
by means of mathematical programming that is exploited into
a matheuristic framework called local branching. Such a mod-
ern heuristic consists of iteratively modifying the mathematical
model by adding additional constraints to define neighborhoods
in the solution space, which are explored using a black-box solver.
It is experimentally shown to outperform all the existing stan-
dard heuristics from the literature notably on databases MUTA
and PAH which contain graphs modeling molecules ([8]).

4 A USE CASE IN EDA
This section presents a particular optimization problem occurring
in Exploratory Data Analysis (EDA) named the Traveling Analyst
Problem (TAP, [5]). We show how column generation can inspire
the design of an efficient heuristic for this problem.

Figure 2: Comparison query

Problem definition. The problem consists in finding sequences
of interesting comparison queries [6]. Comparison queries (Figure
2) are extended relational queries of the form:

𝛾𝐴,𝑎𝑔𝑔 (𝑀)→𝑣𝑎𝑙 (𝜎𝐵=𝑣𝑎𝑙 (𝑅)) ⊲⊳ 𝛾𝐴,𝑎𝑔𝑔 (𝑀)→𝑣𝑎𝑙 ′ (𝜎𝐵=𝑣𝑎𝑙 ′ (𝑅))
where 𝑅 is a relation with categorical attributes 𝐴, 𝐵, a numerical
attribute𝑀 , 𝑎𝑔𝑔 is an aggregate function, and 𝑣𝑎𝑙, 𝑣𝑎𝑙 ′ ∈ 𝑑𝑜𝑚(𝐵).
⊲⊳ denotes the inner join operator and 𝛾 denotes the grouping /
aggregation operator.

Each query 𝑞𝑖 ∈ 𝑄𝑅 , with𝑄𝑅 the set of all comparison queries
over 𝑅, is defined by a positive time cost 𝑡𝑖 and a positive inter-
estingness 𝑝𝑖 . Each pair of queries (𝑞𝑖 , 𝑞 𝑗) is associated with a
metric 𝑑𝑖, 𝑗 representing the cognitive distance of browsing from
𝑞𝑖 to 𝑞 𝑗 . We further define 𝑁 = |𝑄𝑅 |. The TAP problem consists
in finding a sequence of queries from 𝑄𝑅 that maximizes the
total interestingness 𝐼 , minimize the total cost 𝐶 and minimize

1164

the total distance 𝐷̄ between the queries of the sequence. This is
a multiobjective problem that is strongly N𝑃-hard. To compute
a Pareto optimum for these objectives it is reasonable, from the
user point of view, to use the 𝜖-constraint ([19]) as follows: maxi-
mize 𝐼 under the constraints that 𝑇 ≤ 𝜖𝑡 and 𝐷̄ ≤ 𝜖𝑑 with 𝜖𝑡 and
𝜖𝑑 two given bounds.

Exact solution. We first present a mathematical programming
formulation (MIP) for the TAP that relies on two sets of boolean
variables. For each 𝑞𝑖 ∈ 𝑄𝑅, variable 𝑦𝑖 is equal to 1 if 𝑞𝑖 is
selected in the solution; 0 otherwise. For any pair of queries
(𝑞𝑖 , 𝑞 𝑗) ∈ 𝑄𝑅

2, variable 𝑥𝑖, 𝑗 is equal to 1 if 𝑞𝑖 precedes 𝑞 𝑗 in
the solution; 0 otherwise. The aim is to maximize the total in-
terestingness 𝐼 =

∑
𝑞 𝑗 ∈𝑄𝑅

𝑝 𝑗𝑦 𝑗 and to minimize the total pro-
cessing cost 𝐶 =

∑
𝑞 𝑗 ∈𝑄𝑅

𝑡 𝑗𝑦 𝑗 and the total cognitive distance
𝐷̄ =

∑
𝑞𝑖 ,𝑞 𝑗 ∈𝑄𝑅

𝑑𝑖, 𝑗𝑥𝑖, 𝑗 . Finding values for the 𝑦 𝑗 ’s and the 𝑥𝑖, 𝑗 ’s
amounts to compute a permutation 𝜋 of 𝑛 ≤ 𝑁 queries.

More constraints are introduced (though not presented here),
e.g., for preventing the same query to be selected twice or for
ensuring that the sequence is connected. Importantly, this MIP
is agnostic of the form of queries in 𝑄𝑅 . In other words, the
particular syntax of comparison queries is not taken into account.
TheMIP can be solved to optimality by any black-box commercial
solver for small instances (i.e., small sets of queries). Clearly,
greedy heuristics like the one for KP can be used to cope with
larger instances. In both cases, this requires to generate the set of
all comparison queries which may be too much time consuming
to handle large databases.

Coping with larger instances. We can bring the solution of the
TAP to the next level by leveraging from advanced OR techniques
like column generation. Here, the idea is not to get a lower bound
as usual in such an approach, but to heuristically solve the prob-
lem, even for large databases. The key point is to not consider
the whole set 𝑄𝑅 but rather to iteratively generate improving
queries. This requests exploiting the form of the queries to be
generated, namely comparison queries.

We present the main lines of the proposed heuristic. It consists
of three main steps. First, a small initial subset 𝑄 ⊂ 𝑄𝑅 of 𝑛𝑞
queries is built by means of very simple heuristics. This set is used
to initialize the iterative process: at each iteration, an improving
comparison query 𝑞 is generated and added to 𝑄 until no more
improving queries can be generated (e.g., if a given time limit is
reached). Next, the TAP is solved on the resulting set𝑄 of queries
by means of an efficient heuristic.

The key point of such an approach relates to the generation
of improving queries. The underlying idea is to generate 𝑞 that
would improve the optimal solution to the TAP built on 𝑄 . Said
differently, the optimal solution on 𝑄 ∪ {𝑞} has a higher inter-
estingness than the one on 𝑄 . We will show how, by a genuine
mathematical modeling of the comparison queries, we can lever-
age from mathematical programming to perform such a task.

Notice that this mathematical modeling is based on specific
estimations of the cost, interestingness and distances of compari-
son queries. These estimations are modeled as constants added to
the mathematical program generating the improving queries. We
will show how to devise these constants using state-of-the-art
approaches for interestingness [17] and distance [2], and a simu-
lation of the use of physical optimization structures to estimate
the cost.

We will conclude with computational experiments showing
that this approach can be successfully applied on relatively large

databases providing even better results than traditional optimiza-
tion algorithms relying on the knowledge of the whole set 𝑄𝑅 .

5 CONCLUSION
This paper shows how advanced operations research (OR) tech-
niques can be used to solve optimization problems occurring in
databases. After recalling the basics of OR and presenting a few
advanced approaches, two use cases are presented. The first use
case concerns graph databases, where a heuristic is introduced
for solving the Graph Edit Distance problem. The second use case
pertains to Exploratory Data Analysis (EDA) where a heuristic
is used to cope with large instances of a database exploration
optimization problem.

6 ACKNOWLEDGEMENTS
This work was partially supported by JUNON Program (DATA
/ LIFO) with financial support of Région Centre-Val de Loire,
France.

REFERENCES
[1] E. Aarts and J.-K. Lenstra. Local search in combinatorial optimization. Princeton

University Press, 2003.
[2] J. Aligon, M. Golfarelli, P. Marcel, S. Rizzi, and E. Turricchia. Similarity

measures for OLAP sessions. Knowl. Inf. Syst., 39(2):463–489, 2014.
[3] L. Bellatreche, K. Boukhalfa, and P. Richard. Data partitioning in data ware-

houses: hardness study, heuristics and oracle validation. In I.Y. Song, J. Eder,
and T.M. Nguyen, editors, DaWak 2008, volume 5182 of Lecture Notes in Com-
puter Science, pages 87–96. Springer, 2008.

[4] R. Bellman. Dynamic programming. Dover publication, 2003.
[5] A. Chanson, N. Labroche, P. Marcel, and V. T’Kindt. Comparison Queries

Generation Using Mathematical Programming for Exploratory Data Analysis
. IEEE Transactions on Knowledge & Data Engineering, 36(12):7792–7804,
December 2024.

[6] A. Chanson, P. Marcel, P. Rizzi, and V. T’kindt. Automatic generation of
comparison notebooks for interactive data exploration. Proceedings of the
25th International Conference on Extening Database Technology (EDBT), ISBN
978-3-89318-085-7 on OpenProceedings.org, 2022.

[7] A. Chanson, P. Marcel, and V. T’kindt. Matheuristics for solving the traveling
analyst problem. 23rd Conference of the French Society on Operations Research
and Decision Aid (ROADEF 22), Lyon, 2022.

[8] M. Darwiche, D. Conte, R. Raveaux, and V. T’kindt. A local branching heuristic
for solving a graph edit distance problem. Computers and Operations Research,
106:225–235, 2019.

[9] M. Darwiche, D. Conte, R. Raveaux, and V. T’kindt. Graph edit distance:
Accuracy of local branching from an application point of view. Pattern Research
Letters, 134:20–28, 2020.

[10] D. Feillet. A tutorial on column generation and branch-and-price for vehicle
routing problems. 4OR, 8:407–424, 2010.

[11] H. Garcia-Molina, J.D. Ullman, and J. Widow. Database systems: the complete
book. Prentice Hall, 2008.

[12] M.R. Garey and D.S. Johnson. Computers and Intractability: A guide to the
theory of NP-completeness. Freeman, San Francisco (USA), 1979.

[13] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack problems. Springer, 2004.
[14] Viktor Leis, Andrey Gubichev, Atanas Mirchev, Peter Boncz, Alfons Kemper,

and Thomas Neumann. How good are query optimizers, really? Proceedings
of the VLDB Endowment, 9(3):204–215, November 2015.

[15] D.R. Morrison, S.H. Jacobson, J.J. Saupe, and E.C. Sewell. Branch-and-bound
algorithms: a survey of recent advances in searching, branching and pruning.
Discrete optimization, 19:79–102, 2016.

[16] G.L. Nemhauser and L.A. Wolsey. Integer and combinatorial optimization.
Wiley, 1988.

[17] B. Tang, S. Han, M. Lung Yiu, R. Ding, and D. Zhang. Extracting top-k in-
sights from multi-dimensional data. In Semih Salihoglu, Wenchao Zhou, Rada
Chirkova, Jun Yang, and Dan Suciu, editors, Proceedings of the 2017 ACM
International Conference on Management of Data, SIGMOD Conference 2017,
Chicago, IL, USA, May 14-19, 2017, pages 1509–1524. ACM, 2017.

[18] V. T’kindt. When operations research meets databases. In Alberto Abelló,
Panos Vassiliadis, Oscar Romero, and Robert Wrembel, editors, Advances in
Databases and Information Systems - 27th European Conference, ADBIS 2023,
Barcelona, Spain, September 4-7, 2023, Proceedings, volume 13985 of Lecture
Notes in Computer Science, pages 34–41. Springer, 2023.

[19] V. T’kindt and J.-C. Billaut. Multiobjective scheduling: theory, models and
algorithms. Springer, 2006.

1165

