
MaTElDa: Multi-Table Error Detection
Fatemeh Ahmadi
BIFOLD & TU Berlin
Berlin, Germany

f.ahmadi@tu-berlin.de

Marc Speckmann
Leibniz Universität Hannover

Hannover, Germany
speckmann@dbs.uni-hannover.de

Malte Fabian Kuhlmann
Leibniz Universität Hannover

Hannover, Germany
kuhlmann@dbs.uni-hannover.de

Ziawasch Abedjan
BIFOLD & TU Berlin
Berlin, Germany

abedjan@tu-berlin.de

ABSTRACT
As data-driven applications gain popularity, ensuring high data
quality is a growing concern. Yet, data cleaning techniques are
limited to treating one table at a time. A table-by-table appli-
cation of such methods is cumbersome, because these methods
either require previous knowledge about constraints or often
require labor-intensive configurations and manual labeling for
each individual table. As a result, they hardly scale beyond a few
tables and miss the chance for optimizing the cleaning process.
To tackle these issues, we introduce a novel semi-supervised er-
ror detection approach, Matelda, that organizes a given set of
tables by folding their cells with regard to domain and quality
similarity to facilitate user supervision. We propose a unified
feature embedding that makes cell values comparable across
tables. Experimental evaluations demonstrate that Matelda out-
performs various configurations of existing single-table cleaning
methodologies in the multi-table scenario.

1 INTRODUCTION
With the rising importance of data augmentation and data en-
richment [37], there is a new interest in connecting external data
repositories or previously disconnected data silos within organi-
zations and establishing data lakes [21, 38]. However, it is also in
the nature of data lakes that the sources are not apriori curated
and cleaned. As incorrect data leads to incorrect and biased be-
havior and outcome of data-driven applications [31, 41, 42], it is
crucial to ensure that the data adheres to a minimum quality level
before it can be put to use [38]. Ensuring data quality in data lakes
either requires employing cleaning procedures to detect and fix
errors apriori or on the fly. In both cases, we are dealing with mul-
tiple datasets at the same time. The naive approach to cleaning
the whole set would be to use common data-cleaning approaches
on each table individually. There are many existing data cleaning
systems and algorithms that can be adapted to cope with individ-
ual tables and domains [1, 3, 5, 9–11, 14, 24, 27, 41, 49, 51]. Using
traditional cleaning techniques, we would have to prepare and
specify rules and/or parameters for each table in a table set, which
is cumbersome for multiple tables and does not scale to sets with
hundreds or thousands of tables. LLM-based techniques have
been explored that rely on table-specific fine-tuning of the mod-
els to achieve acceptable results [60]. However, such approaches
are generally inefficient and costly on large datasets [60].

In contrast, supervised data cleaning approaches consider data
cleaning as a classification problem [23, 33, 34, 43, 58]. This way,

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the
28th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2025, ISBN 978-3-89318-098-1 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

the user does not need to know about the internals of the system
and generalizable rules and parameters for a dataset. The only
requirement is to have insights on some instances of a dataset to
provide labels and corrections. Although the state-of-the-art semi-
supervised systems, such as Raha [34], need only a few labels
per table, the number of required labels will scale linearly with
the number of tables, which will easily exceed current labeling
budgets.

In this paper, we present our methods for detecting data errors
on a set of tables, aiming at reducing the overall labeling and run-
time cost below the cost of applying a state-of-the-art approach
sequentially on individual tables. Following a semi-supervised
approach, we require the user to label a limited number of cell
values from the whole set and use these labels to detect data
errors in all tables. Our assumption is that we do not have a
labeling budget that covers each table individually. Even if we
label only one tuple per table, we will end up requiring a budget
that corresponds to the potentially large number of tables, i.e.,
hundreds or thousands. Therefore, one challenge is to carefully
pick those informative cell values for labeling that cover multiple
tables simultaneously. That brings us to the second challenge of
deciding when to transfer an obtained label to a different table.
The correctness of each value highly depends on the correspond-
ing table that defines its context. To generalize the user label,
we need to embed all cells from different tables with varying
schemata into a unified feature space.

To address the aforementioned challenges and reduce the label-
ing costs, we suggest to first organize the table set in a way that
similar errors can benefit from the same labels. For this purpose,
we designed a two-layer folding approach to first separate cells
based on their table domains and then fold them based on quality
similarity, i.e., how similarly they are judged by a common set
of error detectors [32], based on a unified feature space. Then,
we distribute labels so that every fold is covered and propagate
the labels within the folds. Finally, we classify the correctness of
each value within its own table context.

Our extensive experiments on multiple data lakes show that
our system Matelda (Multi-Table Error Detection) with the uni-
fied feature space significantly outperforms competitors at de-
tecting errors, when there are fewer labels than tables. This im-
provement can be attributed to Matelda’s ability to fold related
data points together and to propagate labels across tables. Our
encoding of column relationships effectively capture functional
dependency violations, even when cells are compared across dif-
ferent tables. Furthermore, Matelda demonstrates a significantly
better runtime compared to a sequential one-table-at-a-time ex-
ecution of state-of-the-art approaches. In short, we make the
following contributions:
1) We introduce and define the semi-supervised error detection

Series ISSN: 2367-2005 364 10.48786/edbt.2025.29

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.29

problem for a multi-table scenario.
2) We present Matelda, which uses two cell folding steps to orga-
nize all cells based on domain correspondence and latent quality
similarities, facilitating effective label sharing for supervised
cleaning. This way, it significantly reduces the supervision effort
in a multi-table scenario over the application of traditional ap-
proaches.
3) We propose a novel approach to embed cells from tables with
non-overlapping schemata into a unified, quality-based feature
space, which can subsequently be used for further computations.
In particular, we also show mechanisms that make column de-
pendencies, such as FDs comparable across tables with differing
schemata.
4) We present a novel table set benchmark for cleaning and com-
pare our solution to existing state-of-the-art systems highlighting
the difficulties and potentials of resource sharing when dealing
with more than one table at a time. We introduce new sets of
synthesized datasets containing various types of errors. These
datasets can facilitate more research on data quality in data lakes.

2 FUNDAMENTALS
In this section, we lay out our assumptions on the considered
types of errors, we aim to detect, and we formalize the problem
of detecting data errors for multiple tables, simultaneously.

2.1 Data Errors in the Single Table Scenario
Building on prior work, we consider data errors to be all values
inside a table that differ from the corresponding ground truth [34].
Let us consider 𝑡 = {𝜏1, 𝜏2, ..., 𝜏⋃︀𝑡 ⋃︀} as a table or relational instance,
where each 𝜏𝑖 represents a tuple. The schema of table 𝑡 is denoted
as 𝐴 = {𝑎1, 𝑎2, .., 𝑎⋃︀𝐴⋃︀}. In this representation, 𝑡(︀𝑖, 𝑗⌋︀ refers to the
value for attribute 𝑎 𝑗 in tuple 𝜏𝑖 . We denote 𝑡∗ as the ground
truth for table 𝑡 . Consequently, any value 𝑡(︀𝑖, 𝑗⌋︀ that differs from
the corresponding value 𝑡∗(︀𝑖, 𝑗⌋︀ is considered a data error [34].

Data errors have been loosely categorized based on different
criteria in the literature [3, 9]. Generally, one distinguishes syn-
tactic and semantic errors [34]. Syntactic errors are values that
are not compatible with the structure of the containing column.
Semantic errors are the ones that are syntactically correct, i.e.,
fit the domain, but not correct in the context of the tuple [34].
Typical heuristics for discovering syntactic errors are to detect
outliers, pattern violations, or rule violations. To identify seman-
tic errors, one has to leverage relationships and dependencies
that are encoded either in rules or mappings to some sort of
master data [34].
Outliers: Outliers are unlikely values in given probabilistic data
distributions [34]. Outlier detection algorithms use statistical
methods to find these values [35]. In our running example, de-
picted in Figure 1, errors that we marked in Table t1, columns
“Age” and “Market Value in Millions”, and Table t4, column “Pop-
ulation” are examples of numeric outliers.
Pattern Violations:Many data columns follow well-defined pat-
terns, such as date and time formats. Pattern violation detection
algorithms detect the values that do not conform to the specified
patterns. For example, in Figure 1, columns “Release Date” and
“Total Gross” in Table t5 contain pattern violations.
Rule Violations: Different rules or integrity constraints, such as
denial constraints (DCs), can be defined for a single dataset [34].
Rule-violation algorithms verify the data against such rules or
DCs. While one can also define statistical and pattern-based
rules, we specifically refer to inter-column relationships, such as

Functional dependencies (FDs), when we mention rules [46]. In
the running example, Table t3 contains an FD violation. There is a
functional dependency between the “Club Name” and “Country”.
Each club’s name maps to exactly one country. Real Madrid is in
Spain, and in this table, there are two records for that, and in one
of them, the country is France which is wrong.

2.2 Problem: Multi-Table Error Detection
Given a set of tables 𝑆 = {𝑡1, 𝑡2, ..., 𝑡⋃︀𝑆 ⋃︀}, the goal of error detection
in a multi-table scenario is to detect all cell values in all tables
that differ from the corresponding cell in the ground truth 𝑆∗ ={𝑡∗1 , 𝑡∗2 , ..., 𝑡∗⋃︀𝑆 ⋃︀}. Considering 𝑡𝑘(︀𝑖, 𝑗⌋︀ as a value for the attribute
𝑎 𝑗 in the tuple 𝜏𝑖 in table 𝑘 , we define the set of all erroneous
values in all tables of our set as:

𝐸 = {𝑡𝑘(︀𝑖, 𝑗⌋︀⋃︀ ∀𝑡𝑘 ∈ 𝑆.∀𝑡∗𝑘 ∈ 𝑆∗ .∃𝑖, 𝑗 ∈ N.𝑡𝑘(︀𝑖, 𝑗⌋︀ ≠ 𝑡∗𝑘 (︀𝑖, 𝑗⌋︀} (1)

The straight-forward approach to detect all errors 𝐸 in the set
of tables with an existing semi-supervised approach is to run the
algorithm on each table individually. Each table would require its
own set of user labels. The total number of required labels would
then be Λ = ∑⋃︀𝑆 ⋃︀𝑘=1 𝑙𝑘 , where 𝑙𝑘 is the labeling budget for table 𝑡𝑘 .

In this paper, we aim to develop a method that outperforms
such an approach by reaching similar or better performance in
terms of runtime and accuracy, while requiring a smaller label-
ing budget than Λ. If all datasets follow the same schema, it is
generally possible to integrate them and apply a common single-
dataset error detection technique on the integrated table. A more
relaxed assumption is that there are some datasets that share
concepts and schema information. While a full integration of
such tables might not be obvious, it might be possible to con-
nect information across such groups of tables. In particular, we
want to make sure that a classifier that has been learned on la-
beled cells of one individual table can also predict the correctness
of cells in other tables. Therefore, we need first the cells to be
comparable across tables, i.e., all being represented via a unified
feature vector. Therefore, we need to build a solution that covers
the aforementioned three violation types without depending on
the table specific metadata. Note that for each table, a different
set of distributions, patterns, and rules might hold. Furthermore,
we need to make sure that user labels given on individual table
cells are propagated to cells with very similar characteristics. We
call this label sharing. If the datasets are from entirely different
domains, label sharing might be misleading, due to semantic
heterogeneity caused by homonyms. It is thus necessary to first
identify such groups of tables that have potential of label sharing
through a semantically guided clustering.

2.3 Why is Raha not enough?
An obvious approach would be to simply expand the existing

supervised approaches, such as Raha [34] for the multi-table
error detection problem. However, such approaches have non-
trivial limitations. First, Raha does not include mechanisms to
learn across tables, not even across columns. Cells from different
columns have different numbers of features, and the features are
not comparable even across columns of the same table due to
the different rules, patterns, and distributions across columns.
Thus one major technical challenge is to propose a feature vector
encoding that lets a single classifier as well as a single clustering
algorithm treat all cells the same way. This unification does come
at a cost. Getting rid of table and column specific features that

365

Figure 1: Running Example

might have contributed to the accuracy of the error detection
model, requires us to find at least approximate replacements.
Second, Raha requires the user to label a sufficient amount of
cells, e.g., 20 cells per table column. The minimum amount of
required labels for Raha is two labeled cells per column, which
also does not scale for a setup with hundreds or more datasets.
In Section 4.1.4, we propose simple variations of Raha that skip
tables or columns so that the labels can be randomly assigned
to table columns in a lake. These variations are able to handle
situations with fewer labels than tables but perform poorly. Thus
the second challenge is to identify how labels given to individual
cells of a table can also be propagated to cells of other tables.
For this purpose, an effective grouping strategy of tables and
cells is necessary. In the next section, we will introduce Matelda
and discuss the new ideas we employ to make features schema-
independent and to propagate labels across tables for effective
learning.
3 MATELDA
In the following, we propose Matelda, which makes such consid-
erations to effectively find errors in a multi-table scenario. We
start with an overview of Matelda’s workflow and then dive deep
into the different stages of folding cells for label sharing that
influence the downstream error detection classification task.

3.1 General Matelda Workflow
Figure 2 illustrates the workflow of Matelda, while Alg. 1 details
the process. When cleaning a set of tables with data from differ-
ent domains, we have to ensure that error detection techniques
do not confuse domain-dependent errors. As illustrated in the
running example in Figure 1, Tables t1 and t3 are from the same
domain of football, and Tables t2 and t5 are about movies. Thus,
information about “year”, which is prevalent in Tables t2 and
t5, will follow different distributions depending on the context.
Thus, Matelda first folds the cells based on their latent domain
similarity (Figure 2 and Alg. 1: Step 1). We consider tables to be
from the same domain if they have significant overlap regarding
semantic concepts.

Once we have grouped tables that are semantically similar, the
next step is to now fold cells based on their quality or dirtiness
similarity (Figure 2 and Alg. 1: Step 2). This approach has already
been proposed for error detection on individual tables [34]. The
idea is that labels can be shared for similarly dirty values. For
instance, consider the “Total Gross” column in Table t5 and the
“Gross” column in Table t2, as illustrated in Figure 1. A nonessen-
tial “$” sign introduced errors in both columns. Thus, it would be

Algorithm 1:Matelda (𝑆 , Λ)
Input: Set of tables 𝑆 , labeling budget Λ.
Output: Set of erroneous cell values 𝐸.
// Step 1: Domain-based Cell Folding

1 𝐶𝐸 ← ∅ ; // Set of contextual embeddings

2 for each table 𝑡 ∈ 𝑆 do
3 st ← serialize(𝑡) ; // Concatenate rows into a string

4 ce ← obtain_BERT_Embedding(st)
5 CE ← CE ∪ {ce}
6 DFolds ← HDBSCAN(CE) ; // Each cluster is a Domain Fold df
// Step 2: Quality-based Cell Folding

7 for each df ∈ DFolds do
8 Cdf ← ∅; // Triplets (cell value, feature vector, label)

9 for each cell 𝑐 ∈ 𝑡 do
// Running Error Detectors

10 𝑣𝑐 ← (︀𝑑𝜃 (𝑐), 𝑑𝑇𝐷(𝑐), 𝑑𝐹𝐷(𝑐), 𝑛𝑣𝐿𝐻𝑆(𝑐), 𝑛𝑣𝑅𝐻𝑆(𝑐)⌋︀
11 Cd f ← Cd f ∪ (𝑐, 𝑣𝑐 ,⊥); // Labels are unknown still (⊥)
12 𝑘 ← max(2,Λ ⋅ ⋃︀columns(df)⋃︀⋃︀columns(𝑆)⋃︀); // 𝑘 is the labeling budget

for df
13 QFolds ← Mini-batch K-Means(Cd f , 𝑘)

// Step 3: Sampling & Labeling
14 for each qf ∈ QFolds do // Each qf is a quality fold
15 (𝑐𝑠 , 𝑣𝑠 ,⊥)← centroid(qf) ; // Sampling

16 𝑙𝑢 ← user_labels ; // User labels the sampled cell value

17 𝑐𝑠 .setlabel(𝑙𝑢)
// Step 4: Label Propagation

18 for each cell 𝑐 ∈ qf do
19 𝑐 .setlabel(𝑙𝑢)

// Step 5: Classification, Error Prediction per Column

20 for each cl ∈ columns(df) do
21 𝑚 ← GB.Train(cl)
22 𝐸 ← 𝐸 ∪ Predict(𝑚, cl)

desirable to transfer the label for one of the errors to the other
column. Ideally, the clean cells of both columns fall into the same
quality-based cell fold while the erroneous ones fall together into
a different fold. Further, consider the errors in tables t1 and t3. In
both tables, there are errors in the club column that do not seem
to follow a similar pattern. The erroneous team names, Chelsea
FC and Manchester City, violate relationships with their adjacent
columns “Club Country” and “Country”, respectively. Also here,
it would be ideal, if the relationship violation in both tables leads
to the folding of the corresponding violating cells into the same
fold. To organize values based on their data quality similarity,
prior work embeds them based on signals obtained from base
detectors and then clusters the cells using a similarity metric
based on that embedding. Each cluster resembles a group of cells
with the same latent quality [32]. We follow the same approach
but take into consideration that cells are coming from different

366

Figure 2: Matelda Workflow

tables with differing schemata. Therefore, in contrast to previous
work, our base detectors cannot be column- and table-dependent.
In Section 3.3, we detail how we expand on the cell featurization
so that cells from different tables and columns become compa-
rable. Once all the cells are organized in suitable folds, we draw
samples from them to cover as many different types of errors as
possible (Figure 2 and Alg. 1: Step 3), i.e., different typos, seman-
tic errors, etc.. Following existing works intuition on the cluster
assumption [8], we propagate those labels to the other cells of the
corresponding cluster (Figure 2 and Alg. 1: Step 4). The labeled
set is then used to train one classifier for each column. Finally,
in Step 5, we use the trained classification models to predict the
labels for all cell values of each column. In the next subsections,
we describe each step in more detail.

3.2 Domain-based Cell Folding
With domain-based cell folding, we address the first concern of
semantic consistency, bringing together cells from tables describ-
ing the same semantic concepts and separating those that might
confuse the quality problems that are domain-dependent.

The state-of-the-art in identifying semantically similar doc-
uments and tables has advanced significantly. In fact, there are
many methods from document clustering [56] and table union
discovery [28, 39], that can be used for this step. As in our case,
this is a coarse-granular filter and we do not believe that there is
a best domain-based folding technique, we resort to a pragmatic
choice here and leverage a table representation based on BERT
embeddings [13, 56]. For this purpose, we serialize each table by
concatenating all cell values in a row into a single string, and
then concatenating all rows into a larger string (Alg. 1, Line 3).
This process allows us to treat each table as a single sentence.
Specifically, we use a BERT model that has been pre-trained on
English documents to generate a feature vector for each table,
thereby capturing its semantic characteristics (Alg. 1, Line 4).

Given that the number of domains in our table set might not
be known, we require a clustering algorithm capable of automat-
ically detecting the number of clusters. Additionally, the algo-
rithm must be scalable to manage the entire table set. To meet
these criteria, we employ HDBSCAN [7] for clustering the tables
(Alg. 1, Line 6). In our implementation, a cluster must contain a
minimum of two tables. Each of the outlying tables is clustered
into an individual group. After the Table clustering phase, we
consider each cluster a domain-fold, containing all cells from the
corresponding tables.

Generally, one could replace our folding strategy with any
other advanced similarity metrics and clustering algorithms. The
benefit of our compositions is that the methods do not require
us to apriori specify the number of clusters. In the experimental
section, we compare our choice to other alternatives.

After domain-based folding, we can assume that the cells in-
side a cell fold are from a semantically similar domains. One
could now further refine the folds based on columns. For in-
stance, columns with identical data types are likely to exhibit
similar errors. Also, columns containing numerical values are
susceptible to numeric outliers, while those featuring dates may
display analogous pattern violations. However, folding based
on the column types introduces two disadvantages. First, it in-
troduces an ad-hoc layer of filtering to the algorithm. Second,
it impedes label sharing across potentially similarly dirty val-
ues in different columns leading to reduced effectiveness as also
shown in our ablation studies. To avoid these issues, we simply
encode column features into the subsequent cell folding step as
we discuss in section 3.3.

3.3 Quality-based Cell Folding
After the domain-based folding, we consider each domain-fold as
an independent subset of tables where labels can be shared. Next,
all cells of a fold need to be embedded in a unified feature space
for the subsequent training and classification steps. As previously
mentioned, we use a feature embedding space based on detector
signals as applied in prior research. While some of those detector
signals can be directly included in our feature embedding space,
there are considerations that we need to make on column- and
table-dependent detector signals.

3.3.1 Cell value features. We want to embed cell values based
on the signals that base detectors emit for each individual cell
similar to prior work [34]. For each cell, we further encode its cor-
responding column and table to retain table- or column-specific
relationships. The detectors are collected by automatically con-
figuring rule-based, pattern-based, statistic-based detectors as
discussed in Section 2.1 (Alg. 1, Line 10). In the following, we
describe how we modify the application of each base detector to
the multi-dataset scenario.

Outlier detectors: Despite folding all cells of all columns, we
evaluate the outlier/inlier property of a cell only with regard to
the cell values that occur in the same column. Similar to previous
work [34, 35], Matelda uses Gaussian and histogram models to
detect outliers. Gaussian models capture outliers with regard to
the magnitude of a value, being effective in identifying numerical
inconsistencies. Histogram-based models detect outliers based
on their frequency. This is why histograms detect outliers in
non-numeric data as well [35]. Both models require pre-defined
thresholds to identify the outliers. This threshold is set based
on the normalized term frequency in histogram models and the
normalized distance to the mean in Gaussian models. Similar to
prior work, we automatically generate multiple outlier detectors
𝑑𝜃 , by systematically instantiating the thresholds at different
threshold levels. Formally,

367

𝑑𝜃tf (𝑡(︀𝑖, 𝑗⌋︀) =
)︀⌉︀⌉︀⌉︀⌋︀⌉︀⌉︀⌉︀]︀
1 𝑖 𝑓 𝑓

TF(𝑡(︀𝑖, 𝑗⌋︀)
∑⋃︀𝑡 ⋃︀

𝑖′=0 TF(𝑡(︀𝑖′, 𝑗⌋︀) < 𝜃tf ;
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(2)

where 𝜃tf ∈ Θtf = {0.1, 0.2, 0.3, ..., 0.9} and TF(𝑡(︀𝑖, 𝑗⌋︀) is the
term frequency of the specified cell value (𝑡(︀𝑖, 𝑗⌋︀). Also,

𝑑𝜃𝑑𝑖𝑠𝑡 (𝑡(︀𝑖, 𝑗⌋︀) =
)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀
1 𝑖 𝑓 𝑓

⋃︀𝑡(︀𝑖, 𝑗⌋︀−𝜇 𝑗 ⋃︀
𝜎 𝑗

> 𝜃dist ;
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(3)

where 𝜃dist ∈ Θdist = {1, 1.3, 1.5, 1.7, 2, 2.3, 2.5, 2.7, 3}, 𝜇 𝑗 is the
mean, and 𝜎 𝑗 is the standard deviation of the numerical data
column 𝑡(︀∶, 𝑗⌋︀.

Typo detectors: To detect pattern violations and typos, Raha
uses a bag-of-characters representation to generate a character
checker for each character of a data column to verify the presence
of the particular character in a cell value at hand. However, if
we want to apply this to our multi-table scenario, we have to
consider all characters inside a domain-based cell fold individual
one-hot encoded features to be able to create feature vectors with
the same length for all cells. To avoid such an intractable feature
space, we decided to take a more targeted approach. Among the
errors on string columns, those related to patterns are detectable
using the histogram-based outlier detectors, as discussed before.
However, there might be spelling issues that histograms cannot
cover. In a more pragmatic approach, we simply use a dictionary-
based spell checker 𝑑𝑇𝐷 to detect cells with potentially arbitrary
typos. In our implementation, we use “Aspell” [12] which is
effective [40] and also faster than competitors, such as Norvig 1.
Aspell maintains a dictionary 𝐷𝑖𝑐𝑡 of English terms and marks
any word𝑤 that is not in that dictionary as an error. Formally,

𝑑𝑇𝐷(𝑡(︀𝑖, 𝑗⌋︀) =)︀⌉︀⌉︀⌋︀⌉︀⌉︀]︀
0 𝑖 𝑓 𝑓 ∀𝑤 ∈ 𝑡(︀𝑖, 𝑗⌋︀.∃𝑤 ′ ∈ Dict .𝑤 =𝑤 ′
1 otherwise.

(4)

For example, “Derama” in Table t5, and “Franke” in Table t4 are
not present in our dictionary, and thus would be marked as errors.

Rule violation detectors: The single-dataset approach Raha
considers all possible functional dependencies (FDs) with a single
attribute on the left-hand side and accordingly marks violating
cells of the column at hand. This approach will not work in our
featurization as the cells are coming from different tables with
different schemata. Thus, each cell of a fold can have a different
set of FD features. To make FD violations comparable across
tables, we make use of the structural similarities inspired by the
similarity flooding approach [36] to identify similar FDs across
tables. First, every table has a first column, which is historically
the most left column and typically the key of the table. For ex-
ample, considering the datasets introduced in Table 1, all tables
in the Quintet dataset, 83% of the tables from GitTables, and 69%
of the tables in the DGov-1K dataset, have a first column that
qualifies as an ID and functionally determines all the remaining
columns. Further, every column has at most two direct neighbors.
According to schema suggestion approaches adjacent columns
follow repetitive patterns [6]. Hence, we consider three func-
tional dependency detectors for each column in a table. The first
one is to check the functional dependency from the very first
column of the table to the current under-process column. The
other two possible functional dependencies are the relationship
between the under-process column and its direct neighbors based
1https://norvig.com/spell-correct.html

on the assumption that relevant columns are positioned together
in the table. Therefore, if we consider 𝑎 𝑗 as the current attribute,
we will have three primary FD detectors (𝑑FD) for this column:

𝑑𝑎0→𝑎 𝑗 , 𝑑𝑎 𝑗−1→𝑎𝑗 , 𝑑𝑎 𝑗→𝑎 𝑗+1 (5)
In addition to the three primary functional dependencies, we

capture aggregated information about the involvement of each
cell in FD violations so that the information can be expressed
within a fixed set of features for all cells. In particular, we encode
the relative frequency of participation of a cell in arbitrary rule-
violation. We distinguish the frequencies for cases where the cell
was on the right-hand side (RHS) and the left-hand side (LHS) of
an FD. To capture the frequencies in a uniform way we encode
relative frequencies through one-hot encoding of five uniformly
picked frequency quantiles (of 20% width) per side, i.e., RHS or
LHS. The normalization process for the LHS and RHS violations
takes into account the specific orientation of the column within
the functional dependencies, normalizing by the total number of
all rules where the column is on the LHS or RHS, respectively.
Formally,

𝑛𝑣(𝐿⇑𝑅)𝐻𝑆(𝑡(︀𝑖, 𝑗⌋︀) = #(L/R)HS violations of 𝑡(︀𝑖, 𝑗⌋︀
#Rules where col 𝑗 appears on (L/R)HS

.

(6)
where 𝑛𝑣𝐿𝐻𝑆 is the relative frequency of violating rules that

have column 𝑗 on their LHS and 𝑛𝑣𝑅𝐻𝑆 is the relative frequency
of violating rules that have column 𝑗 on their RHS. For each
𝑡(︀𝑖, 𝑗⌋︀, we end up with two buckets that are set to one and 8 that
are set to 0, depending on where𝑛𝑣LHS(𝑡(︀𝑖, 𝑗⌋︀) and𝑛𝑣RHS(𝑡(︀𝑖, 𝑗⌋︀)
fall.

We concatenate all these features for each cell value of each
cell fold to create one feature vector. Subsequently, we use these
feature vectors to perform quality-based cell folding.

3.3.2 Cell Folds and Sampling. To identify the most promising
data points for labeling, we have to consider several factors. First,
when considering error detection as a classification problem, we
have to solve a class imbalance problem because, in most datasets,
the ratio of errors is significantly smaller than the ratio of clean
values. Furthermore, it is desirable to capture different types of
errors during labeling. Finally, the labels should benefit multiple
tables at the same time. Our quality-based cell folding gears
towards facilitating the distinction of cells with different quality
assessments so that labels can be drawn from cell groups with
different latent quality problems. This distinction can become
more and more fine-granular, the more labels we can spare, as
the number of labels guides the quality-based cell folding as
a clustering step. One could pick any K-Means or hierarchical
clustering approachwhere the number of clusters can be specified.
We selected Mini-batch K-Means [55], which is more efficient
than hierarchical clustering that is used in prior work [32] (Alg. 1,
Line 13).

Note that the number and size of domain-based folds are data-
dependent and not controlled by the user (Section 3.2). Thus, we
first distribute the labeling budget among the domain-based folds
proportional to the number of columns they contain, enforcing
that a domain-based fold receives at least two labels. Here, we
consider the number of columns instead of the number of cells
because the number of different columns is a more accurate
proxy for estimating how many different data types and, as such,
differently shaped errors we expect in a cell fold. The number
of labels that were assigned to a domain-based fold will then be

368

used to set 𝑘 for the quality-based folding approach (Alg. 1, Line
12).

For each quality-based cell fold, we then pick the nearest point
to the cluster center for labeling (Alg. 1, Line 15). Next, we discuss
how to prepare training sets using the derived samples.

3.4 Label Propagation and Classification
As the cell clusters are established based on the similarity of
the detector embeddings, the cells in each cluster are similar in
terms of how they deviate from the ground truth [34]. We make
use of this previously shown intuition to justify the propagation
of the user-assigned label to all other cells of the same cluster.
This way we obtain labeled cells for all table columns within the
same domain-fold (Alg. 1, Lines 18-19). After label propagation,
Matelda unfolds the different cell folds and uses one classifier for
each column to predict the correctness of its cells. Similar to prior
work, we use the Gradient Boosting Classifier [19] to carry out
the classification, which has shown robust performance (Alg. 1,
Lines 20-22).

3.5 Time Complexity
Given a table set 𝑆 , with 𝑚 and 𝑛 being the largest possible
number of columns and rows, respectively, we now describe the
worst case time complexity of Matelda by iterating through the
steps in Alg. 1. The initial step is domain-based cell folding. Its
time complexity includes table featurization and the clustering
step. The complexity of table featurization on all tables is 𝒪(⋃︀𝑆 ⋃︀ ⋅
𝑚 ⋅𝑛 ⋅𝑒) because to generate a single BERT embedding, we iterate
overall rows and columns of each table once and perform the
embedding operation 𝑒 . After generating the embedding, we run
HDBSCAN, which in the worst case has a time complexity of𝒪(⋃︀𝑆 ⋃︀2) [57], as we have one embedding per table. Thus, the
overall time complexity for domain-based cell folding is 𝒪(⋃︀𝑆 ⋃︀ ⋅
𝑚 ⋅ 𝑛 ⋅ 𝑒) +𝒪(⋃︀𝑆 ⋃︀2).

For quality-based cell folding, we consider the complexity
of feature generation, i.e., running base detectors, and the cell
clustering algorithm. Among the detectors we cover, extracting
functional dependency violation statistics nv(𝐿⇑𝑅)𝐻𝑆 is the most
expensive ones as they require pairwise comparisons between
columns. The complexity for applying this detector on each table
𝑡 is𝒪(𝑚2 ⋅𝑛) [4]. As we have to extract features for all tables, the
complexity becomes 𝒪(⋃︀𝑆 ⋃︀ ⋅𝑚2 ⋅ 𝑛). With 𝑣 detectors (features),
we end up with a worst case complexity of 𝒪(𝑣 ⋅ ⋃︀𝑆 ⋃︀ ⋅𝑚2 ⋅ 𝑛).
The complexity of the Mini-batch K-Means itself is linear in the
number of elements as it implements LLoyd’s algorithm. That is
why we can summarize the clustering for each domain fold as
the clustering over all cells as 𝒪(𝑖 ⋅ 𝑘 ⋅ ⋃︀𝑆 ⋃︀ ⋅𝑚 ⋅ 𝑛 ⋅ 𝑣) [57] where 𝑖
is the number of iterations, 𝑘 is the number of clusters.

For sampling, we extract centroids from each cell fold, which
requires to average the vector of all cells of each cell fold. The
complexity for this step is linear in the number of its elements.
That is why we can again sum over all cells in 𝑆 and obtain𝒪(⋃︀𝑆 ⋃︀ ⋅𝑚 ⋅ 𝑛 ⋅ 𝑣). To propagate the labels, we again iterate over
all cells: 𝒪(⋃︀𝑆 ⋃︀ ⋅𝑚 ⋅ 𝑛). The training and prediction complexity is𝒪(⋃︀𝑆 ⋃︀ ⋅𝑚 ⋅𝑛 ⋅ 𝑣 ⋅ (𝒪train +𝒪pred)) where𝒪train and𝒪pred encode
the cost for training and predicting a cell, respectively. All in all,
the overall complexity is:𝒪(⋃︀𝑆 ⋃︀ ⋅𝑚 ⋅𝑛 ⋅𝑒)+𝒪(⋃︀𝑆 ⋃︀2)+𝒪(𝑣 ⋅ ⋃︀𝑆 ⋃︀ ⋅𝑚2 ⋅𝑛)+𝒪(𝑖 ⋅𝑘 ⋅ ⋃︀𝑆 ⋃︀ ⋅𝑚 ⋅𝑛 ⋅𝑣)+𝒪(⋃︀𝑆 ⋃︀ ⋅𝑚 ⋅𝑛 ⋅ 𝑣)+𝒪(⋃︀𝑆 ⋃︀ ⋅𝑚 ⋅𝑛)+𝒪(⋃︀𝑆 ⋃︀ ⋅𝑚 ⋅𝑛 ⋅ 𝑣 ⋅ (𝒪train +𝒪pred))
In Summary our approach is quadratic in the number of tables

Table 1: Dataset characteristics. The error types are miss-
ing value (MV), typo (T), formatting issue (FI), violated
attribute dependency (VAD) and numeric outliers (NO).

Name Number of Size Error Rate Error Types
Tables (#Cells) (cells)

Quintet 5 199772 9% MV, T, FI, VAD
REIN 8 3469027 13% MV, T, VAD, NO
DGov-NTR 143 2458289 16% NO, FI & T, VAD
DGov-NT 159 6527740 15% NO, FI & T
DGov-NO 96 874570 2% NO
DGov-Typo 96 874570 9% FI & T
DGov-RV 96 874570 8% VAD
DGov-1K 1173 47045294 unknown unknown
WDC 100 64286 unknown unknown
GitTables 1000 1002488 unknown unknown

and columns but linear in the number of table rows and feature
vector size. The quadratic complexity with regard to the number
of tables can be avoided if we drop domain-based folding.

4 EXPERIMENTS
We compare the effectiveness, efficiency, and scalability of dif-
ferent versions of Matelda with adaptations of state-of-the-art
error detection systems. Additionally, we assess the impact of
each folding step on the overall performance, conduct an ab-
lation study on datasets with different error types to examine
the robustness and limitations of Matelda in identifying diverse
error types, and analyze the impact of the chosen features on the
effectiveness of our approach.

4.1 Experimental Setup
4.1.1 Datasets. To evaluate our method, ideally, we require

a benchmark of real-world dirty table sets with ground truth to
asses all three aspects of effectiveness, efficiency, and scalability.
However, to the best of our knowledge such benchmarks do not
exist. As the ground truth is lacking for the open data lakes, such
as Web Tables [15] and GitTables [26], we create several table set
benchmarks. Table 1 contains the characteristics of these bench-
marks [34, 50]. All of these datasets are publicly available 2.
Common Datasets:
Quintet Datasets: Five open-source datasets named “Flights”,
“Beers”, “Hospital”, “Movies”, and “Rayyan” have been previously
extensively used for evaluating data cleaning systems [34, 51].
The availability of ground truth and the diversity of the five
datasets and their application in the past make them an inter-
esting case for studying the performance of our system in a
multi-dataset scenario.
WDC Web Table Corpus: We randomly picked 100 English-
language relational webtables out of the massive collection of
over 233 million tables derived from the July 2015 version of the
CommonCrawl [30] to measure the effectiveness of our approach.
We pre-filtered tables that had fewer than 21 rows or more than
100,000 rows, as well as those with fewer than three columns or
more than ten columns.
GitTables: This dataset contains one million tables extracted
from CSV files in GitHub repositories [26]. As the size and shape
of datasets are arguably closer to datasets from an organization,
we randomly selected a subset containing 1000 tables.
Datasets with synthetic errors:
DGov-X Datasets: To further understand the challenges and op-
portunities in cleaning larger table sets, we also created datasets
with artificial errors. For this purpose, we composed five datasets
using tables from data.gov, which are better curated than the

369

aforementioned open lakes. Our benchmark creation process
consists of table retrieval, functional dependency discovery, and
error generation modules. In table retrieval, we retrieved ran-
dom tables from data.gov. All module scripts are available in our
repository 2. As error generation scales superlinearly with the
number of rows of a table, we dropped all tables from data.gov
that are larger than 4MB. We also skipped tables that could not
be parsed or managed by the error generation module BART [53].
Using BART, we inject random syntactic errors (typos), numeric
outliers, and functional dependency violations. The latter covers
semantic errors. For generating functional dependency violations,
we used the HyFD algorithm [45, 47] to mine functional depen-
dencies. BART was configured to generate errors on both sides
of a functional dependency randomly.

We evenly distributed the number of errors among the three
types and utilized as many functional dependencies as possible
for each dataset. Details on the error rates and the size of the
datasets we generated (DGov-X) are shown in Table 1.
REIN: Abdelaal et al. published this dataset consisting of eight
tables, “Adult”, “Breast Cancer”, “Smart Factory”, “Nasa”, “Bikes”,
“Soil Moisture”, “Mercedes”, and “HAR” [2]. The authors intro-
duced errors using BART [2, 53].

4.1.2 Hardware specification and deployment. For our exper-
iments, we utilized two standalone machines running Debian,
equipped with 512 GB of memory and AMD processors featuring
64 cores. Specifically, for the runtime experiment, we conducted
the tests on a machine running Debian 12. The code for Matelda,
the baselines, and the Error-Generator are in Python and avail-
able online 2.

4.1.3 Choice of parameters. If not specified otherwise, we
used default parameters of underlying clustering and classifi-
cation techniques. We only adjusted the minimum cluster size
parameter for HDBSCAN, setting it to two for the domain fold-
ing phase. Moreover, we set the batch size for the Mini-batch
K-Means algorithm to 256 × cores, thereby facilitating paral-
lelism [48].

4.1.4 Baselines. We compared our approach to two state-of-
the-art supervised cleaning approaches Raha [34], and HoloDe-
tect [23]. We further included four unsupervised approaches.
Uni-Detect [59] is a pre-trained unsupervised cleaning technique.
ASPELL [12] focuses on identifying and fixing spelling errors [40].
We also included two data quality testing frameworks, Deequ [54],
and GX [22].

Raha. Raha is a semi-supervised error detection system [34].
It utilizes a small number of user-provided labels to drive the
detection process. As Raha requires at least two labels per column
to work while we also consider cases where we have fewer labels
than tables, we developed several variations of Raha, some of
which also handle the limited label budget situation:

(1) Raha-Standard: This is Raha with its standard label dis-
tribution scheme, i.e., there is at least one labeled tuple
per dataset.

(2) Raha-RandomTables (RT): For this variation, labels are
distributed randomly across tables considering entire tu-
ples at a time. We shuffle the tables and assign one labeled
tuple to each table in sequence until the labeling budget
is exhausted. We skip tables that contain more columns
than there are labels.

2https://github.com/LUH-DBS/Matelda

(3) Raha-2LabelsPerCol (2LPC): In this version, we ran-
domly select one column at a time and label two cells from
this column until the labeling budget is exhausted. This
way it is ensured that each considered column receives
the minimum amount of two labels. Some columns remain
unlabeled.

(4) Raha-20LabelsPerCol (20LPC): This variation works
en par with Raha-2LPC with the difference that every
considered column receives at least 20 labels.

HoloDetect. HoloDetect is a semi-supervised approach that
uses data augmentation. Since its original implementation is
not publicly available, we used a recent third-party implementa-
tion [29].

Uni-Detect. Uni-Detect [59] is an unsupervised approach to
detect errors in large corpora. Uni-Detect focuses on achieving
high precision. It learns patterns for individual columns and veri-
fies values that violate such patterns. The code was not available.
Thus, we pursued a best-effort implementation after consulting
with the authors. Our implementation of Uni-Detect is available 2.
The performance of Uni-Detect depends on its pre-training. As
the original pre-training corpus is not available, we followed
the suggestion of the authors and used the WDC Web Table
Corpus [30]. We used five million random tables to pretrain Uni-
Detect.

Aspell.We utilized ASPELL [12] as a dictionary-based spell
checker to verify the correctness of all cells within the datasets.
We employed the default English dictionary for our datasets;
however, any compatible dictionaries can be used.

Deequ. This framework is designed to efficiently test datasets,
against data quality constraints [54]. Deequ operates on one
dataset at a time and requires predefined quality constraints.
Lastly, Deequ does not pinpoint erroneous cells for each unit test.
Instead, it provides a general quality profile for the dataset. We
applied Deequ individually to each table and used its constraint
suggestion module to obtain constraints, which we then used as
input for Deequ.

Great Expectations (GX). This data quality platform is similar
to Deequ [22]. It includes a data assistant module for extracting
these constraints. Similar as with Deequ, we utilized this module
to extract constraints for each table and used them as inputs to
GX.

4.2 Effectiveness Comparisons
We assessed the effectiveness of Matelda in comparison to all
baselines. The experiment is conducted on the four different sets,
Quintet, REIN, DGov-NTR (DGov with Numeric outliers, Typos,
and Rule violations), and DGov-NT (DGov with Numeric outliers
and Typos) where we have the ground truth. The lakes differ
with regard to the number of tables, error rates, and error types.

The results of the comparison are depicted in Figure 3. The
results for each experiment are the average of five independent
runs.

In all charts of Figure 3, the x-axis scales the labeling budget
based on the number of labeled tuples per table. Thus, any 𝑥 < 1
implies that, on average, only a fraction of a single tuple per table
was labeled. The numbers in brackets on the second line indicate
the total number of labeled cells for some 𝑥-values.

Matelda consistently outperforms all competitors on all datasets
until a labeling budget of ten labeled tuples per dataset. Com-
pared to the second best approach Raha and for two labeled
tuples per dataset, Matelda’s F1-Score is on average 9% better

370

0.15
(10)

0.52 1
(66)

2 3 5 100
0.2
0.4
0.6
0.8
1

Labeling Budget

F1
-S
co
re

Quintet Dataset

0.1
(58)

0.5 1
(581)

2 3 5 10 20
(11620)

0
0.2
0.4
0.6
0.8
1

Labeling Budget

REIN Dataset

0.12
(160)

0.5 1
(1385)

2 3 5 10 20
(27700)

0
0.2
0.4
0.6
0.8
1

Labeling Budget

DGov-NTR Dataset

0.1
(172)

0.5 1
(1719)

2 3 5 10 20
(34380)

0
0.2
0.4
0.6
0.8
1

Labeling Budget

DGov-NT Dataset

Matelda Raha-Standard Raha-RT Raha-2LPC Raha-20LPC Aspell
HoloDetect Uni-Detect GX GX-Oracle Deequ Deequ-Oracle

Figure 3: Effectiveness of Matelda vs. Baselines. The X-Axis depicts the average number of tuples per table that can be
labeled. When the budget is below one, we have fewer labeled tuples than tables, and Raha-Standard and HoloDetect are
not applicable.

on Quintet, 45% better on REIN, 9% better on DGov-NTR, and
24% better on DGov-NT. When the labeling budget exceeds ten
tuples per table, Raha catches up to Matelda. When more than
ten labeled tuples are available Raha catches up to Matelda and
slightly outperforms it on the DGov-NTR dataset.

As discussed in Section 4.1.4, we included several variations
of Raha into the mix that work with smaller labeling budgets to
address the scenarios with fewer labels than datasets. Raha-2LPC
and Raha-20LPC achieve generally high precision since each se-
lected column receives enough labels. However, as many columns
remain untreated, the overall recall suffers significantly. For ex-
ample, Raha-20LPC achieves 57% precision on the Quintet dataset
but only 2% recall when the labeling budget covers two labeled
tuples per dataset. On the REIN dataset, for the same labeling
budget, Raha-20LPC achieved 93% precision and only 3% recall.
A similar argument can be made for Raha-RT. While a few tables
receive labels, the others remain untouched, negatively affecting
recall. The F1-Score of the alternatives Raha-RT, Raha-2LPC, and
Raha-20LPC, varies depending on the randomly selected tables
and columns to be cleaned. On the Quintet dataset, all variants
show the highest average standard deviation: Raha-RT shows an
average F1-Score deviation of 11%, Raha-2LPC records a deviation
of 9%, and Raha-20LPC demonstrates a deviation of 7%.

Figure 3 shows a straight line for Uni-Detect and ASPELL
in each graph, because they do not require labels. Uni-Detect
generally performs worse than the supervised approaches. Its
recall is very low as it captures only values that are globally
inconsistent. Its precision is 15% on the Quintet, 91% on REIN, 23%
on DGov-NTR, and 14% on the DGov-NT, respectively. Higher
precision might be possible with a better training set, yet as
mentioned before we followed the author’s recommendations
for obtaining the pre-trained dataset. Note that for the DGov
datasets, we terminated each module execution after 24 hours.
The pairwise comparisons employed in Uni-Detect is a bottleneck
on large tables.

ASPELL is the fastest baseline and is relatively effective on
synthesized datasets. Similar to Uni-Detect, ASPELL has higher
precision than recall. On the REIN dataset, Aspell achieves 99%
precision, and 1% recall. On the DGov-NTR dataset, ASPELL
achieves a precision of 48% and a recall of 28%. Its performance
is higher on the DGov-NT dataset due to a higher incidence
of generated typos, reaching a precision of 67% and a recall of
50%. However, ASPELL’s effectiveness drops significantly on the

Quintet dataset (2% precision and 3% recall). Overall, ASPELL
displays a reasonable alternative in setups where only typos are
to be expected. We also experimented with employing ASPELL
as a weak supervisor for label preparation, but this strategy was
unsuccessful due to ASPELL’s limited precision (below 70%).

Due to runtime and resource constraints, we could not run
HoloDetect on all datasets. On the Quintent dataset only one
iteration for all labeling budgets took one week. Thus, we did not
run more iterations. On the REIN dataset, HoloDetect finished
only on two tables, “breast cancer” and “Nasa”. The execution
on the other tables failed due to either memory usage issues
or excessively long runtimes (exceeding 3 hours per table). For
DGov-NTR, we limited the set of experiments to labeling budgets
2, 5, 10, and 20, which took nine days. As the performance was
clearly lower than the competitors, we did not run it for smaller
labeling budgets. Given the limited resources and the clear trend
on the other two datasets, we did not run it on the larger DGov-
NT dataset.

To run GX and Deequ, we leverage the systems’ built-in func-
tionalities to automatically extract constraints. GX provides a
data assistant tool that can automatically extract four types of
constraints: (1) expecting the table row count to fall within a
specified range, (2) expecting the unique value count in a column
to fall within a specified range, (3) expecting column values not
to be null, and (4) expecting column values to be null. Deequ
suggests constraints based on the data type of the column. For
string columns, it suggests constraints related to the minimum
and maximum value length, while for numerical columns, it
considers the magnitude of values, including statistics such as
average and standard deviation. Both systems apply common
rules across data types, such as checking for completeness and
detecting data type violations. As illustrated in Figure 3, GX has
a near-zero F1-Score when its constraints are generated based
on the dirty dataset only. In the same set-up, Deequ performs
better, detecting data type violations and achieving F1-scores of
up to 21%. To further investigate the capabilities of these systems,
we also let them use the ground truth for constraint extraction,
although it is unrealistic. We refer to this modified approaches
as GX-Oracle and Deequ-Oracle. The GX-Oracle still yields a
very low F1-score, as it only addresses issues related to missing
values. Deequ-Oracle achieved a 70% F1-score on the Quintet
dataset. This improvement is due to the system’s ability to detect

371

Table 2: Effectiveness experiments on WDC

System #TP #FP #FN P R F1
Matelda 175 69 23 72% 88% 79%
Raha-Standard 106 49 92 68% 53% 60%
HoloDetect 85 32 113 73% 43% 54%
ASPELL 14 113 184 11% 7% 9%

representational errors and missing values when correct con-
straints are extracted from the clean version of the data. On all
other datasets also Deequ-Oracle falls behind. Note that in a real
scenario the clean dataset is not available.

4.3 Effectiveness Comparisons on a Real Lake
To further assess the effectiveness of the different approaches,
we analyzed their performance on the WDC dataset. Due to the
absence of ground truth in this data lake, we were limited to
measuring only a sample of the results. We conducted a manual
evaluation of 400 cells, comparing Matelda’s effectiveness against
that of Raha, HoloDetect, and ASPELL. In fact, we picked 100
random cells out of errors detected by each of these systems. For
this experiment, we only tried one labeling budget variation—two
labeled tuples per table. Note that, for smaller labeling budgets
Raha and HoloDetect will not be applicable and for larger labeling
budgets, we would have to manually label ten times more cells
across 100 different tables, which is a daunting manual task.

The outcomes are outlined in Table 2. Matelda yields the high-
est F1-Score on the sample. While its precision is marginally
below the highest recorded precision rate of 73% by HoloDetect,
it achieves a significantly higher recall value of 88%. Raha follows
at second place with an F1-Score of 60%.

4.4 Ablation Study on Error Types
We performed two sets of experiments to assess Matelda’s effec-
tiveness in identifying different error types. The first experiment
measures Matelda’s performance on datasets where only a spe-
cific type of error has been injected. The results are illustrated in
Figure 4. We compare Matelda against the most effective base-
lines so far, Raha and its variants, along with ASPELL. On the
DGov-NO dataset that only contains outliers, Matelda consis-
tently surpasses all baselines across various labeling budgets.
On the DGov-Typo dataset that only contains typos, Matelda
achieves a superior F1-Score as soon as 323 cells (0.3% labeled
tuples per table) are labeled. Raha catches up when the number
of labeled tuples per table exceeds 15. On the DGov-RV dataset,
Matelda’s effectiveness is similar to Raha from one labeled tu-
ple on. This similarity in performance shows that although our
approach compares cells across tables, the designed rule-based
features effectively capture the similarity of cells that participate
in rule-violations. Note that Raha should have had an advan-
tage because it clusters cells within individual columns that are
subject to the same set of rules.

The second experiment measures the completeness of the
system’s results in detecting different error categories within
the common datasets. We selected the Quintet dataset as our
focus for this evaluation. We manually assign each error in the
Quintet dataset to an error type. The error types include MV
(Missing Values), REP (Representation and Formatting Errors),
SEM (Semantic Errors), and TYP (Typos). The datasets, annotated
with these types, are made publicly accessible in our repository 2.
Now we assess the recall for each error type individually. The

Table 3: Recall in capturing different error types in Quintet

System MV REP SEM TYP Total Total
Recall Precision Recall

Matelda 95% 84% 44% 14% 75% 75%
Raha-Standard 59% 74% 25% 11% 75% 61%
HoloDetect 59% 14% 23% 0% 63% 2%

results are drawn from the setup with two labeled tuples per table.
Table 3 shows that Matelda significantly surpasses both Raha
and HoloDetect on each individual error type. Notably, Matelda
exhibits higher recall for semantic errors and missing values.

4.5 Matelda Variant and Component Analysis
First, we analyze variations of the folding step. Then we analyze
the impact of different cell feature groups. Finally, we compare
different strategies on how to train the error detection classifiers.
Here, we do not include DGov-NT because it is similar to DGov-
NTR but yet much larger requiring more computation.

4.5.1 Folding Strategies Impact Analysis. There are several
different folding scenarios to consider. One approach is to en-
tirely avoid the folding of cells, treating each column individually.
If the folding is too strict, the label sharing is also strict. This
approach is basically covered by our Raha alternatives and faces
the challenge of lacking labels for every distinct column. Alterna-
tively, one can opt for excessive folding, i.e., avoiding the filtering
implications of the domain-based folding strategy. As a result, we
fold cells despite domain dissimilarities and let the quality-based
cell folding distinguish cell folds across all domains. Another
variant is to refine the domain-based cell folding, using columns
features. This approach separates cells from columns vulnerable
to different error types. To have a better understanding of the
impact of such folding approaches, we compare the standard
Matelda approach to the following two alternatives:
1) Matelda-EDF (Extreme Domain Folding): All cells belong
to the same domain. Only quality-based cell folding is carried
out.
2) Matelda +SF (+Syntactic Folding): In this configuration, we
do a refinement of the domain-based folding based on column
similarities. To decide which cells from which columns should
go into the same fold, we need to capture syntactic signals that
imply specific data quality problems. Similar to the work on dirti-
ness similarity [32], we consider features that capture data types,
character distributions, and cell value lengths.

Figure 5 depicts the results of these experiments on Quintet
and DGov-NTR. On the Quintet dataset, the performance differ-
ences between Matelda-Standard and its two other versions are
minor. Yet, on the DGov-NTR dataset, the standard and EDF vari-
ants consistently outperform the +SF-variant, suggesting that
a folding based on syntactic features could interfere with the
effective sharing of labels across cells. This also shows that the
features for quality-based cell folding are generally effective in
considering column similarities although they describe cells from
different tables.

While the performance of Matelda-EDF suggest that one could
drop the domain-based folding step and put everything into one
fold, it is important to note that without it, the runtime is up to 8
times higher compared to the standard approach on the DGov-
NTR dataset. In Section 4.6, the runtime is discussed in more
detail.

372

0.1
(130)

0.5 1
(1.3k)

2 3 5 10 20
(25.8k)

0
0.2
0.4
0.6
0.8
1

Labeling Budget

F1
-S
co
re

DGov-Typo Dataset

0.1
(130)

0.5 1
(1.3k)

2 3 5 10 20
(25.8k)

0
0.2
0.4
0.6
0.8
1

Labeling Budget

DGov-RV Dataset

0.1
(130)

0.5 1
(1.3k)

2 3 5 10 20
(25.8k)

0
0.2
0.4
0.6
0.8
1

Labeling Budget

DGov-NO Dataset

Matelda Raha-Standard Raha-RT Raha-2LPC Raha-20LPC Aspell
Figure 4: Effectiveness of Matelda vs. Baseline Approaches - Ablation Study on Error Types.

0.1 0.5 1 2 3 5 10 200
0.2
0.4
0.6
0.8
1

Labeling Budget

F1
-S
co
re

Quintet Dataset

0.1 0.5 2 3 5 10 200
0.2
0.4
0.6
0.8
1

Labeling Budget

DGov-NTR Dataset

Matelda Matelda-EDF Matelda +SF

Figure 5: Folding Strategies Impact

4.5.2 Domain-based Cell Folding Analysis. Matelda employs
a BERT embedding model to represent tables during the domain-
folding step. To explore alternative solutions and address poten-
tial scalability concerns, we introduce two additional variants of
Matelda: Matelda-Santos, and Matelda-RS which are discussed
in this section.
1) Matelda-Santos: We compared our choice to a variation that
relies on unionability scores of the recent state-of-the-art system
SANTOS [28]. We utilized the unionability scores as measures of
similarity and performed clustering based on these scores. The
workflow of the domain folding step using SANTOS is as follows.
First SANTOS generates semantic representations for each table
by utilizing knowledge bases. In the union discovery setting, it
then computes the unionability score of a given table with those
in the dataset and retrieves the unionable tables with the corre-
sponding unionability scores. In our case, we employ this process
on each individual table of our table set. For each table, we must
specify an intent column to serve as the root for relationship
searches in SANTOS. We default to the first column as the in-
tent column, as it often corresponds to the subject column. In
the second step, we treat the unionability scores as measures of
similarity between tables and apply HDBSCAN clustering.
2) Matelda-RS: Given that using BERT embeddings may pose
scalability challenges for large datasets, we developed Matelda-
RS as a variant to mitigate this issue. Matelda-RS employs random
sampling to reduce the complexity of the domain-folding pro-
cess. Specifically, only 1% of the rows in each table are randomly
selected as input for the BERT embedding and domain clustering
modules.

On the Quintet dataset, SANTOS results in the same folds as
our approach which is why we do not include its graph. Figure 6

0.1 0.5 2 3 5 10 200
0.2
0.4
0.6
0.8
1

Labeling Budget
F1
-S
co
re

DGov-NTR Dataset

Matelda Matelda-SANTOS Matelda-RS

Figure 6: Domain Folding Design Impact

shows that the effectiveness of the SANTOS-based method is
similar to the standard method. However, SANTOS is signifi-
cantly slower due to the computationally intensive tasks it that
it performs. These include generating a synthesized knowledge
base and extracting functional dependencies. On average, the
runtime for Matelda-Santos stands at 4,963 seconds, in contrast
to 1,130 seconds for Matelda-Standard on the DGov-NTR dataset.
Matelda-RS achieves nearly the same F1-Score as Matelda, but
its runtime is significantly reduced. On average, Matelda-RS
achieves a runtime of 998 seconds, in contrast to 1,130 seconds for
the standard Matelda when labeling two tuples per table on the
DGov-NTR dataset. This demonstrates that Matelda can avoid
scalability issues by relying on sampling when dealing with large
datasets.

4.5.3 Quality-based Cell Folding Features Impact Analysis. To
evaluate the impact of the features used for quality-based cell
folding, we perform an ablation study with the following vari-
ants:
1) Matelda-NOD (No Outlier Detector): This variant includes
all features with the exception of outlier detection signals.
2) Matelda-NTD (No Typo Detector): Typo detectors are ex-
cluded in this variant.
3) Matelda-NRVD (No Rule Violation Detector): Here, we
leverage all features except for rule violation features.

Figure 7 shows that Matelda with all cell features outperforms
the other methods in terms of F1-Score for the majority of label-
ing budgets on both datasets. Matelda-NOD consistently demon-
strates lower performance compared to the other variants, empha-
sizing the essential contribution of outlier detection in assessing
cell quality similarity. On the DGov-NTR dataset, the benefit

373

0.1 0.5 1 2 3 5 10 200
0.2
0.4
0.6
0.8
1

Labeling Budget

F1
-S
co
re

Quintet Dataset

0.1 0.5 2 3 5 10 200
0.2
0.4
0.6
0.8
1

Labeling Budget

DGov-NTR Dataset

Matelda Matelda-NOD Matelda-NTD Matelda-NRVD

Figure 7: Quality-based Cell Folding: Feature Analysis

of the rule violation and typo detectors becomes more evident
when the labeling budget increases beyond three labeled tuples
per table.

4.5.4 Training Phase Design Analysis. Matelda, by default,
uses a separate classifier for each column. We designed it this
way because when each classifier is trained on a limited set of
cells, i.e., only the cells within a single column, it will be more
efficient. Moreover, as each classifier is dedicated to just one
column, there is no risk of further confusing information from
different columns or tables. To further validate this choice, we
compare it with other possible options. We designed two other
variants of Matelda:
1) Matelda-TPDF (Training Per Domain Fold): Instead of one
classifier per column, we have one classifier for each domain fold.
2) Matelda-TUCF (Training using Unlabeled Cell Folds):
Similar to Matelda-TPDF, this variant utilizes one classifier for
each domain fold. However, we create twice as many quality-
based cell folds for each domain fold, which in turn limits the
label propagation to smaller but more coherent clusters.

The results of this experiment are depicted in Figure 8. The
first row of charts showcases the effectiveness of each approach
on Quintet and DGov-NTR. The second row demonstrates the
runtime for the two datasets. Matelda and Matelda-TPDF de-
liver the best F1-Scores among the considered variants. This
outcome aligns with our expectations, given that these variants
have trained on more cell values compared to Matelda-TUCF. Yet,
the standard approach is more runtime-efficient. Matelda-TUCF
displays the fastest runtime, but allows some cell folds to remain
unlabeled compromising its effectiveness. The experiment shows
that separating the training for each column individually is best.

4.6 Efficiency and Scalability
To evaluate the efficiency and scalability of Matelda in detecting
errors in large data lakes, we designed an experiment focusing
on the number of tables. We used two datasets for this purpose:
DGov-1K and GitTables. From GitTables, we sampled multiple
sets ranging from 100 to 1000 tables, and from DGov-1K, the sets
ranged from 250 to 1173 tables.

We compared the execution time of Matelda, Matelda-EDF,
and Raha and report the average of three independent runs. Ex-
ecution time includes all processes from data reading to error
detection. User interactions were excluded from the calculation
for all systems. We used two labeled tuples for each table as the
labeling budget, which is the minimum requirement for Raha.
Figure 9 shows that Matelda clearly scales better than Matelda-
EDF on GitTables. This is because clustering a large number of

0.15 0.5 1 2 3 5 10200
0.2
0.4
0.6
0.8
1

Labeling Budget

F1
-S
co
re

Quintet Dataset

0.1 0.5 2 3 5 10200
0.2
0.4
0.6
0.8
1

Labeling Budget

DGov-NTR Dataset

0.15 0.5 1 2 3 5 1020100

150

200

250

Labeling Budget

Ru
nt
im

e
(se

co
nd

s)

0.1 0.5 1 2 3 5 1020500
1,000
1,500
2,000
2,500

Labeling Budget
Matelda Matelda-TPDF Matelda-TUCF

Figure 8: Comparing different training strategies

250 500 750 1000
0

1

2

3

⋅104

0.0
Number of Tables

Ru
nt
im

e
(.1

04
se
co
nd

s)
GitTables

250 500 750 1173
0

0.5

1

1.5
⋅105

Number of Tables
Ru

nt
im

e
(.1

05
se
co
nd

s)

DGov-1K

Matelda Raha-Standard Matelda-EDF

Figure 9: Scalability results- The average number of rows
per table is 126 for GitTables-1000 and 3.1k for DGov-1K.

cells is memory-intensive and leads to paging, and the domain
folding approach helps reduce this cost. Due to memory limita-
tions, Matelda-EDF did not finish on DGov subsets showing the
benefit of creating independent domain-based folds. Matelda is
also faster than Raha. This is mainly due to the reduced feature
space as schema-dependent features are absent.

4.7 Limitations
Although Matelda shows great promise in our experiments, we
highlight some of its algorithmic limitations and the assumptions
that must hold for it to perform well.
Assumptions on the table set: Matelda assumes a degree of
semantic or syntactic similarity across the tables within the set. If
such similarity is lacking, the system’s ability to share and reuse
labels across tables becomes ineffective.
Error types: The need for a unified feature space reduces the
potential of applying schema-related detectors. Our heuristic
based on similarity-flooding is a weakened form of capturing
inter-column relationships. While the set of current detectors
covers existing categories of errors, we cannot claim to have
covered all possible signals to capture the quality of a cell.
System design: The current implementation of Matelda relies
on the interplay of multiple components, such as featurization,
clustering, and classification. For the sake of generalizability, we

374

use each of them with their default parameters, which might not
be optimal.
Reliance on the clustering steps:While our experiments demon-
strate that Matelda is not affected by the accuracy of the domain-
based folding step, the subsequent quality-based folding is crucial
for the effectiveness of label sharing. In particular, if the tables
become very large and encounter many concept drifts across the
rows, the small labeling budget might not be enough to effectively
separate cells for label sharing.

5 RELATEDWORK
Our work directly builds on existing data cleaning and lake man-
agement literature.

Data Cleaning. There is a large body of research on data qual-
ity management and data cleaning [16, 52, 54]. Traditional error
detection and correction techniques such as Nadeef [14], Llu-
natic [20] and Horizon [52] require predefined rules and configu-
rations. Katara [11] is another example that requires additional
master data like knowledge bases. There are also commercial
data quality debugging tools that identify errors based on pro-
vided constraints. These tools primarily focus on automating the
application of rules and constraints to datasets [16]. Examples of
such tools include Deequ [54] and Great Expectations (GX) [22].
Our approach addresses scenarios where dataset constraints are
not known upfront.

Semi-supervised approaches, such as Raha [34], ED2 [43],
HoloClean [51], HoloDetect [23], and Baran [33], consider data
cleaning as a classification problem. Raha and Baran ensemble
detectors and correctors and leverage a few labeled tuples to
train the corresponding classifiers [33, 34]. ED2 applies active
learning to get labels for uncertain tuples [41, 43]. HoloDetect
leverages data augmentation techniques to tackle the data imbal-
ance problem in error detection. HoloClean integrates integrity
constraints, external data, and statistical profiles into a factor
graph model, which it then uses to predict the correct values for
detected errors.

All prior work focus on individual tables and do not provide
techniques and considerations for cleaning multiple tables at
once. The moment we consider multiple tables simultaneously,
user involvement and runtime add up per dataset. With Matelda,
we bridge this gap by identifying characteristics of data cells that
are comparable across multiple datasets.

Unsupervised approaches, such as Auto-Detect [25] and Uni-
Detect [59] leverage statistical consistency for identifying out-
liers and other inconsistencies in individual tables. Auto-Detect
is primarily designed to detect pattern violations within single
columns, which makes it less practical at identifying issues like
semantic errors or numeric outliers. Uni-Detect requires pre-
training on a clean lake. As we show in our experiments it fails to
identify semantic errors and errors that are not obvious outliers.
With Matelda, we cover a more comprehensive set of error types,
as we generally build upon the holistic nature of the error detec-
tion strategies that are included in the state-of-the-art system
Raha.

Another line of research focuses on crowdsourced based web
table cleaning [61] and optimizes the cleaning task order for
crowdworkers. This approach is orthogonal to our semi-supervised
approach.

Recently, LLMs have been considered for automated clean-
ing [60]. The LLM-based system Sudowoodo still requires anno-
tations for each table to fine-tune the models and work effectively.

According to its code-base, further data-specific rules are also
necessary to fine-tune the model.
Data Lake Management. Matelda aims to detect errors in data
lakes by reorganizing the lake’s structure. Numerous works have
focused on addressing challenges at the scale of data lakes [38].
This field covers a wide range of topics, including the discovery
of unionable tables [28, 39], and joinable tables [17, 62], data
lake organization for easier navigation [44], and enhancing data
quality using constraints extracted from the corpus [18]. Our
work builds on this line of research as discussed in Section 4.5.2.

6 CONCLUSION
In this paper, we tackled the problem of semi-supervised error de-
tection in a multi-table scenario. We introduced Matelda, which
pre-organizes a given set of tables so that user labels can be
shared across tables and uses table-agnostic features to make
cells comparable across tables. While our system has demon-
strated superior effectiveness on our test set benchmarks, there
are still opportunities for further improvement. Enhancements
such as including additional signals for more effective detection
of functional dependency violations and minimizing user label-
ing efforts could further optimize the method for application on
large data lakes. As we focused on the error detection task in this
paper, the exploration of strategies for data repair within data
lakes represents a promising and largely unexplored direction
for future research.

ACKNOWLEDGMENTS
We would like to extend our gratitude to Arne Meier, Paolo Pa-
potti, Yeye He, and Sebastian Schelter, for their valuable feedback.
We also thank Mohamed Abdelaal for providing us with the REIN
dataset. This project has been supported by the German Research
Foundation (DFG) under grant agreement 387872445.

REFERENCES
[1] Accessed: 2024. OpenRefine. https://openrefine.org/
[2] Mohamed Abdelaal, Christian Hammacher, and Harald Schöning. 2023. REIN:

A Comprehensive Benchmark Framework for Data Cleaning Methods in ML
Pipelines. In Proceedings of the International Conference on Extending Database
Technology (EDBT).

[3] Ziawasch Abedjan, Xu Chu, Dong Deng, Raul Castro Fernandez, Ihab F. Ilyas,
Mourad Ouzzani, Paolo Papotti, Michael Stonebraker, and Nan Tang. 2016.
Detecting Data Errors: Where are we and what needs to be done? Proceedings
of the VLDB Endowment (PVLDB) 9, 12 (2016), 993–1004.

[4] Ziawasch Abedjan, Lukasz Golab, Felix Naumann, and Thorsten Papenbrock.
2018. Data Profiling. Morgan & Claypool Publishers.

[5] Felix Bießmann, Tammo Rukat, Philipp Schmidt, Prathik Naidu, Sebastian
Schelter, Andrey Taptunov, Dustin Lange, and David Salinas. 2019. DataWig:
Missing Value Imputation for Tables. J. Mach. Learn. Res. 20 (2019), 175:1–
175:6.

[6] Michael J. Cafarella, Alon Y. Halevy, Daisy Zhe Wang, Eugene Wu, and Yang
Zhang. 2008. WebTables: exploring the power of tables on the web. Proceedings
of the VLDB Endowment (PVLDB) 1, 1 (2008), 538–549.

[7] Ricardo J. G. B. Campello, Davoud Moulavi, Arthur Zimek, and Jörg Sander.
2015. Hierarchical Density Estimates for Data Clustering, Visualization, and
Outlier Detection. ACM Transactions on Knowledge Discovery from Data 10, 1
(2015), 5:1–5:51.

[8] Olivier Chapelle, JasonWeston, and Bernhard Schölkopf. 2002. Cluster Kernels
for Semi-Supervised Learning. InNeural Information Processing Systems (NIPS).

[9] Xu Chu, Ihab F. Ilyas, Sanjay Krishnan, and Jiannan Wang. 2016. Data Clean-
ing: Overview and Emerging Challenges. In Proceedings of the International
Conference on Management of Data (SIGMOD).

[10] Xu Chu, Ihab F. Ilyas, and Paolo Papotti. 2013. Holistic data cleaning: Putting
violations into context. In Proceedings of the International Conference on Data
Engineering (ICDE).

[11] Xu Chu, John Morcos, Ihab F. Ilyas, Mourad Ouzzani, Paolo Papotti, Nan Tang,
and Yin Ye. 2015. KATARA: A Data Cleaning System Powered by Knowledge
Bases and Crowdsourcing. In Proceedings of the International Conference on
Management of Data (SIGMOD).

[12] GNU Aspell developers. Accessed: 2024. GNU Aspell. http://aspell.net. Ac-
cessed: 31.03.2024.

375

[13] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for Language Under-
standing. In Proceedings of the Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies
(NAACL-HLT).

[14] Amr Ebaid, Ahmed K. Elmagarmid, Ihab F. Ilyas, Mourad Ouzzani, Jorge-
Arnulfo Quiané-Ruiz, Nan Tang, and Si Yin. 2013. NADEEF: A Generalized
Data Cleaning System. Proceedings of the VLDB Endowment (PVLDB) 6, 12
(2013), 1218–1221.

[15] Julian Eberius, Maik Thiele, Katrin Braunschweig, and Wolfgang Lehner. 2015.
Top-k Entity Augmentation Using Consistent Set Covering. In Proceedings of
the International Conference on Scientific and Statistical Database Management
(SSDBM).

[16] Lisa Ehrlinger and Wolfram Wöß. 2022. A Survey of Data Quality Measure-
ment and Monitoring Tools. Frontiers Big Data 5 (2022), 850611.

[17] Mahdi Esmailoghli, Jorge-Arnulfo Quiané-Ruiz, and Ziawasch Abedjan. 2022.
MATE: Multi-Attribute Table Extraction. Proceedings of the VLDB Endowment
(PVLDB) 15, 8 (2022), 1684–1696.

[18] Mina H. Farid, Alexandra Roatis, Ihab F. Ilyas, Hella-Franziska Hoffmann, and
Xu Chu. 2016. CLAMS: Bringing Quality to Data Lakes. In Proceedings of the
International Conference on Management of Data (SIGMOD).

[19] Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting
machine. Annals of statistics (2001), 1189–1232.

[20] Floris Geerts, Giansalvatore Mecca, Paolo Papotti, and Donatello Santoro.
2020. Cleaning data with Llunatic. VLDB Journal 29, 4 (2020), 867–892.

[21] Boris Glavic, Giansalvatore Mecca, Renée J. Miller, Paolo Papotti, Donatello
Santoro, and Enzo Veltri. 2024. Similarity Measures For Incomplete Database
Instances. In Proceedings of the International Conference on Extending Database
Technology (EDBT).

[22] Abe Gong, James Campbell, and Great Expectations. Accessed: 2024. Great
Expectations. https://doi.org/10.5281/zenodo.5683574

[23] Alireza Heidari, Joshua McGrath, Ihab F. Ilyas, and Theodoros Rekatsinas.
2019. HoloDetect: Few-Shot Learning for Error Detection. In Proceedings of
the International Conference on Management of Data (SIGMOD).

[24] Victoria J. Hodge and Jim Austin. 2004. A Survey of Outlier Detection Method-
ologies. Artif. Intell. Rev. 22, 2 (2004), 85–126.

[25] Zhipeng Huang and Yeye He. 2018. Auto-Detect: Data-Driven Error Detection
in Tables. In Proceedings of the International Conference on Management of
Data (SIGMOD).

[26] Madelon Hulsebos, Çagatay Demiralp, and Paul Groth. 2023. Gittables: A
large-scale corpus of relational tables. Proceedings of the ACM on Management
of Data 1, 1 (2023), 1–17.

[27] Sean Kandel, Andreas Paepcke, Joseph M. Hellerstein, and Jeffrey Heer. 2011.
Wrangler: interactive visual specification of data transformation scripts. In
Proceedings of the International Conference on Human Factors in Computing
Systems (CHI).

[28] Aamod Khatiwada, Grace Fan, Roee Shraga, Zixuan Chen, Wolfgang Gatter-
bauer, Renée J. Miller, and Mirek Riedewald. 2023. SANTOS: Relationship-
based Semantic Table Union Search. Proceedings of the ACM on Management
of Data 1, 1 (2023), 9:1–9:25.

[29] Abolfazl Mohajeri Khorasani, Sahar Ghassabi, Behshid Behkamal, and Mostafa
Milani. 2023. Explainable Error Detection Method for Structured Data using
HoloDetect framework. In International Conference on Computer and Knowl-
edge Engineering.

[30] Oliver Lehmberg, Dominique Ritze, Robert Meusel, and Christian Bizer. 2016.
A Large Public Corpus of Web Tables containing Time and Context Metadata.
In Proceedings of the International World Wide Web Conference (WWW).

[31] Peng Li, Xi Rao, Jennifer Blase, Yue Zhang, Xu Chu, and Ce Zhang. 2021.
CleanML: A Study for Evaluating the Impact of Data Cleaning on ML Classifi-
cation Tasks. In Proceedings of the International Conference on Data Engineering
(ICDE).

[32] Mohammad Mahdavi and Ziawasch Abedjan. 2019. REDS: Estimating the
Performance of Error Detection Strategies Based on Dirtiness Profiles. In
Proceedings of the International Conference on Scientific and Statistical Database
Management (SSDBM).

[33] Mohammad Mahdavi and Ziawasch Abedjan. 2020. Baran: Effective Error
Correction via a Unified Context Representation and Transfer Learning. Pro-
ceedings of the VLDB Endowment (PVLDB) 13, 11 (2020), 1948–1961.

[34] Mohammad Mahdavi, Ziawasch Abedjan, Raul Castro Fernandez, Samuel
Madden, Mourad Ouzzani, Michael Stonebraker, and Nan Tang. 2019. Raha: A
Configuration-Free Error Detection System. In Proceedings of the International
Conference on Management of Data (SIGMOD).

[35] Zelda Mariet, Rachael Harding, Sam Madden, et al. 2016. Outlier detection in
heterogeneous datasets using automatic tuple expansion. (2016).

[36] Sergey Melnik, Hector Garcia-Molina, and Erhard Rahm. 2002. Similar-
ity Flooding: A Versatile Graph Matching Algorithm and Its Application
to Schema Matching. In Proceedings of the International Conference on Data
Engineering (ICDE).

[37] Fatemeh Nargesian, Abolfazl Asudeh, and H. V. Jagadish. 2022. Responsible
Data Integration: Next-generation Challenges. In Proceedings of the Interna-
tional Conference on Management of Data (SIGMOD).

[38] Fatemeh Nargesian, Erkang Zhu, Renée J. Miller, Ken Q. Pu, and Patricia C.
Arocena. 2019. Data Lake Management: Challenges and Opportunities. Pro-
ceedings of the VLDB Endowment (PVLDB) 12, 12 (2019), 1986–1989.

[39] Fatemeh Nargesian, Erkang Zhu, Ken Q. Pu, and Renée J. Miller. 2018. Table
Union Search on Open Data. Proceedings of the VLDB Endowment (PVLDB) 11,
7 (2018), 813–825.

[40] Markus Näther. 2020. An In-Depth Comparison of 14 Spelling Correction
Tools on a Common Benchmark. In Proceedings of The Language Resources
and Evaluation Conference (LREC).

[41] Felix Neutatz, Binger Chen, Ziawasch Abedjan, and Eugene Wu. 2021. From
Cleaning before ML to Cleaning for ML. IEEE Data Engineering Bulletin 44, 1
(2021), 24–41.

[42] Felix Neutatz, Binger Chen, Yazan Alkhatib, Jingwen Ye, and Ziawasch Abed-
jan. 2022. Data Cleaning and AutoML: Would an Optimizer Choose to Clean?
Datenbank Spektrum 22, 2 (2022), 121–130.

[43] Felix Neutatz, Mohammad Mahdavi, and Ziawasch Abedjan. 2019. ED2: A
Case for Active Learning in Error Detection. In Proceedings of the International
Conference on Information and Knowledge Management (CIKM).

[44] Paul Ouellette, Aidan Sciortino, Fatemeh Nargesian, Bahar Ghadiri
Bashardoost, Erkang Zhu, Ken Pu, and Renée J. Miller. 2021. RONIN: Data
Lake Exploration. Proceedings of the VLDB Endowment (PVLDB) 14, 12 (2021),
2863–2866.

[45] Thorsten Papenbrock, Tanja Bergmann, Moritz Finke, Jakob Zwiener, and
Felix Naumann. 2015. Data Profiling with Metanome. Proceedings of the VLDB
Endowment (PVLDB) 8, 12 (2015), 1860–1863.

[46] Thorsten Papenbrock, Jens Ehrlich, Jannik Marten, Tommy Neubert, Jan-
Peer Rudolph, Martin Schönberg, Jakob Zwiener, and Felix Naumann. 2015.
Functional Dependency Discovery: An Experimental Evaluation of Seven
Algorithms. Proceedings of the VLDB Endowment (PVLDB) 8, 10 (2015), 1082–
1093.

[47] Thorsten Papenbrock and Felix Naumann. 2016. A Hybrid Approach to Func-
tional Dependency Discovery. In Proceedings of the International Conference
on Management of Data (SIGMOD).

[48] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn:
Machine Learning in Python. Journal of Machine Learning Research (JMLR)
12 (2011), 2825–2830.

[49] Clement Pit-Claudel, Zelda Mariet, Rachael Harding, and Sam Madden. 2016.
Outlier detection in heterogeneous datasets using automatic tuple expansion.
(2016).

[50] Erhard Rahm and Hong Hai Do. 2000. Data Cleaning: Problems and Current
Approaches. IEEE Data Engineering Bulletin 23, 4 (2000), 3–13.

[51] Theodoros Rekatsinas, Xu Chu, Ihab F. Ilyas, and Christopher Ré. 2017. Holo-
Clean: Holistic Data Repairs with Probabilistic Inference. Proceedings of the
VLDB Endowment (PVLDB) 10, 11 (2017), 1190–1201.

[52] El Kindi Rezig, Mourad Ouzzani, Walid G. Aref, Ahmed K. Elmagarmid,
Ahmed R. Mahmood, and Michael Stonebraker. 2021. Horizon: Scalable
Dependency-driven Data Cleaning. Proceedings of the VLDB Endowment
(PVLDB) 14, 11 (2021), 2546–2554.

[53] Donatello Santoro, Patricia C. Arocena, Boris Glavic, Giansalvatore Mecca,
Renée J. Miller, and Paolo Papotti. 2016. BART in Action: Error Generation
and Empirical Evaluations of Data-Cleaning Systems. In Proceedings of the
International Conference on Management of Data (SIGMOD).

[54] Sebastian Schelter, Dustin Lange, Philipp Schmidt, Meltem Celikel, Felix Bieß-
mann, and Andreas Grafberger. 2018. Automating Large-Scale Data Quality
Verification. Proceedings of the VLDB Endowment (PVLDB) 11, 12 (2018), 1781–
1794.

[55] D. Sculley. 2010. Web-scale k-means clustering. In Proceedings of the Interna-
tional World Wide Web Conference (WWW).

[56] Haoxiang Shi and Tetsuya Sakai. 2023. Self-Supervised and Few-Shot Con-
trastive Learning Frameworks for Text Clustering. IEEE Access 11 (2023),
84134–84143.

[57] Pang-Ning Tan, Michael S. Steinbach, Anuj Karpatne, and Vipin Kumar. 2019.
Introduction to Data Mining (Second Edition). Pearson.

[58] Larysa Visengeriyeva and Ziawasch Abedjan. 2018. Metadata-driven error
detection. In Proceedings of the International Conference on Scientific and Sta-
tistical Database Management (SSDBM).

[59] Pei Wang and Yeye He. 2019. Uni-Detect: A Unified Approach to Automated
Error Detection in Tables. In Proceedings of the International Conference on
Management of Data (SIGMOD).

[60] Runhui Wang, Yuliang Li, and Jin Wang. 2023. Sudowoodo: Contrastive Self-
supervised Learning for Multi-purpose Data Integration and Preparation. In
Proceedings of the International Conference on Data Engineering (ICDE).

[61] Yihai Xi, NingWang, Yiyi Zhang, and Xinyu Chen. 2024. CrowdDA: Difficulty-
aware crowdsourcing task optimization for cleaning web tables. Expert Syst.
Appl. 238, Part E (2024), 122139.

[62] Erkang Zhu, Dong Deng, Fatemeh Nargesian, and Renée J. Miller. 2019. JOSIE:
Overlap Set Similarity Search for Finding Joinable Tables in Data Lakes. In
Proceedings of the International Conference on Management of Data (SIGMOD).

376

