
How Green is AutoML for Tabular Data?
Felix Neutatz

BIFOLD & TU Berlin
Germany

f.neutatz@tu-berlin.de

Marius Lindauer
L3S & Leibniz Universität Hannover

Germany
lindauer@tnt.uni-hannover.de

Ziawasch Abedjan
BIFOLD & TU Berlin

Germany
abedjan@tu-berlin.de

ABSTRACT
AutoML has risen to one of themost commonly used tools for day-
to-day data science pipeline development and several popular
packages exist. While AutoML systems support data scientists
during the tedious process of pipeline generation, it can lead to
high computation costs that result from extensive search or pre-
training. In light of concerns with regard to the environment and
the need for Green IT, we holistically analyze the computational
cost of pipelines generated through various AutoML systems by
combining the cost of system development, execution, and the
downstream inference cost. Our �ndings show the bene�ts and
disadvantages of implementation designs and their potential for
Green AutoML.
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1 GREEN DATA SCIENCE
With the development of data-intensive approaches and sys-
tems, we face a heavy computation challenge, often leading to
heavy energy consumption and a critical CO2 footprint of AI sys-
tems [52, 69]. In particular, with the rise of machine learning (ML),
these problems have been aggravated because of computationally
expensive hyperparameter optimization (HPO) and model train-
ing to achieve optimal predictive quality. While there has been
prior work that considered the computation of databases and data
centers and their impact on energy consumption [54], for the area
of data science pipelines and ML systems, energy consumption
has not been compared across di�erent systems. Yet, many exist-
ing data-intensive solutions [4, 5, 9, 30, 32, 48, 57, 59, 70, 73] rely
on the additional ML steps. Nevertheless, automated machine
learning (AutoML) and its HPO have been shown to relieve data
scientists from tedious and error-prone tasks and have become a
powerful component of ML projects [15, 19, 36, 40, 72]. From our
own practical experience with researchers and also developers
at companies, application experts sometimes spend weeks or in
the worst case even months �guring out how to design their ML
pipelines s.t. they perform well even on small datasets. Instead
of spending weeks or months to �nd the optimal pre-processing
steps, models, and their corresponding hyperparameters, it is
possible to leverage an AutoML system of choice and run it for
a speci�ed compute budget. This way, the AutoML system au-
tomatically searches the space of ML pipelines to identify one
or an ensemble of promising pipelines. This automation relieves
the data scientists of manual hyperparameter optimization and
frees up time to focus on the data (data-centric ML [45]) - col-
lecting additional data instances and features, cleaning the data,
and adjusting the objective functions. One drawback of such
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automated systems is the computationally expensive search pro-
cess and the associated energy consumption. Tornede et al. [62]
proposed Green AutoML as a paradigm aimed at enhancing the
overall environmental sustainability of the AutoML process. As
AutoML is increasingly included in data processing systems and
applications [57, 58], it is natural for the database community
to explore its footprint with regard to resource consumption.
We investigate empirically how green current AutoML systems
are and how we can reduce their energy consumption. In this
paper, we consider the consumed energy as a proxy for CO2
emissions because CO2 emissions per kWh di�er signi�cantly
across countries and institutions because countries have di�erent
energy source distributions and institutions might o�set their
CO2 emissions [65]. We limit the scope of our evaluation to tabu-
lar data because it is the most studied data modality by AutoML
systems [15, 19].

Tornede et al. identify three di�erent stages where AutoML
is subject to or in�uences energy consumption: developing and
con�guring an AutoML system, executing an AutoML system,
and predicting with the resulting ML pipeline.
Development: Developing AutoML systems consists of two
phases: implementing the components of the system and setting
the parameters for these components. The energy consumption
during implementation does not only depend on the developing
time but also on energy consumed during unit and integration
testing. Con�guring an AutoML system and its many parameters,
such as the search space, the search strategy, and the validation
strategy requires extensive trial and error iterations. Some Au-
toML systems [19, 20, 26, 55] leveragemeta-learning that requires
often a large amount of meta-data, e.g., AutoML training runs. As
a result, AutoML system development and con�guration remain
resource-intensive. Yet, the premise of AutoML proponents is
that over time the energy consumption of advanced AutoML sys-
tems amortizes in comparison to more simple, ine�cient search
strategies, such as grid or random search [2, 64].
Execution: Most research on AutoML systems focuses on mak-
ing the execution stage more e�cient, i.e., �nding an ML pipeline
or ensemble that achieves high predictive performance as fast as
possible. They highlight various strategies to speed up the exe-
cution of AutoML, such as warm starting [20], multi-�delity op-
timization [18], few-shot learning [26], and ensembling [15, 20].
Inference: The energy consumed during prediction depends on
the chosen ML pipelines. For instance, an ensemble of models
typically requires more energy than a single model. ML models
can also be arbitrarily complex, which a�ects the required energy
for prediction. Further, ML pipelines can also have signi�cant
preprocessing steps that require additional energy for prediction.
One way of reducing the energy consumed during inference is
to consider CO2 emissions as a constraint during search for the
ML pipelines. For instance, we can incorporate this constraint
in the objective function [47]. This way, AutoML will focus on
discovering ML pipelines within a speci�ed consumption budget.
So, if the model is used often, we can signi�cantly reduce the CO2
footprint by reducing the CO2 emission caused by prediction. So
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far, research attempted to optimize the energy consumption of
individual stages, disregarding the potential negative impact on
the other stages.
Holistic Consideration: Energy savings in one stage might
lead to additional energy consumption in another stage. For in-
stance, meta-learning strategies, such as warm starting or few-
shot learning, require heavy resources in the development stage
while allowing the AutoML system to signi�cantly speed up the
execution stage and save energy there. However, meta-learning,
as by Feurer et al. [20] on warm starting Bayesian optimiza-
tion (BO), does not necessarily have an impact on the energy
consumption during inference. Hollmann et al. [26] meta-learn a
transformer that learns on many synthetically generated datasets
to apply supervised classi�cation. As the transformer model is
big and requires forward propagating of the training data dur-
ing inference, the inference requires signi�cant energy. So, the
impact on resource consumption for inference depends on the
meta-learning strategy. Another strategy to save energy in the
execution stage is ensembling [15, 20] because we do not need to
�nd a single best model, but instead aggregating the predictions
of many good models is often su�cient and can thus help to
speed up AutoML. The disadvantage of ensembling large models
is the increasing energy consumption during inference: The more
(complex) models an ensemble combines, the larger the inference
energy consumption. The choice of when to follow which strat-
egy to trade-o� energy consumption and model performance
often depends on the application context. Di�erent tasks might
require a di�erent strategy for reducing energy consumption
across stages. For instance, running a fraud detection model on
millions of bank transactions might require a focus on inference
energy consumption. Predicting whether a patient has a speci�c
kind of cancer might happen far less often, and thus, the focus
could be on execution e�ciency. Depending on the application
and the perspectives of all stakeholders, one would invest more
energy �rst to avoid costly inference later or vice versa.

1.1 Contributions
Motivated by the aforementioned observations, we conduct an
in-depth and holistic analysis of current state-of-the-art AutoML
systems – as representative systems of di�erent AutoML ap-
proaches – to understand the energy consumption trade-o�s in
the di�erent stages of AutoML. We focus on tabular data with
numeric and categorical attributes because this is the most well-
known AutoML use case [15, 19, 51]. We make the following
contributions:
(1) We report extensive experiments with state-of-the-art Au-

toML systems on commonly used benchmark datasets and
evaluate the trade-o� between performance and energy con-
sumption.

(2) From our experimental results, we derive concrete sugges-
tions on when to use which strategy and show how adjusting
AutoML system parameters can reduce energy consumption
during inference. We also provide all implementations and
the evaluation framework in our repository [46].
Our study allows us to reach the following conclusions:

Observation O1: AutoML systems [15, 20] that leverage ensem-
bling selection [6], require at least one order of magnitude more
energy compared to using one model during inference.
Observation O2: For a use case with rather small predictions -
fewer than 26k in our experiments -, few-shot AutoML systems,
such as TabPFN, are most energy e�cient because it does not

search for hyperparameters. If an AutoML system is supposed
to be executed very often beyond simple exploration - in our
experiments more than 885 times -, it is advised to optimize the
AutoML parameters in the development stage. We show that we
can optimize the AutoML system parameters, e.g. for CAML [49],
and achieve higher predictive performance using less energy
compared to all state-of-the-art systems [15, 20]. This �nding
shows that further work on Green AutoML should not neglect
the emissions of development.
Observation O3: Fine-grained support of ML application con-
straints [49], such as inference time, allows the user to reduce en-
ergy consumption while choosing the ML pipeline that achieves
high predictive performance.
Observation O4: In accordance with �ndings by Li [38], the
selection of an appropriate parallelization strategy depends on
the user’s preferences and the AutoML system (the workload).
If energy consumption is the priority then running it on one
core is the best decision for CAML and running it on multiple
cores for AutoGluon. If the priority is time e�ciency, the user
should use all available cores because this approach yields the
best predictive performance and requires only sublinear energy
increases.

In Section 5, we discuss the generalizability of our �ndings.

2 BACKGROUND
We describe the AutoML problem and the main components of
current state-of-the-art AutoML systems to understand how their
design decisions a�ect their energy consumption. We discuss for
each AutoML stage the possibilities and pitfalls with regard to
improving energy e�ciency. Finally, we explain how to measure
the “greenness”, i.e., the energy e�ciency, of AutoML systems.

2.1 AutoML Problem
The general AutoML problem comprises pipeline construc-
tion and HPO [20, 51, 61]. The problem is to identify the ML
pipeline 0 ∈ � and its corresponding hyperparameters , ∈ Λ

that leads to a trained model 5 (0, ;�CA08= ) (·) on the training
dataset �CA08= , that achieves the lowest loss LE0; across all
labeled instances (G8 , ~8 ) of the validation set �E0; . Formally:
argmin0∈�,,∈Λ

∑
(G8 ,~8 ) ∈�E0;

LE0; (~8 , 5 (0, ;�CA08= ) (G8 ) ) .
In addition to reporting the loss/predictive performance (bal-

anced accuracy) on the test set, we report the consumed energy
for both executing the AutoML system using training and valida-
tion data and predicting the test data.

2.2 AutoML Systems
Figure 1 describes the general AutoML process. First, the AutoML
system’s users have to de�ne the ML con�guration space, such
as which classi�er, preprocessor, and corresponding hyperparam-
eters should be optimized (or use default settings). During the
search initialization, the system has to evaluate an initial set of
con�gurations. Then, the search can leverage this initial set and
learn which con�gurations should be evaluated next. After a spec-
i�ed search time has elapsed, the AutoML system can leverage
the models trained during the search in an ensemble and �nally
return the predictions to the users. To provide a broad analysis of
Green AutoML, we use representative, state-of-the-art packages
for the di�erent AutoML approaches. These AutoML approaches
are ensembling [15], Bayesian optimization [19, 20], cost-e�ective
optimization [67], few-shot AutoML [26], and constraint-aware
AutoML [49].
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Figure 1: The AutoML Process - Search Space Setup, Initialization, Search, and Ensembling

AutoGluon (0.6.2) [15]: The system leverages ensembling to its
fullest potential. First, it trains a number of prede�ned models.
Then, it leverages the predictions of these models in another
layer of the same models. This way all models have access to all
information from the other models of the lower layers. Finally,
AutoGluon leverages the ensembling proposed by Caruana [6]
to weigh the predictions of the models of the �nal stacking layer.
We chose AutoGluon for its top performance in the AutoML bench-
mark [21] and its e�ective use of ensembling.
AutoSklearn (ASKL) 1 & 2 (0.14.7) [19, 20]: The system lever-
ages Bayesian optimization (BO) to �nd ML pipelines, consisting
of data/feature preprocessors and the model, that optimize vali-
dation accuracy. By default, BO is initialized with random search.
They further propose a warm starting strategy to improve on
random search. The warm starting is based on an o�ine search
for predictive ML pipelines on 140 repository datasets each for
24h. For a new dataset, they then use the most similar dataset
based on selected metadata features and use the best-performing
ML pipelines for the corresponding dataset as initial evaluation
candidates for the new dataset. To improve the predictive per-
formance, they leverage the ensembling approach proposed by
Caruana [6] to weigh the predictions of the top 50 ML pipelines
evaluated during search.We choose ASKL 1 & 2 because they are
the classic examples for BO.
FLAML (1.2.4) [67]: The system was developed to yield single
low-costmodels, e.g., small random forestmodels. Therefore, they
enforce the prior of cost during search. They start by evaluating
low-cost models, e.g. a random forest with 5 trees with at most
10 leaves each, and they evaluate these models on small training
sets. Then, they incrementally, increase the model complexity.
Once increasing model complexity does not yield more accuracy
gains, they increase the training set size and repeat the process.
We choose FLAML because it searches for a single low-cost model
in contrast to most systems that prioritize predictive performance.
TabPFN (0.1.9) [26]: The system is a few-shot AutoML system.
It requires only a few labeled instances to make predictions for
the remaining instances of a new dataset. TabPFN does neither
require model training nor HPO during execution for a new
dataset. As a few-shot model, transformer model learned on
synthetic datasets how to predict new instances given a number
of labeled examples.We choose TabPFN because it is a recent system
that allows for zero-shot AutoML without explicit training.
TPOT (0.11.7) [51]: The system leverages genetic programming
to �nd ML pipelines. It starts with random ML pipelines and
iteratively evolves them using NSGA-II [8]. We choose TPOT
because it is the most well-known AutoML system that leverages
genetic programming.
CAML [49]: Similar to ASKL, CAML uses BO. It is designed to
allow for dynamic adjustment of its own AutoML parameters
dependent on the provided dataset and user-provided constraints,
such as inference/training time and fairness. It leverages succes-
sive halving to prune ML pipelines that violate constraints as
early as possible. Finally, to avoid over�tting of BO, it leverages
validation split resampling. It can be used in static or dynamic
mode. The dynamic mode leverages meta-training to optimize the

search space based on the user-provided constraints. In this work,
we leverage a static version of CAML, which does not optimize
the search space through meta-training to exclude meta-training
costs from our calculation. We choose CAML because it enables
the compilation of various constraints, such as inference time, as
�rst-class citizens.

2.3 Energy e�ciency of di�erent AutoML
strategies

Table 1 describes how the aforementioned AutoML systems im-
plement the steps illustrated in Figure 1. We describe how di�er-
ent designs of the AutoML steps positively or negatively a�ect
energy consumption on a conceptual level.
(1) Search Space: The AutoML system users have to de�ne the
space of all ML pipelines - the search space. This space determines
the data/feature preprocessors, models, and corresponding hyper-
parameters. ASKL [20] supports the search space of 15 models, 13
feature preprocessors, and 4 data preprocessors. CAML supports
the same space without the feature preprocessors. The develop-
ers of AutoGluon [15] identi�ed promising pipeline candidates
upfront. FLAML [67] supports lightweight models. TabPFN [26]
does not have any search space because it trains a transformer
model. The costs for training the transformer fall into the devel-
opment stage. Avoiding search - as does TabPFN - saves the most
energy during execution. As AutoGluon has prede�ned candi-
date pipelines, it drastically reduces the search space. This way,
it avoids out-of-time exceptions. ASKL’s search space might pro-
duce pipelines s.t. even the very �rst pipeline cannot be executed
in the speci�ed time.
(2) Search Initialization: The most naive way to initialize the
search is to choose the initial ML pipelines randomly. For instance,
CAML �rst evaluates 10 random ML pipelines. To improve on
random initialization, FLAML focuses on low-complexity models
on a very small training set, ASKL [20] applies meta-learning, and
AutoGluon [15] starts with manually picked default pipelines.
The least energy-e�cient option is random initialization because
it potentially wastes computation on poorly performing pipelines.
The warm starting approach through meta-learning or manual
selection of initial pipelines is more e�cient. However, again
the computation is moved to the development stage. For ASKL,
Feurer et al. [20] searched for predictive ML pipelines for 140
datasets each for 24h. For AutoGluon, Erickson et al. [15] do not
specify how they identi�ed the hand-picked ML pipelines – it
will not be negligible.
(3) Search: explores the space of ML pipelines. The most com-
mon approach is Bayesian Optimization [20], e.g. used in ASKL
and CAML, which leverages a surrogate model to learn the most
promising hyperparameter settings for high predictive perfor-
mance. An alternative is genetic programming as leveraged by
TPOT. Modern BO-based AutoML systems further accelerate the
validation process through multi-�delity [28, 39]. An inherent
risk of search is the over�t to the validation set. There are mul-
tiple ways to avoid over�tting caused by search, e.g., avoiding
search in the �rst place like TabPFN. The second approach is to
reduce the parameter space as done by AutoGluon and FLAML.
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Table 1: The search space of each AutoML system and the applied strategy in each execution stage

System Search Space Search Init. Search Ensembling

ASKL data/feature p. & models warm starting BO (random forest) Caruana
AutoGluon prede�ned pipelines manual prede�ned pipelines Caruana & bagging & stacking
CAML data p. & models random BO & successive halving -
TabPFN - - - unweighted ensemble
FLAML models low complexity models cost-based -
TPOT data/feature p. & models random genetic programming -

AutoGluon explicitly only relies on ML pipelines evaluated dur-
ing the search initialization. FLAML uses a prior to navigate the
search from low-complex models toward high-complex models,
implicitly leading to much simpler models that do not use the
entire parameter space. Finally, one can reshu�e the validation
set in each evaluation [37]. In summary, avoiding search is the
most energy-e�cient approach. Yet, this would generally come
at the cost of more e�ort during the development phase.
(4) Ensembling: To further improve model performance, we
can employ ensembling of several pipelines. In fact, ensembling
can also be used as an alternative for parameter search. Even
if the best-found ML pipeline is over�tting, an ensemble of ML
pipelines can alleviate this problem [11]. There are multiple en-
sembling approaches. ASKL and AutoGluon leverage both the
ensembling approach proposed by Caruana et al. [6]. Additionally,
AutoGluon uses bagging and stacking to leverage the information
of each model of the lower stacking layers in all models of the
higher stacking layers. While ensembling improves generaliza-
tion, it also requires more energy for inference. The more models
in the ensemble, the more energy is required for prediction.

2.4 Measuring Environmental Impact
For Green AutoML, the CO2 emissions are the most relevant mea-
sure. However, CO2 emissions depend on the electricity mix of
each institution and/or country. For instance, a company might
o�set the electricity for its entire cluster or even rely on 100%
self-produced renewable energy. We can measure the impact of
AutoML systems through di�erent proxies: runtime, CPU/GPU
hours, �oating point operations, energy consumption, or CO2
emissions [62]. All of these measures are hardware dependent
and have di�erent di�culty levels with regard to taking the mea-
surements. Therefore, we measure the environmental impact of
AutoML systems by their consumed energy - kWh. As we do not
have physical access to the machines, we have to approximate the
energy consumption and thus use the library CodeCarbon [16].
For instance, it leverages Intels Running Average Power Limit
(RAPL) interface that provides energy readings for CPUs and
DRAM [10, 31]. It also accesses Nvidia drivers to track GPU
energy consumption. This way, approximating the energy for
AutoML execution and inference is straightforward. However, it
is not trivial to estimate the cost of the development stage.

2.5 Approximating AutoML Development
Cost

Developing AutoML systems includes the tuning of its parame-
ters, such as the validation strategy and the search space. Usually,
AutoML system users identify those by testing di�erent parame-
ter settings on hundreds of datasets with various search budgets,
which leads to huge computational costs - also known as graduate
student descent. In contrast to the execution and inference stage,
the analysis of the development stage can only be approximated
as it depends on the user and other unpredictable factors. In view

of tremendous computational costs that are associatedwith study-
ing the development phase of di�erent AutoML systems, we limit
ourselves to CAML as a representative AutoML system because it
strictly enforces the search time budget and allows non-invasive
�ne-grained adjustments of all ML hyperparameters. The most
naive approach to tuning CAML’s hyperparameters would be to
take a large number of datasets, and leverage BO to �nd the best
AutoML system parameters for a given search time.

To run BO, we need an objective function. The most
simple objective would be to compare a given set of Au-
toML parameters with the default parameters, e.g. full search
space and 0.33 hold validation. Similar to algorithm con�gu-
ration [13, 42], we can use the following equation to make
the results comparable across datasets: max

l∈Ω
∑

3∈� (�22 (l,3 ) −
�22 (l345 0D;C , 3 ) )/max(�22 (l,3 ), �22 (l345 0D;C , 3 ) ), where for each
dataset 3 of all datasets � , we sum up the relative di�erence
of the predictive accuracies using the AutoML parameters l and
the default parametersl345 0D;C . This way, we enable a fair aggre-
gation across all datasets. Since AutoML is nondeterministic, we
choose to run the AutoML system two times as part of the tuning
process to reduce the variance without introducing excessive
computation overhead.

However, naive BO optimization for this meta-objective re-
quires a lot of computation. Following ideas from instance-
speci�c algorithm con�guration [29], we can reduce the cost
by relying on the most representative datasets instead of using
all datasets. As illustrated in Figure 2, to gather the top-k most
representative datasets, we cluster the datasets based onmetadata
features, such as the number of features, instances, and classes.
For each K-Means centroid, we pick the closest dataset. It turns
out that for poor-performing AutoML parameters, evaluating a
few datasets is su�cient to detect that the parameters are not
performing well [27]. To leverage this insight, we use median
pruning.

The disadvantage of this approach is that the resulting Au-
toML parameters are search-time dependent. For instance, as
our experiments in Section 3.7 show, for a search time of 30s, an
AutoML parameter setting of a small search space consisting of
a few classi�ers performs better, while for a longer search time a
larger search space is better. For each user-speci�ed search time,
one would need to run the optimization process. To limit the
number of optimization cases, we consider common AutoML use
cases, where the search time is either in the order of minutes for
ad-hoc development or very large, such as 1 hour.

Also note that the result of this approach is hardware-
dependent. Therefore, it is more tailored towards cloud envi-
ronments where one has the same or similar hardware setup.

3 EXPERIMENTS
Our experiments aim to provide a comprehensive analysis of how
much energy existing AutoML systems consume during develop-
ment, execution, and inference. Our hypothesis is that as most
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Figure 2: Optimizing AutoML for one search budget.

Table 2: OpenML Test datasets.

Name DatasetID # instances # features # classes

robert 41165 10000 7200 10
riccardo 41161 20000 4296 2
guillermo 41159 20000 4296 2
dilbert 41163 10000 2000 5
christine 41142 5418 1636 2
cnae-9 1468 1080 856 9
fabert 41164 8237 800 7
Fashion-MNIST 40996 70000 784 10
KDDCup09_appetency 1111 50000 230 2
mfeat-factors 12 2000 216 10
volkert 41166 58310 180 10
APSFailure 41138 76000 170 2
jasmine 41143 2984 144 2
nomao 1486 34465 118 2
albert 41147 425240 78 2
dionis 41167 416188 60 355
jannis 41168 83733 54 4
covertype 1596 581012 54 7
MiniBooNE 41150 130064 50 2
connect-4 40668 67557 42 3
kr-vs-kp 3 3196 36 2
higgs 23512 98050 28 2
helena 41169 65196 27 100
kc1 1067 2109 21 2
numerai28.6 23517 96320 21 2
credit-g 31 1000 20 2
sylvine 41146 5124 20 2
segment 40984 2310 16 7
vehicle 54 846 18 4
bank-marketing 1461 45211 16 2
Australian 40981 690 14 2
adult 1590 48842 14 2
Amazon_employee_access 4135 32769 9 2
shuttle 40685 58000 9 7
airlines 1169 539383 7 2
car 40975 1728 6 4
jungle_chess_2pcs_raw_endgame_complete 41027 44819 6 3
phoneme 1489 5404 5 2
blood-transfusion-service-center 1464 748 4 2

AutoML systems are highly optimized for the execution stage
and lack such considerations for the inference stage, their energy
consumption impact is unforeseeable in production. We analyze
the systems introduced in Section 2 with regard to various pa-
rameters that in�uence the energy consumption, such number of
predictions, execution time, parallelization, and hardware envi-
ronment. To assess inference e�ciency, we analyze how AutoML
parameters, such as ensemble size and inference time constraints,
could impact the energy e�ciency. Further, we evaluated the
potential bene�ts of investing energy during the development
stage for later stages. For this experiment, we also provide an
in-depth analysis of the AutoML parameters that originate from
our optimization approach in Section 2.5. For this optimization
approach, we also benchmark how di�erent numbers of repre-
sentative datasets and the number of Bayesian optimization (BO)
iterations a�ect the performance.

3.1 Setup
We evaluate all systems on the 39 datasets (Table 2) as proposed
by Gijsbers et al. [22], which is a commonly used AutoML bench-
mark [19]. Each dataset is split into a training/test set (66/34).
Each AutoML system (automatically) chooses its own validation
approach and uses a subset set of the training data as the valida-
tion set. As a prediction accuracy metric, we leverage balanced ac-
curacy that can handle multi-class and unbalanced classi�cation
problems. We report the average performance across datasets by

repeatedly sampling one result out of 10 runs with replacement.
This approach ensures that we report the uncertainty induced
by AutoML systems. We use an Ubuntu 16.04 machine with 28 ×
Intel(R) Xeon(R) Gold 6132 CPU @ 2.60GHz cores, 264 GB RAM.
For GPU experiments, we leverage a Linux-6.1.58 machine with
8 × Intel(R) Xeon(R) CPU @ 2.00GHz cores, 1 × T4 GPU, 51 GB
RAM.

3.2 Energy consumption for Execution and
Inference (Single Core)

To measure the energy e�ciency of AutoML systems, we follow
existing AutoML benchmarks [21, 22] and run the systems with
search time as the termination criteria and proxy for the expected
predictive performance of the generated pipelines. We run each
system for the search times 10s, 30s, 1min, and 5min. Note that
these are the search budget times that we provide the AutoML
systems to execute. In some cases, the actual search time deviates
from the budget as we report in Section 3.10. This setup took
already 28 days of computation. Longer search times are contrary
to the objectives of Green AutoML [62]. During the execution of
each AutoML system, we measure the consumed energy in kWh.
Finally, wemeasure the consumed energy for inference and report
the kWh per predicted instance. We choose kWh because it is the
most commonly used unit in energy-related �elds [33, 43, 62, 69],
making the data more directly relevant and understandable to
practitioners and researchers alike. Figure 3 shows two charts
that depict the corresponding relationship between search time,
balanced accuracy, and their impact on the energy consumption
during execution and inference, respectively. While the dimen-
sions of the charts capture the relationship between energy con-
sumption and balanced accuracy the corresponding search time
of each approach is appended to the measured coordinates in the
chart. The connection between runtime to accuracy and energy
is established through each point. For each line of the graph, we
have four points that resemble search times of 10s, 30s, 1min, and
5min. Each of such points is plotted within the two dimensions
of accuracy and energy for each corresponding stage.

For CAML, AutoGluon, and FLAML, we benchmark the search
times 10s, 30s, 1m, and 5m. The other systems do not support
such short search times. Therefore, we benchmark AutoSklearn
1 & 2 starting at 30s and TPOT starting at 1m. TabPFN does not
have a search time parameter. Therefore, we only report one
measurement for TabPFN. Next, we discuss the results for each
approach in detail. TabPFN is represented by a single dot on
each chart of Figure 3 as it is independent of search time. As
shown in the �rst chart, it requires the least amount of energy for
execution compared to the other systems. TabPFN only loads the
transformer model into memory and does not require any search.
However, it requires orders of magnitude more energy than the
competitors during inference, as depicted in the right-hand chart,
because it has to feed forward the training data through its trans-
former network. We note that TabPFN achieves relatively low
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Figure 3: Search time, average balanced accuracy, and their impact on the energy consumption (kWh) during execution and
inference for each AutoML system. Each marked point represents one of these execution time budgets.

predictive performance because the currently o�cial implemen-
tation of TabPFN only supports up to 10 classes (and was mainly
developed for datasets with up to 1k instances). If we exclude
datasets with more than 10 classes its performance is still 7%
higher below the best-performing systems for more than 30s
search time. AutoGluon converges to the best predictive per-
formance because ensembling leverages the rich information of
all evaluated models in contrast to FLAML and CAML, which
only search for the best model. However, stacking ensembling
also leads to one order of magnitude higher energy consumption
for inference. CAML’s execution shows higher energy e�ciency
for small search times 30s and 60s because it leverages succes-
sive halving to quickly achieve high predictive performance -
especially for large datasets. As CAML only searches for one ML
pipeline instead of an ensemble, it requires one order of magni-
tude less energy for inference compared to AutoGluon and ASKL.
ASKL requires themost energy for execution because, in addition
to searching for ML pipelines, it runs ensembling that computes
the weights for each evaluated model. For large validation sets,
this step requires signi�cant time and therefore energy. FLAML
achieves the second lowest prediction performance in 5 min of
the search-based approaches because it converges only slowly to
more complex models that are more predictive and it does not
leverage ensembling. However, since it starts to search models
with low complexity, it achieves the lowest inference energy con-
sumption. TPOT only supports search time in minutes. So, we
only report two measurements for 1 and 5 min. TPOT achieved
the lowest accuracy within 5 min of search time because it uses
5-fold cross-validation whereas most other systems use hold-out
validation.1

3.2.1 Dataset-Level Predictive Performance. In addition to ana-
lyzing the average results across datasets for each AutoML system
(Figure 3), we also conducted a dataset-level analysis on which
AutoML system performs best across search times for each of
the 39 test datasets. Due to space limitations, we provide both
the raw results of all 10 runs for all search times, datasets, and
systems, and the dataset-level analysis in our repository [46].

1For cross-validation, we split the data into : folds where each fold is used once for
testing and the remaining folds are used for training - the : test scores are averaged
as the cross-validation score [3].

The main �ndings of this analysis is that there is no clear pat-
terns for when to use which AutoML system. However, there are
trends. For small search times, i.e. 10s, FLAML (16/39) and TabPFN
(12/39) achieve the highest predictive performance. FLAML is
well-designed for this use case because it searches smaller mod-
els �rst and the few-short approach TabPFN �ts this use case
well too. With increasing search times, ensemble-based models
achieve higher predictive performance. For 5 mins, ensemble-
based approaches achieve the best predictive performance for
23 out of 39 datasets. We also analyzed the performance with
respect to the data characteristics: number of rows, features, and
classes. We found that TabPFN works particularly well for small
datasets (<1k rows, <20 features). The reason is that this corre-
sponds to the training domain of the transformer model. Further,
FLAML performs well for large number of features (> 2k). The
reason is that they designed a feature pruning strategy. For large
number of classes (>100), ensemble-based systems perform well
because they can cover more complexity using multiple models.
Further, we also analyzed how large the energy consumption
during AutoML execution varies across datasets. For instance,
CAML has the lowest standard deviation across datasets for 5min
(0.0007kWh). For AutoGluon, it is 0.0025kWh. The reason is that
AutoGluon builds always the same ensemble. If the data is small,
the ensemble is trained faster and less energy is consumed. CAML
searches always until the search budget is exhausted and there-
fore needs the same energy independent of the dataset.

3.2.2 Energy-Focused System Recommendation. Section 3.2
showed that there are signi�cant di�erences across AutoML sys-
tems in energy consumption during both execution and inference.
For instance, TabPFN requires almost no energy for execution but
requires a comparably large amount of energy for inference. To
understand better when to use which AutoML system to achieve
the least energy cost, we estimate the energy consumption in
kWh for both execution and inference jointly for an increasing
number of predictions and report the results in Figure 4. For fewer
than 26k predictions, TabPFN is the most energy e�cient because
it requires almost no energy for execution. If the ML application
requires more predictions, FLAML and CAML are more suited as
their energy consumption during inference is signi�cantly lower
and the execution overhead compared to TabPFN is amortized.
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Figure 4: Comparing AutoML systems with respect to en-
ergy consumption for di�erent scales of prediction in-
stances.

The reason for this result is that they search smaller models �rst,
while TabPFN uses a transformer network.

3.3 Impact of Parallelism
For multi-processor computers, the question arises whether it is
more energy e�cient to use one or multiple cores. To answer this
question, we run AutoGluon and CAML for 10s, 30s, 1min, and
5min using 1, 2, 4, or 8 cores, where each CPU has two cores. So,
each point in the graph represents one AutoML system running
for a speci�c search time with a speci�c number of cores result-
ing execution energy consumption and a corresponding average
balance accuracy. Figure 5 shows that we gain only slight im-
provements in average predictive performance (up to 2%) using
more cores. In all cases, using more cores led to higher prediction
accuracy. So, when it comes to time e�ciency, leveraging more
cores is always better. For CAML, we see that increasing up to
8 cores requires up to 2.7x the energy compared to 1 core. The
reason for this sublinear increase in energy is that the computer
can leverage caching as we use the same data. However, using 1
core is Pareto optimal because CAML leverages BO, which works
sequentially. For AutoGluon, we see that more cores (4 and 8)
are more energy e�cient because it parallelizes the training for
bagging, which is an embarrassingly parallel workload. Less run-
time yields less consumed energy. The right choice of parallelism
depends on the user’s priorities and the AutoML system. If en-
ergy consumption is the priority then running it on one core
is the best decision for CAML and running it on multiple cores
for AutoGluon. If the priority is time e�ciency, the user should
use all cores because this approach yields the best predictive
performance and requires only sublinear energy increases.

3.4 Con�guring AutoML Systems for
Inference

One simple way to reduce the Energy in AutoML pipelines is
to limit search time because less computation time results in
less energy consumption. Reducing the consumed energy during
inference is not as simple and depends on the capabilities of the

Table 3: Experiments with and without GPU accel-
eration. For each metric, we report the fraction
GPU result/CPU only result. We mark metrics green
if the GPU setup is better and red if the CPU setup is
better.

System Execution Inference
Energy Time Energy Time

AutoGluon 1.35 1.03 2.39 1.96
TabPFN 1.37 0.96 0.13 0.07

AutoML system at hand. Some AutoML systems provide param-
eters that a�ect the runtime and energy consumption during
inference. For instance, AutoGluon builds one model for each
fold to yield the bagging features. If we re�t these models into one
model afterward, we can save energy during inference. Therefore,
AutoGluon provides settings targeted speci�cally to ensure faster
inference: ’good quality faster inference only re�t’; one will get
models faster models that require less energy. For AutoGluon,
re�t means collapsing the bagged ensemble models into a sin-
gle model that is trained on all training data [17]. CAML allows
the user to provide ML application constraints, including one
for inference time. Thus, by lowering the allowed limit for the
inference time, one will get models faster models that require
less energy.

Figure 6 shows the results of these optimizations. For CAML,
we simply set the inference time constraints with the values
0.001s, 0.002s, and 0.003s. For AutoGluon, we use the described
inference-optimized setting. For both systems, optimizing the
inference speed comes at the cost of less predictive performance.
The reason is that higher inference speed requires lower complex-
ity that reduces the descriptiveness of the models and therefore
predictive performance. Using the most strict inference time
of CAML constraint of 0.001s, we can save up to 69% of the
consumed energy. At the same time, the average predictive per-
formance is up to 6% lower compared to without constraints.
Depending on the requirements of the ML application, the user
can adjust the constraint accordingly. The inference-optimized
AutoGluon can save up to 79% of the inference energy. At the
same time, the average predictive performance is up to 5% lower
compared to no optimization. The inference speed-up is signif-
icant but even the optimized AutoGluon requires more energy
than CAML without constraints because AutoGluon still uses
ensembling. In conclusion, decisions in the execution stage a�ect
the performance in the later stage - inference.

3.5 Impact of Modern Hardware
Specialized hardware accelerators, such as GPUs or TPUs, im-
prove the energy e�ciency of modern ML workloads [68]. How-
ever, most AutoML systems, such as ASKL, TPOT, and CAML,
are based on the scikit-learn stack that does not support GPUs or
TPUs. TabPFN is an exception because it employs a transformer
model. AutoGluon supports a few models with GPU support.
Therefore, we executed both systems with and without GPU sup-
port and report for execution time/energy and inference time/en-
ergy the quotient �%* /�%*>=;~. The results are presented in
Table 3. For AutoGluon, we compare the two setups with a budget
of 5 min. For TabPFN, the inference requires both signi�cantly
less time (16x) and energy (8x). The reason is that the transformer
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Figure 5: Average balanced accuracy and CPU energy consumption (kWh) during execution of CAML and AutoGluon across
CPU cores.
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Figure 6: Average balanced accuracy and energy con-
sumption (kWh): We run CAML with inference con-
straints ranging from 0.001-0.003s/instance. We execute
the deployment-optimized con�guration of AutoGluon.
Each marked point represents the energy consumption
in conjunction with the speci�ed execution time: 10s, 30s,
1min, and 5min.

model is highly optimized for GPUs. For AutoGluon, GPU sup-
port increases both time and energy requirements. One reason is
that most models that AutoGluon supports cannot use the GPU.
Therefore, the GPU consumes energy in idle mode.

3.6 Example: Trillion prediction workload
Wu et al. [69] describe that Meta makes trillions of predictions
per day. To understand the impact of energy consumption during
inference better, we compute the consumed energy for one trillion
predictions for each AutoML model considering the model with
the highest predictive performance reported in Figure 3. Table 4
describes this cost with respect to energy (kWh), monetary (), and
environment (kg CO2). To estimate the cost in Euro, we assume
current average electricity prices in Europe of 0.20/kWh [12]. To

Table 4: Cost of 1 trillion predictions across AutoML sys-
tems

AutoML Energy (kWh) CO2 (kg) Cost ()

TabPFN 404,649 89,832 80,930
AutoGluon 43,887 9,743 8,777
AutoSklearn1 36,090 8,012 7,218
AutoSklearn2 25,975 5,766 5,195
CAML 2,783 618 557
TPOT 1,245 276 249
FLAML 762 169 152

estimate the CO2 emissions, we assume the current emissions
in Germany of 0.222kg/kWh [50]. The data shows that at this
scale choosing small models as done by FLAML and CAML saves
signi�cant amounts of costs - up to 129k and 89t CO2 per day.

3.7 Analyzing the Energy Consumption of the
AutoML Development Stage and its Impact

To analyze how investing more energy into the development
stage of AutoML systems impacts the downstream execution
and the inference stage, we analyze to which extent optimiz-
ing AutoML system parameters a�ects execution and inference.
As many factors such as human interference can in�uence the
energy consumption during this stage, we provide an approxima-
tion based on a CAML that automatically adjust the parameter
space for speci�ed application constraints. To carry out our anal-
ysis, we apply the optimization approach discussed in Section 2.5
for CAML for the search times 10s, 30s, 1min, and 5min using
the top-20 most representative datasets from a set of 124 binary
classi�cation datasets from OpenML [66]. We start by examining
the approach for binary classi�cation. In total, we optimize 192
AutoML system parameters, incl. the design of the con�guration
space. In total, we optimize 186 AutoML system parameters that
correspond to the ML hyperparameter search space of CAML and
6 other AutoML system parameters: hold-out validation fraction,
evaluation fraction (the maximum time before one evaluation is
stopped), sampling (number of instances that are used for the
AutoML training run), re�t (whether to re�t the model on the
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Figure 7: Search time, average balanced accuracy, and their impact on the energy consumption (kWh) during development,
execution, and inference for each AutoML system. Each marked point represents one of these execution time budgets.
Note that the shown con�gured runtime might di�er from the actual runtime.

merged training and validation set), whether to use random val-
idation set splitting for each BO iteration, and whether to use
incremental training similar to successive halving.

Figure 7 shows the results of these experiments. First,
CAML(tuned) that uses CAML based on optimization proposed in
Section 2.5 outperforms all other AutoML systems with regard to
balanced accuracy. Further, it requires the least amount of energy
for execution. For instance, for 10s search time, CAML(tuned)
outperforms the next best AutoML systems TabPFN and Auto-
Gluon by 5% and 10% average balanced accuracy correspondingly.
The inference cost is similar to the one achieved by CAML with
default parameters. In the �rst chart of Figure 7, we report the
energy consumed by our AutoML system parameter tuning pro-
cess, i.e., the development stage. To yield the AutoML system
parameters for a search time of 5 min, we spend 21kWh. The con-
sumed time amortizes when the tuned AutoML system has run
885 times on new datasets. This amount would �t the scenario
of AutoML-as-a-service on big cloud providers [15].

All in all, this experiment shows that we can reduce energy
consumption for execution and inference if we invest energy into
the development stage. Therefore, decisions in the early stage
(development) a�ect later stages - both execution and inference.

To better understand why the tuned CAML outperforms all
other systems, we report the corresponding AutoML system pa-
rameters for 30s, and 5min in Table 5 , which shows that Au-
toML parameters highly dependend on the search time. Di�erent
search times lead to di�erent AutoML parameters that perform
well. First, with increasing search time, the ML hyperparameter
spaces also grow because there is more time to explore di�er-
ent ML pipelines. Further, we emphasize frequently chosen ML
hyperparameters with blue (occur 2 times). The decision tree
classi�er was chosen for both search spaces. The reason is that
decision trees can be both simple (shallow and narrow) and com-
plex (deep and wide). More complex models, such as MLP and
Random Forest, are only chosen for the longer search time of
5 min. For 5 min, the evaluation fraction increases to 17% (51s)
- likely because one can spend more time training one model
to avoid over�tting caused by too many BO iterations. Another
interesting �nding is that our tuning process always ends up
sampling upfront. This search-time-speci�c sampling step is not
implemented by any AutoML system - users always have to make

Table 5: AutoML system parameters for 30s, 1min, and
5min search time. For each budget, we report the ML hy-
perparameter search space as a tree and the list of initial-
ized AutoML system parameters.We color parameters with
blue if they were chosen 2 times.

30s 5min

root

oversampling
Identity
RandomOverSampler
SMOTE

n_neighbors
ADASYN

classifier
DecisionTree

min_samples_split
min_samples_leaf

HistGradientBoosting
l2_regularization
validation_fraction

KNeighbors
k

LinearSVC
tol
C

PassiveAggressive
C
tol
average

True
scaler

Identity
Normalizer
RobustScaler
StandardScaler

root

classifier
RandomForest

min_samples_split
BernoulliNB
DecisionTree

max_depth_factor
ExtraTrees

max_features
min_samples_split
min_samples_leaf
bootstrap

False
MultinomialNB

alpha
fit_prior

True
False

PassiveAggressive
loss

hinge
squared_hinge

tol
SGD

penalty
l1
l2
elasticnet

l1_ratio
tol
epsilon
learning_rate

MLP
hidden_layer_depth
num_nodes_per_layer
learning_rate_init

LDA
imputation

median
categorical_encoding

FrequencyEncoding
LabelEncoder

eval. time fraction: 0.1 eval. time fraction: 0.17
presample: 22,610 presample: 109,094
re�t: Yes re�t: No
holdout: 0.12 holdout: 0.19
random shu�e: Yes random shu�e: Yes
incremental: Yes incremental: Yes

this decision by themselves. Further, the incremental training
approach was always chosen across search times. This approach
is very robust because it can handle any number of instances
as it starts o� by training 10 instances per class and step-wise
increases the training set size. Further, our tuning process prefers
to leverage random validation set splitting for each BO iteration.
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Table 6: Number of times that AutoML systems achieve
worse accuracy for 5min than 1min execution time.

System FLAML AutoGluon AutoSklearn1 AutoSklearn2 TPOT CAML

|Over�tting| 9 11 4 4 5 9

large compute 
resources exist & 

|AutoML runs| > 1000

Tune AutoML 
system parameters

Search time < 10s |classes| > 10

yes

TabPFN

CAML

Large number of 
predictions 

(cheap and fast 
predictions desired)

FLAML

High accuracy 
independent of 
prediction cost

AutoGluon

Pareto-optimality 
between accuracy 
and prediction cost

yesno

CAML

no
no

Figure 8: Guideline for picking the most energy-e�cient
solution depending on the task parameters and require-
ments.

This approach reduces the likelihood of over�tting to the valida-
tion set. Finally, CAML(tuned) does not leverage ensembling and
still outperforms all systems that do, such as AutoGluon and Au-
toSklearn. Ensembling pays o� if there are a number of mediocre
predictive models. But if one manages to �nd one highly predic-
tive model, ensembling cannot easily outperform it. By pruning
the ML hyperparameter space, we signi�cantly raise the odds of
�nding such a highly predictive model.

The AutoML parameters also explain the fact that models
trained for 5min require less energy for inference than the models
trained for 1min. The reason is that our tuning process does not
choose to re�t the models on the joined training and validation
set as it does for 1min. Therefore, some models are potentially
smaller and require less energy on average.

3.8 Over�tting & Early Stopping
One way of reducing energy consumption is to stop the AutoML
system execution once it reaches the optimal performance [44].
To evaluate this approach’s potential, we evaluate for how many
datasets, AutoML systems achieve worse balanced accuracy run-
ning for 5min compared to 1min - in other words, how many
times they over�t. Table 6 shows that up to 11 out of 39 datasets,
AutoML systems over�t for a small search time of 5min. The
datasets that are most often over�tted are kc1, cnae-9, and blood-
transfusion-service-center - all have less than 3k rows. So, espe-
cially for smaller datasets, early stopping should be enforced to
save energy.

3.9 Guideline
Based on the experiments shown in Figures 3 and 7, we distill a
guideline for when to choose which AutoML system as a �ow-
chart in Figure 8. The �rst question is whether the user has access
to large CPU compute resources, e.g. at least 1 machine (28 Œ In-
tel(R) Xeon(R) Gold 6132 CPU @ 2.60GHz cores, 264 GB RAM or
similar) over more than a week, (development cost) and intends

Table 7: Actual execution time for speci�ed search times

AutoML 10s 30s 1min 5min

TabPFN 0.29 ± 0.01 0.29 ± 0.01 0.29 ± 0.01 0.29 ± 0.01
CAML 10.47 ± 0.05 30.89 ± 0.10 61.06 ± 0.10 301.42 ± 0.10
CAML(tuned) 11.31 ± 0.07 31.10 ± 0.27 60.34 ± 0.46 293.07 ± 3.84
FLAML 12.88 ± 0.19 33.27 ± 0.30 71.16 ± 1.30 329.32 ± 4.43
AutoGluon 22.32 ± 0.36 51.23 ± 0.13 81.13 ± 0.14 303.02 ± 5.60
TPOT - - 100.17 ± 7.74 368.17 ± 7.30
AutoSklearn2 - 128.72 ± 20.64 132.80 ± 13.51 405.17 ± 23.92
AutoSklearn1 - 176.46 ± 30.09 201.11 ± 31.06 451.98 ± 29.15

to perform thousands of AutoML system executions. For this case,
we recommend picking any system that is tunable and tuning
the AutoML system parameters because a tuned AutoML system
requires the least energy for both the execution and inference
stages. In all other cases, the search time is a deciding factor. For
search budgets smaller than 10s, we should use TabPFN (with
GPU support) or CAML depending on the number of classes.
TabPFN provides zero-shot AutoML and CAML leverages incre-
mental training and can �nd ML pipelines even for very large
datasets. If there is a bigger search budget, the AutoML system
choice depends on the user’s priority. If the user wants fast in-
ference at the cost of accuracy, they should use FLAML, which
was designed with this goal. If users prioritize predictive accu-
racy, they should choose AutoGluon. If Pareto-optimal solutions
between predictive performance and inference cost are desired,
CAML should be the choice.

3.10 Runtime vs. Energy consumption
Longer runtime naturally leads to higher energy consumption.
However, in general, single-core runtime alone is not a good
proxy for energy consumption because the AutoML systemmight
use other resources, such as memory and accelerators, such
as GPUs [62]. To be consistent with previous AutoML bench-
marks [21, 22], we consider the search time as the common termi-
nation criteria. As shown in Table 7, it turns out that AutoSklearn,
TPOT, and AutoGluon do not strictly follow the speci�ed search
time. For small search times, AutoGluon’s execution time is al-
most twice as long as speci�ed because it has to learn a stacked
model and it does not know how long the training of the di�erent
stacking levels will take. AutoSklearn takes even more time than
AutoGluon and requires up to 5 times more time than speci�ed
because it considers the search time as the time it takes to evalu-
ate di�erent ML pipelines. After searching it still has to calculate
the ensemble weights, which might take a signi�cant amount of
time, especially for large validation sets. Currently, AutoSklearn
does not consider the ensembling time as search time. Never-
theless, Figure 3 clearly shows that some systems achieve the
same predictive performance with signi�cantly di�erent energy
consumption levels.

For the energy consumption of the execution of di�erent Au-
toML systems, we have to de�ne a termination criterion. In all
available search-based systems, the termination criterion is de-
�ned by a limit for search time. Yet, many of the systems consider
the de�ned search time as a soft criterion that cannot be strictly
enforced. Autogluon uses the search time parameter to estimate
its training strategy. If its estimation is too generous, it will take
longer than de�ned. While AutoSklearn strictly adheres to the
de�ned search time, it does not count in the ensembling step,
which can lead to longer runtime than de�ned. CAML strictly
adheres to the search time. FLAML �nishes evaluating the last
model that was started before hitting the time limit. TabPFN
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Table 8: Comparison of di�erent numbers of top-k datasets
for a search time budget of 10s

top-k Datasets Balanced Accuracy (%) Energy (kWh) Time (h)

10 68.60 ± 2.91 0.43 3.5
20 73.49 ± 1.09 2.38 17.9
40 73.50 ± 0.57 4.88 39.6

Table 9: Comparison of di�erent numbers of BO iterations
for a search time budget of 10s

top-k Datasets Balanced Accuracy (%) Energy (kWh) Time (h)

75 72.91 ± 1.24 0.74 5.6
150 72.75 ± 1.46 1.29 9.9
300 73.49 ± 1.09 2.38 17.9
600 72.75 ± 2.24 3.46 26.1

almost requires no time for execution because most computation
happens in the inference stage. Search-based approaches, such as
CAML, AutoSklearn, and FLAML, follow the any-time AutoML
approach, meaning that we can stop the search at any time, and
if at least one model was evaluated successfully, they can provide
predictions.

3.11 AutoML Development Results
To �nd optimal parameters for the tuned AutoML approach,
as described in Section 2.5, we evaluate di�erent numbers of
representative datasets and numbers of BO iterations. First, we
run the optimization approach for a search time of 10s using
top-10, 20, and 40 datasets for 300 BO iterations. Table 8 reports
the results of this experiment. With an increasing number of used
datasets, the achieved average balance accuracy also increases.
The reason is that the optimization generalizes better using more
datasets whereas when using fewer datasets, the optimization
might over�t easier to few datasets. However, the cost of using
more datasets is signi�cant both with respect to energy and
time. Therefore, we choose to run all previous experiments with
k=20 as it resembles the best trade-o� between accuracy and cost.
Second, we run the optimization approach for a search time of 10s
using 75, 150, 300, and 600 BO iterations using the top-20 datasets.
Table 9 reports the results of this experiment. Surprisingly, the
highest number of iterations (600) achieves a lower accuracy
than 300 iterations. The reason might be that the optimization
starts to over�t to the datasets at hand and �nds better and better
AutoML system parameters that work particularly well for the
speci�ed 20 datasets. To avoid this over�tting, we could increase
the number of datasets, but this results in an increase in cost. So,
for the experiments in Section 3.7, we leverage 300 BO iterations.

4 RELATEDWORK
Our work combines research from various areas of Green Data
Processing, Green AI, and AutoML.
Green Data Processing. Guo et al. [23] survey existing energy
management techniques for database systems. For instance, Lang
et al. [35, 71] propose energy-aware query processing that allows
the query optimizer to reason about the energy cost. Further, Lang
et al. [34] evaluate the energy trade-o� of scaling out database
systems. While these works focus on energy consumption for
databases, which allow a user to query the data for instance
using SQL, we focus on energy consumption for AutoML systems,
which allow a user to extract patterns/models from the data that

can be leveraged for queries on new incoming data. We follow
the same measurement best practices that were proposed in this
line of work.
Green AI. Research in Green AI focuses on both improving
the CO2 footprint of AI applications and developing AI applica-
tions to positively impact the environment. Aimee van Wyns-
berghe [65] explains the di�erentiation between AI for sustain-
ability and the sustainability of AI. We focus on the sustainability
of AI - more speci�cally AutoML. Schwartz et al. [56] criticize
ML advances that originate from a mere increase in computation.
They promote focusing on e�ciency and avoiding optimizing ac-
curacy at any cost. Inspired by this work, we analyze the trade-o�
between accuracy and e�ciency for AutoML systems, speci�cally.
Patterson et al. [52] and Wu et al. [69] describe the resource con-
sumption ML workloads at Google and Meta. They describe that
energy consumption was reduced by focusing on e�cient models.
They argue that optimization of neural networks does require
signi�cant resources but the resulting models are more e�cient
and are used many times [53]. Both focus on company-wide ML,
whereas we focus on AutoML. Luccioni et al. [43] discuss the car-
bon footprint of training and deploying large language models,
whereas we focus on AutoML applications. Lacoste et al. [33] de-
veloped an emission calculator that estimates the CO2 emissions
based on the cloud provider/region, hardware, and runtime. We
assume �xed hardware and measure the consumed energy as a
proxy for CO2 emissions.
GreenAutoML. To the best of our knowledge, Tornede et al. [62]
were the �rst to introduce the paradigm of Green AutoML. They
describe how to measure the environmental footprint of AutoML
and survey optimizations to improve the e�ciency of execut-
ing AutoML search, but they do not conduct any experiments.
Motivated by this work, we conducted an experimental study to
evaluate AutoML systems empirically and holistically. There is
additional work that focuses on leveraging AutoML systems to
address applications that can help the environment. For instance,
Tu et al. [63] promote to focus on building AutoML systems
to �ght climate change, e.g. wind power forecasting. Theodor-
akopoulos et al. propose an energy-e�cient AutoML solution for
plastic litter detection [60]. To make AutoML system develop-
ment more resource e�cient, Ying et al. [74] proposed to evaluate
all possible combinations of a large search space of �ve million
DNN architectures. This way, AutoML system developers can use
this database to evaluate new ideas for novel search strategies
without training or evaluating the ML pipelines from scratch.
However, this approach assumes a �xed search space that cannot
be extended and a �xed validation strategy. We focus on ana-
lyzing the environmental footprint of AutoML. Further, Lale [1]
provides an interface to specify search spaces that are then op-
timized using optimizers, such as Hyperopt, grid search, and
SMAC [41]. So, users can leverage domain knowledge to specify
a tailored search space that can be optimized faster and more
e�ciently than full search spaces or choose between prede�ned
or extracted search spaces. This is another avenue of reducing
computation.

5 LIMITATIONS
We summarize our assumptions and discuss how robust your
results are w.r.t these assumptions. First, we limit our evaluation
to tabular data (incl. categorical and numerical features). Other
data modalities, such as text, sound, and images, are out of scope
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of this work. Therefore, we also limit the set of evaluated Au-
toML systems to AutoML systems tailored to tabular data and
leave neural architecture search [14] for future work. There has
been extensive work on improving the inference performance
and therefore energy consumption, e.g. model distillation [25],
quantization [7], or model compression in general [24]. These
can be combined with AutoML tools, e.g., distilling the large
stacking models of AutoGluon with a DNN [17]. We aim to pro-
vide a snapshot of the current state of energy e�ciency of all
current state-of-the-art AutoML systems as most users would
use it out of the box. Our limitation with regards to measuring
energy consumption is that we use the well-known library Code-
Carbon [16]. Measuring energy physically is more accurate with
regard to the absolute numbers, but would require physical access
to the devices and abilities to isolate the energy measurement of
the relevant systems.
Threats to validity and generalizability. ML and therefore
also AutoML is highly non-deterministic. To ensure the validity
of our results, we evaluate each experiment with 10 runs. We
report all results of all runs in our repository [46]. Further, the
results depend on the data. Therefore, we decided to leverage the
AutoML benchmark datasets [22] that represent 39 diverse ML
tasks. The results might also di�er depending on the hardware.
Therefore, we conducted experiments with di�erent numbers of
CPU cores and conducted additional experiments on a GPU en-
vironment. For completely new hardware, e.g. AutoML systems
that leverage FPGAs, one would need to rerun the evaluation.
We open-sourced all our source code for all experiments to make
this easier. For new AutoML systems, one can look at the under-
lying implementation and compare it to the evaluated AutoML
systems or rerun the experiments for this system to understand
its e�ciency.

We chose a representative subset of state-of-the-art AutoML
systems and focused our analysis on the major di�erences be-
tween these systems. Some of our results, therefore, might only
be valid in this very speci�c context. For example, ensembling
models of a �xed set of base models will lead to increased en-
ergy consumption compared to a single model in general, but a
single (complex) DNN might be more energy-consuming than
an ensemble of linear models. Therefore, we emphasize that our
results provide guidance toward Green AutoML, but eventually,
the concrete combination of di�erent approaches will decide the
overall energy e�ciency.

6 CONCLUSION
We analyzed the energy consumption of the state-of-the-art Au-
toML systems during all three stages of development, execution,
and inference. Based on our results, we compiled a guideline on
when to use which type of AutoML system. In the evaluation,
we showed that there is an inherent trade-o� between predictive
performance and energy consumption. While AutoML systems
that focus on predictive performance, such as AutoGluon, achieve
outstanding predictive performance, they also require a signif-
icant amount of energy during inference. Other systems, such
as FLAML, focus on reducing model complexity. It yields signi�-
cantly lower predictive performance compared to AutoGluon but
also requires orders of magnitudes less energy during inference.
The zero-shot AutoML system TabPFN requires almost no energy
during execution but requires signi�cantly more energy during
inference. We also showed that one can invest energy in the sys-
tem development stage to reduce the energy consumption in the

succeeding stages. However, the resulting AutoML system’s exe-
cution must be a recurrent task to amortize the tuning cost. We
urge AutoML systems engineers to report the energy consump-
tion during development to make AutoML system engineering
more e�cient. Further, we showed howwe can reduce the energy
consumption during inference by changing the AutoML systems
parameter or enforcing constraints, such as inference constraints.
Optimizing e�ciency and performance is one of the cores of data-
base research. Therefore, improving the e�ciency of AutoML
systems by well-known database optimization strategies, such
as exploiting modern hardware, leveraging e�cient paralleliza-
tion/distribution/caching strategies, and code generation, are all
promising avenues of future research and a great opportunity
for the database and AutoML community.
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