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ABSTRACT
Data preparation is a trial-and-error process that typically in-
volves countless iterations over the data to define the best pipeline
of operators for a given task. With tabular data, practitioners of-
ten perform that burdensome activity on local machines by writ-
ing ad hoc scripts with libraries based on the Pandas dataframe
API and testing them on samples of the entire dataset—the faster
the library, the less idle time its users have.

In this paper, we evaluate the most popular Python dataframe
libraries in general data preparation use cases to assess how
they perform on a single machine. To do so, we employ 4 real-
world datasets with heterogeneous features, covering a variety
of scenarios, and the TPC-H benchmark. The insights gained
with this experimentation are useful to data scientists who need
to choose which of the dataframe libraries best suits their data
preparation task at hand.

In a nutshell, we found that: for small datasets, Pandas consis-
tently proves to be the best choice with the richest API; when data
fits in RAM and there is no need for complete compatibility with
Pandas API, Polars is the go-to choice thanks to its in-memory
execution and query optimizations; when a GPU is available,
CuDF often yields the best performance, while for very large
datasets that cannot fit in the GPU memory and RAM, PySpark
(thanks to a multithread execution and a query optimizer) proves
to be the best option.

1 INTRODUCTION
Companies and organizations significantly depend on their data
to drive informed decisions, such as business strategy definition,
supply chain management, etc. Thus, guaranteeing high data
quality is fundamental to ensure the reliability of analysis and
avoid undesired additional costs [30]. Data is often heteroge-
neous, i.e., data sources adopt different formats and conventions
(e.g., different encodings, different ways to represent dates or
numeric values, etc.), and are affected by quality issues, such
as missing or duplicate values [23]. Due to that, data scientists
dedicate considerable time and resources to perform data prepa-
ration [24]. Typically, this fundamental process involves multiple
operations called preparators [29], combined into a pipeline [25],
aimed at exploring [41], cleaning [32], and transforming raw data
into curated datasets [26, 74, 81].
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It is said that data scientists spend up to 80% of their time on
data preparation [31]. This also depends on the lack of support
in the choice among many different available libraries and in
the design of the pipeline that best suits both the dataset and
the task at hand. The growing need for standardization and best
practices has driven an increasing number of data practitioners
to embrace the dataframe as the foundational data structure for
constructing pipelines and developing libraries. At a high level,
the dataframe is a two-dimensional data structure that consists
of rows and columns [57]. Libraries for data preparation typically
offer a flexible functional interface that allows to conveniently
compose pipelines.

Pandas [43] is by far the most widely adopted library for
manipulating dataframes, and is considered by many as the de
facto standard for all preparators [33, 40, 57, 69]. This library has
become so popular in the data science ecosystem that even the
popularity of Python itself has been sometimes attributed to its
wide adoption [14].

Despite its success, Pandas notoriously presents multiple se-
vere limits [22, 39]. Firstly, it has not been designed to work with
large datasets efficiently. In fact, Pandas operates in a single-
threaded manner, lacks support for cluster deployment, and does
not implement any memory optimization mechanism (the entire
data is kept in main memory until the end of the pipeline execu-
tion). To overcome these limitations, several alternative libraries
have been developed and are gaining popularity among data
scientists. However, these libraries come with heterogeneous
features (e.g., lazy evaluation, GPU support, etc.), making it hard
for data scientists to navigate among them and choose the most
suitable solution.

In particular, data scientists lack the support of extensive
and rigorous studies to evaluate the performance of such li-
braries in the data preparation scenario. Public wisdom about
dataframe libraries is mostly scattered across several not peer-
reviewed sources doing mutual comparisons [1, 60, 76] (whose
major claims are mostly confirmed by our evaluation), while
related examples in scientific literature [58, 73, 77] either focus
on orthogonal aspects or only cover small subsets of libraries
and preparators.

Our contribution. It is common for data scientists to perform
countless iterations on samples of the datasets on their laptop
or PC to define a proper data preparation pipeline for the task
at hand. Hence, the faster the employed library is, the less idle
time they have. To support data scientists in the choice of the
library that can speedup their workflow, we present the first ex-
tensive experimental comparison of Pandas and its most popular
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dataframe-based alternatives, namely PySpark, Modin, Polars,
CuDF, Vaex, and DataTable. For the sake of reproducibility we
developed Bento, a framework that provides a general interface
to design and deploy the data preparation pipeline with any li-
brary. Bento1 allows the definition of a common Pandas-like
API for all libraries and enables the execution in a containerized
environment using Docker. This process is streamlined with the
help of a convenient configuration file2.

To cover a variety of scenarios and to provide results that are
representative of real-world use cases, we consider four datasets
with heterogeneous size and features, previously adopted in re-
lated work on data preparation [29] and dataframe libraries [58].
All these datasets are collected from Kaggle [38], the most popu-
lar platform for data science challenges. This allows us to exploit
published data preparation pipelines that have proven to work
well for downstream machine learning tasks and have been vali-
dated by the world’s largest data science community. Moreover,
we further validate our findings by testing the different libraries
with the TPC-H benchmark [67].

We identify four essential data preparation stages: input/out-
put (I/O), exploratory data analysis (EDA), data transformation
(DT), and data cleaning (DC). Thus, we evaluate the performance
of the libraries both on a single preparator and on sequences of
preparators (i.e., the entire pipeline or its subsets corresponding
to the four different stages), highlighting the impact of the query
optimization techniques supported by some of them.

For whom is this paper relevant. Since it represents by far the
most common situation for data scientists [22], we only focus on
the single-machine scenario, aiming to explore the distributed
scenario in a future extension3. Our findings are useful to those
data scientists that: (i) are employing Pandas in their workflow
when devising data preparation pipelines on their laptop or PC;
(ii) want to replace Pandas with a more efficient library that has
the same interface. Thus, we evaluate scalability bymeasuring the
performance of the dataframe libraries on three distinct machine
configurations (laptop, workstation, and server), while increasing
the size of the dataset. Hence, we provide the readers with several
insights about their performance based on multiple factors, such
as the size and the features of the dataset, the configuration of
the underlying machine, and the type of preparators applied.

Outline. We describe in detail the dataframe data structure
and the libraries to be compared in Section 2, then we present our
evaluation setup and the results in Section 3 and 4, respectively.
After reviewing the related literature in Section 5, we report the
key takeaways in Section 6 and draw the conclusions in Section 7.

2 DATAFRAMES
A dataframe [57] is a data structure that organizes the data into
a two-dimensional table-like format, where columns represent
the schema and rows represent the content. Each column has a
specific data type, and the schema does not need to be declared
in advance. A dataframe provides a wide set of operators acting
on all data dimensions, enabling and simplifying various data
preparation tasks such as data analysis, transformation, and clean-
ing. Beyond this variety of features, dataframes became popular

1https://github.com/dbmodena/bento
2https://github.com/dbmodena/bento/tree/master#write-a-test-file
3Note that we decided to include libraries conceived for distributed execution,
such as PySpark or Modin, since through multithreading and optimized execution
plans they can improve the performance of dataframe operations even on a single
machine.

thanks to their simple and flexible structure, which allows them
to effectively handle different types of data. In fact, compared
to specific data preparation tools [29], dataframes offer greater
simplicity and customization, enabling users to manipulate the
data by writing Python code without the effort of learning to use
a new tool.

Pandas [53] has been the first widely-adopted Python library
implementing dataframes (inspired by the corresponding data
structure from the R language [43]) and provides efficient and
expressive data structures optimized to work with structured
datasets. Pandas has established itself over time as the standard
library for data manipulation and analysis. The main reasons be-
hind its widespread popularity reside in its robust functionality
and user-friendly design, making it the go-to choice for handling
datasets in Python. Given its enormous diffusion, Pandas is a very
mature library and the existence of a huge amount of documen-
tation and courses makes its learning extremely straightforward.

Nevertheless, Pandas also presents several notorious limita-
tions [44], which become especially evident when dealing with
large-scale datasets, as it lacks the optimizations required to
process large amounts of data in an efficient way. For instance,
Pandas does not support multiprocessing and parallel comput-
ing, and it is designed to work with in-memory datasets, lacking
support for datasets that exceed memory limits. Further, it needs
to materialize the intermediate result of every operation (this
execution strategy is known as eager evaluation), exposing it
to out-of-memory risks and preventing it from applying query
optimization techniques.

To address such limitations, many solutions have emerged to
seamlessly replace Pandas in Pythonworkflows, aiming for more
efficient data processing. The selection of the Python libraries
to include in our evaluation was based on three main criteria,
requiring them to: (i) be based on the dataframe data structure (ex-
cluding therefore SQL-based solutions such as DuckDB [70]); (ii)
be compatible with the Pandas API, to enable a fair and straight-
forward evaluation of each operation (note that many of these
libraries, recognizing Pandas as the de facto standard, already
aim at Pandas-compatibility for their API [45] or describe the
parallelism between their API and the Pandas API [18]); (iii) have
gained more than 1k stars on GitHub, denoting the existence
of a significant user base and community support. The selected
libraries are: Pandas, PySpark,Modin, Polars, CuDF, Vaex, and
DataTable.

Dataframe Libraries
We identify five major features exploited by Pandas alternatives
to achieve high efficiency:

• Multithreading: using multithreading to speed up the ex-
ecution of dataframe operations, making the most of the
available hardware resources.

• GPU acceleration: leveraging the parallel computing po-
tential of graphics processing units to further improve the
performance of dataframe operations.

• Resource optimization: implementing strategies to efficiently
manage memory, reducing the impact on the available re-
sources, hence improving the overall performance.

• Lazy evaluation: maintaining a logical plan of the oper-
ations, triggering their execution only when a specific
output operation is invoked, to apply query optimization
techniques.
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Table 1: Features of the compared dataframe libraries.

Pandas PySpark Modin Polars CuDF Vaex DataTable
Multithreading ✓ ✓ ✓ ✓ ✓

GPU acceleration ✓
Resource optimization ✓ ✓ ✓ ✓ ✓ ✓

Lazy evaluation ✓ ✓
Deploy on cluster ✓ ✓
Native language Python Scala Python Rust C/C++ C/Python C++/Python

Licence 3-Clause BSD Apache 2.0 Apache 2.0 MIT Apache 2.0 MIT Mozilla Public 2.0
Other requirements SparkContext Ray/Dask CUDA
Considered version 2.2.1 3.5.1 0.29.0 0.20.23 24.04.01 4.17.0 1.1.0

• Deploy on cluster : enabling the distribution of dataframe
processing across a cluster of machines, leveraging parallel
computing (as stated in Section 1, we aim to consider this
dimension in future work).

For each dataframe library, Table 1 lists which of these features
it implements, along with information about its implementation
and the version considered here.
PySpark [6] is the Python API for Apache Spark, which is pri-
marily implemented in Scala.

PySpark DataFrame is a type of Dataset (i.e., a distributed col-
lection of data) organized into named columns, resembling a rela-
tional table and supporting relational operators [9]. PySpark also
supports lazy evaluation, relying on the Catalyst optimizer [11]
and a disk spillover mechanism that automatically offloads data
from RAM to disk when memory limits are reached [10]. This
allows PySpark to process datasets that exceed the machine’s
physical memory capacity. While Spark owes its popularity to
the capability of processing large-scale datasets on a cluster of
machines, standalone (i.e., single-machine) mode is not only sup-
ported, but also surprisingly fast in multiple scenarios, as shown
in Section 4.

PySpark supports two different APIs: (i) Spark SQL, which
allows combining SQL queries with Spark programs to work with
structured data; (ii) Pandas on Spark (denoted as SparkPD and
previously known as Koalas [17]), which enables (by adding an
index to the conventional Spark dataframe) to distribute Pandas
workloads across multiple nodes without requiring modifications
to the original Pandas code for most API functions (∼80%).
Modin [46] is a Python library that provides a parallel alterna-
tive to Pandas [57, 58]. Modin adopts the Pandas data format as
the default storage layer and employs a set of 15 core operators
to simplify Pandas functions and build its own Pandas-like API.
When core operators cannot handle a function, it switches to
the default to Pandas mode (affecting performance due to com-
munication costs and Pandas single-threaded nature), reverting
to a partitioned Modin dataframe after completion. It also im-
plements opportunistic evaluation [88], enabling execution based
on interactions, and facilitates incremental query construction
through intermediate dataframe results. Modin is designed to
dynamically switch between different partition schemes (row-
based, column-based, or block-based) depending on the operation.
Each partition is then processed independently by the execution
engine: Dask or Ray (we consider both solutions, denoted as
ModinD andModinR, respectively).

Dask [16] is a Python library for distributed computing, which
allows working with large distributed Pandas dataframes [75].
It is designed to efficiently extend memory capacity using disk
space, making it suitable for systems with limited memory, and

its scheduler provides flexibility to the execution. While we also
considered the inclusion of Dask as an independent library, we
do not report its results since we found it to perform better in
combination withModin (as Dask is not well suitable for a single
machine) and it only covers∼55% of the PandasAPI (whileModin
covers ∼90%) [47].

Ray [72] is a general-purpose framework for parallelizing
Python code, using an in-memory distributed storage system and
Apache Arrow [3] (a language-independent columnar memory
format, recently adopted even by Pandas [52]) as data format [49].
UnlikeDask, Ray does not have built-in primitives for partitioned
data. While the two engines serve different use cases, their pri-
mary goal is similar: optimizing resource usage by changing how
data is stored and Python code is executed.

Polars [64] is a Python library written in Rust and built on top
of arrow2, the Rust implementation of the Arrow format. The
adoption of Arrow as the underlying data structure provides Po-
larswith efficient data processing capabilities, optimized through
parallel execution, cache-efficient algorithms, and efficient usage
of resources.

Polars does not use an index, but each row is indexed by its
integer position in the table. Further, it has developed its own
Domain Specific Language (DSL) for transforming data, whose
core components are Expressions and Contexts. Expressions facil-
itate concise and efficient data transformations, while Contexts
categorize evaluations into three main types: filtering, group-
ing/aggregation, and selection. Polars optimizes queries through
early filters and projection pushdown. Moreover, it supports both
eager and lazy evaluation. The lazy strategy allows to run queries
in a streaming manner: instead of processing the entire data at
once, they can run in batches, lightening the load on memory
and CPU, hence allowing to process bigger datasets (even larger
than memory) in a faster manner.

CuDF [50] is a component of the NVIDIA RAPIDS framework.
Written inC/C++ andCUDA (hence only compatiblewithNVIDIA
GPUs), it offers a Pandas-like API to run general-purpose data
science pipelines on GPUs, leveraging their computational power
for accelerating data processing.

CuDF is built on top of Arrow and leverages parallelization to
execute operations on different parts of columns simultaneously
across all available GPU cores. Note that CuDF uses a single GPU,
while Dask-CuDF can be used for multi-GPU parallel computing.
Thus, it can perform efficient and high-performance computa-
tions, although it does not provide any optimization strategy for
the execution of the pipelines.
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Table 2: Features of the selected datasets.

Athlete Loan Patrol Taxi
CSV Size (GB) 0.03 1.6 6.7 10.9
# Rows (×106) 0.2 2 27 77
# Columns 15 151 34 18
# Num - Str - Bool 5-10-0 113-38-0 5-27-2 15-3-0
% Null 9% 31% 22% 0%
Str Len Range (1, 108) (1, 3988) (1, 2293) (1, 19)

Vaex [85] is a Python library4 designed to handle extremely
large tabular datasets (such as astronomical catalogs), producing
fast statistical analysis and visualization. Supported by its vaex-
core extension, written in C, Vaex achieves memory optimization
through streaming algorithms, memory-mapped files, and a zero-
copy policy, supporting the exploration of datasets that exceed
the available memory.

Vaex enables efficient column-wise operations by wrapping
a series of NumPy arrays as columns. Only a small subset of
NumPy functions benefits of lazy evaluation, storing their results
as computation instructions and computing them only when
needed. This is achieved through virtual columns, expressions
that can be added to datasets without incurring additional mem-
ory usage. Vaex can process random data subsets and export data
in random order for efficient resource utilization. Moreover, it
also supports multithreading for faster computation on multi-
core CPUs.
DataTable [28] is a Python package that relies on the Frame
object, similar to Pandas dataframes or SQL tables (i.e., data
arranged in a two-dimensional array with rows and columns).

DataTable, which uses a native-C implementation for all data
types, is developed to support column-oriented data storage, op-
timizing data access and processing. DataTable enables memory-
mapping of data on disk, allowing the seamless processing of
out-of-memory datasets. DataTable incorporates multithreaded
data processing, leveraging all available cores for time-consuming
operations, and offers efficient algorithms for sorting, grouping,
and joining operations. To minimize unnecessary data copying,
it adopts the copy-on-write technique for shared data, reducing
memory overhead and improving the overall performance.

3 BENTO
In this section, we provide all details about the configuration of
Bento, our framework for evaluating different dataframe libraries
on data preparation pipelines.

Datasets. For a comprehensive evaluation of the dataframe
libraries on general, real-world data preparation use cases, we se-
lected four datasets covering a variety of sizes, complexities, and
features: (i) Athlete [35], collecting 0.2M records about the re-
sults achieved by the athletes through 120 years of Olympics; (ii)
Loan [36], containing 2M rows about loan applicants and their fi-
nancial profiles from the LendingClub company; (iii) Patrol [37],
composed of 27M records about 11 years of traffic stops by Cali-
fornia law enforcement agencies [59]; (iv) Taxi [34], containing
77M records about taxi trips in New York City in 2015. A sum-
mary of their main features is displayed in Table 2. Note that
we compute the percentage of missing values as the number

4Since the last commit on GitHub is dated about one year ago, the project might
not be actively maintained at the moment.

of null cells over all cells in the dataframe. Collected from Kag-
gle, all of these datasets had previously been adopted in related
work about data preparation and dataframe libraries. The three
largest datasets were indeed used to evaluate the performance of
Modin [58], due to the variety of their features. Instead, Athlete
was exploited to analyze how different preparators are supported
by commercial data preparation tools [29].

Data Preparation Pipelines. For each dataset, we selected three
notebooks among the top-voted Kaggle entries that proposed a
non-trivial solution for the task at hand (i.e., Kaggle competitions)
and extracted its data preparation pipeline—typically the first
part of the notebook, which precedes the definition of a machine
learning model.

Overall, the pipelines employ a set of 27 preparators (reported
in Table 3) that can be clustered into four main stages:

• Input/output (I/O): preparators to handle the input/out-
put of data in various formats, such as databases, CSV or
Parquet files, Web APIs, etc.

• Exploratory data analysis (EDA): preparators to support
the exploratory analysis of data features, to better under-
stand the data at hand and detect errors or anomalies.

• Data transformation (DT): preparators for transforming
the data to make it more suitable for analysis, such as
categorical encoding, join, aggregation, etc.

• Data cleaning (DC): preparators to improve the quality of
the data, hence the reliability of the results of its analysis
(e.g., handling missing or erroneous data and correcting
or removing outliers).

Pipeline Specification. Bento is a Python framework that pro-
vides a general shared interface to design the data preparation
pipeline, ignoring the differences in the APIs of the considered
libraries. For preparator names, we adopted the convention pro-
posed by Hameed and Naumann [29]. Each pipeline can be de-
fined through a JSON file by specifying the sequence of prepara-
tors to employ. Our tool automatically deploys the pipeline for
every specific library.

As shown in Table 3, not all preparators are available in every
dataframe library. In such cases, we implemented them with our
best effort to avoid the transition to Pandas and back. When
a preparator is directly available in the API of the library, we
denote whether its interface fully aligns with Pandas (✓✓) or
differs in the adopted name (✓).

Unless differently stated, we load data from CSV files and
measure the execution time under three key settings: (i) function-
core, which evaluates each preparator alone (if the library adopts
lazy evaluation, it requires to force the execution after each API
call); (ii) pipeline-stage, which measures the runtime for the ex-
ecution of each of the four stages (i.e., I/O, EDA, DT, and DC);
(iii) pipeline-full, which measures the runtime for the execution
of the entire pipeline. Finally, our framework also supports the
execution of the pipeline in Docker containers, which allow to
specify core and memory usage and isolate Python environments
to prevent package conflicts.

Hardware and Software. All measurements are obtained as
the average value over ten runs on a machine equipped with
two AMD EPYC Rome 7402 CPUs (48 threads running at 2.8
GHz) and 512 GB of RAM, using Python 3.9, when not specified
otherwise. The machine also features a NVIDIA A100 GPU with
40 GB of RAM and CUDA 12.1. The Ray engine was configured
with default settings, resulting in 48 worker threads running. The
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Table 3: Compatibility of dataframe libraries with Pandas API. (✓✓) fully matches Pandas interface; (✓) different interface;
(◦) missing from the API, but implemented by us to the best of our efforts.

Preparator SparkPD SparkSQL Modin Polars CuDF Vaex DataTable

I/O load dataframe (read) ✓✓ ✓ ✓✓ ✓✓ ✓✓ ✓ ✓
output dataframe (write) ✓✓ ✓ ✓✓ ✓ ✓✓ ✓ ✓✓

EDA

locate missing values (isna) ✓✓ ◦ ✓✓ ✓ ✓✓ ◦ ✓
locate outliers (outlier) ✓✓ ✓ ✓✓ ✓✓ ✓✓ ✓ ◦

search by pattern (srchptn) ✓✓ ✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓
sort values (sort) ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓

get columns list (getcols) ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓ ✓
get columns types (dtypes) ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓

get dataframe statistics (stats) ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ◦
query columns (query) ✓✓ ✓ ✓✓ ✓✓ ✓✓ ✓ ◦

DT

cast columns types (cast) ✓✓ ✓ ✓✓ ✓ ✓✓ ✓✓ ◦
delete columns (drop) ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ◦ ◦

rename columns (rename) ✓✓ ◦ ✓✓ ✓✓ ✓✓ ✓✓ ◦
pivot table (pivot) ✓✓ ✓ ✓✓ ✓ ✓✓ ◦ ◦

calculate column using expressions (calccol) ✓✓ ◦ ✓✓ ✓✓ ◦ ✓✓ ◦
join dataframes (join) ✓✓ ◦ ✓✓ ✓ ✓✓ ◦ ◦

one hot encoding (onehot) ✓✓ ◦ ✓✓ ✓✓ ✓✓ ✓ ◦
categorical encoding (catenc) ✓✓ ✓ ✓✓ ✓ ✓✓ ✓ ◦

group dataframe (group) ✓✓ ✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓

DC

change date & time format (chdate) ✓✓ ✓ ✓✓ ◦ ✓✓ ◦ ◦
delete empty and invalid rows (dropna) ✓✓ ✓ ✓✓ ✓ ✓✓ ✓✓ ◦

set content case (setcase) ✓✓ ✓ ✓✓ ✓ ✓✓ ✓✓ ✓✓
normalize numeric values (norm) ✓✓ ✓ ✓✓ ✓✓ ✓✓ ✓✓ ◦

deduplicate rows (dedup) ✓✓ ✓ ✓✓ ✓ ✓✓ ◦ ◦
fill empty cells (fillna) ✓✓ ✓ ✓✓ ◦ ✓✓ ✓✓ ◦

replace values occurrences (replace) ✓✓ ✓ ✓✓ ◦ ✓✓ ✓ ◦
edit & replace cell data (edit) ✓✓ ◦ ✓✓ ✓ ✓✓ ✓✓ ✓✓

Dask engine was configured comparably, leading to the creation
of 8 workers and 48 threads for each execution.

To ensure accuracy and avoid warm-up overhead, the assess-
ment of execution time occurs once the system (e.g., JVM) has
completed its warm-up process. To assess the performance of the
libraries across machines with different hardware specifications,
we simulated three distinct machine configurations, as detailed in
Table 4. Finally, we evaluated scalability on incremental samples
of Taxi and Patrol.

4 EVALUATION RESULTS
In this section, we report and analyze the results of the exten-
sive experimental evaluation of the presented dataframe libraries.
Our main goal is to provide data scientists and practitiones with
useful insights for supporting them in the selection of the best
solution for their data preparation tasks. Therefore, our compari-
son is designed to assess the performance of dataframe libraries
based on the operations to carry out (considering both the dis-
tinct preparators and the benefits introduced by lazy evaluation,
when supported), the size and the features of the dataset at hand,
and the configuration of the machine on which the pipeline is
executed.

In particular, we organize our evaluation in multiple subsec-
tions, each designed to answer one of the following research
questions:

Q1. What is the performance of the dataframe libraries in
running data preparation pipelines on datasets of different
size and features? (Section 4.1)

Q2. How does lazy evaluation impact on the performance of
the libraries that support it? (Section 4.2)

Q3. How do libraries scale by varying the size of the dataset
and the configuration of the underlying machine (i.e.,
from laptop to server)? (Section 4.3)

Q4. How do libraries perform on the standard queries of the
TPC-H benchmark? (Section 4.4)

4.1 Evaluation on Data Preparation Pipelines
Summary—For EDA, Polars is generally the best performer.
For DT, if a GPU is available, CuDF generally outperforms
other libraries. For DC, Vaex achieves notable results on
the largest datasets. Finally, CuDF and Polars appear to be
the best choices to read and write CSV files, respectively.

For each of the selected datasets (Athlete, Loan, Patrol, Taxi),
Figure 1 and Figure 2 show the average speedup over Pandas
achieved by its alternatives in the execution of the three data
preparation pipelines per dataset, focusing on the stages of EDA,
DT, and DC. In particular, Figure 1 considers each stage in its
entirety, allowing to perform lazy evaluation at the stage level
when supported, Figure 2 shows the performance separately for
each distinct preparator (i.e., we force the execution for each of
them). The I/O stage is considered separately in Figures 3 and 4.
The bars in Figure 1 and the markers in Figure 2 denote the
speedup achieved over Pandas (the red line), defined as follows:

speedup =
𝑇𝑖𝑚𝑒 ⟨Pandas, prep/stage⟩
𝑇𝑖𝑚𝑒 ⟨lib, prep/stage⟩

where 𝑇𝑖𝑚𝑒 ⟨lib, prep/stage⟩ is the time required by the library
lib to run the considered preparator/stage. Thus, a value above
(below) the red line denotes that the library outperforms (fall
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Figure 1: Average speedup over Pandas computed for each stage (EDA, DT, DC) on the three data preparation pipelines.

behind) Pandas. Further, Figure 2 shows for each preparator the
number of calls in each of the three pipelines and the impact on
its stage, depicted by the bars in the background and defined as
a percentage as follows:

Impact =
𝑇𝑖𝑚𝑒 ⟨dataset, prep⟩
𝑇𝑖𝑚𝑒 ⟨dataset, stage⟩ × 100

where 𝑇𝑖𝑚𝑒 ⟨dataset, prep⟩ is the average time for each stage
preparator and 𝑇𝑖𝑚𝑒 ⟨dataset, stage⟩ is the sum of the average
times for all preparators of the stage on the three dataset pipelines5.

In the next subsections, we analyze in detail the results ob-
tained for each of the main data preparation stages, considering
both the single preparators and the entire stages.

Explorative Data Analysis (EDA). For EDA, Polars clearly stands
out as the best performer on all datasets (Figures 1a-1d). As de-
picted in Figure 2, Polars always registers the best performance
for isna and outlier, the preparators with the greatest impact
on Athlete and Loan, respectively. For the former preparator,
Polars is up to 10,000 times faster than Pandas and 3 times faster
than the second-best performer, i.e., DataTable. Both libraries
avoid element-wise comparisons by using a special encoding to
efficiently track null values: while Polars relies on the validity
bitmap used by most types of Arrow arrays in their metadata [63],
DataTable encodes them with sentinel values [28]. For the latter
preparator, outliers are located by filtering the dataframe using
the values returned by the quantile function. Pandas relies on
5To minimize bias from particularly fast or slow libraries, both in the numerator
and in the denominator time values below the 20th percentile and above the 80th
percentile were excluded.

NumPy exact quantile computation (involving sorting and in-
terpolation) [55], while Polars and Spark employ approximate
methods that avoid sorting [7]. The performance gap between
SparkSQL and SparkPD arises from differences in their underly-
ing implementations.

Although Vaex tends to be very efficient in column-wise oper-
ations (e.g, srchptn) and can handle filtering well by internally
tracking selected rows without copying data, operations based
on percentiles are penalized by the complexity of the required cal-
culations (i.e., determining min/max column values, cumulative
sums, and grid interpolation) [84].

For sort,CuDF and Polars are the fastest libraries overall.While
CuDF leverages on high-performance C++ parallel algorithms
from the Thrust library [51], Polars achieves high performance
through its efficient multi-threaded Rust implementation [65].
SparkSQL shows remarkable advantages over Pandas as the
datasets grow larger, while SparkPD performs similarly to the
baseline. Modin performs significantly worse than Pandas on
Athlete as it requires to apply Pandas implementation of the
sorting preparator within each data partition [48], introducing
significant latency to partition andmerge results. For stats,DataT-
able outperforms Pandas by up to 50 times by computing statis-
tics either during the creation of the Frame object or efficiently
on-demand when needed, whileModin (with both Ray and Dask)
is up to 200 times faster than the baseline on Taxi thanks to its
multi-threading capabilities.

Vaex achieves notable performance for query, for which it
excels on the Taxi dataset and is only outperformed by Polars,
which enables fast querying by leveraging mask operations [64],
on the smaller ones. Finally, Pandas generally maintains overall
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Figure 2: Average speedup over Pandas computed for each preparator of the three data preparation pipelines per datasets.
For each preparator, we report the number of calls in each pipeline and its average impact on the stage execution time.

good performance for getcols and dtypes, where PySpark is much
slower due to the overhead associated to its inherently distributed
architecture, optimized for complex tasks rather than simple ones.

Data Transformation (DT). In this stage, CuDF and Polars
emerge as the best performers overall, highlighting the benefits
of GPU acceleration and Rust code optimizations, respectively.
In particular, CuDF outperforms Polars on Loan (Figure 1f) and
Patrol (Figure 1g), while the opposite is true on Athlete (Fig-
ure 1e). As depicted in Figure 2, CuDF always achieves the best
results for catenc, while for onehot and group it is the best per-
former on all datasets but Athlete, where Polars outperforms the
alternatives. SparkSQL shows excellent results on Patrol (Fig-
ure 1g): despite not excelling for single preparators (Figure 2c),
lazy evaluation provides remarkable benefits. Moreover, it clearly
outperforms SparkPD, which results as the worst performer on
several preparators, mainly due to the latency introduced by
translating Pandas operations into Spark execution plans.

Vaex optimizations lead to outstanding performance on column-
wise preparators (e.g., calccol and drop), but also to drastic drops

moving to operations such as group, join, or pivot. Modin, de-
signed for resource-intensive applications, improves its perfor-
mance as datasets scale up, withModinR being the best performer
for pivot on Taxi. DataTable registers remarkable performance
on that preparator too, despite not supporting it natively [18], but
particularly excels for cast, due to direct memory manipulation
and in-place casting [19]. On the other hand, libraries relying on
the Arrow columnar format (e.g., Polars), with its safety check
and abstraction layers, may experience additional overhead [61].

Data Cleaning (DC). When it comes to DC, Polars achieves the
best results on Athlete (Figure 1i), outperforming CuDF (which
performs better for all preparators if considered separately, as
depicted in Figure 2a) thanks to lazy evaluation. CuDF excels
on Loan (Figure 1j) thanks to its performance with dedup, which
has by far the highest runtime among the preparators, thus de-
serving an in-depth analysis in the following. CuDF implements
dedup natively, by using factorization to identify duplicates [54].
Differently, Polars tracks and manages the presence or absence
of unique values using bitmasking [64], while SparkSQL uses
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Figure 3: Average runtime for reading CSV and Parquet files (lower is better).
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Figure 4: Average runtime for writing CSV and Parquet files (lower is better).

grouping and aggregations to find duplicate rows [8]. Finally,
Vaex and DataTable lack an official implementation for dedup.

Results change when moving to larger datasets (Figures 1k
and 1l), with Vaex achieving the best results both on Patrol (fol-
lowed closely by CuDF and ModinR) and on Taxi (with remark-
able performance by Polars and bothModin versions). On Patrol,
Vaex is the best performer on both preparators (Figure 2c): dropna,
where it exploits its efficient filtering mechanisms, and chdate,
for which it relies on NumPy operations (faster compared to
more complex operations found in other libraries) to enhance
conversion and manipulation of columns [85].

Input/Output (I/O). Loading data represents a fundamental
step for the success of any data-driven process. In particular, the
CSV format is considered as the de facto standard for reading and
writing raw data, and Pandas is recognized as an efficient and
effective tool for its ingestion [86]. Nowadays, the diffusion of
Arrow is pushing towards an increasing adoption of the Parquet
format [5], known for its efficient data compression. In particular,
developers often load Parquet data into memory and convert it
to Arrow [42], recognized as an ideal in-memory transport layer
for such data [4].

Figures 3 and 4 show performance in reading and writing both
file formats, CSV and Parquet. When reading small datasets like
Athlete, Parquet and CSV often exhibit similar performance,
with exceptions such as Polars or SparkSQL (Figure 3a). In some
cases (e.g., Vaex or CuDF), the use of Parquet can even lead to
worse performance, due to the need for decompressing the data.
When the size increases, the use of Parquet generally produces
better results; for instance, reading Parquet files with Polars is
over 100 times faster than reading CSV files (Figure 3d).

Overall, CuDF and Vaex appear to be the best performers in
reading CSV files. Vaex is particularly fast thanks to chunked
reading, conversion to optimized formats (e.g., HDF5), and effi-
cient use of memory [83].CuDF, relying on GPU acceleration and
efficient memory management, maintains similar performance

for both file formats. DataTable, which maps the file into mem-
ory and navigates through it using pointers, performs good in
reading CSV files, but it does not support Parquet. Polars and
Vaex excel in reading Parquet files thanks to their capability to
load them directly into memory using Arrow.

Write operations exhibit a wide range of performance. Over-
all, Polars and CuDF are the top performers and Parquet per-
forms better than CSV across all datasets as it integrates effi-
cient compression and encoding approaches, while CSV is plain
text and uncompressed [42]. Nevertheless, the overhead intro-
duced by compression and encoding operations can penalize
Parquet in some scenarios, as highlighted by CuDF on small
datasets (e.g., Athlete and Loan). Further, Polars presents a re-
ported issue in writing Parquet files, which determines slower
performance and larger file size [64]. Finally,Modin (with both
engines) demonstrates the best performance on Parquet, particu-
larly for large datasets, by leveraging parallel processing across
multiple cores [45].

4.2 Impact of Lazy Evaluation

Summary—CuDF generally outperforms other libraries
when running the entire pipeline, while SparkSQL and
ModinR achieve remarkable results on all datasets. Lazy
evaluation often brings relevant benefits, improving perfor-
mance by 20% on average (up to almost 80%) over its eager
counterpart.

Figure 5 reports the average speedup over Pandas achieved by
its alternatives for the execution of the entire data preparation
pipelines on each dataset. For libraries supporting lazy evalua-
tion (i.e., SparkPD, SparkSQL, and Polars), we also point out the
difference compared to eager evaluation.

Considering the overall performance on the entire pipeline,
CuDF generally outperforms other libraries by effectively ex-
ploiting the power of GPU, with the only exception of Athlete
(Figure 5a), where Polars is the best performer. PySpark (except
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Figure 5: Average speedup over Pandas for the execution of the entire data preparation pipelines.

Table 4: Specifications of each machine configuration.

Laptop Workstation Server
# CPUs 8 16 24

# RAM (GB) 16 64 128
Dask (workers - threads) 4-8 4-16 6-24

Ray (workers) 8 16 24

for SparkPD on Athlete),ModinR, and Polars show very solid
performance overall, as well as Vaex on the largest datasets. Pan-
das performs relatively well on the smallest datasets, but it is
outperformed by all alternatives on larger ones, due to its eager
approach causing high memory consumption [79].

Polars generally achieves good results with both kinds of eval-
uations, as its eager API is highly optimized and in many cases it
internally relies on its lazy counterpart before immediately col-
lecting the result. Lazy evaluation leverages techniques such as
streaming processing, early filtering, and projection pushdown,
achieving a performance improvement of up to 25% on Patrol
(Figure 5c). On one hand, it can be noticed how long logical
plans can limit the optimizations introduced by lazy evaluation.
Yet, the execution plan overhead of SparkSQL does not yield
substantial improvements for either smaller or larger datasets,
with an improvement of 40% on Taxi and almost no changes
in performance on Loan. Libraries like SparkPD, leverage to
Pandas-specific optimizations (e.g., vectorized operations and
efficient memory management) that translate for instance into a
80% performance improvement on Patrol (Figure 5c).

4.3 Scalability

Summary—SparkSQL is the best library for scaling to large
datasets on a single machine. Indeed, for both Patrol and
Taxi, it is the only one able to execute the entire pipelines
with the laptop configuration. Polars follows closely, but
requires a lot of resources in terms of RAM, exhibiting the
worst scalability on machines with limited resources.

In this section, we assess how dataframe libraries scale by vary-
ing the size of the dataset and the configuration of the underlying
machine. In particular, we take into account three different ma-
chine configurations, whose CPU and RAM are incrementally
increased as described in Table 4 (which also reports the specifi-
cations of theDask and Ray engines used byModin) to reproduce
typical configurations for laptops, workstations, and servers.

For this experiment, we selected the most computationally
expensive pipeline among the three evaluated, which is the first

one6. Since CuDF scales according to GPU memory, it is not
included in this experiment. If the dataset fits in the GPU, CuDF
is able to efficiently handle it and complete the pipeline. However,
this dependency does not make it a good candidate for dealing
with very large datasets on machines with limited GPU resources.

Figure 6 shows the performance of the libraries for running the
entire pipeline on incremental samples of Taxi. SparkSQL clearly
stands out as the best performer, being the only library capable
of handling the full pipeline execution on laptop configuration
(Figure 6a). This capability is attributed to its combination of
lazy evaluation and disk spillover mechanisms [10]—optimizing
execution plans and offloading data to disk when memory limits
are reached during computations. SparkPD suffers instead from
the overhead due to internal conversions between Pandas and
Spark dataframes and increased JVM memory usage, causing
out-of-memory (OOM) errors on the laptop configuration.

While Modin (both Dask and Ray) supports operations on
datasets larger than available memory [45], the efficacy of this
feature is constrained by two primary factors. Firstly, it requires
additional memory for managing internal operations, metadata,
and intermediate results. Secondly, certain operations (e.g., apply
lambda function), necessitate in-memory data access. DataTable
shares this limitation as well, as a results these two libraries
encounter OOM issues when processing datasets larger than
25% of the full dataset. Similarly, Vaex experiences OOM er-
rors with datasets exceeding 15% of the full dataset size. This
is due to the fact that in Vaex the output of some operations
(e.g., groupby) is held entirely in memory, potentially exceeding
available RAM [85].

Despite Polars excellent performance in other experiments,
scalability appears its weakness—it reaches OOM with 4 million
and 40 million rows in Figures 6a and 6b, respectively. This limita-
tion arises from its in-memory execution model, which requires
all data to be loaded into RAM. While this approach offers speed
and efficiency for smaller datasets, it becomes a bottleneck when
handling larger datasets, limiting its scalability. Finally, Pandas
confirms its well-known severe limitations about scalability, be-
ing the only library not able to complete the pipeline on Taxi
even on a server configuration (Figure 6c).

To provide a comprehensive overview of how libraries scale
across datasets with different characteristics, Table 5 outlines
instead the minimum configuration required by each library to
successfully run the full pipeline on progressively larger samples
of Patrol and Taxi.

6On average, this pipeline is approximately three times more computationally
expensive than the others.

345



Pandas SparkPD SparkSQL ModinR Polars Vaex DataTable OOM

0 20 40 60 80
# Rows (M)

0

5

10

15

Av
g 

Ti
m

e 
(m

in
)

(a) Laptop

0 20 40 60 80
# Rows (M)

0

20

40

60

(b) Workstation

0 20 40 60 80
# Rows (M)

0

50

100

150

(c) Server

Figure 6: Average runtime for running the entire pipeline
on incremental samples of Taxi.

SparkSQL is the only library able to run the pipelines with
the laptop configuration on the entire datasets—thanks to lazy
evaluation and disk spillover. The second best in scalability is
DataTable, which excels on Patrol requiring minimal resources
through efficient memory mapping on disk.

ModinR demonstrates better scalability across all machine
configurations compared to its Dask counterpart. The Dask en-
gine uses a centralized scheduler to distribute data across mul-
tiple cores, which results in higher memory consumption and
leads to OOM issues more easily [15]. In contrast, Ray can scale
far beyond Dask due to its distributed task scheduling scheme,
specifically employing a distributed bottom-up scheduling ap-
proach [71]. This optimizes resource utilization and minimizes
overhead by initiating tasks at the lowest level of computation
and aggregating results upwards. Notably, Modin was originally
built to work on top of Ray, making this integration more mature
and optimized [45].

4.4 Performance on the TPC-H Queries

Summary—CuDF consistently achieves the best perfor-
mance across all queries, while Polars significantly out-
performs other CPU-only dataframe libraries.

TPC-H [82] is a decision support benchmark consisting of a suite
of business-oriented ad-hoc queries and concurrent data modifi-
cations [67]. It is widely adopted to compare end-to-end database
systems [21], allowing to comprehensively evaluate their perfor-
mance and efficiency through the execution of complex queries
on large volumes of data. Consistently with previous related
work [66] exploiting TPC-H queries to assess the performance
of a subset of dataframe libraries (see Section 5 for more details),
we also adopt this benchmark to provide further support to the
outcomes of the comparative analysis presented above.

In particular, we take as a reference a publicly available trans-
lation of the TPC-H queries into Pandas API operations [13],
replicating it for the other libraries, then use Bento for their
seamless execution. Figure 7 illustrates the performance of each
library on the 22 queries of the TPC-H 10GB benchmark. We
select a scale factor of 10, because it represents the largest dataset
that can be processed by the 40 GB RAM of our GPU, which there-
fore would not be able to handle a scale factor of 100. Moreover,
we includedDuckDB [70], being a popular in-process SQL analyt-
ical database management system. DuckDB can execute parallel
queries directly on Pandas DataFrames, Parquet/CSV files, or
Arrow tables without a separate import step, and can write re-
sults back to these formats. This interoperability allows seamless

Table 5: Minimum machine configuration for running the
entire pipeline on incremental dataset samples.

Patrol Taxi
% Sample 1% 5% 15% 25% 50% 75% 100% 1% 5% 15% 25% 50% 75% 100%

# Rows (M) 0.2 1.2 4.5 6.7 13.5 20.2 27 0.7 3.8 11.5 19.2 38.8 57.7 77
Pandas ✕

SparkPD
SparkSQL
ModinD ✕ ✕

ModinR
Polars
Vaex

DataTable
III Laptop III Workstation III Server ✕ OOM

integration with other data science libraries. We executed the
TPC-H queries on DuckDB using the provided implementation
in the Polars benchmark [66]. Notice that DuckDB does not pro-
vide Pandas API and only supports SQL. Thus, by expressing
the pipelines as SQL queries, it can take advantage of all the
well-known query optimization and execution strategies typical
of relational database management systems. For this reason, we
do not compare it with the other libraries throughout the paper,
but only report its performance with TPC-H to provide a valuable
reference point w.r.t. OLAP database management systems.

Overall, CuDF consistently achieves the best performance by
leveraging GPU power. Among the CPU-only libraries, Polars
is instead the clear winner. This confirms what is observed in
the data preparation pipelines, for EDA and DT. SparkSQL out-
performs Pandas on several queries, registering notable results,
especially on q06, where it is even faster than Polars (note that
this query selects line items shipped within a year interval, reduc-
ing the dataset by 85%). By leveraging lazy evaluation, SparkSQL
significantly reduces the amount of data processed early in the
query execution—this is one of the key reasons why it improves
performance in data preparation pipelines by approximately 60%.
Pandas is never the worst performer, but on most queries, it is
among the slowest.Modin (which registers the same results with
both engines, Dask and Ray) shows diverse performance instead,
strongly dependent on the query, confirming the inconsistent per-
formance observed across the different data preparation stages.

As mentioned above, SparkPD suffers from the additional la-
tency due to the translation of Pandas operations into Spark
execution plans, making it one of the worst performers. DataT-
able is one of theworst performers too, since it is slow in grouping
operations (as also testified by the execution of group preparator
in DT stage and their own benchmark [27]) and its API only sup-
ports joins on columns with unique values, requiring therefore
to switch to the default Pandas API (e.g., q09). Vaex is by far the
worst performer overall, as it is significantly slow in grouping
operations (as also pointed out in the previous sections) and lacks
support for multi-column joins.

After CuDF, the second best performers are DuckDB and
Polars. They excel in different aspects of the benchmark, with
neither consistently outperforming the other across all queries—
they adopt two different approaches for query optimizations.

5 RELATEDWORK
To the best of our knowledge, our paper presents the first rigor-
ous and extensive experimental comparison of existing dataframe
libraries on data preparation tasks. In fact, public wisdom about
such libraries is mostly scattered across several not peer-reviewed
sources [1, 60, 76], which generally compare the performance of
few libraries (e.g., Pandas vs PySpark vs Polars) on a handful of
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Figure 7: Performance of the dataframe libraries on the TPC-H 10GB queries (lower is better).

operations. The major claims by such analysis are mostly con-
firmed by our evaluation; nevertheless, despite often providing
some useful insights, they only offer a partial and very frag-
mented knowledge, far from a complete and detailed overview
covering all libraries and operations. In the literature, only partial
comparisons have been performed among libraries, which we
list in the following.

AFrame [78, 79] reports an evaluation against Pandas, Spark,
andModinR through amicro-benchmark using the syntheticWis-
consin benchmark dataset [20] to assess acceleration and scalabil-
ity across distributed environments. Petersohn et al. [58] evaluate
the benefits of Modin by comparing against Dask, Koalas, and
Pandas. Grizzly [39] evaluates against Modin and Pandas, while
translating dataframe pipelines to SQL. Shanbhag et al. [77] com-
pare Pandas, Vaex and Dask on a set of single operations to gain
insights into their energy consumption.

Dataframe libraries have been compared also in data science
benchmarks. For instance, Polars [66] compares against Pandas,
PySpark, Dask, Modin, and DuckDB on TPC-H [67]. The out-
come of their evaluation is consistent with our findings (we adopt
the same scale factor for TPC-H), but their evaluation only cov-
ers the first 7 queries out of 22. Similarly, DataTable [27] uses
a set of queries to asses the scalability of popular database and
dataframe-like systems only limited to group by and join opera-
tions. Sanzu [87] proposes a benchmark designed to evaluate five
popular data science frameworks and systems (R, Anaconda [2],
Dask, PostgreSQL [68], and PySpark) on data processing and anal-
ysis tasks. It comprises both a micro-benchmark for testing basic
operations in isolation and a macro-benchmark for evaluating
series of operations representing concrete data science scenarios
on real-world datasets. Similarly, FuzzyData [73] is a workflow
generation system that allows to compare dataframe-based APIs
on workflows composed of a small subset of operations.

Other works have explored the problem of optimizing/re-
writing dataframe pipelines, reporting comparative evaluations
of popular libraries. For instance, PyFroid [22] translates from
the Pandas API to the DuckDB API to efficiently scale Pandas
workloads on a commodity workstation, using top-voted Kaggle

notebooks for the evaluation.Dataprep [56] is a task-centric EDA
tool that can use different dataframe libraries as back-end en-
gines, includingModin, PySpark, and Dask. Dias [12] is a system
for dynamically rewriting Pandas code to optimize performance.
All of these studies offer valuable insights into dataframe library
performance across some real-world scenarios, but they do not
provide a comprehensive evaluation on data preparation tasks
with all dataframe libraries considered here.

6 KEY TAKEAWAYS
Our evaluation confirmed the well-known limitations of Pandas.
However, despite the abundance of dataframe libraries designed
to overtake it, there is no silver bullet to perform the preparation
of tabular data with dataframes on a single machine.

The relative performance of the libraries varies significantly
among the variegate datasets and stages of the data preparation
pipelines that we considered. None of the tools emerges as the
clear winner for all considered scenarios. Nevertheless, certain
characteristics of the dataset and the pipeline can help narrow
the user’s choice of the tool. Below, we list three questions to
assist in this selection.

Does the dataset fit in the GPU memory? If a GPU with enough
memory to fit the data is available, CuDF appears to consis-
tently yield the best overall performance and has quasi-complete
compatibility with the Pandas API7. However, CuDF lacks of
an optimizer; thus, libraries like Polars or SparkSQL might be
faster when running the entire pipeline, avoiding unnecessary
materializations [62]

Individual stage or complete pipeline? If a user is only inter-
ested in an individual stage, i.e., input/output (I/O), explorative
data analysis (EDA), data transformation (DT), or data cleaning
(DC), CuDF and Polars stand out as the fastest libraries for read-
ing and writing operation respectively. Polars emerges as the

7This assumption is based on a single-machine scenario. It is important to note that
while GPUs can provide substantial performance advantages, comparing GPUs and
CPUs requires careful consideration of factors like costs (e.g., pay-per-use fees in a
cloud environment) and the growing availability of high-core-count CPUs.
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best performer for EDA, while SparkSQL represents a consistent
solution for DT. Moreover, for DC, Vaex records the best perfor-
mance among all CPU-only libraries when running the entire
pipeline on larger datasets.

What is the size of the datasets? For small datasets (less than
500k rows), all of the libraries show similar average runtimes.
Even if Polars is often recommended for such a scenario, and in-
deed registers the best overall performance if memory resources
are not limited, Pandas might still be the most reasonable choice,
as their performance does not differ substantially—at least, not
enough to replace entire parts of the pipeline [60].

In the case of datasets of medium size (from 2 to 19 million
rows) primarily composed of numeric columns (e.g., 5% Taxi
sample), Vaex offers a robust solution if the pipeline involves
many column-wise operations and Pandas compatibility is not
needed. On the other hand, for datasets with a high proportion
of missing values (e.g., Loan, where more than 30% of values
are missing), ModinR and PySpark (both version) show good
performance. Finally, for datasets with many string columns (e.g.,
25% Patrol), SparkSQL appears to be the best choice.

For larger datasets (over 20 million rows), SparkSQL stands
out as the best option [80]. Furthermore, when the pipeline re-
quires dealing with heavy-duty column operations, particularly
in datasets that have a multitude of string columns and a good
amount of null values (e.g., Patrol), Vaex seems to be the best
move—and there is no need to set up any environment, as re-
quired for PySpark.

7 CONCLUSION
We presented a comprehensive experimental comparison of the
most used dataframe libraries to support practitioners in the
selection of the most suitable solution to carry out their data
preparation tasks on a single machine. To guarantee comparable
results and increase usability, we developed Bento, a general
framework for assessing the performance of dataframe libraries
on four major data preparation stages: input/output (I/O), ex-
ploratory data analysis (EDA), data transformation (DT), and
data cleaning (DC).

We exploited Bento to perform a thorough comparative anal-
ysis of the libraries on four heterogeneous datasets (varying in
size, complexity, and features) previously adopted in literature
and publicly available on Kaggle. In particular, we relied on three
of the most voted Kaggle notebooks per dataset to assess the per-
formance of the libraries on real-world data preparation pipelines
validated by a large community. Further, we also evaluate their
performance on the popular TPC-H benchmark to support our
findings, includingDuckDB to assess performance in comparison
with an SQL-based system.

Our experimental evaluation shows that one size does not
fit all when it comes to dataframe libraries for data preparation.
However, we have distilled key takeaways that data practitioners
can use as starting points for selecting the appropriate library
for their task at hand.

As future work, we plan to compare the libraries in a dis-
tributed environment and study the possible adoption of ma-
chine learning to suggest optimal library combinations based
on datasets, tasks, hardware, and previous executions. Further,
we plan to explore how the libraries perform in combination
with tools that optimize and rewrite entire dataframe-based data
preparation pipelines, such as Dataprep [56] and Dias [12].
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