
MEMPHIS: Holistic Lineage-based Reuse and
Memory Management for Multi-backend ML Systems

Arnab Phani
TU Berlin, Germany

arnab.phani@tu-berlin.de

Matthias Boehm
TU Berlin, Germany

matthias.boehm@tu-berlin.de

ABSTRACT
Modern machine learning (ML) systems leverage multiple back-
ends, including CPUs, GPUs, and distributed execution platforms
like Apache Spark or Ray. Depending on workload and cluster
characteristics, these systems typically compile an ML pipeline
into hybrid plans of in-memory CPU, GPU, and distributed oper-
ations. Prior work found that exploratory data science processes
exhibit a high degree of redundancy, and accordingly applied
tailor-made techniques for reusing intermediates in specific back-
end scenarios. However, achieving efficient holistic reuse inmulti-
backendML systems remains a challenge due to its tight coupling
with other aspects such as memory management, data exchange,
and operator scheduling. In this paper, we introduce MEMPHIS,
a principled framework for holistic, application-agnostic, multi-
backend reuse and memory management. MEMPHIS’s core com-
ponent is a hierarchical lineage-based reuse cache, which acts as
a unified abstraction and manages the reuse, recycling, exchange,
and cache eviction across different backends. To address chal-
lenges of different backends such as lazy evaluation, asynchro-
nous execution, memory allocation overheads, small available
memory, and different interconnect bandwidths, we devise a suite
of cache management policies. Moreover, we extend an optimiz-
ing ML system compiler by special operators for asynchronous
exchange, workload-aware speculative cache management, and
related operator ordering for concurrent execution. Our experi-
ments across diverse ML tasks and pipelines show improvements
up to 9.6x compared to state-of-the-art ML systems.

1 INTRODUCTION
ModernML systems arewidely used formodel training, inference,
as well as data preparation and feature transformations of multi-
modal input data like text, images, and tabular data [100]. Data sci-
entists hierarchically compose complex ML pipelines from black-
box primitives [25]. The exploratory nature of these pipelines
causes high computational redundancy [39, 66, 101, 125].

Sources of Redundancy: The high computational redun-
dancy stems from various sources including incremental mod-
ifications of ML pipelines in AutoML and hyper-parameter
tuning, as well as fine-grained redundancy in training, infer-
ence, and transfer learning [101]. AutoML and similar tools
[37, 45, 78, 83, 114] combine tasks like data cleaning, feature en-
gineering, hyper-parameter tuning, and model training [74, 75],
and then explore various combinations with slight changes but,
for instance, shared pre-processing. Deep neural network (DNN)
workloads also execute data pipelines [53, 88, 92] and forward
paths [93, 104] repeatably at a batch granularity. Similarly, infer-
ence frameworks for object detection and machine translation
[30] encounter duplicate inputs [33, 73, 124].

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the
28th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2025, ISBN 978-3-89318-098-1 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

conv2d

(d) Recycle Pointers

Fine-grained
Lineage Traces

Intermediates Intermediates Intermediates

Remote Cache GPU CacheLocal Cache

Top-level
ML Pipeline

Figure 1: Multi-backend Reuse Cache for Intermediates.

Multi-backend ML Systems:ML pipelines with diverse data
and workload characteristics necessitate multiple, specialized
backends for achieving both efficiency and scalability, while uti-
lizing available hardware resources and compute clusters. Exam-
ple pipelines include (1) hybrid local/distributed runtime plans
for large-scale ML [24, 85, 106, 129], (2) large-scale data valida-
tion [103, 109] and cleaning [114], (3) sampling, feature selection
[25], and data augmentation [12, 34], which iteratively change
data sizes by orders of magnitude, (4) exploratory ML algorithm
research [86] (e.g., hybrid batch-minibatch training with large
batch phases [15, 35]), (5) model training on datasets combining
structured and unstructured features [93], (6) AutoML systems
[24, 25, 78] supporting diverse ML algorithms, and (7) model
debugging [80, 108] with configuration-dependent sizes of inter-
mediates. These tasks are often combined into complex pipelines,
increasingly fostering the development of ML systems with opti-
mizing compilers, specialized operator placements [21, 25, 78],
and multiple backends including local CPU/GPU/FPGAs, dis-
tributed MapReduce/Spark/Ray and federated backends [18, 69].
Example systems include PyTorch [96] and TensorFlow [2] (lever-
age CPU, GPU), MLlib [129] and Dask-ML [106] (utilize local and
distributed), and SageMaker [78] (utilizes CPU, GPU, and Spark).
Additionally, unified data analytics frameworks [21, 40, 49], poly-
glot [5, 47, 48], federated [18, 69], and composable [89] data
management systems support cross-platform runtime backends.

Challenges in Multi-backend Reuse: Introducing a static
reuse cache for redundancy elimination into multi-backend
systems—as shown in Figure 1—poses major challenges due
to heterogeneous backend characteristics. These backends dif-
fer in execution models (eager, lazy, asynchronous), memory
characteristics (large distributed, small on-chip), data exchange
bandwidths, other backend-specific properties like GPU memory
allocation overhead, and target workloads, ranging from pre-
processing to mini-batch DNNs. To address this diversity, modern
ML systems employ various techniques for memory management
[8, 61, 99, 126], operator placement [16, 17, 87], data exchange
[53, 62, 92, 120, 132], and parallelization [44, 94, 113, 134] tailored
to specific workloads and backends. This heterogeneity necessi-
tates a principled approach for efficient reuse and robust cache
integration across diverse compilation, memory management,
and operator scheduling techniques, which is currently lacking.

Series ISSN: 2367-2005 255 10.48786/edbt.2025.21

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.21

Table 1: Prior Work on Reuse & Memory Management.

System Reuse Multi-backend Mem.Mgmt. Workload

HELIX [125] Coarse No No ML Pipelines
Clippr [33] Coarse No No Inference
LIMA [101] Fine No No All

MEMTUNE [126] Fine RDD Yes Spark Jobs
PyTorch [96] No Recycle GPU Ptr. Yes DNN
Capuchin [98] No Activations (GPU) No DNN
Cachew [53] Coarse Distributed No Preprocessing
VISTA [93] Coarse DNN Layers No Feature Extract

MEMPHIS Fine RDD, GPU Ptr. Yes All

Existing Work on Reuse: Prior work on reuse in ML
pipelines rely on coarse-grained lineage tracing at the pipeline
level to reuse coarse-grained results of the top-level primitives
(see Figure 1) through compile-time materialization [39, 66, 116,
123, 125, 130]. However, this black-box view of individual prepro-
cessing steps, feature engineering, andML algorithms fails to han-
dle the ubiquitous fine-grained redundancy (e.g., repeated matrix
multiplications inside/across primitives) and non-determinism
(randomized primitives). The LIMA framework [101] introduced
fine-grained reuse, leveraging lineage traces on individual opera-
tions and functions to uniquely identify reusable intermediates,
but was limited to local CPU operations. Table 1 summarizes
the previous work, highlighting their reuse type, multi-backend
reuse support, memory management capabilities (e.g. dynamic
cache size), and target workloads. Prior work on application-
specific, multi-backend reuse includes heuristics-based Spark
RDD caching [10, 24, 53], input data pipeline reuse [53, 88, 92],
prediction caching [33, 73], and GPU-CPU activation offloading
for DNNs [58, 84, 98]. These approaches are tailored to specific
workload-backend combinations, and fail to eliminate redun-
dancy in modern data-centric ML pipelines with diverse tasks.

MEMPHIS Overview and Contributions: We introduce
MEMPHIS, a holistic framework for efficient, multi-backend
reuse of intermediates and memory management inside ML sys-
tems. Key principles are (1) a unified cache abstraction with
system-internal API and multi-backend data objects, (2) backend-
specific cache management, and (3) a robust integration with
ML system compiler, runtime, and memory management, sup-
porting diverse workloads. MEMPHIS is fully integrated into
Apache SystemDS1 [25], and utilizes three representative back-
ends: SystemDS for in-memory operations, Spark for distributed
operations, and GPUs for hardware acceleration. MEMPHIS ex-
tends LIMA’s [101] lineage-based reuse framework—which ea-
gerly caches all in-memory intermediates—with novel compiler
and runtime techniques for reusing Spark and GPU intermedi-
ates, handling Spark’s lazy evaluation and small GPU memory.
Our detailed technical contributions are:

• Background: We discuss some background of ML-system
internals, Spark, GPUs and their challenges in Section 2.

• Hierarchical Lineage Cache: Then in Section 3, we intro-
duce our multi-backend lineage tracing framework and its
unified tracing and reuse API for easier system integration.

• Multi-backend Reuse: We describe runtime cache manage-
ment for Spark and GPU backends in Section 4, where
we reuse Spark actions, RDDs, GPU pointers; their cache
evictions; and combined reuse and recycling for GPUs.

1SystemDS: https://github.com/apache/systemds, and reproducibility package:
https://github.com/damslab/reproducibility/tree/master/edbt2025-MEMPHIS

• Compiler Integration: For holistic integration, we intro-
duce novel compiler optimizations for workload- and
reuse-aware speculative cache management (e.g. delayed
caching, eviction injection), new asynchronous operators
that enable overlapping computation with data transfer,
and an operator ordering algorithm to maximize concur-
rent pipeline execution in Section 5.

• Experiments: Finally, we share results of several micro-
benchmarks and diverse end-to-end workloads including
data cleaning, model search, matrix factorization, infer-
ence, hyperparameter tuning, and transfer learning in
Section 6. Compared to PyTorch and existing reuse frame-
works, MEMPHIS yields substantial improvements.

2 BACKGROUND
This section describes the necessary background of ML system
internals, Spark and GPU backends, their execution models, mem-
ory management, caching primitives, and challenges.

2.1 ML Systems Background
ML systems employ a range of compilation and execution strate-
gies. Here, we focus primarily on SystemDS’s program compila-
tion, and multi-backend operator scheduling.

Program/DAGCompilation:We categorize the optimization
scope of ML systems into three main types [26].

• Eager Execution: Libraries like NumPy [122], PyTorch [96],
and Scikit-learn [97] execute the operations directly and
rely on Python to handle control flow and variable scoping.

• DAGCompilation: Systems like TensorFlow [2, 20] perform
lazy evaluation of a DAG of operations (i.e., larger scope
of optimization) but rely on the host language (Python)
for control flow interpretation. However, recent work like
TF AutoGraph [90] and TorchDynamo [11] also extract
and integrate control flow into the computation graph.

• Program Compilation: Julia [22] and SystemDS [25] (previ-
ously SystemML [24]) compile a script to a hierarchy of
program blocks, with every last-level block is compiled
into a DAG of operations. Similarly, Wayang [21] and
Musketeer [49] compile scripts into cross-platform plans.

Compilation techniques like common subexpression elimination
(CSE) and code motion fail to eliminate all redundancy, as the
conditional control flow is often unknown during compilation.

Operator Scheduling: An operator scheduler converts oper-
ator DAGs into backend-specific instruction (kernel) streams and
has two primary responsibilities: (1) Operator placement aims
to minimize execution time of a multi-backend runtime and is
done via global configurations, heuristics, or even reinforcement
learning [87]. SystemDS places operations with higher memory
estimates (than driver’s memory) to Spark and compute-intensive,
dense operations to GPU, both in a data locality-aware manner.
Figure 2(a) shows the lifecycle of a data object in SystemDS across
the host, Spark, and GPU, including backend-specific operations.
(2) Operator linearization orders operator DAGs into instruction
streams for sequential or parallel execution. The linearization

Table 2: Properties of Spark, GPU, and CPU.

Exec. Memory Bandwd. Cache-API Workload

Spark Lazy Distrib. 15 GB/s Yes Large data
GPU Async. Small 6.1 GB/s No Mini-batch, DNN
CPU Eager Varying — No ALL

256

Local Data
(matrix, frame)

Distributed
Collection

Files on DFS
GPU

Pointers

parallelize

collect
reduce
count

filter
mapValues

reduceByKey
persist

hadoopFile
textFile saveAsObjectFile

saveAsTextFile
cudaMemcpy

cudaMemcpy

cudaFree
cuBlas*
cudnn*

read write

(a) Data Object Lifecycle

Spark Workers

Driver Memory

Task

Task

yT

trigger

yT

y

Lineage GraphInstructions

b

job

bRDD-Xy

yT

RDD-yTX

(yTX)T

b

SP_Read X
CP_Read y
CP_t(y)

CP_t(yTX)

bc

collect

Insts.

Xjob

(lazy)SP_t(y).X

(b) Spark Broadcast

NoReuse

Eager

MEMPHIS

0K
1K
2K
3K
4K
5K
6K
7K
8K
9K

E
x
ec

u
ti

o
n

 T
im

e
[s

]

(c) RDD Reuse

Copy

Alloc

Compute

0

1

2

3

4

(d) GPU Timing

Figure 2: Spark and GPU Backend Details.

strategies affect parallelism andmemory requirements. SystemDS
linearizes DAGs to instruction streams in a depth-first manner
and executes those on the respective backends.

Backends: The CPU, GPU, and Spark backends differ sig-
nificantly in their execution model, memory management, and
target workloads. Table 2 summarizes the key properties of Spark,
GPUs, and CPUs, where the bandwidths are measured from the
host (pageable host-to-device). Additional backends such as Sys-
temDS federated [18, 19] or remote parfor [23, 24] create deeper
hierarchies, where local lineage-based reuse directly apply.

2.2 Spark Backend and Challenges
Execution Model: Spark’s execution model consists of a driver
program for local operations and job scheduling, and multiple
executor processes that run on worker nodes. RDDs (Resilient
Distributed Datasets) [129] serve as a high-level programming
abstraction, representing partitioned distributed collections of
keyed matrix/frame tiles. Spark differentiates lazily evaluated
transformations (distributed operations, which produce RDDs, see
Figure 2(a)) and actions. An action (e.g. count, collect) triggers
the DAGScheduler to construct and launch a Spark job. Each job
is a DAG of stages, which comprise pipelined transformations
separated by shuffle boundaries. The scheduler launches a task
per partition, preferably in a data- or rack-local manner.

Memory Management: Spark’s memory is divided into two
regions: execution and storage. All Spark operations use the exe-
cution memory for computation and temporary partitions, while
the storage is for caching and broadcasting. They share a unified
memory (default 60% of heap) allowing execution to utilize un-
used storage memory and vice versa. There are two types of RDD
caching. First, Spark implicitly caches shuffle files and broadcast
data until destroyed. Caching shuffle files allows for avoiding
recomputing the map side of a shuffle dependency [42]. Second,
Spark provides the persist() API for explicitly caching RDDs
(in different storage levels: deserialized/serialized and memo-
ry/disk) to avoid redundant lazy evaluation. The cached RDDs
are lazily materialized in the executors’ BlockManagers. Any
subsequent job on a cached RDD then reads the partitions from
memory or disk, thereby skipping prior operations. Spark evicts
cached partitions if cached RDDs are too large or execution re-
quires more memory. Evicted memory-only partitions or lost
partitions on failures are recomputed based on Spark’s lineage.

Broadcast: Broadcast-based operators like broadcast join are
far less expensive than shuffle-based repartition joins. When
a broadcast variable is created via broadcast, Spark creates
a TorrentBroadcast that serializes and partitions the broad-
cast data into 4MB chunks, and keeps them in the driver’s
BlockManager [43]. Individual chunks are then lazily transferred

to selected executors, which parallelize the transfer to all execu-
tors on demand. Due to Spark’s lazy evaluation, the broadcast
data remains in the driver until the job completes.

Lazy Evaluation Challenges: Lazy evaluation presents sev-
eral challenges for efficient reuse. First, traditional eager caching
(e.g., LIMA, tf.Data [92], Cachew) eagerly materialize cached
RDDs after each instruction, leading to performance drops due to
repeated job executions. Figure 2(c) shows, eager materialization
of 12K RDDs (4K reusable) is 10x slower than no caching at all.
Second, runtime caching of all RDDs severely increases cluster
memory usage (20x for experiments in Figure 2(c)), requiring
speculative caching. Third, lazy evaluation delays the transfer
of broadcast data to the cluster until the job execution triggers,
requiring the retention of broadcast data and RDDs until the job
completes. This creates dangling references that consume driver
memory. For instance, Figure 2(b) shows linearized instructions
(SP denotes Spark, CP denotes CPU) and the lineage graph for
𝑏 = (y⊤X)⊤, broadcasting y⊤. The second transpose collects the
vector b to the driver. The serialized y⊤ remains in the driver’s
memory until the job finishes, which is dependent on other op-
erators’ linearization order. MEMPHIS employs workload-aware
caching, lazy garbage collection and asynchronous job triggering,
achieving a 2x speedup by reusing RDDs in Figure 2(c).

2.3 GPU Backend and Challenges
Execution Model: GPUs offer high peak performance and mem-
ory bandwidth, suitable for accelerating workloads with regular
data access (e.g., DNN). SystemDS’s GPU backend utilizes CUDA.
Unlike Spark’s lazy evaluation, CUDA kernel execution is eager
and sequential within a single stream, but asynchronous for the
calling host thread. Thus, the host thread continues executing
other tasks while the kernels run concurrently. However, certain
operations—such as device-to-host data transfer and memory
deallocation—introduce synchronization barriers, which forces
the CPU thread to wait until all pending GPU kernels have com-
pleted their execution. Traditional eager caching also forces syn-
chronization barriers and slows down GPU execution.

Small Memory & Data Copy Challenges: To analyze GPU
execution overhead, we ran an experiment with a single affine
layer with ReLU activation for 10 epochs of 1K mini-batches of
128 rows. We force each kernel to allocate output memory, trans-
fer the result to the host, and deallocate. Figure 2(d) shows that
memory allocation/free and copy take 4.6x and 9x longer than
the actual computation. This result highlights that static cache
memory and traditional eviction policies, as seen in LIMA and
Nectar [55], increase memory pressure and data copy overhead—
making them unsuitable for GPU pointer caching. To mitigate
these overheads, MEMPHIS employs dynamic cache sizes, mem-
ory recycling [132], and eviction injection optimizations.

257

3 HIERARCHICAL LINEAGE CACHE
The basic architecture of MEMPHIS with lineage tracing and a hi-
erarchical cache—for seamlessly accommodating heterogeneous
backends—is shown in Figure 3. The driver/host process handles
the lineage tracing, compiler optimizations, and eviction plan-
ning, whereas the actual cached objects reside in the respective
backends. This section describes our fine-grained lineage tracing,
and the unified intermediate cache for backend-specific objects.

3.1 Supported API
MEMPHIS provides a set of system-internal methods to enable
lineage-based reuse. This API simplifies the integration of MEM-
PHIS into any ML systems, irrespective of their backends and
underlying compilation and operator placement strategies.

• TRACE(inst): Trace lineage for an operator (Section 3.2).
• SERIALIZE(trace) / DESERIALIZE(log): Serialize an in-
memory lineage trace to a lineage log and vice versa.

• RECOMPUTE(log): Recompute the exact same results from
the provided lineage log. The execution environment for
RECOMPUTE may differ from the original environment.

• REUSE(trace): Reuse the instruction output if available
in the cache and skip the instruction execution.

• PUT(trace,object): Put the instruction result in the
cache with backend-specific pointers.

• MAKE_SPACE(object): Iteratively evict cached objects to
make space for a new object in the corresponding backend.

Improvements over LIMA:MEMPHIS builds upon LIMA’s
[101] basic lineage tracing (eager caching), and extends it with
a hierarchical lineage cache and unified API for reuse across
local, Spark, and GPU, robustness optimizations, and a holistic
integration with ML systems. LIMA benefits moderate workloads,
while MEMPHIS tackles complex multi-backend ML pipelines.

3.2 Backend-agnostic Lineage Tracing
A lineage trace—incrementally built at runtime—is a DAG with
nodes and edges representing operations and data dependencies.

Fine-grained Lineage Tracing:We call TRACE for each linear
algebra instruction before its execution (see pseudo-code in Fig-
ure 4). MEMPHIS internally maintains a hash map (LineageMap)
to map the live variable names to the respective lineage DAGs.
A lineage item contains the opcode, data items, and pointers to
the input lineage items. During tracing, each output generates a
new lineage item from input items, which is then added to the
LineageMap. For efficient lineage DAG comparisons (probing),
which is a core operation for reuse, lineage items implement
hashCode and equals. We calculate the hash by hashing the
hashes of the input items, the opcode, and the data items. For
equality check, we rely on a non-recursive, queue-based approach
with sub-DAG memoization and early abort conditions based on
hash mismatches, height differences, and shared sub-DAGs (ob-
ject identity). This simple yet scalable backend-agnostic lineage
tracing is a solid foundation for additional backends.

Recomputation for Debugging: To tackle interpretability
and debuggability of complex ML tasks involving heterogeneous
backends, we enable easy sharing of serialized lineage traces
and exact recomputation of intermediates. The RECOMPUTE API
first deserializes a lineage trace into an in-memory lineage DAG,
followed by applying the full compilation chain to generate the
instructions. Full re-compilation ensures the same results and
flexibility regarding configurations and hardware environments.

linRegDS = function(reg) {
 mm = (t(X) %*% X)
 ...
b = t(X) %*% y

 beta = solve(A, b)
}

X = read()
y = read()
for (reg in regs)
 linRegDS(X,y,reg)

Program Compilation

Values

RDD
 Obj

FS

Mat
Block

Lineage
Keys

Spark
Cache

Local
Cache

RDD
 Obj

RDD
 Obj

GPU
Ptr.

FS

Lineage Trace

TRACE

RECOMPUTE

GPU
Cache

Delayed Caching
Eviction Injection
Checkpointing
Async. Prefetch
Operator order

SERIALIZE

DESERIALIZE

Lineage
Log

Disk spill
Unpersist

Recycle
FreeSpill

Delete

REUSE (trace)

Track hit-ratio
Compute cost

IO cost
Scoring func.

MAKE_SPACE MAKE_SPACEMAKE_SPACE

(8) (C) CP°rand°1000°100°1000°42
(40) (I) tsmm (8)
(42) (C) CP°rand°1000°20
(43) (I) rdiag (42)
(44) (I) + (40) (43)
(10) (C) CP°rand°1000°1°42°
(45) (I) r' (10)
(46) (I) ba+* (45) (8)
(47) (I) r' (46)
(48) (I) solve (44) (47)

Figure 3: Hierarchical Lineage Cache & Reuse Overview.

Future work includes query processing on lineage traces for
model management [117].

3.3 Multi-backend Lineage Cache
We leverage the property that the lineage uniquely identifies
an intermediate for reusing previously computed intermediates.
Our lineage cache serves as a repository for these lineage traces,
maintaining the necessary data structures to efficiently map them
to their corresponding backend-specific data objects.

while (inst in insts)
 lt = TRACE (inst)
if (!REUSE (lt))
out = exec(inst)
PUT (lt, out)

Figure 4: Reuse API.

Lineage Cache: The lineage cache
is a hash map that maps lineage items
to cached data objects (see Figure 3
middle). Figure 4 shows the pseudo-
code of the reuse logic integrated in
the main instruction execution path,
which seamlessly applies to all instructions. We call REUSE for
each instruction. If the output exists in the cache, we reuse the
data object, assign it to the live variable, and skip the instruction.
Otherwise, we execute the instruction and store the output in
the cache via PUT. Additionally, the lineage cache entries hold
metadata including compute costs, access counts, and status.

Redundancy in Lineage Items: Generating a new lineage
item object for each instruction before reuse creates redundant
lineage DAGs across LineageMap and lineage cache entries.

%var2
%var1

%var3

Shared Sub-DAGs Cache Entry

LineageMap
%var1
%var2

Figure 5: Compaction.

To address this, upon successful
probes, we replace the respective
LineageMap entries with the lin-
eage keys of cached objects. As
Figure 5 shows, this compaction
increases shared sub-DAGs (ob-
jects with identical references),
which in turn improves probing
efficiency and reduces the memory footprint.

Backend-local Cached Objects: The lineage cache entries
are wrappers around backend-specific pointers. These pointers
refer to in-memory matrix blocks, scalars, distributed RDDs, GPU
objects, and disk-evicted binaries. This design allows seamless
data movement like broadcasting local inputs to remote back-
ends, transferring Spark job results to the driver, and GPU-to-host
copies. Moreover, the wrappers enable caching the same object in
multiple backends, which is beneficial for data-local scheduling.
The centralized lineage tracing and reuse facilitates a reuse-aware
compilation to increase reuse potentials and reduce caching over-
heads. Figure 3 summarizes the lineage tracing lifecycle, reuse
operations, backend-local evictions, and compiler extensions.

258

Multi-level Reuse:MEMPHIS reuses outputs of determinis-
tic functions and basic blocks (code block w/o control flow) when
called repeatedly with the same inputs, even when the inputs
and outputs are scattered across different backends. We use a
special lineage item containing the function name and inputs for
each function output [101]. These items are managed alongside
regular entries and are subject to eviction by the respective back-
ends. Combining coarse-grained reuse (e.g., function reuse) with
fine-grained reuse (e.g., operator-at-a-time reuse, as shown in Fig-
ure 4) is advantageous for hierarchically-composed data-centric
ML pipelines. Multi-level reuse effectively reduces fine-grained
remote operations, related data exchange, and cache pollution
(avoids caching large distributed objects, or many small GPU
objects) and hence is resilient against cache evictions.

4 RUNTIME MULTI-BACKEND REUSE
The backend-local caches require tailor-made cache management
strategies due to their diversity. In this section, we describe the
reuse and memory management for Spark and GPU.

4.1 Reuse and Memory Management in Spark
We utilize Spark’s caching API to cache RDDs in Spark cluster
memory. Furthermore, we introduce memory management and
cache eviction techniques tailored for Spark’s lazy evaluation.

Reuse SparkActions: Spark actions trigger job execution and
return the results to the driver. ML systems implicitly leverage
these actions within distributed physical operators (e.g., single-
block aggregates calling reduce() instead of reduceByKey()).
Additionally, operator placement decisions may explicitly move
data to the driver using collect(). Before triggering a Spark job,
we reuse the previously collected result if available in the driver’s
cache, and bypass the job execution. In Figure 6 (top entry), the
transpose operator collects the vector b to the driver and stores
it in the cache for future reuse. Reusing redundant actions in the
driver eliminates distributed operations, unnecessary distributed
caching, and data exchange such as shuffle and collect.

.

t

.

t

t

XTX

b
Lineage Cache

yTX

X

yT
yT

Spark
Workers

RDD

ActionX

XT

Figure 6: Spark Reuse.

Reuse RDDs: RDDs are dis-
tributed data collections, which are
cached and reused in the cluster.
Before executing a Spark trans-
formation, the REUSE API probes
the lineage cache and reuses the
RDD (serves as a pointer to the
distributed collection) if a match
is found. Otherwise, we mark the
RDD for caching with persist() and store it in the cache along
with related metadata. persist is a lazy operation—and thus, the
cached RDD may not be materialized in Spark memory by the
time of reuse. However, we reuse even unmaterialized RDDs to en-
hance compute-sharing across jobs, and enable shuffle-file reuse
(data exchange optimization). Figure 6 (bottom entry) shows a
cached RDD entry for X⊤X, where X is distributed.

Lazy Garbage Collection: To tackle memory overhead
caused by dangling RDDs and broadcast references (see Fig-
ure 2(b)), we track internal metadata for each RDD, including
#child RDDs, #pending consumers, materialization status, and
its memory overhead. During reuse, the MAKE_SPACE function
recursively traverses child RDDs and broadcasts, updating the
metadata and cleaning up stale RDDs (not in use and already
materialized). For example, in Figure 6 (bottom), we clean up X⊤
and X once X⊤X is materialized. We use Spark’s destroy and

getRDDStorageInfomethods for broadcast variable deletion and
materialization checks. Furthermore, to mitigate caching over-
head, the MEMPHIS compiler often defers RDD caching (delayed
caching discussed in 5.2). Delayed caching along with Spark ac-
tion reuse further increases dangling references. In Figure 6 (top),
y⊤X RDD caching is delayed and remains unmaterialized due to
the reuse of the collected b at the driver. Such RDDs prevent the
garbage collection of their child RDDs (i.e., y⊤, X). After 𝑘 cache
misses, we asynchronously trigger a Spark job (calling count())
to materialize such an RDD. Any subsequent reuse then cleans up
the child RDDs. These lazy cleanups ensure periodic reclamation
of driver and cluster memory without hindering reuse.

Cache Eviction: We employ a cost-based eviction policy (or-
thogonal to Spark’s partition-level eviction) to remove RDDs
(via unpersist) with low reuse potential, preventing Out-of-
Memory (OOM) errors.We heuristically utilize 80% (configurable)
of Spark’s storage memory for reuse, and the rest for broad-
cast variables and compiler-placed checkpoints (discussed in Sec-
tion 5.2). We extend the prior Cost&Size policy [39, 101], which
aims to preserve objects with high compute-cost-to-memory ra-
tios, for Spark’s lazy evaluation. In detail, we rank the operators
based on analytical compute cost 𝑐 (𝑜), and we collect statistics
for each cached RDD 𝑜 including the estimated worst-case size
𝑠 (𝑜) and the number of references (#hits: 𝑟ℎ , #misses: 𝑟𝑚 , #jobs:
𝑟 𝑗), which are updated during every reuse and account for global
reuse potential. The eviction scoring function for 𝑜 is

argmin
𝑜∈Q

(𝑟ℎ (𝑜) + 𝑟𝑚 (𝑜) + 𝑟 𝑗 (𝑜)) · 𝑐 (𝑜)/𝑠 (𝑜) (1)

where Q is the priority queue of RDDs. The MAKE_SPACE method
marks RDDs for eviction via unpersist and refreshes cache
metadata (e.g., available memory) with actual values (using
getRDDStorageInfo). unpersist is an asynchronous operation,
causing temporary overflow of the storage region, which is han-
dled by Spark’s partition spilling with minimum overhead. This
eviction policy, combined with Spark’s partition spilling, per-
forms well in a wide variety of use cases.

Example 4.1 (Grid Search Linear Regression). In this example,
we apply grid search hyper-parameter tuning on a direct-solve
linear regression (linRegDS) for feature matrix X (distributed)
and responses y (local). Figure 7 (comprising Figures 2(b) and
6) shows the linRegDS function, which is called by grid search
for a list of regularization parameters (reg). The core operations
X⊤X and X⊤y are independent of reg and thus, reusable across
linRegDS calls. SystemDS compiles a shuffle-based matrix multi-
plication for X⊤X and a broadcast-based multiplication for X⊤y
after rewriting it to (y⊤X)⊤ (broadcasting y⊤). The second trans-
pose of (y⊤X)⊤ and the solve trigger Spark jobs. Figure 7 shows

linRegDS = function(reg) return..
 {
 mm = (t(X) %*% X) #reuse
di = diag(matrix(reg,ncol(X),1))

 A = mm + di
b = t(X) %*% y #t(t(y).X) #reuse

 beta = solve(A, b)
 }

.

+ t

S

. d

t t

mm

X

di

A b

X

Lineage
Keys Values

.

t

.

t

.

t

t

RDD
 Obj

Execution

Storage
RDD

 Obj

mm

b

RDD
 Obj

Mat
Block

LA Program Lineage Cache Spark
Memory

Driver
Memory

beta

XT

yTX

yT
yTX

yTX

Figure 7: Spark Action and RDD Reuse Example.

259

conv2d
Alloc

relu

Move

conv2d
Reuse

relu

Move

pool

mm

Move

Recycle

Live Free
Reuse

Recycle

Move to free

(c) Reuse Pointers

(d) Recycle Pointers(b) Allocate Pointers

(a) GPU Pointer Lifecycle

Figure 8: Reusing and Recycling of GPU Pointers.

the DAG for linRegDS. Rectangles represent distributed opera-
tions. Reusable distributed and local operations are colored red
and blue, and data exchange is indicated by double lines. The first
linRegDS call creates lineage cache entries for all operations and
caches in-memory matrix outputs of local operations. The second
transpose of (y⊤X)⊤ caches the collected column vector b as an
in-memory matrix in the driver. Our compiler enables delayed
caching for RDDs, e.g., deferring caching until the second cache
hit. Accordingly, the second linRegDS call marks the RDDs (mm,
y⊤X) for distributed caching, reuses the local operations and the
collected b. Reusing the Spark action result b entirely eliminates
the need to trigger the Spark job. However, not triggering the
job keeps y⊤X RDD unmaterialized in the executors. The third
call reuses the mm RDD, and subsequent calls clean up its child
RDDs. After 𝑘 (default three) cache misses for y⊤X RDD, we
asynchronously materialize the y⊤X RDD (dotted line).

4.2 Reuse and Memory Management in GPU
To manage GPU’s small memory and allocation overhead, we
combine reuse and recycling in a unified memory manager with
moving boundaries, where we reuse pointers to previous results.
Figure 8 depicts the memory management operations.

Live Variable Management: All pointers from allocation to
deallocation are managed by the lineage cache. Figure 8(a) shows
the lifecycle of a GPU pointer. We organize the allocated pointers
in two lists: a Live and a Free list. The Live pointers correspond
to variables which are still in use (i.e., pending consumers). The
Free list comprises a hash map that maps sizes to a priority
queues of free pointers of the respective sizes. Before executing
an operation, we allocate memory for the output via cudaMalloc
and place the allocated pointer in the Live list. After the last use,
the pointers are moved to the Free list, as shown in Figure 8(b).
This strategy of maintaining free memory pools benefits mini-
batch processing with fixed batch sizes.

Reuse: Lineage cache entries encapsulate GPU pointers and
related metadata like data characteristics. Before executing an
instruction (composed of one or more GPU kernels), the REUSE
call reuses the output pointer if available in the cache and skips
launching the kernels. As Figure 8(c) shows, REUSE moves the
reused pointer from Free to Live list. Reusing a pointer multiple
times leads to multiple variables referencing a single pointer. We
track the reference count for each pointer indicating the number
of live variables referencing it, and only when the reference count
becomes zero, the pointer is returned to the Free list.

Memory Recycling: All pointers in the Free queues are sub-
ject to eviction (preventing OOM). Pointers in each queue are
ordered according to a scoring function. Algorithm 1 shows the

Algorithm 1 Allocate memory of size 𝑠
Input: Size 𝑠 , Size-specific free pointer lists 𝐹𝐿
Output: Allocated memory pointer A
1: if canAllocate(s) then // GPU is not full
2: A = cudaMalloc(𝑠) // Allocate new memory
3: else if 𝐹𝐿.contains(𝑠) then // Find free pointer of size s
4: A = 𝐹𝐿.getFreePointerExact(𝑠) // Recycle
5: else if 𝑠 ≤ 𝐹𝐿.largest() then // Find pointer of size > s
6: 𝑡𝑚𝑝 = 𝐹𝐿.getFreePointerLargerThan(𝑠)
7: cudaFree(𝑡𝑚𝑝) // Deallocate
8: A = cudaMalloc(𝑠) // Allocate new memory
9: else if 𝑠 > 𝐹𝐿.largest() then // s > all free pointers
10: 𝑓 𝑟𝑒𝑒𝑑𝑆𝑖𝑧𝑒 = 0 // Repeatedly deallocate
11: while 𝑓 𝑟𝑒𝑒𝑑𝑆𝑖𝑧𝑒 < 𝑠 | A is NULL do
12: 𝑡𝑚𝑝 = 𝐹𝐿.getFreePointerNotExact(𝑠 − 𝑓 𝑟𝑒𝑒𝑑𝑆𝑖𝑧𝑒)
13: 𝑓 𝑟𝑒𝑒𝑑𝑆𝑖𝑧𝑒 = 𝑓 𝑟𝑒𝑒𝑑𝑆𝑖𝑧𝑒 + 𝑡𝑚𝑝.size()
14: cudaFree(𝑡𝑚𝑝)
15: if 𝑓 𝑟𝑒𝑒𝑑𝑆𝑖𝑧𝑒 ≥ 𝑠 then
16: A = cudaMalloc(𝑠) // Allocate new memory
17: if A is NULL then
18: 𝐹𝐿.clearAll() // Clear all free pointers
19: A = cudaMalloc(𝑠) // Allocate new memory

details for serving an allocation request. Once the GPU mem-
ory is full, as shown in Figure 8(d), we start recycling the free
pointers as a form of eviction. We first look for a free pointer
with the exact size to recycle. If not available, we free a pointer
just larger than the required size using cudaFree (which may
cause fragmentation). If all free pointers are smaller than the
required size, we repeatedly free a pointer until cudaMalloc is
successful. If these steps fail, we clean up all free pointers. Even
then, the allocation may fail due to many live variables and mem-
ory fragmentation. In such cases, we initiate the device-to-host
eviction process (not shown in Algorithm 1), and finally a full
defragmentation—though this is rare in practice. Memory recy-
cling benefits typical DNN workloads with repeated operations
on fixed-sized intermediates, such as the forward and backward
passes of mini-batch processing. We prioritize recycling exact-
sized memory chunks over temperature-based approaches to
prevent GPU memory fragmentation and to avoid the costly de-
fragmentation process. The primary objective of these steps is
to avoid memory allocation, deallocation, which triggers device
synchronization, and fragmentation due to repeated deallocation,
however, without compromising the reuse potential.

Eviction Policy: The eviction policy determines the order
in which pointers are recycled or freed from each free queue.
Our policy is devised to serve typical mini-batch workloads. The
eviction scoring function for a cached GPU object 𝑜 is

argmin
𝑜∈Q

𝑇𝑎 (𝑜) + 1/ℎ(𝑜) + 𝑐 (𝑜) (2)

where Q is a priority queue of free pointers. 𝑇𝑎 (𝑜) denotes the
normalized last access timestamp, preserving recently reused
pointers from recycling (e.g. reuse within a mini-batch). ℎ(𝑜) de-
notes the height of the corresponding lineage trace. The 1/ℎ(𝑜)
factor preserves objects with shorter lineage traces, allowing
reuse of input data pipelines [88] that are applied to mini-batches,
where a mini-batch is sliced from the input datasets before start-
ing the forward pass. The lineage DAGs for operations in these
data pipelines are shorter since they are directly sliced from the
input (compared to the operations in forward/backward paths).
Finally, 𝑐 (𝑜) is the estimated compute cost of object 𝑜 , which
enables recycling the least expensive intermediates first (e.g.,
element-wise ReLU before Conv2d or fully-connected layers).

260

5 COMPILER INTEGRATION
Runtime-level reuse and memory management are valuable, but
a holistic handling at compiler- and runtime-level yields addi-
tional improvements. In this section, we describe optimizations
for operator parallelism, data exchange, workload-aware cache
management and checkpoint placement, as well as an operator
linearization strategy to increase parallel execution.

5.1 Asynchronous Remote Jobs
To enable inter-backend parallelism and asynchronous data trans-
fer, we introduce new operators and related rewrites.

Prefetching Remote Objects:We introduce a new prefetch
operator and the corresponding compiler rewrite to trigger re-
mote (Spark/GPU) jobs and asynchronously fetch the results
without blocking the CPU instruction stream. This rewrite tra-
verses the execution plan and identifies operators that trigger re-
mote jobs through collect and cudaMemcpyDeviceToHost calls.
These operators represent the roots of remote operator chains.
After each such root, the rewrite inserts a prefetch instruction,
wrapping the triggering call, and marks it for asynchronous exe-
cution. Additionally, this rewrite flags all other Spark actions for
asynchronous execution. At runtime, the operator scheduler trig-
gers these asynchronous operations and returns future objects
[91], allowing concurrent execution. This compiler extension
enables concurrent execution of Spark jobs, local operators, and
GPU kernels. Figure 9(a) shows the DAG from Example 4.1 (Fig-
ure 7) after prefetch placement (indicated by pf) for two jobs
that collects results of mm + di and y⊤X, respectively.

Reusing Prefetched Results: Caching results immediately
after instruction execution is infeasible for asynchronous opera-
tors. To overcome, the main thread propagates the corresponding
lineage trace to the spawned prefetch threads, enabling them to
cache (PUT) the fetched data once available. The prefetch in-
struction of Job2 in Figure 9(a) caches the fetched result of y⊤X,
which is then reused (e.g., in prefetch) in subsequent iterations.

Broadcasting Local Objects: We introduce another asyn-
chronous operator, broadcast, to optimize local to remote data
transfer. The corresponding rewrite places broadcast as the last
operator of local operator chains. For Spark, the broadcast opera-
tor asynchronously partitions the input matrix and registers it as
a broadcast variable, deferring the actual data transfer to the ex-
ecutors until the broadcast variable is used by Spark. Figure 9(a)
shows an example of broadcast instruction (bc) placement.

5.2 Workload-aware Cache Management
We introduce new operators for cache management and rewrites
for their placements. These operators aim to reduce caching over-
head and improve the utility of reuse and memory management.

Eviction Injection:Our eviction logic, (in Section 4), operates
in an incremental manner, evicting one object-at-a-time to make
space for new objects. This approach incurs high eviction over-
head during allocation pattern shifts, common in GPU workloads.
Figure 9(b), shows an ensemble learning script that utilizes two
pre-trained models (AlexNet & VGG16) for joint prediction. In
the first for loop, MEMPHIS efficiently recycles the less reusable
pre-allocated pointers. However, the allocation pattern shifts in
the second loop due to varying conv2d kernel sizes, leading to
high allocation-deallocation overhead and memory fragmenta-
tion. To mitigate this issue, we introduce the evict instruction
for cache cleanup. A program-level rewrite identifies these loop
patterns and injects evict instructions with percentages of cache

XT

.

+

t

.

t
t

mm

X di

A

b

X

yT

beta

yT.X

pf

bc

Sol

bc

bc

pf

pf

Job1

Job2

X
W

chp

J1

J2

(a) Async. Data Exchange (c) Checkpoint

for (i in 1:iters) {
 batch = data[beg:end]
c1 = conv2d(..,11,11,4,4)

 r1 = relu(c1)

 probs = softmax(..)
}

for (i in 1:iters) {
 batch = data[beg:end]
c1 = conv2d(..,3,3,1,1)

 r1 = relu(c1)

 probs = softmax(..)
}

(b) Eviction

gpu_evict(100)

Figure 9: Compiler-assisted Reuse (incl. Asynchronous Data
Exchange and Operations, Forced Eviction, and Checkpointing).

size to clean up as arguments. At runtime, the evict instruction
utilizes the backend-specific eviction logic to free up space. The
rewrite avoids full eviction if access patterns repeat. Other DNN
frameworks require manual placement of such cleanup [31].

RDD Checkpoint Placement: Lineage-based reuse elimi-
nates redundancy across Spark jobs, but Spark’s lazy evaluation
introduces another form of redundancy due to shared dataflow
dependencies between jobs. Prior work [10, 24] proposes sim-
ple, rule-based checkpoint (persist) placements. In this work,
we introduce two workload-aware compiler rewrites for check-
point placement. (1) The first rewrite identifies overlapping Spark
jobs within a basic block and injects a checkpoint after the last
shared operator. (2) The second rewrite targets common iterative
algorithms, where updated variables create increasingly large
operator graphs. Figure 9(c) shows a simplified DAG of one fac-
tor matrix W of Poisson Non-negative Matrix Factorization [79].
Here, each node represents a Spark (red) or local (blue) operator
chain. Every iteration updatesW and triggers two jobs (J1, J2),
both lazily executing all previous iterations. Our rewrite identi-
fies the variables that are updated in each iteration and places
checkpoints to reuse previous iterations’ results. In this example,
we cacheW (indicated by chp) in each iteration. For a seamless
integration, at runtime, the lineage cache eviction tracks these
checkpointed RDDs and updates the cache metadata.

Delayed Caching: Caching incurs a probing cost and other
backend-specific overheads, especially for long-running, complex
workloads. Caching non-repeating large RDDs increases memory
pressure and garbage collection overhead on both executors and
drivers. Similarly, DNN training with no reuse potential in GPUs
suffer from allocation overhead, memory fill-up, and fragmenta-
tion. Empirically, reusable operations repeat multiple times for
hierarchically composed ML pipelines. Based on this observation,
we introduce delayed caching, that defers caching until the 𝑛-th
(delay factor) cache hit. At runtime, the PUT call creates an empty
lineage cache entry with status TO-BE-CACHED upon the first
cache hit. If the operator repeats 𝑛 times, we put the actual object
in the cache and change the status to CACHED. Together with our
cache eviction schemes, cache entry strategies such as delayed
caching substantially reduce the overhead and cache misses.

Automatic Parameter Tuning: We introduce a program-
level rewrite for tuning the delay factor 𝑛 (no delay is 𝑛 =
1) and the Spark storage level (for RDD caching) of each ba-
sic block, based on estimated reuse potential. This rewrite
recursively traverses all program blocks, analyzing the exe-
cution frequency (nested loops, function calls) and the pres-
ence of loop-dependent operations (not reusable). A second
pass then assigns the values for 𝑛 (𝑛 = 1 if >80% reusable)
and storage level, and stores them in the block headers.

261

n = 1

n = 1

n = 4

1

2

3

n = 2
4

Feature selection
for (i in 1:ncol(X)) {
 Xi = cbind(X_g, X[,i])
ac = lm(Xi,..)

 ..check if best AIC..
X_b = cbind(X_b, X[,i])

}
Hyperparameter tuning
for (λ in lambdas)
 model = TrainPipe(λ)

Clean and train
TrainPipe = function(λ) {
 X_cl1 = imputeMV(X_b)
 X_ol2 = outlrIQR(X_cl1)
 while(minimize)
 ..training loop..
}

Figure 10: Delay Factors.

Figure 10 shows a simplified
ML pipeline where, operations
in block 1 (step-wise feature se-
lection [3]) are loop-iteration-
dependent (X𝑖 varies with 𝑖) and
thus, is deemed not reusable (𝑛 =
4). In block 3, cleaning and out-
lier removal methods imputeMV
and outlrIQR are independent
of 𝜆 and thus, reusable (𝑛 = 1).
The training in block 4 is par-
tially 𝜆-dependent (𝑛 = 2). Sim-
ilarly, we assign storage level
MEMORY_AND_DISK to block 2 and
3, and MEMORY (avoids spilling to
disk) to 1 and 4, respectively.

5.3 Operator Ordering
Traditional backend-agnostic operator ordering is suboptimal
for multi-backend systems. For a holistic inter-backend paral-
lelism via asynchronous operators, we introduce a new operator
ordering algorithm, maxParallelize that aims to maximize op-
portunities for concurrent execution of local and remote oper-
ator pipelines. As Algorithm 2 shows, we identify the operator
chain roots (Spark action/prefetch/GPU-to-host copy) and lin-
earize them in descending order of their lengths to maximize
parallelism—longer operator chains allow for more concurrent
execution, thus increasing the degree of parallelism. The depth-
First method recursively processes sub-DAGs, with node memo-
ization. This tight operator packing also improves memory usage
by reducing the lifetime of dangling RDD references [70]. For
Figure 9(a), maxParallelize linearizes Job1 followed by Job2.
The prefetch operators trigger these jobs concurrently, where
solve and transpose wait on the future objects for results.

5.4 Applicability and Design Decisions
Our reuse and cache management for Spark apply to other dis-
tributed backends with lazy evaluation that offer primitives for
distributed caching. For instance, Dask [106] and Ray [91] pro-
vide Cache [38] and Checkpoint [102] interfaces, respectively.
Similarly, our memory management and reuse for GPU can be
extended to other hardware accelerators like FPGAs and TPUs
[64]. Here, we summarize the applicability and future work.

• Other ML Systems:MEMPHIS applies to other compilation-
based, multi-backend systems for unified data processing
[21, 49], integrated data analysis [36], polyglot, and Au-
toML. Our compiler and runtime optimizations like RDD
reuse, cleanup, and eviction and checkpoint injection also
apply to DAG compilation in TensorFlow and PyTorch.

• Multi-GPU/stream: SystemDS does not support multi-
GPUs/GPU-streams. However, the memory manager and
prefetch logic apply to multiple GPUs with separate caches.

• Deeper Hierarchies: For hierarchically-structured backends
(e.g. federated workers with local GPUs), local lineage-
based reuse directly applies. Prior work added lineage-
based reuse to multi-tenant federated workers [19]. Future
work includes efficient transfer of lineage traces.

• No Exchange of Cached Objects:While we implemented the
mechanics for evicting cached objects from one backend
to another, we observed that moving cached objects cause

Algorithm 2 Operator linearization
Input: Operator DAG 𝐷 with root 𝑅
Output: List of instructions L
1: if hasNoRemoteOps(D) then // All local OPs
2: L = depthFirst(𝐷) // Linearize deapth-frist

// Step1: Identify OP chains & count operators
3: 𝑆𝑅𝑜𝑜𝑡𝑠 = collectSPRoots(𝐷) // Identify Spark jobs
4: 𝐺𝑅𝑜𝑜𝑡𝑠 = collectGPRoots(𝐷) // Identify GPU OP chains
5: for each list 𝑅𝑜𝑜𝑡𝑠 in 𝑆𝑅𝑜𝑜𝑡𝑠,𝐺𝑅𝑜𝑜𝑡𝑠 do
6: for each root 𝑟 in 𝑅𝑜𝑜𝑡𝑠 do
7: if 𝑟 is Spark then
8: 𝑛𝑆𝑃𝑂𝑝𝑠 [𝑟] = countSPOps(𝑟) // Spark OP count/job
9: else if 𝑟 is GPU then
10: 𝑛𝐺𝑃𝑂𝑝𝑠 [𝑟] = countGPOps(𝑟) // GPU OP count/chain

// Step2: Sort and linearize remote jobs (longer jobs first)
11: 𝑅𝑜𝑜𝑡𝑠 = 𝑆𝑅𝑜𝑜𝑡𝑠 +𝐺𝑅𝑜𝑜𝑡𝑠
12: 𝑅𝑜𝑜𝑡𝑠 = sortRootsByOpCount(𝑆𝑅𝑜𝑜𝑡𝑠, 𝑛𝑆𝑃𝑂𝑝𝑠,𝑛𝐺𝑃𝑂𝑝𝑠)
13: for each root 𝑟 in 𝑅𝑜𝑜𝑡𝑠 do
14: if 𝑟 is Spark then
15: depthFirst(𝑟, 𝑛𝑆𝑃𝑂𝑝𝑠 [𝑟], L) // Depth-first Spark jobs
16: else if 𝑟 is GPU then
17: depthFirst(𝑟, 𝑛𝐺𝑃𝑂𝑝𝑠 [𝑟], L) // Depth-first GPU OP chains

// Step3: Linearize the rest of the local OPs
18: depthFirst(𝑅, L) // Place unvisited nodes of D

movements of live variables for maintaining data locality,
which in turn can severely affect overall execution time.

• Operator Scheduling: Our scheduling strategies provide
holistic memory management, but in a heuristic man-
ner. Devising a guaranteed optimal, cost-based and reuse-
aware operator placement is interesting future work.

6 EXPERIMENTS
Our experiments study MEMPHIS’s performance by systemati-
cally scaling data sizes, task complexity, and instruction counts
across various workloads. We first conduct micro benchmarks for
understanding the overhead of lineage tracing and cache prob-
ing in Spark and GPUs. Subsequently, we investigate a range of
end-to-end ML pipelines, including data pre-processing, hyper-
parameter optimization, matrix factorization, and DNN, for ex-
ploring the benefits of multi-backend reuse in realistic settings.

6.1 Experimental Setting
HW Environment: We ran all experiments on a cluster of 8+1
scale-out nodes and a single scale-up node. Each scale-out node
has an AMD EPYC 7443P CPU@2.8-4.0 GHz (24 physical/48
virtual cores), and 256GB DDR4 RAM. The scale-up node has
two Intel Xeon Gold 6338 CPUs@2.2-3.2 GHz (64 physical/128
virtual cores), 1 TB DDR4 RAM, and two NVIDIA A40 GPUs with
48GB and PCIe 4.0. The software stack comprises Ubuntu 20.04.6,
Hadoop 3.3, Spark 3.5, OpenJDK 11, CUDA 10.2, and CUDNN 7.6.

MemoryConfigurations: For the Spark cluster, we use 38GB
driver memory and 230GB executor memory. The buffer pool
and operation memory are set to 20GB and 7GB i.e., operators
requiring more than 7GBmemory are compiled to Spark instruc-
tions. The lineage cache size is set to 5GB on the driver and
55GB (80% of storage) on each executor. The scale-up node has
200GB heap with 10GB host memory for lineage cache and the
full 48GB GPU memory for the unified memory manager.

Baselines: For a comprehensive evaluation, we compare
MEMPHIS with different SystemDS configurations, application-
specific reuse frameworks, and state-of-the-art ML systems.

262

• SystemDS: Base is SystemDS without reuse. MPH de-
notesMEMPHISwithmulti-level, multi-backend reuse and
all optimizations. Different configurations of SystemDS
(Base-x) and MEMPHIS (MPH-x) are introduced later.

• Reuse Frameworks: We compare with several reuse frame-
works: LIMA [101] for fine-grained reuse, HELIX [125] for
coarse-grained reuse, CoorDL [88] for input data pipeline
reuse in CPU, Clipper [33] for prediction reuse, and VISTA
[93] for reuse in transfer learning. For fair comparisons,
we hand-optimized the ML pipelines via script-level com-
mon subexpression elimination (CSE) to reuse outputs of
built-in functions (which may contain multi-backend op-
erations), as well as data pipeline results, predictions, and
extracted features for transfer learning, mimicking the ca-
pabilities of these frameworks. Script-level reuse ensures
the maximum possible reuse benefits without overheads
and configuration complexities from these frameworks.

• ML System: We compare with PyTorch 2.1 [96], a strong
baseline for DNN workloads on GPUs. PyTorch’s caching
memory allocator also recycles memory blocks [31, 76].

6.2 Micro Benchmarks
We first conduct micro benchmarks to study various aspects
of MEMPHIS in isolation. We use representative but simplified
scripts. These experiments focus on lineage tracing and reuse
overhead, cache size configuration, and memory management of
Spark and GPU. For the micro benchmarks, we set SystemDS’s
buffer pool to 100GB while keeping the operation memory con-
stant at 7GB to prevent buffer pool eviction. While evaluating
the impact of varying cache sizes in the driver, we keep remote
caches in Spark and GPU unchanged due to their unified memory
managers and impact on execution memory.

Reuse Overhead: To understand the overhead of lineage trac-
ing and cache probing, we explore a hyper-parameter tuning
scenario. We execute the core logic of L2SVM with varying input
sizes, iteration counts, and percentages of reusable instructions.
First, we fix the iteration count at 200 (total 2M instructions)
and vary input sizes in [800B, 8MB]. While increasing input sizes
scales the compute cost per instruction, the overhead from lineage
tracing and cache management remains constant. To simulate
reuse, we adjust the fraction of reusable instructions from 20% to
80% by randomly repeating hyperparameters, where the reusable
instructions contain primarily binary matrix-vector computa-
tions. Figure 11(a) compares Base with different configurations.
The Trace setting enables only tracing, introducing tracing over-
head. Probe refers to reuse enabled but with no reusable instruc-
tions (i.e., maximum overhead with no reuse benefits). Here, for
input sizes smaller than 8MB, the total execution time of Base is
dominated by interpretation overhead, as well as variable and sta-
tistics management. Lineage tracing and probing further increase
this overhead by 1.3x and 2x. For small input data, reuse does

1

2

5

10

20

50

100

800B 8KB 80KB 800KB 8MB

E
x
ec

u
ti

o
n

 T
im

e
[s

]

Input Sizes

#Insts = 2M

Base

Trace

Probe

20%

40%

80%

(a) Reuse Overhead - Sizes

0

50

100

150

200

250

1 2 3 4 5

E
x
e
c
u
ti

o
n

 T
im

e
 [

s]

#Instructions [Million]

#Size = 8MBBase

Trace

Probe

20%

40%

40%INF

(b) Reuse Overhead - #Instructions

Figure 11: Basic Lineage Tracing and Reuse Overhead.

2 4 6 8 10

Base

.9GB

5GB

30GB

0K

1K

2K

3K

4K

E
x
ec

u
ti

o
n

 T
im

e
[s

]

Input Sizes [Gigabytes]

Reuse = 40%
#Inst = 1M

(a) Cache Size Comparison

0K

1K

2K

3K

4K

2 8 32 128

E
x
ec

u
ti

o
n
 T

im
e

[s
]

Batch Size

#images = 200K
dim = 32x32

Base

Trace

Probe

20%

40%

80%

(b) Tracing Overhead GPU

Figure 12: Influence of Cache Sizes on Reuse Potential and
GPU Backend Tracing Overhead.

not help due to relatively low compute cost. However, for larger
inputs (8MB), the tracing and probing overheads become negligi-
ble, and the reuse settings show improvements from 1.1x (20%
reuse) to 3x (80% reuse). Second, to further study this scenario,
we vary the instruction count from 1M to 5M for the fixed 8MB
input. Increasing instruction count scales the caching related
overheads. Figure 11(b) shows the probing overhead increases
with instruction count, reaching 15% for 5M instructions, while
the tracing overhead remains moderate. However, already 20%
reuse amortizes these overheads by reusing intermediates and
applying compaction (see Figure 5), while 40% reuse improves
by 1.5x. We further compare a reuse setting of a larger cache
with no cache eviction (40%INF). This setting does not yield any
further speedup as MEMPHIS’s caching policy maintains the
objects with high reuse potential even in a small 5GB cache.

Cache Size Comparison: To evaluate the impact of cache
sizes in the driver, we utilize the same experiment for varying in-
put sizes in [2GB, 10GB], (with 1M instructions and 40% reusable),
and three cache sizes: 900MB, 5GB, and 30GB. The 8GB and 10GB
input matrices are distributed and produce Spark operations. Fig-
ure 12(a) shows, that even a 900MB cache consistently achieves
1.2x speedup. For smaller input sizes, 5GB and 30GB show similar
speedup, while for larger inputs, the 5GB cache yields slightly
less speedup compared to the 30GB cache (1.4x vs. 1.6x). The
speedup comes from reusing local intermediates and Spark RDDs
and actions (including prefetch), even after multiple evictions—
proving the robustness of our eviction policies.

GPU Cache Eviction: To evaluate the GPU memory man-
agement, we utilize an ensemble convolutional neural network
(CNN) scoring of 200K 32×32 images with varying batch sizes
and different reuse settings (randomly repeated images identified
by pixel-encoded IDs). We use two CNN models with distinct
memory allocation patterns: one with two conv2d layers (#out-
put channels = 64, 128) and ReLU activations, and the other with
three conv2d layers (#output channels = 64, 192, 256) and ReLU
activations. Both CNNs employ two fully-connected layers with
ReLU and Softmax activation after the conv2d layers for classifi-
cation. Figure 12(b) shows that the overhead of probing remains
moderate, at 8%, even for a small batch size of 2 (2.6M GPU in-
structions), and is offset by only 20% reuse. From batch size 4,
despite a large number of evictions (255K/139K recycled/reused
pointers for batch size 4), reuse settings of 20%, 40%, and 80%
yield consistent improvements of 1.3x, 1.6x, and 4x, respectively.

Conclusions: These micro benchmarks show that MEM-
PHIS’s lineage tracing and probing overhead remain relatively
low even for a large number of instructions. The robustness opti-
mizations, such as the compaction of lineage DAGs, effectively
amortize the probing overhead even when reuse is low. More-
over, the backend-specific eviction policies retain reuse benefits,
despite frequent evictions and smaller cache sizes.

263

Table 3: Overview of ML Pipeline Use Cases & Datasets
Name Use Case Dataset # Rows # Columns Influential Techniques

HCV Grid Search / Cross Validation Synthetic [270K, 2.7M] 2.5K Async. OPs, local & RDD reuse
PNMF Non-negative Matrix Factorization MovieLens 7M 27K Checkpoint placement
HBAND Hyperband Model Selection Synthetic [425K, 1.7M] 1.5K Multi-level reuse, delayed caching
CLEAN Data Cleaning Pipelines APS [60K, 7.2M] 170 Large #intermediates & #evictions
HDROP Dropout Rate Tuning KDD 98 95K 469 Local and GPU ptr. reuse
EN2DE Machine Translation Inference WMT1́4 200K 1 Recycle & reuse GPU ptrs.
TLVIS Transfer Learning Feature Extraction ImageNet, CIFAR-10 10K images 224 × 224, 32 × 32 Evictions & mem. management

0K

1K

2K

3K

4K

5 20 40 60 80 100

E
x
ec

u
ti

o
n
 T

im
e

[s
]

Input Sizes [Gigabytes]

Base

Base−A

LIMA

MPH−NA

MPH

HELIX

9.6x2x

#cols = 2.5k

(a) HCV

0K

2K

4K

6K

8K

10K

12K

5 15 25 35 45

E
x
e
c
u

ti
o

n
 T

im
e
 [

s]

#Iterations

Base

LIMA

MPH

7.9x

#rows = 7M

#cols = 27k

(b) PMNF

0K

1K

2K

3K

4K

5 10 15 20

E
x
ec

u
ti

o
n
 T

im
e

[s
]

Input Sizes [Gigabytes]

Base

HELIX

LIMA

MPH

2.5x

2.6x
#cols = 1.5k

(c) HBAND

Figure 13: Performance of End-to-end ML Pipelines, part I.

6.3 ML Pipelines Performance
We now describe the performance impact of multi-backend reuse
on end-to-end ML pipelines. For a balanced view, we evaluate a
diverse set of workloads with different characteristics.

Pipeline Summary: Table 3 provides an overview of the
used ML pipelines and datasets. The pipelines include: (1) Grid
search hyper-parameter optimization of cross-validated linear
regression (HCV); (2) Poisson non-negative matrix factorization
(PNMF); (3) model search via Hyperband-like multi-armed ban-
dit [74] and weighted ensemble learning (HBAND); (4) pipeline
enumeration for data cleaning [114] (CLEAN) (5) dropout-rate
optimization for Autoencoder (HDROP); (6) a pre-trained scoring
network for English to German translation (EN2DE); and (7) trans-
fer learning for computer vision models (TLVIS). All pipelines
leverage SystemDS’s built-in functions, with all compiler and
runtime optimizations enabled for MEMPHIS. The Influential
Techniques column highlights the most impactful optimizations
and key workload characteristics for each use case.

Dataset Description: Lineage-based reuse is largely indepen-
dent of data skew. We combine real and synthetic datasets to
evaluate varying data characteristics. MovieLens [54] is a movie
rating dataset containing 20M ratings (138K unique users, 27K
unique movies). For pre-processing, we integer encode and repli-
cate rows. APS [1] is a classification dataset, collected from com-
ponents of SCANIA trucks, for classifying Air Pressure System
(APS) failures. This dataset has 60K entries and 0.6% missing val-
ues. KDD98 is a regression dataset for the return from donation
campaigns. We perform recoding on categorical and binning (10
equi-width bins) on numerical features. The WMT2014 dataset
[27, 81] for English-to-German translation comprises news and
web crawls. We use a 200K-word subset of this dataset. Ima-
geNet [4] and CIFAR-10 [67] are popular image datasets. For
pre-processing, we resized the ImageNet images to 224×224×3
and CIFAR-10 images to 32×32×3, then linearized these images.

Cross-Validation: HCV calls a cross-validated linear regres-
sion with Example 4.1 at its core, for 10 different regularization
parameters. HCV uses 𝑅2 to find the best parameters. We vary
the input size in [5GB, 20GB] and compare Base, LIMA, HELIX,
and MEMPHIS, where Base-A and MPH are with and Base and
MPH-NA are without the asynchronous operators. Figure 13(a)

shows MPH is 9.6x faster than Base by reusing X⊤X and X⊤y
for each fold and executing concurrent jobs through prefetch.
Although, MPH uses 2x more cluster memory compared to Base
for storing the cached RDDs, the extra memory usage does not
impact the execution performance. Starting from 25GB input
size, X⊤X and X⊤y are placed in Spark. LIMA reuses only local
intermediates up to 20GB, whereas MPH reuses in all settings.
HELIX performs similar to Base as HCV has no coarse-grained
reuse opportunities (i.e., no repeating top-level ML tasks). Base-A
yields 2x speedup due to concurrent execution, but the speedup
decreases for larger inputs (#partitions > #cores). MPH is 20%
faster than MPH-NA due to parallel operator execution.

Matrix Factorization: Poisson Non-negative Matrix Factor-
ization (PNMF) [79] factorizes a matrix X into factorsW and H
such that X ≈ WH. PNMF iteratively updatesW and H via its up-
date rules. For PNMF on the MovieLens dataset with rank 100,W
(7M × 100) becomes distributed—as shown in Figure 9(c)—while
H (100 × 27K) remains local. We vary the number of iterations to
study the performance impact of the compiler-placed checkpoints
(persist). Figure 13(b) shows that, as the iteration count exceeds
30, Base and LIMA significantly slow down due to the increasing
size of the Spark jobs re-executing all previous iterations. How-
ever, MPH yields a 7.9x speedup (with 4x more memory usage)
by persistingW in each iteration (see Section 5.2).

Model Search: HBAND has two phases. We first utilize suc-
cessive halving to fine-tune the hyper-parameters of L2SVM and
multi-class logistic regression (MLRG). The inner loop performs
a grid search over regularization parameters (reg) and intercept
options (0, 1, or 2), while the outer loop iterates through five
brackets, each halving the reg list (starting with 25 values) and
doubling the iteration count (starting from 10). We then apply
weighted ensemble learning to combine the best L2SVM and
MLRG models. The ensemble weights are optimized via a ran-
dom search over 1Kweight configurations. Figure 13(c) shows the
results for varying data sizes. MPH yields 2.6x/2.5x speedups for
5GB/20GB inputs over Base by reusing the previous iterations of
successive halving and the XB multiplication in weighted class
probability computations. Reused objects include many RDDs
(≈ 4K), Spark actions (≈ 2K), and local matrices (≈ 40K). Our
compiler enabled delayed caching for RDDs for MPH. MEMPHIS

264

0

200

400

600

800

1000

1200

1400

1 20 40 60 80 100 120

E
x
e
c
u

ti
o

n
 T

im
e
 [

s]

Scale Factors

Base

Base−P

LIMA

MPH

#rows = [60k, 7.2M]

3.9x

2.3x

(a) CLEAN

Base−C

LIMA

Base−G

CoorDL

MPH

0K

1K

2K

3K

4K

5K

E
x
ec

u
ti

o
n

 T
im

e
[s

]

Autoencoder tmp

(b) HDROP

Base−G

MPH

MPH−F

Clipper

PyTorch

0

500

1000

1500

E
x
ec

u
ti

o
n

 T
im

e
[s

]

EN−DE Translation tmp

5x

(c) EN2DE

Cifar−10 ImageNet

Base−G

MPH

PyTorch−Clr

PyTorch

VISTA

0K

1K

2K

3K

4K

E
x
ec

u
ti

o
n
 T

im
e

[s
]

Image Datasets

2.9x

1.5x

OOM

#Images = 10K

(d) TLVIS

Figure 14: Performance of End-to-end ML Pipelines, part II.

is 40% faster than HELIX (reuses XB operators) and LIMA. Even
for local operations (5GB), MPH is 20% faster than LIMA.

Data Cleaning: CLEAN enumerates data cleaning pipelines,
leveraging the downstream ML algorithm for feedback. We
construct 12 pipelines combining primitives for missing value
imputation (imputeByMean, imputeByMode), outlier detection
(outlierByIQR), normalization (standard scaling, min-max),
class imbalance (underSampling), and dimensionality reduc-
tion (PCA) for a downstream L2SVM task and return the top-3
pipelines. The order of the primitives in each pipeline is data-
dependent, (e.g., imputation and outlier removal before normal-
ization). These pipelines can be auto-generated using AutoML
[114].We vary the data size [60K, 7.2M] using a scale factor, which
utilizes row append to replicate the input data, and compare Base,
Base with parallel feature processing using multi-threading [23]
(Base-P), and MEMPHIS. Figure 14(a) shows, for scale factor 120,
MPH yields 3.9x/3.5x/2.3x speedups over Base/LIMA/Base-P by
reusing the repeating primitives. Most cleaning primitives oper-
ate feature-wise, producing many intermediates, which leads to
repeated cache spills. However, our cache eviction logic continues
to reuse the local and Spark operator outputs.

Dropout-Rate Tuning: HDROP tunes the dropout rate from
5% to 50% of an Autoencoder (AE) using grid search. The AE
has two hidden layers of sizes 500 and 2 and a dropout layer.
For each dropout rate, we train the AE for 10 epochs with batch
size 256. We construct an input data pipeline (IDP) with normal-
ization and a feature transformation map of binning, recoding,
one-hot encoding, and apply this pipeline batch-wise in every
iteration. Figure 14(b) shows the results of comparing Base with
CPU instructions (Base-C), Base with CPU and GPU instructions
(Base-G), LIMA, CoorDL, and MEMPHIS on the KDD98 dataset.
Although HDROP has modest reuse opportunities, MPH achieves
1.7x speedup over Base-G by reusing the batch-wise IDP across
epochs. The feature transformation is reused on the host, while
the normalization is reused on the GPU. CoorDL, as a representa-
tive of IDP reuse frameworks, only reuses the CPU component of
the IDP and is 24% slower than MPH. This experiment is another
example of efficient fine-grained reuse across multiple backends.

Language Translation: The EN2DE pipeline comprises GPU
scoring with a pre-trained language translation model, and ex-
hibits fine-grained prediction caching potential [33]. We use pre-
trained word embeddings for English and German and their
dictionaries, along with a pre-trained model, comprising four
fully-connected layers with ReLU and Softmax for translation.
The word embeddings for both English and German are trained
on Wikipedia and 300-dimensional. The input is a 200K-word
sequence of news content. Figure 14(c) compares Base with GPU
instructions (Base-G), operator-at-a-time reuse (MPH-F), which
disables multi-level reuse (see Section 3.3), Clipper, and MEM-
PHIS. MPH yields a 5x speedup over Base-G by reusing scoring

results at the host—completely eliminating GPU computations
for the reused words. In contrast, MPH-F reuses GPU pointers for
the reusable instructions, yielding a 4x speedup, despite frequent
evictions including 325K recycled pointers. Clipper performs
similar to MPH by reusing the predictions at the host.

Transfer Learning: Transfer learning is a widely used alter-
native to training large models from scratch. Practitioners often
evaluate different pre-trained models to identify the most suit-
able model-layer pair for the downstream task and input dataset
[93, 104]. TLVIS utilizes three pre-trained CNN models: AlexNet
[68], VGG16 [115], and ResNet18 [57], and extracts the following
layers (by applying the pre-trained weights on the test images)
for transfer learning: Conv2d of layer4 (Conv4) to fully-connected
layer7 (FC7) from AlexNet, Conv5 to FC7 layers from VGG and
the last four residual blocks from ResNet. The pre-trained layers
are frozen during feature extraction, and a proxy of a linear clas-
sifier is used to rank the extracted features [95, 119]. We split the
CIFAR-10 and ImageNet datasets into non-overlapping training
and test sets, with 10K images in each test set, and we execute
the pipelines in the GPU. Figure 14(d) shows that MEMPHIS
yields 2x and 3x speedups for CIFAR-10 and ImageNet test sets
by reusing the intermediates during repetitive feature extrac-
tions. MEMPHIS compiles an evict(100) instruction between
models (eviction injection) to free up the allocated pointers, and
the GPU memory manager efficiently recycles the intermediates
without compromising the reuse benefits. For instance, 30K and
17.5K pointers are reused and recycled for ImageNet, respectively.
VISTA, as a specialized system for transfer learning, performs
similar to MPH by applying CSE across pipelines.

Comparison with PyTorch: For comparison with another
ML system, we compare MEMPHIS with PyTorch for EN2DE
and TLVIS. All intermediates are represented as torch tensors.
For TLVIS, we utilize PyTorch’s pre-trained models and API to
freeze layers. Additionally, we transfer the model parameters
and datasets to the GPU before starting the mini-batch process-
ing to enable PyTorch’s compiler optimizations and speculative
GPU memory management [76]. PyTorch with torch.compile
(PyTorch) fails with out-of-memory and requires manual clean-
ups of the allocation cache (empty_cache()) after each model
[31, 32] (PyTorch-Clr). Figures 14(c) and 14(d) show that PyTorch—
as a specialized system for DNN training—is 2x/1.9x faster than
Base-G for EN2DE and TLVIS. However, PyTorch fails to reuse
predictions and repeated feature extractions and is 2.4x and 1.5x
slower than MPH for EN2DE and TLVIS, respectively.

Conclusion: Overall, our workload-aware compiler-assisted
reuse, optimizations, inter-backend parallelism, and memory
management show competitive performance compared to other
systems, which include ML systems as well as specialized
application-specific reuse frameworks, demonstrating our frame-
work’s effectiveness in a broader range of scenarios.

265

7 RELATEDWORK
Our compiler-assisted, multi-backend reuse in ML systems is
related to the reuse of ML and query intermediates, RDD caching,
GPU memory management, and operator scheduling.

Reuse of ML Pipeline Intermediates: Prior work has recog-
nized significant reuse opportunities in exploratory data science
workflows. Columbus [130] and KeystoneML [116] automatically
materialize and reuse selected intermediates within and across
ML pipelines. Subsequent work—including Alpine Meadow [112],
HELIX [125], collaborative optimizer [39], HYPPO [66] and, re-
sult sharing for what-if analysis [51]—apply CSE and cost-based
materialization for reusing ML task results such as data prepara-
tion, feature engineering, andmodel training. Other work focuses
on reuse within specific workloads: tf.Data [92], Cachew [53],
CoorDL [88], and TensorSocket [105] reuse pre-processed mini-
batches in DNN training; Clipper [33] and PRETZEL [73] apply
CSE and caching to predictions; MISTIQUE [123] enables caching
and querying model intermediates; as well as OneAccess [65],
Ease.ml [77], and SystemDS federated [19] enable multi-tenant
resource sharing in ML clusters. Most of these systems only
support coarse-grained reuse (of top-level primitives) and apply
reuse in an isolated manner (independent of multiple backends,
operator scheduling, and memory management).

Reuse of Query Intermediates: Our work on reuse is in-
spired by the extensive research on reusing query intermediates
in database systems. Reuse is used for various aspects including
buffer pool page caching in CPU/GPU memory [82], scan shar-
ing [13, 121], request batching [72], subexpression reuse [63],
materialized views [6, 63], as well as multi-query optimization
[107]. Work on recycling intermediates in MonetDB [60], tran-
sient materialized views [135], and Firebolt [9] reuse previously
materialized in-memory or spool intermediates. CoGaDB [28]
leverages a similar reuse of GPU intermediates, exploiting data lo-
cality. In contrast to this line of work, MEMPHIS provides holistic
multi-backend reuse for linear algebra programs.

RDD Caching and Reuse: Prior work on RDD caching
largely falls into three categories. First, heuristics-based caching
utilizes known data dependencies to select intermediates for
caching. SystemML [24] injects persist() directives after per-
sistent reads (text to binary) and before loops for read-only vari-
ables. Emma [10] caches RDDs that are referenced multiple times.
Second, DAG-aware eviction policies such as Least Reference
Count (LRC) [127, 128], and Most Reference Distance (MRD)
[99] extend Spark’s default LRU to prioritize frequently-used
RDDs. LRC monitors the number of consumers for each RDD
and evicts partitions of those with the least active consumers.
MRD considers both the number and distance (number of stages)
of consumers, evicting RDDs with fewer active consumers farther
away in the DAG. Third, caching frameworks such as Juggler [8],
Agile-Ant [7], and MEMTUNE [126] optimize distributed caching
decisions in a cost-based manner by analyzing data dependencies
and access patterns for individual Spark jobs. In contrast, MEM-
PHIS identifies fine-grained redundancy at runtime and reuses
RDDs across jobs and conditional control flow programs.

GPUMemoryManagement:GPUs are widely used for DNN
workloads and many specialized techniques for GPU memory
management exist. GPU memory is a limiting factor in DNN
design [50, 57, 68], and many DNN job failures are caused by
running out of GPU memory due to large batch sizes, skewed
memory usage across layers, memory fragmentation, and mispre-
dicting intermediate sizes [131]. TensorFlow [118] and JAX [14]

preallocate nearly all GPU memory to avoid memory fragmen-
tation and frequent calls to cudaMalloc and cudaFree. PyTorch
[132] uses a pool allocator [71], which recycles free memory
pointers. Prior work [29, 61, 111, 133] on materialization also
discards activations in the forward pass to reduce memory pres-
sure and recomputes them during the backward pass. Further,
asynchronous swapping [58, 84, 98] allows offloading activations
from GPU memory to host, freeing up memory for ongoing com-
putations and re-loading them on demand. Another line of work
proposes more accurate estimators for the size of intermediates
[46, 110]. These techniques are designed for single DNN training
and are independent of reusing intermediates in ML pipelines
with multiple training and inference tasks.

Operator Scheduling: The performance impact of opera-
tor scheduling has been investigated before. GPipe [59] and
DAPPLE [44] explore pipeline parallelism across mini-batches,
and partition the operators to increase parallelism and remove
pipeline bubbles (overlapping computation and communication).
PipeDream [94] extends this work for asynchronous convergence
by scheduling the mini-batches based on a brief GPU profiling
and multiple versions of weights. Alpa [134] combines data and
model parallelism for large DNNs by automatically compiling
cost-optimal plans for data and model parallelism. CoCoNet [62]
introduced a domain-specific language for specifying combina-
tions of computation and communication, along with a compiler
that generates optimized custom kernels. Additionally, NVIDIA
offers higher-level programming abstractions [41] and a unified
memory manager including pre-fetching capabilities [56]. In con-
trast, MEMPHIS’s operator ordering and asynchronous operators
exploit parallelism across multiple backends, integrate lineage-
based reuse, and handle data-centric ML pipelines ranging from
pre-processing to training.

8 CONCLUSIONS
To summarize, we introduced MEMPHIS as a holistic framework
for efficient, multi-backend reuse of intermediates and memory
management in ML systems. Our hierarchical lineage cache seam-
lessly allows reuse across heterogeneous backends. We devised
tailor-made eviction policies for Spark and GPUs, along with
related memory management techniques. Our compiler exten-
sions improve reuse potential, reduce runtime overheads, and
enable concurrent execution. Our experiments have shown ro-
bust improvements across diverse workloads. In conclusion, the
increasing complexity of ML pipelines, coupled with diverse data
modalities and heterogeneous backends, inevitably introduces
redundancy across different backends. This growing complexity
and heterogeneity poses challenges for library developers and
users, as manual redundancy elimination becomes infeasible. Our
compiler-assisted, runtime-based multi-backend lineage cache
effectively addresses these challenges. The underlying concepts
and optimization techniques are broadly applicable in modern
ML systems. Interesting future work includes (1) exploring cost-
based operator scheduling for reuse-aware operator placement,
(2) query processing over lineage traces for model debugging,
and (3) extending lineage tracing for fairness constraints [52].

9 ACKNOWLEDGMENTS
Wegratefully acknowledge funding from theGerman FederalMin-
istry of Education and Research (under research grant BIFOLD24B).

266

REFERENCES
[1] 2017. APS Failure at Scania Trucks. UCI Machine Learning Repository.

https://doi.org/10.24432/C51S51
[2] Martín Abadi et al. 2016. TensorFlow: A System for Large-Scale Machine

Learning. In OSDI. 265–283.
[3] Christopher R. Aberger, Andrew Lamb, Kunle Olukotun, and Christopher

Ré. 2017. Mind the Gap: Bridging Multi-Domain Query Workloads with
EmptyHeaded. PVLDB 10, 12 (2017), 1849–1852.

[4] Wendy Kan Addison Howard, Eunbyung Park. 2018. ImageNet
Object Localization Challenge. https://kaggle.com/competitions/
imagenet-object-localization-challenge

[5] Divy Agrawal et al. 2018. RHEEM: Enabling Cross-Platform Data Processing
- May The Big Data Be With You! -. PVLDB 11, 11 (2018), 1414–1427. https:
//doi.org/10.14778/3236187.3236195

[6] SanjayAgrawal, Surajit Chaudhuri, and Vivek R. Narasayya. 2000. Automated
Selection of Materialized Views and Indexes in SQL Databases. In VLDB. 496–
505. http://www.vldb.org/conf/2000/P496.pdf

[7] Hani Al-Sayeh, Muhammad Attahir Jibril, and Kai-Uwe Sattler. 2024. Agile-
Ant: Self-managing Distributed Cache Management for Cost Optimization
of Big Data Applications. PVLDB 17, 11 (2024), 3151–3164.

[8] Hani Al-Sayeh, Bunjamin Memishi, Muhammad Attahir Jibril, Marcus
Paradies, and Kai-Uwe Sattler. 2022. Juggler: Autonomous Cost Optimization
and Performance Prediction of Big Data Applications. In SIGMOD. 1840–1854.
https://doi.org/10.1145/3514221.3517892

[9] Alex Hall. 2024. Caching & Reuse of Subresults across Queries. https:
//www.firebolt.io/blog/caching-reuse-of-subresults-across-queries

[10] Alexander Alexandrov, Andreas Kunft, Asterios Katsifodimos, Felix Schüler,
Lauritz Thamsen, Odej Kao, Tobias Herb, and Volker Markl. 2015. Implicit
Parallelism through Deep Language Embedding. In SIGMOD. 47–61. https:
//doi.org/10.1145/2723372.2750543

[11] Jason Ansel. 2022. TorchDynamo. https://github.com/pytorch/torchdynamo
[12] Antreas Antoniou, Amos J. Storkey, and Harrison Edwards. 2018. Aug-

menting Image Classifiers Using Data Augmentation Generative Adversarial
Networks. In ICANN (Lecture Notes in Computer Science, Vol. 11141). 594–603.
https://doi.org/10.1007/978-3-030-01424-7_58

[13] Subi Arumugam, Alin Dobra, Christopher M. Jermaine, Niketan Pansare, and
Luis Leopoldo Perez. 2010. The DataPath system: a data-centric analytic
processing engine for large data warehouses. In SIGMOD. ACM, 519–530.
https://doi.org/10.1145/1807167.1807224

[14] The JAX Authors. 2023. GPU Memory Allocation. https://jax.readthedocs.
io/en/latest/gpu_memory_allocation.html

[15] Reza Babanezhad, Mohamed Osama Ahmed, Alim Virani, Mark Schmidt,
Jakub Konečný, and Scott Sallinen. 2015. StopWastingMyGradients: Practical
SVRG. In NeurIPS. 2251–2259. https://proceedings.neurips.cc/paper/2015/
hash/a50abba8132a77191791390c3eb19fe7-Abstract.html

[16] Paul Barham et al. 2022. Pathways: Asynchronous Distributed Dataflow for
ML. In MLSys, Diana Marculescu, Yuejie Chi, and Carole-Jean Wu (Eds.).

[17] Nirvik Baruah, Peter Kraft, Fiodar Kazhamiaka, Peter Bailis, and Matei Za-
haria. 2022. Parallelism-Optimizing Data Placement for Faster Data-Parallel
Computations. PVLDB 16, 4 (2022), 760–771. https://doi.org/10.14778/
3574245.3574260

[18] Sebastian Baunsgaard et al. 2021. ExDRa: Exploratory Data Science on
Federated RawData. In SIGMOD. 2450–2463. https://doi.org/10.1145/3448016.
3457549

[19] Sebastian Baunsgaard, Matthias Boehm, Kevin Innerebner, Mito Kehayov,
Florian Lackner, Olga Ovcharenko, Arnab Phani, Tobias Rieger, David Weis-
steiner, and Sebastian Benjamin Wrede. 2022. Federated Data Prepara-
tion, Learning, and Debugging in Apache SystemDS. In CIKM. 4813–4817.
https://doi.org/10.1145/3511808.3557162

[20] Denis Baylor et al. 2017. TFX: A TensorFlow-Based Production-ScaleMachine
Learning Platform. In KDD. 1387–1395. https://doi.org/10.1145/3097983.
3098021

[21] Kaustubh Beedkar, Bertty Contreras-Rojas, Haralampos Gavriilidis, Zoi
Kaoudi, Volker Markl, Rodrigo Pardo-Meza, and Jorge-Arnulfo Quiané-Ruiz.
2023. Apache Wayang: A Unified Data Analytics Framework. SIGMOD Rec.
52, 3 (2023), 30–35. https://doi.org/10.1145/3631504.3631510

[22] Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. 2017. Julia:
A Fresh Approach to Numerical Computing. SIAM Rev. 59, 1 (2017), 65–98.
https://doi.org/10.1137/141000671

[23] Matthias Boehm et al. 2014. Hybrid Parallelization Strategies for Large-
Scale Machine Learning in SystemML. PVLDB 7, 7 (2014), 553–564. https:
//doi.org/10.14778/2732286.2732292

[24] Matthias Boehm et al. 2016. SystemML: Declarative Machine Learning on
Spark. PVLDB 9, 13 (2016), 1425–1436. https://doi.org/10.14778/3007263.
3007279

[25] Matthias Boehm et al. 2020. SystemDS: A Declarative Machine Learning
System for the End-to-End Data Science Lifecycle. In CIDR. http://cidrdb.
org/cidr2020/papers/p22-boehm-cidr20.pdf

[26] Matthias Boehm, Arun Kumar, and Jun Yang. 2019. Data Management in
Machine Learning Systems. Morgan & Claypool Publishers. https://doi.org/
10.2200/S00895ED1V01Y201901DTM057

[27] Ondřej Bojar et al. 2014. Findings of the 2014Workshop on StatisticalMachine
Translation. InWorkshop on Statistical Machine Translation. 12–58.

[28] Sebastian Breß, Henning Funke, and Jens Teubner. 2016. Robust Query
Processing in Co-Processor-accelerated Databases. In SIGMOD. 1891–1906.

https://doi.org/10.1145/2882903.2882936
[29] Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. 2016. Training

Deep Nets with Sublinear Memory Cost. CoRR abs/1604.06174 (2016). http:
//arxiv.org/abs/1604.06174

[30] Dami Choi and George Dahl. 2020. Speeding Up Neural Network
Training with Data Echoing. https://ai.googleblog.com/2020/05/
speeding-up-neural-network-training.html

[31] PyTorch Contributors. 2023. Memory Management of PyTorch. https:
//pytorch.org/docs/stable/notes/cuda.html#memory-management

[32] PyTorch Contributors. 2023. PyTorch out of memory er-
ror. https://pytorch.org/docs/stable/notes/faq.html#
my-model-reports-cuda-runtime-error-2-out-of-memory

[33] Daniel Crankshaw, Xin Wang, Giulio Zhou, Michael J. Franklin, Joseph E.
Gonzalez, and Ion Stoica. 2017. Clipper: A Low-Latency Online Prediction
Serving System. In NSDI. 613–627. https://www.usenix.org/conference/
nsdi17/technical-sessions/presentation/crankshaw

[34] Ekin D. Cubuk, Barret Zoph, Dandelion Mané, Vijay Vasudevan, and Quoc V.
Le. 2019. AutoAugment: Learning Augmentation Strategies From Data. In
CVPR. 113–123. https://doi.org/10.1109/CVPR.2019.00020

[35] Ashok Cutkosky and Róbert Busa-Fekete. 2018. Distributed Stochastic
Optimization via Adaptive SGD. In NeurIPS. 1914–1923. https://proceedings.
neurips.cc/paper/2018/hash/5c936263f3428a40227908d5a3847c0b-Abstract.
html

[36] Patrick Damme et al. 2022. DAPHNE: An Open and Extensible System
Infrastructure for Integrated Data Analysis Pipelines. In CIDR.

[37] Piali Das et al. 2020. Amazon SageMaker Autopilot: a white box AutoML
solution at scale. In DEEM@SIGMOD, Sebastian Schelter, Steven Whang, and
Julia Stoyanovich (Eds.). 2:1–2:7. https://doi.org/10.1145/3399579.3399870

[38] Dask Development Team. 2023. Dask: Opportunistic Caching. https://docs.
dask.org/en/stable/caching.html

[39] Behrouz Derakhshan, Alireza Rezaei Mahdiraji, Ziawasch Abedjan, Tilmann
Rabl, and Volker Markl. 2020. Optimizing Machine Learning Workloads
in Collaborative Environments. In SIGMOD. 1701–1716. https://doi.org/10.
1145/3318464.3389715

[40] Apache Beam Developers. 2024. The Unified Apache Beam Model. https:
//beam.apache.org/

[41] Thrust developers. 2023. NVIDIA Thrust. https://docs.nvidia.com/cuda/
thrust/index.html

[42] Spark development team. 2023. Spark DAGScheduler. https://github.com/
apache/spark/blob/6b7527e381591bcd51be205853aea3e349893139/core/src/
main/scala/org/apache/spark/scheduler/DAGScheduler.scala#L86.

[43] Spark development team. 2024. Spark TorrentBroadcast. https://github.
com/apache/spark/blob/9a1fc112677f98089d946b3bf4f52b33ab0a5c23/core/
src/main/scala/org/apache/spark/broadcast/TorrentBroadcast.scala#L41.

[44] Shiqing Fan et al. 2021. DAPPLE: a pipelined data parallel approach for
training large models. In PPoPP. 431–445. https://doi.org/10.1145/3437801.
3441593

[45] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Tobias Sprin-
genberg, Manuel Blum, and Frank Hutter. 2019. Auto-sklearn: Efficient and
Robust Automated Machine Learning. In Automated Machine Learning -
Methods, Systems, Challenges. 113–134.

[46] Yanjie Gao, Yu Liu, Hongyu Zhang, Zhengxian Li, Yonghao Zhu, Haoxiang
Lin, and Mao Yang. 2020. Estimating GPU memory consumption of deep
learning models. In ESEC/FSE. 1342–1352. https://doi.org/10.1145/3368089.
3417050

[47] Haralampos Gavriilidis, Kaustubh Beedkar, Jorge-Arnulfo Quiané-Ruiz, and
Volker Markl. 2023. In-Situ Cross-Database Query Processing. In ICDE. 2794–
2807. https://doi.org/10.1109/ICDE55515.2023.00214

[48] Victor Giannakouris, Nikolaos Papailiou, Dimitrios Tsoumakos, and Nectar-
ios Koziris. 2016. MuSQLE: Distributed SQL query execution over multiple
engine environments. In IEEE BigData. 452–461. https://doi.org/10.1109/
BIGDATA.2016.7840636

[49] Ionel Gog, Malte Schwarzkopf, Natacha Crooks, Matthew P. Grosvenor, Allen
Clement, and Steven Hand. 2015. Musketeer: all for one, one for all in data
processing systems. In EuroSys. 2:1–2:16. https://doi.org/10.1145/2741948.
2741968

[50] Aidan N. Gomez, Mengye Ren, Raquel Urtasun, and Roger B. Grosse. 2017.
The Reversible Residual Network: Backpropagation Without Storing Acti-
vations. In NeurIPS. 2214–2224. https://proceedings.neurips.cc/paper/2017/
hash/f9be311e65d81a9ad8150a60844bb94c-Abstract.html

[51] Stefan Grafberger, Paul Groth, and Sebastian Schelter. 2023. Automating
and Optimizing Data-Centric What-If Analyses on Native Machine Learning
Pipelines. Proc. ACM Manag. Data 1, 2 (2023), 128:1–128:26. https://doi.org/
10.1145/3589273

[52] Stefan Grafberger, Shubha Guha, Julia Stoyanovich, and Sebastian Schelter.
2021. MLINSPECT: A Data Distribution Debugger for Machine Learning
Pipelines. In SIGMOD. 2736–2739.

[53] Dan Graur, Damien Aymon, Dan Kluser, Tanguy Albrici, Chandramohan A.
Thekkath, and Ana Klimovic. 2022. Cachew: Machine Learning Input Data
Processing as a Service. In ATC. 689–706.

[54] GroupLens. 2016. MovieLens 20M Dataset. https://www.kaggle.com/
datasets/grouplens/movielens-20m-dataset?select=rating.csv

[55] Pradeep Kumar Gunda, Lenin Ravindranath, Chandramohan A. Thekkath,
Yuan Yu, and Li Zhuang. 2010. Nectar: Automatic Management of Data and

267

Computation in Datacenters. In OSDI. 75–88. http://www.usenix.org/events/
osdi10/tech/full_papers/Gunda.pdf

[56] Mark Harris. 2023. Unified Memory for CUDA Beginners. https://developer.
nvidia.com/blog/unified-memory-cuda-beginners/

[57] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Resid-
ual Learning for Image Recognition. In CVPR. 770–778. https://doi.org/10.
1109/CVPR.2016.90

[58] Mark Hildebrand, Jawad Khan, Sanjeev Trika, Jason Lowe-Power, and
Venkatesh Akella. 2020. AutoTM: Automatic Tensor Movement in Het-
erogeneous Memory Systems using Integer Linear Programming. In ASPLOS.
875–890. https://doi.org/10.1145/3373376.3378465

[59] Yanping Huang et al. 2019. GPipe: Efficient Training of Giant Neural Net-
works using Pipeline Parallelism. In NeurIPS. 103–112.

[60] Milena Ivanova, Martin L. Kersten, Niels J. Nes, and Romulo Goncalves. 2009.
An architecture for recycling intermediates in a column-store. In SIGMOD.
309–320. https://doi.org/10.1145/1559845.1559879

[61] Paras Jain et al. 2020. Checkmate: Breaking the Memory Wall with Optimal
Tensor Rematerialization. In MLSys.

[62] Abhinav Jangda et al. 2022. Breaking the computation and communication
abstraction barrier in distributed machine learning workloads. In ASPLOS.
402–416. https://doi.org/10.1145/3503222.3507778

[63] Alekh Jindal, Konstantinos Karanasos, Sriram Rao, and Hiren Patel. 2018.
Selecting Subexpressions to Materialize at Datacenter Scale. PVLDB 11, 7
(2018), 800–812. https://doi.org/10.14778/3192965.3192971

[64] Norman P. Jouppi et al. 2023. TPU v4: An Optically Reconfigurable Super-
computer for Machine Learning with Hardware Support for Embeddings. In
ISCA. 82:1–82:14. https://doi.org/10.1145/3579371.3589350

[65] Aarati Kakaraparthy, Abhay Venkatesh, Amar Phanishayee, and Shivaram
Venkataraman. 2019. The Case for Unifying Data Loading in Machine Learn-
ing Clusters. In HotCloud. https://www.usenix.org/conference/hotcloud19/
presentation/kakaraparthy

[66] Antonios Kontaxakis, Dimitris Sacharidis, Alkis Simitsis, Alberto Abelló, and
Sergi Nadal. 2024. HYPPO: Using Equivalences to Optimize Pipelines in
Exploratory Machine Learning. In ICDE. 221–234.

[67] Alex Krizhevsky. 2009. Learning Multiple Layers of Features from Tiny
Images. Technical Report TR-2009, University of Toronto, Toronto.

[68] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet
Classification with Deep Convolutional Neural Networks. In NeurIPS. 1106–
1114.

[69] Fan Lai, Xiangfeng Zhu, Harsha V. Madhyastha, and Mosharaf Chowdhury.
2021. Oort: Efficient Federated Learning via Guided Participant Selection. In
OSDI. 19–35. https://www.usenix.org/conference/osdi21/presentation/lai

[70] Lukas Landgraf, Wolfgang Lehner, Florian Wolf, and Alexander Boehm.
2022. Memory Efficient Scheduling of Query Pipeline Execution. In CIDR.
https://www.cidrdb.org/cidr2022/papers/p82-landgraf.pdf

[71] Chris Lattner andVikram S. Adve. 2005. Automatic pool allocation: improving
performance by controlling data structure layout in the heap. In SIGPLAN.
129–142. https://doi.org/10.1145/1065010.1065027

[72] Rubao Lee, Minghong Zhou, and Huaming Liao. 2007. Request Window: an
Approach to Improve Throughput of RDBMS-based Data Integration System
by Utilizing Data Sharing Across Concurrent Distributed Queries. In PVLDB.
1219–1230. http://www.vldb.org/conf/2007/papers/industrial/p1219-lee.pdf

[73] Yunseong Lee, Alberto Scolari, Byung-Gon Chun, Marco Domenico Santam-
brogio, Markus Weimer, and Matteo Interlandi. 2018. PRETZEL: Opening
the Black Box of Machine Learning Prediction Serving Systems. In OSDI.
611–626. https://www.usenix.org/conference/osdi18/presentation/lee

[74] Lisha Li, Kevin G. Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and
Ameet Talwalkar. 2017. Hyperband: A Novel Bandit-Based Approach to
Hyperparameter Optimization. J. Mach. Learn. Res. 18 (2017), 185:1–185:52.
http://jmlr.org/papers/v18/16-558.html

[75] Liam Li, Kevin G. Jamieson, Afshin Rostamizadeh, Ekaterina Gonina,
Jonathan Ben-tzur, Moritz Hardt, Benjamin Recht, and Ameet Talwalkar.
2020. A System for Massively Parallel Hyperparameter Tuning. In MLSys.
https://proceedings.mlsys.org/book/303.pdf

[76] Shen Li et al. 2020. PyTorch Distributed: Experiences on Accelerating Data
Parallel Training. PVLDB 13, 12 (2020), 3005–3018. https://doi.org/10.14778/
3415478.3415530

[77] Tian Li, Jie Zhong, Ji Liu, Wentao Wu, and Ce Zhang. 2018. Ease.ml: Towards
Multi-tenant Resource Sharing for Machine Learning Workloads. PVLDB 11,
5 (2018), 607–620. https://doi.org/10.1145/3187009.3177737

[78] Edo Liberty et al. 2020. Elastic Machine Learning Algorithms in Amazon
SageMaker. In SIGMOD. 731–737. https://doi.org/10.1145/3318464.3386126

[79] Chao Liu, Hung-chih Yang, Jinliang Fan, Li-wei He, and Yi-Min Wang. 2010.
Distributed nonnegative matrix factorization for web-scale dyadic data anal-
ysis on mapreduce. In WWW. 681–690. https://doi.org/10.1145/1772690.
1772760

[80] Scott M. Lundberg and Su-In Lee. 2017. A Unified Approach to Interpreting
Model Predictions. In NIPS. 4765–4774.

[81] Thang Luong, Hieu Pham, and Christopher D. Manning. 2015. Effective
Approaches to Attention-basedNeuralMachine Translation. In EMNLP. 1412–
1421. https://doi.org/10.18653/V1/D15-1166

[82] Clemens Lutz, Sebastian Breß, Steffen Zeuch, Tilmann Rabl, and Volker Markl.
2022. Triton Join: Efficiently Scaling to a Large Join State on GPUs with
Fast Interconnects. In SIGMOD. 1017–1032. https://doi.org/10.1145/3514221.
3517911

[83] Hector Mendoza, Aaron Klein, Matthias Feurer, Jost Tobias Springenberg,
and Frank Hutter. 2016. Towards Automatically-Tuned Neural Networks. In
(ICML, Vol. 64. 58–65. http://proceedings.mlr.press/v64/mendoza_towards_
2016.html

[84] Chen Meng, Minmin Sun, Jun Yang, Minghui Qiu, and Yang Gu. 2017. Train-
ing Deeper Models by GPU Memory Optimization on TensorFlow. In ML
System@NeurIPS Workshop.

[85] Xiangrui Meng et al. 2016. MLlib: Machine Learning in Apache Spark. JMLR
17 (2016), 34:1–34:7.

[86] Fraser Mince, Dzung Dinh, Jonas Kgomo, Neil Thompson, and Sara Hooker.
2023. The Grand Illusion: The Myth of Software Portability and Implications
for ML Progress. In NeurIPS 2023. http://papers.nips.cc/paper_files/paper/
2023/hash/42c40aff7814e9796266e12053b1c610-Abstract-Conference.html

[87] Azalia Mirhoseini et al. 2017. Device Placement Optimization with Reinforce-
ment Learning. In ICML, Doina Precup and Yee Whye Teh (Eds.). 2430–2439.
http://proceedings.mlr.press/v70/mirhoseini17a.html

[88] Jayashree Mohan, Amar Phanishayee, Ashish Raniwala, and Vijay Chi-
dambaram. 2021. Analyzing and Mitigating Data Stalls in DNN Training.
PVLDB 14, 5 (2021), 771–784. https://doi.org/10.14778/3446095.3446100

[89] Hubert Mohr-Daurat, Xuan Sun, and Holger Pirk. 2023. BOSS - An Architec-
ture for Database Kernel Composition. PVLDB 17, 4 (2023), 877–890.

[90] Dan Moldovan, James M. Decker, Fei Wang, Andrew A. Johnson, Brian K.
Lee, Zachary Nado, D. Sculley, Tiark Rompf, and Alexander B. Wiltschko.
2019. AutoGraph: Imperative-style Coding with Graph-based Performance.
In MLSys. https://proceedings.mlsys.org/book/272.pdf

[91] Philipp Moritz et al. 2018. Ray: A Distributed Framework for Emerging AI
Applications. In OSDI. 561–577.

[92] Derek Gordon Murray, Jiri Simsa, Ana Klimovic, and Ihor Indyk. 2021. tf.data:
A Machine Learning Data Processing Framework. PVLDB 14, 12 (2021), 2945–
2958. https://doi.org/10.14778/3476311.3476374

[93] Supun Nakandala and Arun Kumar. 2020. Vista: Optimized System for
Declarative Feature Transfer from Deep CNNs at Scale. In SIGMOD. 1685–
1700. https://doi.org/10.1145/3318464.3389709

[94] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri,
Nikhil R. Devanur, Gregory R. Ganger, Phillip B. Gibbons, and Matei Zaharia.
2019. PipeDream: generalized pipeline parallelism for DNN training. In SOSP.
1–15.

[95] Cuong V. Nguyen, Tal Hassner, Matthias W. Seeger, and Cédric Archambeau.
2020. LEEP: A NewMeasure to Evaluate Transferability of Learned Represen-
tations. In ICML. 7294–7305. http://proceedings.mlr.press/v119/nguyen20b.
html

[96] Adam Paszke et al. 2019. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In NeurIPS. 8024–8035.

[97] Fabian Pedregosa et al. 2011. Scikit-learn: Machine Learning in Python. JMLR
12 (2011), 2825–2830.

[98] Xuan Peng, Xuanhua Shi, Hulin Dai, Hai Jin, Weiliang Ma, Qian Xiong,
Fan Yang, and Xuehai Qian. 2020. Capuchin: Tensor-based GPU Memory
Management for Deep Learning. In ASPLOS. 891–905. https://doi.org/10.
1145/3373376.3378505

[99] Tiago B. G. Perez, Xiaobo Zhou, and Dazhao Cheng. 2018. Reference-distance
Eviction and Prefetching for Cache Management in Spark. In ICPP. 88:1–
88:10.

[100] Arnab Phani, Lukas Erlbacher, and Matthias Boehm. 2022. UPLIFT: Paral-
lelization Strategies for Feature Transformations in Machine Learning Work-
loads. PVLDB 15, 11 (2022), 2929–2938. https://doi.org/10.14778/3551793.
3551842

[101] Arnab Phani, Benjamin Rath, and Matthias Boehm. 2021. LIMA: Fine-grained
Lineage Tracing and Reuse in Machine Learning Systems. In SIGMOD. 1426–
1439. https://doi.org/10.1145/3448016.3452788

[102] Ray Development Team. 2023. Ray: Saving and Loading Checkpoints. https:
//docs.ray.io/en/latest/train/user-guides/checkpoints.html

[103] Sergey Redyuk, Zoi Kaoudi, Volker Markl, and Sebastian Schelter. 2021. Au-
tomating Data Quality Validation for Dynamic Data Ingestion. In EDBT.
61–72. https://doi.org/10.5441/002/EDBT.2021.07

[104] Cédric Renggli, Xiaozhe Yao, Luka Kolar, Luka Rimanic, Ana Klimovic, and
Ce Zhang. 2022. SHiFT: An Efficient, Flexible Search Engine for Transfer
Learning. PVLDB 16, 2 (2022), 304–316. https://doi.org/10.14778/3565816.
3565831

[105] Ties Robroek, Neil Kim Nielsen, and Pınar Tözün. 2024. TensorSocket: Shared
Data Loading for Deep Learning Training. CoRR abs/2409.18749 (2024).
https://arxiv.org/abs/2409.18749

[106] Matthew Rocklin. 2015. Dask: Parallel Computation with Blocked algorithms
and Task Scheduling. In SciPy. 130 – 136.

[107] Prasan Roy, S. Seshadri, S. Sudarshan, and Siddhesh Bhobe. 2000. Efficient and
Extensible Algorithms for Multi Query Optimization. In SIGMOD. 249–260.
https://doi.org/10.1145/342009.335419

[108] Svetlana Sagadeeva and Matthias Boehm. 2021. SliceLine: Fast, Linear-
Algebra-based Slice Finding forMLModel Debugging. In SIGMOD. 2290–2299.
https://doi.org/10.1145/3448016.3457323

[109] Sebastian Schelter, Dustin Lange, Philipp Schmidt, Meltem Celikel, Felix
Bießmann, and Andreas Grafberger. 2018. Automating Large-Scale Data
Quality Verification. PVLDB 11, 12 (2018), 1781–1794.

[110] Taro Sekiyama, Takashi Imamichi, Haruki Imai, and Rudy Raymond. 2018.
Profile-guided memory optimization for deep neural networks. CoRR
abs/1804.10001 (2018). http://arxiv.org/abs/1804.10001

268

[111] Aashaka Shah, Chao-Yuan Wu, Jayashree Mohan, Vijay Chidambaram, and
Philipp Krähenbühl. 2021. Memory Optimization for Deep Networks. In
ICLR. https://openreview.net/forum?id=bnY0jm4l59

[112] Zeyuan Shang et al. 2019. Democratizing Data Science through Interactive
Curation of ML Pipelines. In SIGMOD. 1171–1188. 10.1145/3299869.3319863

[113] Noam Shazeer et al. 2018. Mesh-TensorFlow: Deep Learning for Supercom-
puters. In NeurIPS. 10435–10444.

[114] Shafaq Siddiqi, Roman Kern, and Matthias Boehm. 2024. Saga: A Scalable
Framework for Optimizing Data Cleaning Pipelines for Machine Learning
Applications. Proc. ACMManag. Data (2024). https://doi.org/10.1145/3617338

[115] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional
Networks for Large-Scale Image Recognition. In ICLR.

[116] Evan R. Sparks, Shivaram Venkataraman, Tomer Kaftan, Michael J. Franklin,
and Benjamin Recht. 2017. KeystoneML: Optimizing Pipelines for Large-
Scale Advanced Analytics. In ICDE. 535–546. https://doi.org/10.1109/ICDE.
2017.109

[117] Nils Strassenburg, Dominic Kupfer, Julia Kowal, and Tilmann Rabl. 2023.
Efficient Multi-Model Management. In EDBT. 457–463. https://doi.org/10.
48786/EDBT.2023.37

[118] TensorFlow Development Team. 2023. Use a GPU. https://www.tensorflow.
org/guide/gpu#limiting_gpu_memory_growth

[119] Anh Tuan Tran, Cuong V. Nguyen, and Tal Hassner. 2019. Transferability
and Hardness of Supervised Classification Tasks. In ICCV. 1395–1405. https:
//doi.org/10.1109/ICCV.2019.00148

[120] Taegeon Um, Byungsoo Oh, Byeongchan Seo, Minhyeok Kweun, Goeun
Kim, and Woo-Yeon Lee. 2023. FastFlow: Accelerating Deep Learning Model
Training with Smart Offloading of Input Data Pipeline. PVLDB 16, 5 (2023),
1086–1099. https://doi.org/10.14778/3579075.3579083

[121] Philipp Unterbrunner, Georgios Giannikis, Gustavo Alonso, Dietmar Fauser,
and Donald Kossmann. 2009. Predictable Performance for Unpredictable
Workloads. PVLDB 2, 1 (2009), 706–717. https://doi.org/10.14778/1687627.
1687707

[122] Stéfan van der Walt, S. Chris Colbert, and Gaël Varoquaux. 2011. The NumPy
Array: A Structure for Efficient Numerical Computation. Comput. Sci. Eng.
13, 2 (2011), 22–30.

[123] Manasi Vartak, Joana M. F. da Trindade, Samuel Madden, and Matei Zaharia.
2018. MISTIQUE: A System to Store and Query Model Intermediates for
Model Diagnosis. In SIGMOD. 1285–1300. https://doi.org/10.1145/3183713.
3196934

[124] Yongji Wu, Matthew Lentz, Danyang Zhuo, and Yao Lu. 2022. Serving and
Optimizing Machine Learning Workflows on Heterogeneous Infrastructures.
PVLDB 16, 3 (2022), 406–419. https://doi.org/10.14778/3570690.3570692

[125] Doris Xin, Stephen Macke, Litian Ma, Jialin Liu, Shuchen Song, and Aditya G.
Parameswaran. 2018. Helix: Holistic Optimization for Accelerating Iterative
Machine Learning. PVLDB 12, 4 (2018), 446–460. https://doi.org/10.14778/
3297753.3297763

[126] Luna Xu, Min Li, Li Zhang, Ali Raza Butt, Yandong Wang, and Zane Zhenhua
Hu. 2016. MEMTUNE: Dynamic Memory Management for In-Memory Data
Analytic Platforms. In IPDPS. 383–392. https://doi.org/10.1109/IPDPS.2016.
105

[127] Yinghao Yu, Wei Wang, Jun Zhang, and Khaled Ben Letaief. 2017. LRC:
Dependency-aware cache management for data analytics clusters. In INFO-
COM. 1–9. https://doi.org/10.1109/INFOCOM.2017.8057007

[128] Yinghao Yu, Chengliang Zhang, Wei Wang, Jun Zhang, and Khaled Ben
Letaief. 2022. Towards Dependency-Aware Cache Management for Data
Analytics Applications. IEEE Trans. Cloud Comput. 10, 1 (2022), 706–723.
https://doi.org/10.1109/TCC.2019.2945015

[129] Matei Zaharia et al. 2012. Resilient Distributed Datasets: A Fault-Tolerant
Abstraction for In-Memory Cluster Computing. InNSDI. 15–28. https://www.
usenix.org/conference/nsdi12/technical-sessions/presentation/zaharia

[130] Ce Zhang, Arun Kumar, and Christopher Ré. 2014. Materialization opti-
mizations for feature selection workloads. In SIGMOD. 265–276. https:
//doi.org/10.1145/2588555.2593678

[131] Ru Zhang, Wencong Xiao, Hongyu Zhang, Yu Liu, Haoxiang Lin, and Mao
Yang. 2020. An empirical study on program failures of deep learning jobs. In
ICSE. 1159–1170. https://doi.org/10.1145/3377811.3380362

[132] Yanli Zhao et al. 2023. PyTorch FSDP: Experiences on Scaling Fully Sharded
Data Parallel. PVLDB 16, 12 (2023), 3848–3860. https://doi.org/10.14778/
3611540.3611569

[133] Bojian Zheng, Nandita Vijaykumar, and Gennady Pekhimenko. 2020. Echo:
Compiler-based GPU Memory Footprint Reduction for LSTM RNN Training.
In ISCA. 1089–1102. https://doi.org/10.1109/ISCA45697.2020.00092

[134] Lianmin Zheng et al. 2022. Alpa: Automating Inter- and Intra-Operator
Parallelism for Distributed Deep Learning. In OSDI. 559–578. https://www.
usenix.org/conference/osdi22/presentation/zheng-lianmin

[135] Jingren Zhou, Per-Åke Larson, Johann Christoph Freytag, and Wolfgang
Lehner. 2007. Efficient exploitation of similar subexpressions for query
processing. In SIGMOD. 533–544. https://doi.org/10.1145/1247480.1247540

269

