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ABSTRACT
Entity matching is the task of deciding whether two entity de-
scriptions refer to the same real-world entity. Entity matching
is a central step in most data integration pipelines. Many state-
of-the-art entity matching methods rely on pre-trained language
models (PLMs) such as BERT or RoBERTa. Two major drawbacks
of these models for entity matching are that (i) the models re-
quire significant amounts of task-specific training data and (ii) the
fine-tuned models are not robust concerning out-of-distribution
entities. This paper investigates using generative large language
models (LLMs) as a less task-specific training data-dependent
and more robust alternative to PLM-based matchers. The study
covers hosted and open-source LLMs which can be run locally.
We evaluate these models in a zero-shot scenario and a scenario
where task-specific training data is available. We compare dif-
ferent prompt designs and the prompt sensitivity of the models.
We show that there is no single best prompt but that the prompt
needs to be tuned for each model/dataset combination. We fur-
ther investigate (i) the selection of in-context demonstrations, (ii)
the generation of matching rules, as well as (iii) fine-tuning LLMs
using the same pool of training data. Our experiments show that
the best LLMs require no or only a few training examples to
perform comparably to PLMs that were fine-tuned using thou-
sands of examples. LLM-based matchers further exhibit higher
robustness to unseen entities. We show that GPT4 can generate
structured explanations for matching decisions and can automat-
ically identify potential causes of matching errors by analyzing
explanations of wrong decisions. We demonstrate that the model
can generate meaningful textual descriptions of the identified
error classes, which can help data engineers to improve entity
matching pipelines.

1 INTRODUCTION
Entity matching [3, 8, 15] is the task of discovering entity de-
scriptions in different data sources that refer to the same real-
world entity. Entity matching is a central step in data integration
pipelines [9] and forms the foundation of interlinking data on
the Web [31]. Application domains of entity matching include
e-commerce, where offers from different vendors are matched
for example for price tracking, and financial data integration,
where information about companies from different sources is
combined [8]. While early matching systems relied on manu-
ally defined matching rules, supervised machine learning meth-
ods have become the foundation of entity matching systems [9]
today. This trend was reinforced by the success of neural net-
works [3] and today most state-of-the art matching systems
rely on pre-trained language models (PLMs), such as BERT or
RoBERTa [23, 34, 36, 48]. The major drawbacks of using PLMs
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Figure 1: Example of prompting an LLM to match two
entity descriptions.

for entity matching are that (i) PLMs need significant amounts
of task-specific training examples for fine-tuning and (ii) they
are not robust concerning unseen entities that were not part of
the training data [1, 36].

Generative large language models (LLMs) [50] such as GPT,
Llama, Gemini, or Mixtral have the potential to address both of
these shortcomings. Due to being pre-trained on large amounts
of textual data as well as due to emergent effects resulting from
the model size [46], LLMs often show a better zero-shot per-
formance compared to PLMs and are more robust concerning
unseen examples [4, 50].

This paper investigates using LLMs for entity matching as a
less task-specific training data dependent and more robust al-
ternative to PLM-based matchers. We evaluate the models in a
zero-shot scenario as well as a scenario where task-specific train-
ing data is available and can be used for selecting demonstrations,
generating matching rules, or fine-tuning the LLMs. Our study
covers hosted LLMs as well as open-source LLMs which can be
run locally. Figure 1 shows an example of how LLMs are used for
entity matching. The two entity descriptions at the bottom of the
figure are combined with the question whether they refer to the
same real-word entity into a prompt. The prompt is passed to the
LLM, which generates the answer shown at the top of Figure 1.

Contributions:We make the following contributions:
(1) Range of prompts:We experiment with a wider range of

zero-shot and few-shot prompts compared to the related
work [16, 30, 35, 45, 49]. This allows us to present a more
nuanced picture of the strengths and weaknesses of the
different approaches.

(2) No single best prompt: We show that there is no single
best prompt per model or per dataset but that the best
prompt depends on the model/dataset combination.

(3) Prompt sensitivity: We are first to investigate the sensi-
tivity of LLMs concerning variations of entity matching
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prompts. Our experiments show that the matching perfor-
mance of many LLMs is strongly influenced by prompt
variations while the performance of other models is rather
stable.

(4) LLMs versus PLMs: We show that GPT4 without any
task-specific training data outperforms fine-tuned PLMs
on 3 out of 4 e-commerce datasets and achieves a com-
parable performance for bibliographic data. We are the
first to compare the generalization performance of LLM-
and PLM-based matchers for unseen entities. PLM-based
matchers perform poorly on entities that are not part of
any pair in the training set [1, 36]. LLMs do not have
this problem as they perform well without task-specific
training data.

(5) Hosted versus open-source LLMs: We show that open-
source LLMs can reach a similar F1 performance as hosted
LLMs given that a small amount of task-specific train-
ing data or matching knowledge in the form of rules is
available.

(6) Fine-tuning:We compare fine-tuning hosted and open-
source LLMs for entity matching. Our results show that
fine-tuning significantly improves the performance of the
LLMs. GPT-mini retains strong generalization capability
across datasets, whereas fine-tuning reduces generalizabil-
ity for the Llama models.

(7) Explanations and automated error analysis:We are
first to use an LLM to generate structured explanations
for matching decisions. We further demonstrate that the
model can automatically identify potential causes ofmatch-
ing errors by analyzing explanations of wrong decisions.

Structure: Section 2 introduces our experimental setup. Sec-
tion 3 compares prompt designs and LLMs in the zero-shot setting,
while Section 4.1 investigates whether the model performance
can be improved by providing demonstrations for in-context
learning. In Section 4.2, we experiment with adding matching
knowledge in the form of natural language rules. Section 4.3 com-
pares fine-tuning LLMs to the previous approaches. Section 5
presents a cost and runtime analysis of the hosted LLMs. In Sec-
tion 6, we use GPT4 to create structured explanations to gain
insights into the model decisions. In Section 7 we demonstrate
how to automatically discover error classes by analyzing struc-
tured explanations of wrong decisions. Section 8 presents related
work, while Section 9 concludes the paper and summarizes the
implications of our findings.

Replicability: All data and code used for the experiments
presented in this paper is publicly available1 meaning that all
experiments can be replicated.

2 EXPERIMENTAL SETUP
This section provides details about the large language models,
the benchmark datasets, the serialization of entity descriptions,
and the evaluation metrics that are used in the experiments.

Large Language Models: We compare three hosted LLMs
from OpenAI2 and three open-source LLMs run on local GPUs:

• gpt-4o-mini-2024-07-18 (GPT-mini): This hosted LLM
fromOpenAI offers lower API usage fees compared to GPT-
4 and GPT-4o. It has a context window of 128K tokens.
The training data cutoff date is October 2023.

1https://github.com/wbsg-uni-mannheim/MatchGPT/tree/main/LLMForEM
2https://platform.openai.com/docs/models/

• gpt4-0613 (GPT-4):This version of OpenAI’s GPT-4model
from June 2023 has a context window of 8192 tokens. The
training data cutoff date is September 2021.

• gpt-4o-2024-08-06 (GPT-4o): GPT-4o is OpenAI’s flag-
ship model with a 128K context and a training data cutoff
date of October 2023.

• Llama-2-70b-chat-hf (Llama2): This Llama2 version3
from Meta has 70B parameters and has been optimized for
dialogue uses cases. It has a context window of 4K tokens
and the training data cutoff date is September 2022.

• Meta-Llama-3.1-70B-Instruct (Llama3.1):This Llama3.1
model from Meta has 70B parameters and is optimized
for dialogue use cases. It has a context window of 128K
tokens and a training data cutoff date of December 2023.

• Mixtral-8x7B-Instruct-v0.1 (Mixtral):Mixtral is an open-
source model that consists of 8 smaller models. It is devel-
oped by Mistral AI4 and has a context window of 32K.

The model names that are introduced in the brackets above are
used in the following chapters to refer to the respective models.
We use the langchain5 library for interacting with the OpenAI
API as well as for template-based prompt generation. We set
the temperature parameter to 0 for all LLMs to reduce random-
ness. The temperature parameter adjusts the randomness of the
model’s outputs by scaling the logits before applying the softmax
function. We run the open-source LLMs on a local machine with
an AMD EPYC 7413 processor, 1024GB RAM, and four NVIDIA
RTX6000 GPUs.

PLM Baselines:We compare the performance of the LLMs
to two PLM-based matchers:

• RoBERTa: We employ the RoBERTa-base [26] model for
entity matching as the model has been shown to reach
high performance in related work [23, 33, 48]. We fine-
tune the model for entity matching using the respective
development sets.

• Ditto: The Ditto [23] matching system is one of the first
dedicated entitymatching systems using PLMs. Ditto intro-
duces various data augmentation and domain knowledge
injection modules. We run Ditto using RoBERTa-base as
internal model.

We select RoBERTa-base as a representative model for compar-
ing PLMs to LLMs. We select Ditto as it combines a PLM with ad-
ditional matching-specific functionality. Ditto also outperforms
earlier matchers such as Deepmatcher [28], DeepER [14], and
EmbDI [6], and it performs within a 2% F1 range compared to
more complex methods such as SETEM [13] or HierGAT [47] on
the datasets selected below.

BenchmarkDatasets:Weuse the following benchmark datasets
for our experiments [22, 36]:

• WDC Products: The WDC Products benchmark consists
of product offers originating from thousands of different
e-shops spanning product categories such as electronics,
clothing, and tools for home improvement. We use the
most difficult version of the benchmark including 80%
corner-cases (see below). We use the following product
attributes: brand, title, currency, and price.

• Abt-Buy: This benchmark dataset also contains product
offers that need to be matched. The offers are from similar
categories as those in WDC Products. The title attribute

3https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
4https://mistral.ai/
5https://www.langchain.com/
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Table 1: Statistics for all datasets. In-context example se-
lection and fine-tuning are performed on the training and
validation sets. Prompts are evaluated on the test sets.

Dataset Training set Validation set Test set
# Pos # Neg # Pos # Neg # Pos # Neg

(WDC) - WDC Products 500 2,000 500 2,000 259 989
(A-B) - Abt-Buy 616 5,127 206 1,710 206 1,000
(W-A) - Walmart-Amazon 576 5,568 193 1,856 193 1,000
(A-G) - Amazon-Google 699 6,175 234 2,059 234 1,000
(D-S) - DBLP-Scholar 3,207 14,016 1,070 4,672 250 1,000
(D-A) - DBLP-ACM 1,332 6,085 444 2,029 250 1,000

values in Abt-Buy are rather textual and describe various
product features. Attributes used: title, and price.

• Walmart-Amazon: The Walmart-Amazon benchmark
represents a slightly more structured matching task in the
product domain. The types of products in this dataset are
similar to WDC Products and Abt-Buy. Attributes used:
brand, title, model number, and price.

• Amazon-Google: The Amazon-Google dataset consists
of rather textual offers for software products, e.g. different
versions of the Windows operating system or image/video
editing applications. Attributes used: brand, title, and price.

• DBLP-Scholar: The task of this benchmark dataset is
to match bibliographic entries from DBLP and Google
Scholar. Attributes used: authors, title, venue, and year.

• DBLP-ACM: Similar to DBLP-Scholar, the task of DBLP-
ACM is tomatch bibliographic entries between two sources.
Attributes used: authors, title, venue, and year.

Themotivation for selecting these datasets is threefold: (i) Mea-
suring the performance of entity matching methods on bench-
marks containing few matches leads to unstable results. Thus, we
select WDC Products [36] and a subset of the dataset used in the
DeepMatcher paper [28] which contain at least 150 matches in
the test set (see Table 1). (ii) We select datasets that contain a de-
cent amount of difficult to match corner case record pairs. Corner
cases are matching and non-matching pairs that exhibit the prop-
erty of resembling a pair of the respective other class due to very
(dis-)similar surface forms [36]. (iii) The datasets should cover dif-
ferent topical domains (products and bibliographic data) in order
to evaluate the cross-domain generalization of the models. WDC
Products and Walmart-Amazon contain duplicates for some enti-
ties within the same dataset, representing a dirty-dirty matching
scenario [10], while the other datasets represent a clean-clean
matching scenario.

Splits: For WDC Products, we use the training/validation/test
split of size small [36]. For the other benchmark datasets, we use
the splits established in the DeepMatcher paper [28]. We perform
a large number of experiments using OpenAI models. In order to
keep the OpenAI API usage fees on an affordable level, we down-
sample all test sets to approximately 1250 entity pairs. Table 1
provides statistics about the numbers of positive (matches) and
negative (non-matches) pairs in the training, validation, and test
sets of all benchmarks used in the experiments.

Serialization: For the serialization of pairs of entity descrip-
tions (records) into prompts, we serialize each entity description
into a single string by concatenating their attribute values using
blanks as deliminator, e.g. 𝑠𝑒𝑟𝑖𝑎𝑙𝑖𝑧𝑒 (𝑒) := Val𝐴1 Val𝐴2 ... Val𝐴𝑛 .
Figure 1 shows an example of this serialization practice for a pair
of product offers. We apply the same serialization method for

the bibliographic data. We list the attributes that we use for each
dataset as well as their order in the dataset descriptions above.
All datasets contain textual attributes, e.g. the title of a product
or publication, as well as numerical attributes like price and year.
The decision was made not to add the names of the attributes
themselves to the serialization string as this negatively affected
performance in early experiments.

Evaluation: The responses that are generated by the models
are natural language text. In order to decide whether a response
indicates a positive matching decision, we apply lower-casing to
the answer and subsequently parse for the word yes. In all other
cases, we assume the model has decided against a match. This
rather simple approach turns out to be surprisingly effective as
shown by Narayan et al. [30]. For measuring model performance,
we use the metrics F1-score, precision, and recall on the matching
(positive) class following related work [3]. While the tables in
the following sections report F1-scores, the precision and recall
results of all experiments are available in the project repository.

3 SCENARIO 1: ZERO-SHOT PROMPTING
In the first scenario, we analyze the impact of different prompt
designs on the entity matching performance of the LLMs. We
further investigate the prompt sensitivity of the different models
for the entity matching task, and finally compare the performance
of the LLMs to the PLM baselines.

Prompt Building Blocks:We construct prompts as a com-
bination of smaller building blocks to allow the systematic eval-
uation of different prompt designs. Each prompt consists of at
least a task description and the serialization of the pair of entity
descriptions to be matched. In addition, the prompts may contain
a specification of the output format. We evaluate alternative task
descriptions that formulate the task as a question using simple
or complex wording combined with domain-specific or general
terms. Our goal is to present the task in a simple and concise
fashion (similar to [30]) while allowing for some variations in
the structure and wording in order to assess performance spread
and the prompt sensitivity of the models. The alternative task
descriptions are listed below:

• domain-simple: "Do the two product descriptionsmatch?"
/ "Do the two publications match?"

• domain-complex: "Do the two product descriptions refer
to the same real-world product?" / "Do the two publica-
tions refer to the same real-world publication?"

• general-simple: "Do the two entity descriptions match?"
• general-complex: "Do the two entity descriptions refer
to the same real-world entity?"

A specification of the output format may follow the task descrip-
tion. We evaluate two formats: free which does not restrict the
answer of the LLM and force which instructs the LLM to "Answer
with ’Yes’ if they do and ’No’ if they do not". The prompt contin-
ues with the entity pair to be matched, serialized as discussed in
Section 2. Figure 1 contains an example of a complete prompt
implementing the prompt design general-complex-free. Examples
of all prompt designs are found in the accompanying repository.
In addition to the prompts that we generate using these building
blocks, we also evaluate the entity matching prompts proposed
by Narayan et al. [30].

Effectiveness: Table 2 shows the results for each dataset sepa-
rately. Table 3 shows the results of the zero-shot experiments av-
eraged over all datasets. With regards to overall performance, the
GPT4 model outperforms all other LLMs on all product datasets
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Table 2: Results (F1) of the zero-shot experiments for all datasets. Best results are set bold, second best are underlined.

Prompt WDC Products Abt-Buy Walmart-Amazon
GPT-mini GPT-4 GPT-4o Llama2 Llama3.1 Mixtral GPT-mini GPT-4 GPT-4o Llama2 Llama3.1 Mixtral GPT-mini GPT-4 GPT-4o Llama2 Llama3.1 Mixtral

domain-complex-force 80.84 88.35 87.64 65.23 83.67 53.37 90.95 95.15 90.47 57.59 89.84 82.20 86.36 89.00 84.04 46.70 84.85 70.44
domain-complex-free 80.00 89.61 67.35 69.09 50.86 51.98 91.93 95.78 89.35 64.13 78.90 78.07 86.28 89.33 82.91 51.96 69.87 54.42
domain-simple-force 21.35 83.72 81.53 23.89 33.22 8.43 77.55 93.56 91.77 65.82 79.77 51.96 48.84 88.78 83.84 52.17 54.81 27.56
domain-simple-free 16.85 84.50 42.99 24.75 1.59 14.81 60.81 94.38 78.24 63.43 34.40 52.30 43.82 88.67 56.00 40.15 17.76 24.43
general-complex-force 78.80 85.83 87.02 66.02 81.89 42.04 89.88 94.40 90.67 56.70 88.11 79.02 86.58 89.67 83.67 44.69 84.14 50.56
general-complex-free 81.15 86.72 23.86 67.59 67.81 52.22 87.73 94.87 72.00 55.77 87.31 81.27 85.99 89.45 45.85 44.95 83.43 53.82
general-simple-force 20.71 77.39 82.48 46.54 62.57 9.89 80.67 93.23 93.95 82.03 88.72 54.04 46.33 86.41 86.65 63.91 72.05 21.20
general-simple-free 18.84 83.41 41.77 39.30 44.24 12.03 73.05 92.77 83.80 77.21 80.00 58.86 37.34 88.60 62.50 56.03 60.69 19.63
Narayan-complex 47.31 81.23 31.89 44.97 9.09 21.05 79.89 92.13 58.59 68.44 34.40 40.00 41.46 83.37 24.00 57.74 12.50 15.17
Narayan-simple 71.01 81.91 21.91 52.72 9.16 15.33 86.63 92.42 57.34 73.99 35.06 37.80 69.28 84.72 20.28 63.32 18.69 11.65
Mean 51.69 84.27 56.84 50.01 44.41 28.12 81.91 93.87 80.62 66.51 69.65 61.55 63.23 87.80 62.97 52.16 55.88 34.89
Standard deviation 27.96 3.42 25.66 16.25 28.83 18.31 9.22 1.17 13.01 8.50 23.24 16.32 20.44 2.08 24.39 7.69 27.56 19.39

Prompt Amazon-Google DBLP-Scholar DBLP-ACM
GPT-mini GPT-4 GPT-4o LLama2 Llama3.1 Mixtral GPT-mini GPT-4 GPT-4o LLama2 Llama3.1 Mixtral GPT-mini GPT-4 GPT-4o LLama2 Llama3.1 Mixtral

domain-complex-force 70.98 75.61 73.56 57.93 73.99 40.98 86.11 88.44 89.76 85.46 84.29 75.40 96.51 96.90 96.53 86.69 92.59 87.33
domain-complex-free 72.18 75.57 61.17 56.29 60.59 24.91 86.06 89.78 84.03 85.11 80.87 77.75 95.97 96.71 97.06 91.57 91.24 85.66
domain-simple-force 24.55 75.32 58.00 29.86 19.33 13.39 41.51 77.21 84.35 84.07 77.17 60.39 88.65 98.03 96.85 87.62 98.81 88.15
domain-simple-free 19.48 74.51 35.85 17.16 5.76 17.69 7.63 88.20 73.79 81.53 67.69 59.67 53.30 97.28 94.29 75.35 94.41 90.32
general-complex-force 65.25 74.91 70.98 53.59 69.36 31.65 85.82 87.22 87.54 79.67 85.97 66.15 94.66 95.60 90.25 82.67 90.09 87.63
general-complex-free 64.09 74.38 20.44 49.48 68.45 29.45 85.66 87.50 76.85 76.42 86.32 68.01 94.16 94.16 95.87 82.18 89.93 84.23
general-simple-force 25.53 53.60 56.28 49.32 33.87 11.24 54.19 78.26 85.65 66.37 80.27 31.65 89.87 97.85 96.86 65.71 98.41 73.50
general-simple-free 17.56 66.67 32.19 37.79 25.35 12.70 40.75 81.47 72.20 51.06 73.99 38.59 85.40 97.47 95.58 55.21 95.98 74.88
Narayan-complex 18.45 76.38 13.90 39.63 10.40 3.36 56.34 89.82 78.82 42.99 55.27 27.40 93.31 97.27 96.67 84.26 95.32 85.26
Narayan-simple 42.24 75.70 5.71 48.71 6.58 2.51 84.12 88.37 72.82 70.47 59.40 35.06 97.60 98.41 95.77 97.62 95.04 83.30
Mean 42.03 72.27 42.81 43.98 37.37 18.79 62.82 85.63 80.58 72.32 75.12 54.01 88.94 96.97 95.57 80.89 94.18 84.03
Standard deviation 22.39 6.76 23.16 12.23 26.51 11.99 25.87 4.53 6.15 14.07 10.43 18.01 12.43 1.19 1.94 11.87 3.01 5.29

Table 3: Average F1-scores over all datasets for the zero-
shot experiments.

Prompt All Datasets (Average F1)
GPT-mini GPT-4 GPT-4o LLama2 Llama3.1 Mixtral

domain-complex-force 85.29 88.91 87.00 66.60 84.87 68.29
domain-complex-free 85.40 89.46 80.31 69.69 72.06 62.13
domain-simple-force 50.41 86.10 82.72 57.24 60.52 41.65
domain-simple-free 33.65 87.92 63.53 50.40 36.94 43.20
general-complex-force 83.50 87.94 85.02 63.89 83.26 59.51
general-complex-free 83.13 87.85 55.81 62.73 80.54 61.50
general-simple-force 52.88 81.12 83.65 62.31 72.65 33.59
general-simple-free 45.49 85.07 64.67 52.77 63.38 36.12
Narayan-complex 56.13 86.70 50.65 56.34 36.16 32.04
Narayan-simple 75.15 86.92 45.64 67.81 37.32 30.94
Mean 65.10 86.80 69.90 60.98 62.77 46.90
Standard deviation 18.45 2.26 14.86 6.18 18.54 13.68

by at least 1% F1 achieving an absolute performance of 89% or
higher on 5 of 6 datasets without requiring any task-specific train-
ing data. On the publication datasets, GPT-4o achieves nearly the
same performance (0.1-1% F1). This gap increases on the product
datasets to 1-3% F1 making the more recent model marginally
worse than GPT4. GPT-mini performs up to 6% F1 worse than
GPT-4o with only marginal performance difference on 4 of 6
datasets. Among the open-source LLMs, Llama3.1 consistently
outperforms Llama2 by 1-21% F1. Llama3.1’s performance is com-
parable to GPT-mini on all datasets. The Mixtral model performs
less effectively on this task, lagging behind the other open-source
models by 7-16% on 4 datasets. In summary, the results indicate
that locally run open-source LLMs can perform similarly to Ope-
nAI’s GPT-mini model given that the right prompt is selected.
However, if maximum performance is desired, none of the other
LLMs can match GPT-4 in a zero-shot setting. GPT-4o offers a
more cost-effective alternative to GPT-4 (see Section 5), though
its performance is slightly lower. The GitHub repository pro-
vides additional results for the models GPT3.5-turbo, SOLAR,
and StableBeluga2.

Sensitivity: Small variations in prompts can have a large
impact on the overall task performance [25, 30, 51]. We measure
this prompt sensitivity as the standard deviation (SD) of the F1
scores of a model over all 10 prompt designs and list this standard
deviation in the lower section of Tables 2 and 3. Comparing
the prompt sensitivity of the models, the GPT4 model is most
invariant to the wording of the prompt (mean standard deviation
2.26) while also achieving high results with most of the prompt
designs. Comparing the sensitivity of GPT4 to all other models
shows that they have a significantly higher prompt sensitivity
(standard deviation 6.18 to 18.54 in Table 3).

Prompt to Model Fit: The best result for each model is set
bold in Table 2, the second best result is underlined. This high-
lighting shows that there is no prompt design that performs best
for most models. As a result, a general statement of how to design
a prompt for the entity matching task cannot be made. While the
presented analysis is not exhaustive regarding all possible prompt
designs, the results indicate that the best prompt depends on the
model/dataset combination. While a good performing prompt
can be found by testing a set of pre-defined prompts (as we did),
automated approaches for prompt tuning and evolution could
still further improve the results [18, 43].

Comparison to PLM Baselines:We compare the zero-shot
performance of the LLMs to the performance of two PLM-based
matchers: a fine-tuned RoBERTa model [26] and Ditto [23], an
entity matching system which also relies on domain-specific
training data. Table 4 shows the overall best results for each LLM
in comparison to the two PLM-based matchers on all datasets. For
three out of the six datasets, GPT4 achieves higher performance
than the best PLM baseline (2.65-4.71% F1), while the performance
for the other three datasets is 3.69, 4.49 and 0.73% F1 lower. This
shows that GPT4 without using any task-specific training data is
able to reach comparable results or even outperform PLMs that
were fine-tuned using thousands of training pairs (see Table 1).
The reliance on large amounts of task-specific training data to
achieve good performance is one of the main shortcomings of
fine-tuned PLMs.
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Table 4: Comparison of F1 scores of the best zero-shot
prompt per model with PLM baselines. The "unseen" rows
correspond to training on the dataset named in the column
and applying the model to the WDC Products test set.

WDC A-B W-A A-G D-S D-A
GPT-mini 81.15 91.93 86.58 72.18 86.11 97.60
GPT-4 89.61 95.78 89.67 76.38 89.82 98.41
GPT-4o 87.64 93.95 86.65 73.56 89.76 97.06
Llama2 69.09 82.03 63.91 57.93 85.46 97.62
Llama3.1 83.67 89.84 84.85 73.99 86.32 98.81
Mixtral 53.37 82.20 70.44 40.98 77.75 90.32
RoBERTa 77.53 91.21 87.02 79.27 93.88 99.14
Ditto 84.90 91.31 86.39 80.07 94.31 99.00
Δ best
LLM/PLM 4.71 4.47 2.65 -3.69 -4.49 -0.33

RoBERTa unseen - 55.52 36.46 31.00 29.64 16.25
Ditto unseen - 48.74 31.55 33.12 32.82 29.00
Δ RoBERTa unseen - -22.01 -41.07 -46.53 -47.89 -61.28
Δ Ditto unseen - -36.16 -53.35 -51.78 -52.08 -55.90

Generalization: Another shortcoming of PLM-based match-
ers is their low robustness to out-of-distribution entities, e.g.
entities that are not part of any training pair [1, 36]. In another
set of experiments, we apply each of the previously fine-tuned
RoBERTa and Ditto models — excluding the models fine-tuned
on WDC Products — to the WDC Products test set, which con-
tains a different set of products which are thus unseen to these
fine-tuned models. We report the results of these experiments in
the "RoBERTa unseen" and "Ditto unseen" rows at the bottom of
Table 4. Compared to fine-tuning directly on the WDC Products
development set (84.90% F1 for Ditto), the transfer of fine-tuned
models leads to large drops in performance ranging from 36 to
56% F1 for Ditto and 22 to 61% F1 for RoBERTa. All LLMs achieve
at least 8% F1 higher performance than the best transferred PLM
while GPT4 outperforms the best PLM by 40% to 68%. These
results indicate that LLMs have a general capability to perform
entity matching, while PLM-based matchers are closely fitted to
the entities within the fine-tuning dataset.

4 SCENARIO 2: WITH TRAINING DATA
Task-specific training data in the form of matching and non-
matching entity pairs can be used to (i) add demonstrations to
the prompts, (ii) learn textual matching rules, and (iii) fine-tune
the LLMs. In this section, we explore whether and how our zero-
shot results can be improved by using task-specific training data.

4.1 In-Context Learning
For the in-context learning experiments, we provide each LLM
with a set of task demonstrations [24] as part of the prompt in
order to guide the model’s decisions. The demonstrations are
followed in the prompt by the entity description pair for which
the model should generate a matching decision. Figure 2 shows
an example of an in-context learning prompt containing a single
positive and a single negative demonstration.We vary the amount
of demonstrations in each prompt from 6 to 10 with an equal
amount of positive and negative examples. For the selection of
the demonstrations, we compare three different heuristics:

Figure 2: Example of a prompt containing a positive and a
negative demonstration before asking for a decision.

• Random: As baseline heuristic, task demonstrations are
drawn randomly from the training set of the respective
benchmark.

• Related: Related demonstrations are selected from the
training set of the respective benchmark with the idea
of presenting correct matching decisions on highly simi-
lar products. This is done by calculating the Generalized
Jaccard6 similarity between the string representation of
the pair to be matched and all positive and negative pairs
in the corresponding training set. Afterwards, the pairs
are sorted by similarity and the most similar positive and
negative pairs are selected as demonstrations.

• Hand-picked: The hand-picked demonstrations were se-
lected by a data engineer with the goals of being diverse
and potentially helpful for corner case decisions. For the
four datasets in the product domain, these examples are
drawn from the WDC Products training set and were cho-
sen to represent various product categories, as well as pairs
where different attributes are important for the matching
decision. For the two datasets from the publication do-
main, the examples are selected from the pool of training
examples of DBLP-Scholar covering a range of distinct
venues, publication years, and research areas.

Effectiveness: Table 6 shows the averaged results of the in-
context experiments in comparison to the best zero-shot baselines.
Table 5 shows the results for each dataset seperately. Depending
on the model/dataset combination the usefulness of in-context
learning differs. The GPT4 model, which is the best perform-
ing model in the zero-shot scenario, only improves significantly
on Amazon-Google (9%) with marginal improvements on two
datasets (0.6-1.5%) when supplying related demonstrations and
an improvement of 2% on DBLP-Scholar with handpicked demon-
strations. GPT4’s performance on WDC Products and Abt-Buy
drops irrespective of the demonstration selection method, mean-
ing that the model does not need the additional guidance in these
cases. The GPT-4o model on the other hand sees improvements
on all datasets when supplying demonstrations closing the gap
to GPT-4 compared to zero-shot and even outperforming it for
WDC Products. GPT-mini and Mixtral are not capable of using
the in-context information as both models lose between 4 and

6https://anhaidgroup.github.io/py_stringmatching/v0.3.x/GeneralizedJaccard.
html
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Table 5: Results (F1) of the few-shot and rule-based experiments. Best result is bold, second best is underlined.

Prompt WDC Products Abt-Buy Walmart-Amazon
Shots GPT-mini GPT-4 GPT-4o Llama2 Llama3.1 Mixtral GPT-mini GPT-4 GPT-4o Llama2 Llama3.1 Mixtral GPT-mini GPT-4 GPT-4o Llama2 Llama3.1 Mixtral
6 51.59 85.71 89.96 59.64 77.43 37.45 90.96 93.83 94.35 66.78 90.72 49.77 74.32 91.19 90.54 56.23 81.31 50.78Fewshot-related 10 57.87 86.45 91.74 53.23 84.04 41.93 92.62 94.35 94.87 63.78 92.80 52.44 74.85 91.24 90.63 56.15 86.89 54.70
6 67.48 86.55 87.69 57.25 77.53 53.80 88.19 94.12 95.26 62.99 92.65 55.75 75.00 88.89 88.62 60.68 86.34 53.68Fewshot-random 10 73.23 86.37 87.40 50.83 80.17 50.22 90.31 93.21 95.55 68.28 93.75 49.80 76.78 89.00 88.78 67.44 88.00 46.94
6 55.56 87.23 88.28 58.26 75.45 48.12 88.06 93.36 95.49 71.56 89.23 47.79 70.59 88.84 88.94 66.52 86.65 50.64Fewshot-handpicked 10 59.73 86.72 87.89 46.96 79.39 44.86 89.58 93.62 93.95 82.21 92.80 42.02 74.38 87.89 90.34 65.86 88.53 45.56

Hand-written rules 0 73.76 85.71 86.49 53.77 80.84 69.81 90.50 94.15 87.69 41.93 89.86 86.18 87.60 89.16 84.55 33.65 88.16 83.08
Learned rules 0 78.68 87.06 85.24 59.33 80.17 70.25 89.43 93.40 92.91 48.38 88.19 88.83 87.94 86.21 88.40 43.27 86.47 80.11
Mean - 64.74 86.48 86.48 54.91 79.38 52.06 90.03 93.81 93.76 63.24 91.25 59.07 77.68 89.05 89.05 56.23 86.54 58.19
Standard deviation - 9.25 0.52 0.52 4.22 2.44 11.38 1.48 0.40 0.39 11.95 1.89 16.83 6.04 1.54 1.54 11.30 2.13 13.83
Best zero-shot 0 81.15 89.61 87.64 69.09 83.67 53.37 91.93 95.78 93.95 82.03 89.84 82.20 86.58 89.67 86.65 63.91 84.85 70.44
Δ Few-shot/zero-shot - -7.92 -2.38 4.10 -9.45 0.37 0.43 0.69 -1.43 1.60 0.18 3.91 -26.45 -9.80 1.57 3.98 3.53 3.68 -15.74
Δ Rules/zero-shot - -2.47 -2.55 -1.15 -9.76 -2.83 16.88 -1.43 -1.63 -1.04 -33.65 0.02 6.63 1.36 -0.51 1.75 -20.64 3.31 12.64

Prompt Amazon-Google DBLP-Scholar DBLP-ACM
Shots GPT-mini GPT-4 GPT-4o Llama2 Llama3.1 Mixtral GPT-mini GPT-4 GPT-4o Llama2 Llama3.1 Mixtral GPT-mini GPT-4 GPT-4o Llama2 Llama3.1 Mixtral
6 61.58 84.27 82.95 62.48 65.28 39.11 75.83 88.00 86.44 69.11 80.18 53.82 88.25 98.41 98.21 78.37 97.78 72.12Fewshot-related 10 63.52 85.21 83.46 62.36 71.43 47.89 77.93 88.52 88.33 64.29 82.38 55.57 92.54 99.01 98.20 76.34 97.58 66.95
6 57.37 78.08 78.67 59.78 74.32 48.99 82.56 90.21 90.16 67.04 86.43 55.80 96.55 98.81 98.21 76.22 98.40 76.21Fewshot-random 10 60.56 78.76 78.61 59.92 80.46 46.17 84.98 89.30 90.54 69.63 87.17 56.13 97.19 97.66 98.21 77.64 98.80 74.39
6 55.19 76.92 77.25 64.65 73.93 45.92 68.86 90.98 89.19 81.34 85.34 67.70 98.61 94.34 97.47 80.78 98.62 86.36Fewshot-handpicked 10 58.49 76.57 77.22 63.89 79.52 49.18 62.96 91.81 90.06 73.56 86.13 55.61 98.42 95.97 97.66 86.96 99.21 68.97

Hand-written rules 0 66.37 72.47 73.83 46.39 71.90 58.31 76.74 87.34 89.30 53.72 84.82 83.55 93.95 97.09 96.30 77.88 97.85 93.26
Learned rules 0 68.28 73.50 72.39 59.77 71.88 48.55 84.00 89.42 78.59 8.43 81.95 78.38 95.42 90.25 92.25 46.21 95.97 81.04
Mean - 61.42 78.22 78.22 59.91 73.59 48.02 76.73 89.45 89.45 60.89 84.30 63.32 95.12 96.44 96.44 75.05 98.03 77.41
Standard deviation - 4.19 4.27 4.27 5.41 4.51 4.95 7.15 1.41 1.41 21.14 2.34 11.03 3.25 2.76 2.76 11.38 0.94 8.39
Best zero-shot 0 72.18 76.38 73.56 57.93 73.99 40.98 86.11 89.82 89.76 85.46 86.32 77.75 97.60 98.41 97.06 97.62 98.81 90.32
Δ Few-shot/zero-shot - -8.66 8.83 9.90 6.72 6.47 8.20 -1.13 1.99 0.78 -4.12 0.85 -10.05 1.01 0.60 1.15 -10.66 -0.01 -3.96
Δ Rules/zero-shot - -3.90 -2.88 0.27 1.84 -2.09 17.33 -2.11 -0.40 -0.46 -31.74 -1.50 5.80 -2.18 -1.32 -0.76 -19.74 -0.96 2.94

Table 6: Mean results for the in-context learning.

Prompt All Datasets (Mean F1)
Shots GPT4-mini GPT4 GPT4o LLama2 Llama3.1 Mixtral
6 73.76 90.24 90.41 65.44 82.12 50.51Fewshot-related 10 76.56 90.80 91.21 62.69 85.85 53.25
6 77.86 89.44 89.77 63.99 85.95 57.37Fewshot-random 10 80.51 89.05 89.85 65.62 88.06 53.94
6 72.81 88.61 89.44 70.52 84.87 57.76Fewshot-handpicked 10 73.93 88.76 89.52 69.91 87.60 51.03

Hand-written rules 0 81.49 87.65 86.36 51.22 85.57 79.03
Learned rules 0 84.14 86.64 84.96 44.23 84.11 74.53
Mean - 77.63 88.90 88.94 61.70 85.51 59.68
Standard deviation - 3.85 1.25 2.00 8.63 1.77 10.23
Best zero-shot 0 85.51 89.95 88.10 76.01 86.25 69.18
Δ Few-shot/zero-shot - -5.00 0.85 3.10 -5.49 1.81 -11.42
Δ Rules/zero-shot - -1.37 -2.29 -1.74 -24.78 -0.68 9.86

26% performance on most datasets. For all other LLMs providing
in-context examples usually leads to performance improvements,
while the size of the improvements varies widely.

In summary, in-context learning improves the performance
of the LLMs for approximately 61% of the model/dataset com-
binations that we tested (see row Δ Few-shot/zero-shot in Table
5). Providing demonstrations was not helpful for GPT4 which
does not need the additional guidance on two datasets as well
as for the smaller models GPT-mini and Mixtral which suffer
large performance drops on many datasets. As a result, the use-
fulness of in-context learning cannot be assumed but needs to be
determined experimentally for each model/dataset combination.

Comparison of Selection Methods: The best demonstra-
tion selection method also varies depending on the dataset. The
open-source LLMs generally reach the best performance when
random or handpicked demonstrations are provided. In contrast,
GPT-4 and GPT-4o achieve the highest scores on most datasets
using related demonstrations, suggesting that these models are
better able to understand and apply specific patterns from closely

related examples to the current matching decision. The hand-
picked demonstrations, while not helpful for the Llama models
on their source dataset WDC Products, lead to improvements
on all other product datasets. The same effect is visible for the
handpicked demonstrations transferred to DBLP-ACM.

4.2 Learning Matching Rules
In the next set of experiments, we provide a set of textual match-
ing rules in the prompt in order to guide the model to select
the correct solution. We differentiate between two kinds of rules
(i) handwritten and (ii) learned rules. Handwritten rules are a
set of binary rules created by defining which attributes need to
match for the given domain to signify a match. The rules also
inform the model of potential heterogeneity in these attributes,
such as slight differences in surface form or value formats. For
the learned rules, we pass the set of handpicked in-context pairs
to GPT4 and ask the model to automatically generate matching
rules from these examples. Similar to the handwritten rules, they
refer to specific attributes that should be matching and potential
sources of heterogeneity that the GPT4 model extracted from the
provided examples. A subset of these handwritten and learned
rules for the product domain is depicted in Figure 3. The full list
of learned rules is available in the project repository.

Effectiveness: Table 5 shows the results of providing match-
ing rules in comparison to the best zero-shot prompt and the
in-context experiments. The results show that GPT4 with match-
ing rules does not improve over its best zero-shot performance
and instead loses 1% to 3% F1 on all datasets. All other models
see improvements on some datasets of 0.3% to 17% F1 over zero-
shot depending on the model/dataset combination. Especially the
Mixtral LLM, which has comparatively low performance com-
pared to all other LLMs in the zero-shot and few-shot settings,
significantly improves with the provision of rules on all datasets,
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Figure 3: Example of a prompt containing handwritten
matching rules for the product domain. A subset of the
learned rules is depicted below.

gaining from 3 to 17% F1. In summary, the provision of match-
ing rules can be helpful, especially for the open-source LLMs
with Mixtral achieving its highest scores on all datasets using
rules but providing task demonstrations generally leads to higher
performance gains than providing matching rules for all other
models.

Sensitivity: We measure the prompt sensitivity of the LLMs
as the standard deviation of the F1-scores across all few-shot and
rule experiments. We list this standard deviation in the lower
part of Tables 5 and 6. Comparing the prompt sensitivity of
the models to the zero-shot deviations across different prompt
formulations, the average deviation from the mean has decreased
for all models, suggesting that the additional guidance in the
form of demonstrations and rules leads to more robust results.

4.3 Fine-Tuning
In the next set of experiments, we fine-tune the GPT-mini model
via the OpenAI API as well as the Llama2 and Llama3.1 models
using local hardware. We use the training and validation sets of
each dataset to train a fine-tuned model with the domain-simple-
force prompt and subsequently apply the fine-tuned models with
this prompt to all datasets. We fine-tune GPT-mini for 10 epochs
using the default parameters suggested by OpenAI. For the Llama
models, we fine-tune using 4-bit quantization to manage the high
VRAM requirements of the 70B models. We employ Low-Rank
Adaptation (LoRA) and also train for 10 epochs.

Effectiveness: The results of the fine-tuned LLMs are shown
in Table 7. The lower part of the table restates the best zero-shot
and GPT4 results for comparison. When comparing the fine-
tuning results to the best zero-shot performance (Section Δ best
zero-shot in Table 7), we observe a substantial improvement of
1% to 26% F1 depending on the dataset for all models. Only the
Llama models on WDC Products do not profit from fine-tuning.
On four out of six datasets, the best fine-tuned Llama3.1 and
GPT-mini models exceed the performance of zero-shot GPT4 by
1 to 10% F1 (See Section Δ best GPT4 in Table 7).

Table 7: Results for fine-tuning LLMs and subsequent trans-
fer to all datasets. Left-most column shows the dataset used
for fine-tuning.

WDC A-B W-A A-G D-S D-A
Llama2 66.81 75.98 72.83 54.77 41.74 28.86
Llama3.1 72.05 83.47 76.92 63.97 65.25 80.91WDC Products
GPT-mini 88.89 92.49 88.61 77.78 86.82 97.28
Llama2 58.79 92.15 81.84 68.61 84.12 95.31
Llama3.1 77.87 93.60 84.85 74.49 79.86 94.07Abt-Buy
GPT-mini 83.66 94.17 88.83 76.63 86.03 97.85
Llama2 49.71 88.13 90.57 66.50 64.57 87.74
Llama3.1 51.12 89.92 91.01 73.76 82.62 95.41Walmart-Amazon
GPT-mini 72.64 94.94 92.99 82.06 89.31 97.85
Llama2 59.50 77.16 63.21 76.19 78.59 88.70
Llama3.1 61.28 85.00 82.35 78.67 70.49 87.73Amazon-Google
GPT-mini 64.75 90.23 82.98 87.11 87.02 96.88
Llama2 29.41 49.48 59.52 46.55 92.80 97.45
Llama3.1 35.11 74.27 77.15 58.59 92.37 97.84DBLP-Scholar
GPT-mini 57.70 84.07 84.02 73.33 93.95 97.64
Llama2 6.15 29.96 29.60 16.22 66.84 99.20
Llama3.1 15.33 49.82 41.90 25.00 83.37 99.60DBLP-ACM
GPT-mini 31.54 85.25 67.99 49.43 89.70 99.40
Llama2 69.09 82.03 63.91 57.93 85.46 97.62
Llama3.1 83.67 89.84 84.85 73.99 86.32 98.81Best zero-shot
GPT-mini 81.15 91.93 86.58 72.18 86.11 97.60
Llama2 -2.28 +10.12 +26.66 +18.26 +7.34 +1.58
Llama3.1 -5.80 +3.76 +6.16 +4.68 +6.05 +0.79Δ best zero-shot
GPT-mini +7.74 +3.01 +6.41 +14.93 +7.84 +1.80
Llama2 -22.8 -3.63 +0.90 -0.19 +2.98 +0.79
Llama3.1 -11.74 -2.18 +1.34 +2.29 +2.55 +1.19Δ best GPT4
GPT-mini -0.72 -0.84 +3.32 +10.73 +4.13 +0.99

Best GPT4 - 89.61 95.78 89.67 76.38 89.82 98.41

In summary, fine-tuning the models leads to improved results
compared to the zero-shot version of the model rivaling the
performance of the best GPT4 prompts with the much cheaper
GPT-mini model and consistently improving the performance of
the Llamamodels by 1-26% F1 on 5 out of 6 datasets leaving Llama
3.1 only slightly behind GPT-mini on 4 datasets. Furthermore,
the experiments show that the fine-tuned Llama models reach a
similar performance or outperform GPT4 on 4 out of 6 datasets.

Generalization: We observe a generalization effect for the
GPT-mini model fine-tuned on one dataset to datasets from re-
lated domains and across domains. Transferring models between
related product domains leads to improved performance over the
best zero-shot prompts for many combinations of datasets. The
effect is especially visible for the combinations WDC Products,
Abt-Buy and Walmart-Amazon which contain similar products.
The transfer to Amazon-Google results in better performance
than zero-shot for all of the mentioned product datasets. Con-
versely, the reverse transfer from Amazon-Google does not yield
improved results. Furthermore, all GPT-mini models fine-tuned
on the datasets from the product domain exhibit good general-
ization to the publication domain, resulting in improvements of
1-3% F1 over the best zero-shot. Transferring fine-tuned models
within the publication domain shows the same effect. The trans-
fer does not work in the other direction as transferring a model
fine-tuned for the publication domain leads to lower performance
on the product datasets. For the Llama models this effect is only
visible for some inter-product transfers mostly for Llama2.
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Table 8: Costs for hosted LLMs on WDC Products. Best performing prompts are selected for the analysis for each scenario.

Zeroshot 6-Shot 10-Shot Rules (written) Rules (learned) Fine-tune
GPT-mini GPT-4 GPT-4o GPT-mini GPT-4 GPT-4o GPT-mini GPT-4 GPT-4o GPT-mini GPT-4 GPT-4o GPT-mini GPT-4 GPT-4o Train Inference

F1 (Best prompt) 81.15 89.61 87.64 67.48 87.23 89.96 73.23 86.72 91.74 73.76 85.71 86.49 78.68 87.06 85.24 - 88.89
Mean # Tokens prompt 76 77 93 633 639 641 992 942 1,009 213 214 213 815 817 815 97 88
Mean # Tokens completion 89 40 1 2 2 2 2 2 2 1 1 4 1 1 3 1 1
Mean # Tokens combined 166 117 94 635 641 643 994 944 1,011 214 215 217 816 818 818 98 89
Token increase to ZS - - - 3.8x 5.5x 6.8 6x 8.1x 10.8x 1.3x 1.8x 2.3x 4.9x 7x 8.7x 0.6x 0.5x
Cost per prompt 0.006¢ 0.474¢ 0.024¢ 0.01¢ 2.056¢ 0.162¢ 0.015¢ 3.037¢ 0.254¢ 0.003¢ 0.649¢ 0.057¢ 0.012¢ 2.458¢ 0.207¢ 0.280¢ 0.003¢
Cost increase to ZS (GPT-mini) - 73x 3.8x 1.5x 319x 25x 2.4x 470x 39x 0.5x 101x 9x 1.9x 381x 32x 43x 0.5x
Cost increase per Δ F1 to ZS - 8.7x 0.6x 0.1x 52x 3x 0.3x 84x 3.7x 0.07x 22x 1.7x 0.8x 64x 7.8x - 0.06x

Table 9: Runtime in seconds per prompt (request) for all
LLMs using the best prompts from the previous sections on
theWDCProducts dataset. Runtimesmarked with * are for
the quantized version of the model used for fine-tuning.

Model Zeroshot 6-Shot 10-Shot Rules
(written)

Rules
(learned)

Fine-Tune
(Inference)

GPT-mini 1.54 s 0.46 s 0.51 s 0.47 s 0.47 s 0.46 s
GPT4 2.19 s 0.75 s 0.78 s 0.68 s 0.76 s -
GPT4-o 0.51 s 0.48 s 0.53 s 0.48 s 0.49 s -
Llama2 22.62 s 7.15 s 7.82 s 23.16 s 24.51 s *0.30 s
Llama3.1 0.54 s 1.70 s 2.36 s 0.67 s 1.70 s *0.30 s

5 COST AND RUNTIME ANALYSIS
Apart from pure matching performance there are additional con-
siderations such as data privacy requirements and the cost of
using hosted LLMs which may result in the decision to use a less
performant but cheaper hosted LLM or to run an open-source
LLM on local hardware. The cost analysis presented in the fol-
lowing gives an overview of expected costs for hosted models.
The purpose of the analysis is to give the reader general guidance
of what to expect with regards to the cost dimension. We leave a
more in-depth analysis of costs including acquisition costs for
GPUs and electricity for the open-source models to future work.

Costs: Table 8 lists the costs associated with the hosted LLMs
across all experimental scenarios for the WDC Products dataset.
The cost of using a hosted LLMs is dependent on the length
of the respective prompts, measured by the amount of tokens,
and the current prices of the respective model. Thus, the results
we present here are only a snapshot as of August 2024 as the
prices are subject to change. We compare the costs of all OpenAI
models. The prices for using the models were as follows for
1 million prompt/completion tokens: $0.15/$0.60 for GPT-mini,
$30.00/$60.00 for GPT-4, and $2.50/$10.00 for GPT-4o.

Table 8 shows that the in-context learning (6-shot, 10-shot)
and the rule-based approaches (hand-written, learned) from Sec-
tion 4 require between 1.3 and 11 times the amount of tokens per
prompt compared to basic zeroshot prompting (see row Token
increase to ZS in Table 8). For all of them this is due to longer
prompts, either because of the inclusion of few-shot demon-
strations or rules. The fine-tuning approach on the other hand
requires less tokens than zero-shot as the prompt we chose for
fine-tuning uses the restricted output format force (see Section 3)
whereas the best zero-shot prompt for GPT-mini uses the free
format which allows the model to answer more verbosely. From
a cost perspective, the in-context learning and the rule-based
approaches increase the costs by 1.5 to 470 times compared to
the cost of the zero-shot GPT-mini model. While GPT-mini is
the cheapest model in this lineup, the GPT-4o model achieves

significantly higher performance, often approaching or even sur-
passing GPT-4, at a fraction of GPT-4’s cost. If many training
examples are available, fine-tuning the GPT-mini model results
in comparably high performance for for a fraction of the cost of
even GPT-4o.

Runtime: Table 9 lists the average runtime per prompt for
all LLMs. The selected prompts and the used numbers of tokens
are the same as in Table 8. If the prompt allowed free form an-
swering, this leads to much longer runtimes compared to forcing
the model to answer shortly. The large difference in runtimes
between zero-shot Llama2 and Llama3.1 in Table 9 is an exam-
ple of this. The runtimes of the hosted models are a snapshot
of the API performance in August 2024 and may change at any
time. Prompting GPT4 generally takes around 50% longer than
the other two OpenAI models which have comparable runtimes
if the answering scheme is the same. The locally hosted open-
source LLM Llama2 requires the largest amount of time for most
scenarios on our hardware (see Section 2), particularly when
generating freely in zero-shot and rule-based cases, where its
runtime is 10 to 33 times longer than that of GPT-4. On the other
hand, the Llama3.1 model achieves a comparable runtime to the
GPT models in most setups.

6 EXPLAINING MATCHING DECISIONS
Understanding the decisions of a matching model is important for
users to build trust towards the systems. Explanations of model
decisions can further be used for debugging matching pipelines.
The size and structure of deep learning models make explaining
their decisions a challenging task, which has led to a dedicated
line of research in the field of entity matching [2, 12, 32, 33].
Instead of relying on external explainability methods, LLMs can
directly be queried for explanations of their decisions. In this
Section, we use GPT4 to generate structured explanations for
its decisions and show how to aggregate these explanations to
derive global insights about matching decisions.

6.1 Generating Explanations
For the generation of explanations, we first prompt the LLM to
match a pair of entities and subsequently ask the model for an
explanation of its decision using a second prompt. If we do not
pose any restrictions on the format of the explanation, the model
would answer with natural language text describing the different
aspects that influenced its decision [29]. Instead of allowing free-
text explanations, we ask the model to organize its explanations
into a fixed structure which will later allow us to parse and
aggregate the explanations. Figure 4 shows examples of complete
conversations for generating structured explanations of matching
decisions for pairs from the Walmart-Amazon and DBLP-Scholar
datasets. After prompting for and receiving a decision in the
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Figure 4: Conversation instructing the model to match an
entity pair and asking for a structured explanation of the
decision. Top: Walmart-Amazon, bottom: DBLP-Scholar.

first exchange with the model, we continue the conversation by
passing a second prompt (the second user prompt in Figure 4).
Specifically, we ask for a structured format of the explanation that
includes all attributes of both product offers that were used for
the matching decision. Each attribute should be accompanied by
an importance value as well as a similarity value for the compared
attributes. The sign of the importance values should be negative
if the attribute comparison contributed to a non-match decision
and vice versa.

The generated structured explanation of the product pair from
Walmart-Amazon is shown in the second blue AI row in Figure 4.
The explanation shows that the model is capable of extracting
various attributes from the serialized strings. The highest posi-
tive importance is assigned to the attribute model followed by
brand and price. Although none of the extracted attribute values
perfectly match, they are very similar and the model correctly
assigns them a high similarity and positive importance value and
considers them indications for matching product offers. Inter-
estingly, the model extracted the hard drive size from the first
offer which is missing in the second offer and assigned due to
this circumstance a low negative importance score. As the size of
the hard drive is an important piece of information for matching,
the model may be accounting for this uncertainty by reducing its
confidence in this specific case. The explanation for the DBLP-
Scholar pair is shown in the 4th blue AI row in Figure 4. The
values of the authors attribute match perfectly, which the model
recognizes as relevant evidence for a match by assigning a pos-
itive importance of 0.3. The model further correctly assigns a
high negative importance to year and conference which are rea-
sonably different to support a non-match decision. Here it is
interesting that while the title overlaps in all but two words, the
model still uses this as the most important evidence for predicting
non-match.

To evaluate the meaningfulness of the similarity values cre-
ated by the model in the structured explanations, we calculate
their Pearson correlation with the well known string similarity
metrics Cosine and Generalized Jaccard. We apply the latter met-
rics to each of the extracted attributes found in the explanations
and calculate the correlation between them and the generated
similarities. We find that the model generated similarities exhibit
a strong positive correlation with Cosine similarity and General-
ized Jaccard similarity, ranging between 0.75–0.85 and 0.73–0.83,
respectively, across all datasets. These results point to the general
meaningfulness of the GPT4 created similarity values.

We subsequently generate structured explanations for all pairs
in the test sets of both datasets using the best-performing zero-
shot prompt. A sample of the generated explanations was manu-
ally verified against the corresponding model decisions, confirm-
ing the connection between the explanations and the model’s
decisions. All explanations are available in the project repository
to enable the further analysis of their quality.

6.2 Aggregating Explanations
The structured explanations can easily be parsed to extract the at-
tributes, importance scores, and similarity values. We aggregate
the extracted values by attribute and calculate average impor-
tance scores for all attributes deemed relevant by the model for
its decisions. Examples of five of these aggregated average im-
portance scores are shown in Table 10 for both datasets. We can
see that the model frequently assigned a high importance to
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Table 10: Global insights about the importance of different
attributes for matching and non-matching decisions for
the DBLP-Scholar and Walmart-Amazon datasets.

Matches Non-Matches

Attribute Freq. Mean
Import. St.Dev. Freq. Mean

Import. St.Dev.

DBLP-Scholar
title 0.96 0.59 0.40 0.95 -0.40 0.38
authors 0.78 0.65 0.40 0.68 -0.66 0.34
conference 0.50 0.35 0.37 0.29 -0.11 0.29
year 0.46 0.26 0.37 0.43 -0.16 0.25
journal 0.14 0.40 0.43 0.05 -0.15 0.25

Walmart-Amazon
brand 0.98 0.78 0.34 0.99 -0.04 0.34
price 0.92 -0.03 0.27 0.86 -0.16 0.25
model 0.81 0.63 0.51 0.82 -0.77 0.37
color 0.24 0.23 0.31 0.35 -0.06 0.23
product type 0.12 0.64 0.48 0.11 -0.42 0.50

brand and model for the matches while the price was not consid-
ered relevant for these decisions on average. For non-matches,
the model instead focuses on the model attribute and assigns a
nearly neutral average importance to the brand attribute. For
DBLP-Scholar, GPT4 focuses on differences and similarities of the
title and author attributes of the publications for both matches
and non-matches, while the attributes conference and year only
contribute to a lesser extent to the matching decisions.

After the aggregation there are in total 81 attributes for DBLP-
Scholar with seven of them being used in at least 10% of decisions
while the remaining 76 make up the long-tail. 28 of 81 attributes
have a mean importance, positive or negative, of at least 30%. For
Walmart-Amazon there are 181 attributes with seven of them
used in at least 10% of decisions. 64 of 181 have amean importance
of at least 30% towards the decision. The aggregation of the
structured explanations for the DBLP-Scholar and the Walmart-
Amazon datasets has demonstrated that global insights about a
model’s decisions can be derived from the local explanations.

7 AUTOMATED ERROR ANALYSIS
The analysis of wrongly matched entity pairs may lead to insights
on how to improve the matching pipeline. The analysis of match-
ing errors requires a decent understanding of the application
domain, e.g. products or publications, and profound knowledge
about the entity matching task. Error analysis usually involves
manually inspecting the errors made by matching systems and
subsequently deriving a set of error classes for categorizing these
errors. The task of deriving the error classes is not mechanical
but a rather creative task requiring reasoning capabilities and
background knowledge. This section demonstrates that GPT4-
turbo can automate this creative task and derive meaningful error
classes from the errors and associated explanations that were
created in Section 6. The machine-generated error classes can
be helpful for data engineers as they widen the scope of their
analysis.

7.1 Discovery of Error Classes
For the automatic discovery of error classes, we select all wrong
decisions together with their structured explanations from the
sets of explanations that we generated for the DBLP-Scholar
and Walmart-Amazon datasets in Section 6. Afterwards, we pass

Figure 5: Prompt used for the automatic generation of error
classes given false positives and false negatives.

a prompt to GPT4-turbo asking the model to synthesise error
classes for false positive and false negatives cases separately. In
the second part of this prompt, we include the selected erroneous
pairs together with their GPT4 created explanations. This are 26
false positives and 26 false negatives for the DBLP-Scholar test
set and 26 false positive and 15 false negatives for the Walmart-
Amazon test set. Figure 5 shows the prompt that we use for the
automatic generation of the error classes, as well as part of the
answer of the LLM.

Table 11 and Table 12 show the generated error classes for
both datasets and for each class the number of errors that fall
into these classes. The latter are manually annotated by three
domain experts. For DBLP-Scholar, three additional error classes
were created but for the sake of presentation are not listed in
the table. The full set of created error classes, as well as the false
positives and false negatives used to create them are found in
the accompanying repository. The counts in the # errors columns
of Table 11 and Table 12 show that the automatically created
error classes are relevant and cover not only frequent errors but
also rarer errors. For example, for the DBLP-Scholar dataset, the
first error class of the false positives refers to putting too much
emphasis on the similarity of publication titles which is deemed
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Table 11: Generated error classes for the DBLP-Scholar
dataset and manually annotated number of errors.

False Negatives (26 overall) # errors
1. Year Discrepancy: Differences in publication years lead to false
negatives, even when other attributes match closely. 8

2. Venue Variability: Variations in how the publication venue is
listed (e.g., abbreviations, full names) cause mismatches. 14

3. Author Name Variations: Differences in author names, including
initials, order of names, or inclusion of middle names, lead to
false negatives.

9

4. Title Variations:Minor differences in titles, such as missing words
or different word order, can cause false negatives. 11

5. Author List Incompleteness: Differences in the completeness of
the author list, where one entry has more authors listed than
the other.

11

False Positives (26 overall) # errors
1. Overemphasis on Title Similarity: High similarity in titles leading
to false positives, despite differences in other critical attributes. 15

2. Author Name Similarity Overreach: False positives due to high
similarity in author names, ignoring discrepancies in other attributes. 16

3. Year and Venue Ignored: Cases where the year and venue match
or are close, but other discrepancies are overlooked. 5

4. Partial Information Match:Matching based on partial information,
such as incomplete author lists or titles, leading to false positives. 19

5. Misinterpretation of Publication Types: Confusing different types of
publications (e.g., conference vs. journal) when other attributes match. 9

correct by a human annotator for 15 of the 26 errors, while the
third error class is relevant only for 5 of the errors, namely those
where the model seemed to put too much emphasis on matching
year and venue information in the pairs while ignoring crucial
difference in the other attributes. After manual inspection, all of
the created error classes are relevant for the errors being made
and support a deeper understanding of what causes these errors.
Some of the error classes also point at actions that could be taken
to improve the matching pipeline. For example, the heterogeneity
of how publication venues are listed in the DBLP-Scholar dataset
(Table 11, error class 2 for false negatives) could prompt the user
to improve the normalization of these values.

7.2 Assignment of Errors to Error Classes
In this final experiment, we investigate whether GPT4-turbo is
capable of categorizing errors into the created error classes. Such
a categorization allows data engineers to drill down from the
error classes to concrete example errors which might give them
hints on how to address the problem. For categorizing errors, we
use the prompt shown in Figure 6. After instructing the model
about the task, the prompt lists all error classes together with
their descriptions. Subsequently, the prompt contains the entity
pair to be categorized together with its correct as well as predicted
label and the structured explanation of the matching decision.
The model is asked to pick all error classes that apply to the pair
and to provide a confidence value for each of its predictions.

Table 13 shows the accuracy values the GPT4-turbo model
reaches on this task. From these values we can see that the model
on average achieves a mean accuracy of over 80% for most error
types (see row Mean in Table 13). Only the mean accuracy on
Walmart-Amazons false positives is lower which is caused by the
low accuracy of the first error class Overemphasis on Matching
Attributes as the domain experts did not agree with the models
classification in the first error class, more specifically the model
rarely assigned this class while the domain experts considered it
relevant in 23 out of 26 cases. Apart from this disagreement, the
model is capable of correctly categorizing the errors with a high
accuracy.

Table 12: Generated error classes for the Walmart-Amazon
dataset and manually annotated number of errors.

False Negatives (15 overall) # errors
1. Model Number Mismatch: The system fails when there are slight
differences in model numbers or product codes, even when other
attributes match closely.

9

2. Attribute Missing or Incomplete:When one product listing
includes an attribute that the other does not, the system may
fail to recognize them as a match.

9

3. Minor Differences in Descriptions: Small differences in product
descriptions or titles can lead to false negatives, such as slightly
different wording or the inclusion/exclusion of certain features.

11

4. Price Differences: Even when products are very similar, significant
price differences can lead to false negatives, as the system might
weigh price too heavily.

12

5. Variant or Accessory Differences: Differences in product variants
or accessories included can cause false negatives, especially if the
system does not adequately account for these variations being minor.

7

False Positives (26 overall) # errors
1. Overemphasis on Matching Attributes: The system might give too
much weight to matching attributes like brand or model number,
leading to false positives even when other important attributes differ.

23

2. Ignoring Minor but Significant Differences: The system fails to
recognize important differences in product types, models, or
features that aresignificant to the product identity.

21

3. Misinterpretation of Accessory or Variant Information: Including or
excluding accessories or variants in the product description can lead to
false positives if the system does not correctly interpret these differences.

8

4. Price Discrepancy Overlooked: The system might overlook significant
price differences, assuming products are the same when they are not,
particularly if other attributes match closely.

14

5. Condition or Quality Differences: Differences in the condition or
quality of products (e.g., original vs. compatible, new vs. refurbished)
are not adequately accounted for, leading to false positives.

2

Table 13: Accuracy of GPT4 for classifying errors.

Walmart-Amazon DBLP-Scholar
Error class FP FN FP FN

1 34.62 86.67 92.31 96.15
2 84.62 73.33 76.92 92.31
3 84.62 73.33 76.92 73.08
4 76.92 100 100 88.46
5 84.62 86.67 92.31 88.46

Mean 73.08 84.00 87.69 87.69

The presented methods for the automated creation of error
classes and the classification of errors into these classes by an
LLM can support data engineers in the analysis and debugging
of specific combinations of models, prompts and datasets. The
methods can also be used for the detailed comparison of different
combinations of models, prompts and datasets. For example, the
errors from all experiments presented in this paper could be
classified into the classes presented in Tables 11 and 12 allowing
the fine-grained comparison of the strengths and weaknesses of
each combination. As this analysis goes beyond the scope of this
paper, we leave it to future work.

8 RELATEDWORK
Entity Matching: Entity matching [3, 8, 15] has been researched
for over 50 years [17]. Early approaches involved domain experts
hand-craftingmatching rules [17]. Over time, advancements were
made with unsupervised and supervised machine learning tech-
niques resulting in improved matching performance [9]. By the
late 2010s, the success of deep learning in areas such as natu-
ral language processing and computer vision paved the way for
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Figure 6: Prompt used for the classification of errors.

early applications in entity matching [28, 37]. The Transformer
architecture [41] and pre-trained models like BERT [11] and
RoBERTa [26] revolutionized natural language processing, which
has led the data integration community to also turn to these
language models for entity matching [5, 23, 33, 42, 47, 48]. More
recent work delved into the application of self-supervised and
supervised contrastive losses [7, 19, 21] in combination with PLM
encoder networks for entity matching [34, 44]. Other studies have
explored graph-based methods [20, 47] and the application of
domain adaptation techniques for entity matching [1, 27, 39, 40].

LLM-based Entity Matching: Narayan et al. [30] were the
first to experiment with using an LLM (GPT3) for entity matching
as part of a wider study also covering data engineering tasks such
as schema matching and missing value imputation. In [35], we
employ ChatGPT for entity matching and test different prompt
designs on a single benchmark dataset. Fan et al. [16] experiment
with batching multiple entity matching decisions together with
in-context demonstrations to reduce the cost of in-context learn-
ing. Wang et al. [45] go beyond binary matching and apply LLMs
to select matching records from a set of candidate matches. Zhang
et al. [49] experimented with fine-tuning a Llama2 model for sev-
eral data preparation tasks at once and include entity matching
as one of their fine-tuning tasks. In [38], we experiment with
fine-tuning Llama and GPT models for entity matching using dif-
ferent example representations, including free text and structured
explanations.

Explaining Entity Matching: The prevalence of PLMs over
recent years in the field of entity matching has led to research

into the explainability of these matching systems [2, 12, 32, 33].
Most methods [12, 33] for explaining the matching decisions of
PLMs provide local explanations for single entity pairs, e.g. as
importance score of single tokens. Paganelli et al. [32] present
an approach for explaining matching decisions by analyzing the
attention scores of PLM-based matchers. The WYM [2] system
is an example of an intrinsically interpretable system that was
recently proposed based on the idea of finding important decision
units among entity descriptions for PLM-based matchers. To the
best of our knowledge, none of the existing methods automates
the discovery error classes and generates human-interpretable
descriptions of these error classes like the ones we presented in
Section 7.

9 CONCLUSION
This paper has investigated using LLMs as a more robust and less
task-specific training data dependent alternative to PLM-based
matchers. We can summarize the high-level implications of our
findings concerning the selection of matching techniques in the
following rules of thumb: For use cases that do not involve many
unseen entities and for which a decent amount of training data is
available, PLM-based matchers are a suitable option which does
not require much compute due to the smaller size of the models.
For use cases that involve a relevant amount of unseen entities
and for which it is costly to gather and maintain a decent size
training set, LLM-based matchers should be preferred due to their
high zero-shot performance and ability to generalize to unseen
entities. If using the best performing hosted LLMs is not an option
due to their high usage costs, fine-tuning a cheaper hosted model
is an alternative that can deliver a similar F1 performance. If
using hosted models is no option due to privacy concerns, using
an open-source LLM on local hardware can be an alternative
given that task-specific training data or domain-specificmatching
rules are available. Still, this approach is expected to result in
a slightly lower F1 performance. We demonstrated that GPT4
can generate structured explanations of matching decisions and
that we can automatically aggregate these explanations to gain
global insights into the models decisions. Finally, we have shown
that GPT4-turbo can perform the creative task of automatically
deriving error classes from the explanations. This automation
of the error analysis can save data engineers time and can point
them at issues that they might have otherwise overlooked.
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