
RASP: Robust Mining of Frequent Temporal Sequential
Patterns under Temporal Variations

Hyunjin Choo
KAIST

Seoul, South Korea
choo@kaist.ac.kr

Minho Eom
KAIST

Daejeon, South Korea
djaalsgh159@kaist.ac.kr

Gyuri Kim
KAIST

Daejeon, South Korea
gyuri2102@kaist.ac.kr

Young-Gyu Yoon
KAIST

Daejeon, South Korea
ygyoon@kaist.ac.kr

Kijung Shin
KAIST

Seoul, South Korea
kijungs@kaist.ac.kr

ABSTRACT
A temporal sequential pattern (TSP) is defined as an ordered
collection of events and the corresponding time gaps between
consecutive event pairs. When analyzing a sequence of tempo-
ral events, identifying frequent TSPs is essential with applica-
tions across diverse domains, including neuronal activity analysis,
stock trading, and transportation management systems. However,
existing mining techniques are often sensitive to hyperparameter
settings and may not be scalable for large datasets. Moreover, in
practical scenarios, the time gaps in different occurrences of the
same TSP may vary to some extent, posing a challenge to the
accurate detection of TSPs.

In this work, we propose RASP, a robust and resource-adaptive
method for mining frequent TSPs. RASP incorporates (a) dupli-
cated matching between TSPs and instances, based on a novel
concept of relaxed TSP, for robustness against variations in time
gaps, (b) resource-adaptive automatic hyperparameter tuning for
enhancing usability, and (c) a tree-based concise data structure
for achieving space efficiency. In our experiments, RASP outper-
forms four state-of-the-art competitors, offering up to 854× faster
speed with similar accuracy and up to 342% greater accuracy at
similar speeds.

1 INTRODUCTION
In recent years, there has been growing interest in the analysis
of a temporal event sequence, which is a sequence of events with
occurrence times. Analyzing such sequences, which originate
from diverse domains spanning from user behavior in online
platforms [16, 44] to neuronal spiking activity in the nervous
system [41, 51], allows us to capture the underlying temporal
dependencies and dynamics among the events.

In the analysis of temporal event sequences, identifying fre-
quently occurring temporal sequential patterns has been widely
employed as a crucial step. A temporal sequential pattern (TSP) is
defined as an ordered collection of events and the correspond-
ing time gaps between consecutive event pairs, and identifying
frequent TSPs has been proven highly valuable in various appli-
cations, including:
• Neuronal Activity Analysis: Functional groups of neurons
associated with specific tasks often exhibit temporally corre-
lated activities [23, 26, 39, 40, 46, 48]. Mining frequent TSPs in
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a sequence of neuron activation events facilitates the discov-
ery of these groups, revealing how neurons are functionally
connected.
• Stock Trading: Mining frequent TSPs in a sequence of stock
price changes reveals temporal dependencies among multiple
stocks [36], aiding investors in improving trading strategies.
• Transportation Management: Given a sequence of traffic-
congestion events at crossroads [29, 54], mining frequent TSPs
helps predict and subsequently alleviate future congestion.

Due to their wide applicability, various methods have been
developed for mining frequent TSPs. CAD [40] was developed to
detect functionally connected neurons with arbitrary lags and
multiple time scales in neuronal recordings. SPADE [39, 46] was
designed to detect spatio-temporal spike patterns in spike train
data. MIPER [4] was applied to stock and transportation data.

However, these methods share common limitations, including:

• Lack of Handling Temporal Variatons: They do not explic-
itly address temporal variations, which means that the time
gaps in a pattern occurrence might not be consistent across
various instances. Such variations can stem from various fac-
tors, such as measurement errors or inherent system variability,
challenging the accurate extraction of frequent TSPs [13].
• Sensitivity to Hyperparameters: They are often sensitive
to the hyperparameters, such as a predefined threshold [4],
resulting in an excessive or insufficient number of TSPs.
• High Computational and Space Cost: These methods in-
cur substantial computational and storage costs, especially for
handling temporal variations. This is because accurately iden-
tifying statistically significant TSPs requires the processing of
large-scale datasets that span extended time periods.

In this work, we propose RASP, an algorithm for Robust
and resource-Adaptive mining of temporal Sequential Patterns.
Specifically, RASP is an approximate algorithm tailored for tem-
poral sequences with temporal variations. RASP is built upon the
following ideas, each devised to address the above limitations:

• Relaxed TSPs and Duplicated Pattern Matching: For ro-
bustness against temporal variations, RASP enables multiple
TSPs to share the same instance by using relaxed TSPs, which
permit a predefined level of time gap deviation.
• Resource-Adaptive Automatic Hyperparameter Tuning:
RASP gradually increases the sizes of TSPs to detect larger
TSPs. In order to maintain a proper number of TSPs of each
size, RASP adaptively adjusts thresholds based on the avail-
able resources, enhancing its usability, without requiring a
predefined threshold.
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• Tree-based Concise Data Structure: RASP employs a tree-
based compact data structure to efficiently manage the increas-
ing number of TSPs, improving space efficiency.

Our experiments conducted under various scenarios show the
effectiveness of RASP, summarized as follows:

• Accuracy and Robustness: As depicted in Fig. 1, RASP ex-
hibits a 59% increase in mining accuracy compared to similarly
fast competitors under a condition without temporal variations.
The margin increases to 342% under temporal variations.
• Speed: In the two scenarios in Fig. 1, RASP is 854× and 62×
faster, with better accuracy, than the most accurate competitor.
• Data Requirement: RASP achieves comparable accuracy with
data spanning much shorter time periods than competitors.
Collecting data over extended periods is often costly.

Reproducibility. We make the source code and datasets used
in the paper available at https://github.com/jin-choo/RASP.

The rest of the paper is organized as follows. In Sect. 2, we re-
view related work. In Sect. 3, we give preliminaries and a problem
definition. In Sect. 4, we present our proposed method. In Sect. 5,
we review our experiments. In Sect. 6, we make conclusions.

2 RELATEDWORK
In this section, we provide a review of related studies.
Co-occurrence Pattern Mining. Frequent pattern mining [1]
involves identifying sets of events (e.g., purchases of certain
items) that frequently co-occur in datasets, typically based on
a minimum support threshold. The Apriori algorithm [3] is a
pioneering method that discovers frequent patterns using effi-
cient candidate search based on the anti-monotonicity property.
Subsequent works have optimized the mining process for space
[10, 37] and speed [42, 47], through hashing [10, 37], partition-
ing [42], and sampling [47]. Notably, FP-Growth [22] enhances
efficiency by eliminating the need for explicit candidate genera-
tion, and LCM [49] focuses on patterns with specific properties
(e.g., maximality). Refer to surveys [5, 12, 14, 20] for more meth-
ods. However, because the order of events is ignored, sequential
relationships cannot be captured.
Non-Temporal Sequential Pattern Mining. Sequential pattern
mining [2] focuses on finding frequent patterns of events occur-
ring in a specific order (a.k.a., episodes) in a given sequence of
events. Algorithms for sequential pattern mining include GSP
[45], which extends the A-priori algorithm, and PrefixSpan [21],
which employs a pattern-growth approach. SPADE [53] (distinct
from SPADE [39, 48] discussed later) further optimizes the min-
ing process by employing vertical database formats, and ClaSP
[15] focuses on closed patterns. SPMF [11], an open-source li-
brary, offers a wide range of algorithms for sequential (and also
co-occurrence) pattern mining. These algorithms primarily focus
on the sequence of events, but they do not account for the time
intervals between events, which are crucial in many applications.
Temporal Sequential Pattern Mining.While a non-temporal
sequential pattern specifies only the order between events, a
temporal sequence pattern (TSP) specifies the time gaps between
consecutive event pairs within the pattern. The identification
of frequent TSPs holds significant utility across diverse applica-
tions (refer to Sect. 1 for examples), and as a result, a number of
algorithms have emerged for their mining [21, 31, 50, 52].

Russo and Durstewitz [40] developed Cell Assembly Detec-
tion (CAD) for detecting functionally connected neurons with
arbitrary lags and multiple time scales in neuronal recordings.
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Figure 1: Our proposed RASP gives a significantly better
trade-off between accuracy (spec., NDCG@5) and speed
than state-of-the-art methods. See Sect. 5.4 for details.

SPADE (Spike PAttern Detection and Evaluation) [39, 48] is de-
signed to detect spatio-temporal spike patterns in spike train
data. SPADE employs a frequent itemset mining algorithm to
extract spike patterns and assesses their statistical significance
based on null distribution estimation. Ao et al. [4] introduced
Mining Precise-positioning Episode Rules (MIPER), a tree-based
approach used for stock and transportation analysis.

However, while these methods aim to identify frequent TSPs,
they commonly suffer from three limitations outlined in Sect. 1,
which we aim to overcome. Especially, they do not explicitly
consider the temporal variations in the input temporal sequences.
Time Constraints for TSP Mining. Previous works in tempo-
ral sequential pattern mining have employed time ranges for the
time gaps between consecutive events within a pattern, primar-
ily for constraints. For example, gap-constrained pattern mining
[7, 9, 18, 19, 28] extends sequential pattern mining by targeting
sequential pattern instances with time gaps that adhere to spe-
cific time-range constraints. To identify all patterns satisfying
different constraints, however, these methods are required to be
performed multiple times with all potential constraints [33].

In the context of TSP mining, the following ideas have been
used: (a) constraining the time span of each TSP instance to a
predefined time range [17, 24, 25, 35], (b) constraining each time
gap to fall within a predefined set of disjoint time ranges [30], for
example by segmenting timestamps into disjoint ranges [40, 48].

Our proposed method, RASP, also incorporates time ranges
for time gaps, but with duplicated matching between TSPs and
instances based on a novel concept of relaxed TSP. This novel
strategy enables an instance to be matched with multiple TSPs,
enhancing robustness against temporal variations.

3 PRELIMINARY AND PROBLEM
DEFINITION

In this section, we introduce some basic concepts and notations
frequently used throughout the paper, which are also summarized
in Table 1. Then, we present the problem that we aim to address.

3.1 Preliminary Concepts
Temporal Event Sequences. Let E be a set of events, and let
(𝐸, 𝑡) be an instance of an event 𝐸 ∈ E (e.g., a spike of a specific
neuron) that occurs at the time 𝑡 ∈ N0. A temporal event sequence
is defined as a sequence of event instances ordered by their occur-
rence time, denoted as 𝑠 =

〈(𝐸1, 𝑡1), (𝐸2, 𝑡2), · · · , (𝐸𝑛, 𝑡𝑛)
〉
, where

𝐸𝑖 ∈ E, 1 ≤ ∀𝑖 ≤ 𝑛, and 𝑡1 ≤ 𝑡2 ≤ · · · ≤ 𝑡𝑛 .
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(a) A temporal event sequence
and a TSP
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(b) Windows of time span 𝐿 = 4
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Figure 2: Toy examples of a temporal event sequence, a
temporal sequential pattern (TSP), and windows.

Example 1. Fig. 2(a) shows a temporal event sequence 𝑠 =〈(𝐶, 0), (𝐵, 1), (𝐶, 3), (𝐸, 3), (𝐵, 4), (𝐷, 4), (𝐸, 4), (𝐴, 5), (𝐸, 6), (𝐹, 6),
(𝐴, 7), (𝐵, 7), (𝐷, 7)〉 for an event set E = {𝐴, 𝐵,𝐶, 𝐷, 𝐸, 𝐹 }.

Temporal Sequential Patterns. A temporal sequential pattern
(TSP) 𝛼 = (〈𝐸1, 𝐸2, · · · , 𝐸𝑙

〉
,
〈
Δ𝑡1,Δ𝑡2, · · · ,Δ𝑡𝑙−1

〉) of size 𝑙 is
defined as a pair of ordered sets of (a) distinct events1 and (b)
non-negative time gaps between two consecutive events. That
is, 𝐸𝑖 ∈ E, 1 ≤ ∀𝑖 ≤ 𝑙 , 𝐸𝑖 ≠ 𝐸 𝑗 , 1 ≤ ∀𝑖 ≠ 𝑗 ≤ 𝑙 , and Δ𝑡𝑖 ∈ N0, 1 ≤
∀𝑖 ≤ 𝑙 − 1.
Occurrences, Instances, and Support.A subsequence 𝑠′ = ⟨(𝐸′1,
𝑡 ′1), (𝐸′2, 𝑡 ′2), · · · , (𝐸′𝑛, 𝑡 ′𝑛)⟩ of 𝑠 is an occurrence (or instance) of 𝛼 if
𝐸′𝑖 = 𝐸𝑖 , 1 ≤ ∀𝑖 ≤ 𝑙 , and 𝑡 ′𝑖+1 − 𝑡 ′𝑖 = Δ𝑡𝑖 , 1 ≤ ∀𝑖 ≤ 𝑙 − 1, implying:

𝑡 ′𝑖+1 − 𝑡 ′1 =
∑︁𝑖

𝑗=1 Δ𝑡 𝑗 , 1 ≤ ∀𝑖 ≤ 𝑙 − 1. (1)

The number of occurrences of 𝛼 is referred to as the support of 𝛼
and denoted as 𝑠𝑢𝑝 (𝛼).
Example 2. Consider a TSP 𝛼 = (〈𝐶, 𝐵, 𝐸〉, 〈1, 2〉), which
is highlighted in Fig. 2(a). The occurrences of 𝛼 are
⟨(𝐶, 0), (𝐵, 1), (𝐸, 3)⟩ and ⟨(𝐶, 3), (𝐵, 4), (𝐸, 6)⟩, and the sup-
port of 𝛼 is 𝑠𝑢𝑝 (𝛼) = 2.

Pattern Frequency Measures. The frequency, or significance,
of a pattern can be assessed by comparing its measured support
with the expected support under the assumption of independent
event occurrences. The expected support of a pattern 𝛼 , denoted
as 𝑠𝑢𝑝𝑒𝑥𝑝 (𝛼), over a given temporal event sequence 𝑠 , represents
the anticipated value of the support of 𝛼 . It can be calculated by
considering the frequency of each event 𝐸𝑖 , 1 ≤ ∀𝑖 ≤ 𝑙 in 𝛼 and
the time span 𝑇 = 𝑡𝑛 − 𝑡1 + 1 of 𝑠:

𝑠𝑢𝑝𝑒𝑥𝑝 (𝛼) = 𝑇 ×
∏𝑙

𝑖=1
𝑠𝑢𝑝 (𝐸𝑖 )

𝑇
=

∏𝑙
𝑖=1 𝑠𝑢𝑝 (𝐸𝑖 )
𝑇 𝑙−1 . (2)

In addition to support, we introduce two more frequency mea-
sures for a pattern: (a) leverage [38]: the difference between a
pattern’s measured and expected support, and (b) lift [6]: the
ratio of a pattern’s measured support to its expected support.
The leverage of 𝛼 is defined as 𝑙𝑒𝑣 (𝛼) = 𝑠𝑢𝑝 (𝛼) − 𝑠𝑢𝑝𝑒𝑥𝑝 (𝛼);and
the lift of 𝛼 is defined as 𝑙𝑖 𝑓 𝑡 (𝛼) = 𝑠𝑢𝑝 (𝛼)/𝑠𝑢𝑝𝑒𝑥𝑝 (𝛼).

1While we focus on TSPs with distinct events for clarity of presentation, our con-
cepts and algorithms can be easily extended to handle duplicates, as discussed in
Section B of the online appendix [8].

Table 1: Frequently-used notations and their definitions.

𝑠 Temporal event sequence with temporal variations
𝑙 Target size of a TSP
𝑘 Target number of TSPs

𝛿 Maximum time gap between two consecutive events
𝐿 Maximum time span of a TSP
𝐼 Tolerance against temporal variations

𝑊 Mapping between pairs of (event, relative occurrence time) and their WIDs
𝐹1 Mapping between events and their WIDs
𝑚𝑖 Maximum number of TSPs of size 𝑖
𝐹𝑖 Mapping between frequent TSPs of size 𝑖 and (WIDs, frequency) pairs

We use the notation 𝑓 𝑟𝑒𝑞 to represent a frequency measure,
encompassing support, leverage, or lift. The frequency value of
each TSP 𝛼 in sequence 𝑠 is denoted as 𝑓 𝑟𝑒𝑞𝛼 .

Example 3. For the TSP 𝛼 = (〈𝐶, 𝐵, 𝐸〉, 〈1, 2〉) in Fig. 2(a),
𝑠𝑢𝑝𝑒𝑥𝑝 (𝛼) = 8 · 2

8 · 3
8 · 3

8 ≈ 0.28, 𝑙𝑒𝑣 (𝛼) ≈ 1.72, and 𝑙𝑖 𝑓 𝑡 (𝛼) ≈
7.11.

3.2 Problem Definition
Below, we define the concept of temporal variations and the
problem of robust TSP mining.
Temporal Variations. We consider a ground-truth sequence
𝑠 =

〈(𝐸1, 𝑡1), (𝐸2, 𝑡2), · · · , (𝐸𝑛, 𝑡𝑛)
〉
without temporal variations.

Temporal variations in 𝑠 result in the input temporal event se-
quence 𝑠 =

〈(𝐸1, 𝑡1), (𝐸2, 𝑡2), · · · , (𝐸𝑛, 𝑡𝑛)
〉
that is close but not

identical to 𝑠 , i.e., there exists a one-to-onemapping 𝑓 : {1, · · · , 𝑛}
→ {1, · · · , 𝑛} where 𝐸𝑓 (𝑖 ) = 𝐸𝑖 and 𝑡𝑓 (𝑖 ) ≈ 𝑡𝑖 , 1 ≤ ∀𝑖 ≤ 𝑛. With-
out temporal variations, 𝑠 = 𝑠 holds.
Problem Definition: Robust Mining of TSPs.

• Given:
(1) a temporal event sequence 𝑠 with temporal variations,
(2) the target size 𝑙 of each TSP,
(3) the target number 𝑘 of TSPs,
• Find: 𝑘-most frequent TSPs of size 𝑙 on the ground-truth
temporal event sequence 𝑠 (𝑠 is unobservable and without
temporal variations),
• Constraints:
(1) max time gap 𝛿 between consecutive events,
(2) max time span 𝐿 of a TSP.

In our problem definition, we assume that the temporal events
in a TSP are not too widely distributed over time, and hence
we impose two constraints on TSPs: the max time gap 𝛿 be-
tween any two consecutive events within a TSP (i.e., Δ𝑡𝑖 =
𝑡𝑖+1 − 𝑡𝑖 ≤ 𝛿, 1 ≤ ∀𝑖 ≤ 𝑙 − 1) and the max time span 𝐿 of a
TSP (i.e.,

∑𝑙−1
𝑖=1 Δ𝑡𝑖 = 𝑡𝑙 − 𝑡1 ≤ 𝐿). These constraints are used

to target TSPs within a reasonable time span, which are of in-
terest in many applications. Moreover, these constraints can be
specified based on the characteristics of datasets.

Because the ground-truth temporal event sequence 𝑠 with-
out temporal variations is unobservable, achieving precise and
exhaustive identification of TSPs is exceptionally challenging.
Given this difficulty, previous works have concentrated on design-
ing approximate methods [4, 40, 48], a pursuit we also undertake.

4 PROPOSED METHOD
In this section, we present our proposed method, RASP (Robust
and resource-Adaptive mining of temporal Sequential Patterns).
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Algorithm 1: Overview of RASP
Input: (1) 𝑠 : a temporal event sequence,
(2) 𝑙 : the target size of each TSP,
(3) 𝑘 : the target number of TSPs,
(4) 𝐿: max time span of a TSP,
(5) 𝛿 : max time gap between consecutive events,
(6) 𝐼 : tolerance against temporal variations
Output: top-𝑘 frequent TSPs of size 𝑙

1 preprocess 𝑠 and compute𝑊 and 𝐹1 // Alg. 2

// 𝑊 : mapping between (event, relative occurrence
time) pairs and their WIDs, and 𝐹1: mapping between
events and their WIDs

2 for 𝑖 ← 2 to 𝑙 − 1 do
3 𝑚𝑖 ← max number of TSPs of size 𝑖 // Eq. (4)
4 𝐹𝑖 ←𝑚𝑖 most frequent TSPs of size 𝑖 from𝑊 & 𝐹𝑖−1

// Alg. 3 and 4, 𝐹𝑖: mapping between frequent

TSPs of size 𝑖 and (WIDs, frequency) pairs

5 remove 𝐹𝑖−1
6 𝐹𝑙 ← 𝑘 most frequent TSPs of size 𝑙 from𝑊 & 𝐹𝑙−1
7 return 𝐹𝑙

Algorithm 2: Preprocessing
Input: (1) 𝑠 : a temporal event sequence,
(2) 𝐿: max time span of a TSP
Output: (1)𝑊 : mapping between (event, relative occurrence

time) pairs and their WIDs,
(2) 𝐹1: mapping between events and their WIDs

1 𝑊 ← ∅, 𝐹1 ← ∅,𝑇 ← time span of 𝑠
2 for 𝑡 ← 0, · · · ,𝑇 − 𝐿 do
3 foreach (𝐸, 𝑡 ) ∈ 𝑠 do
4 if 𝐸 ∈ 𝐹1 .𝑘𝑒𝑦𝑠 ( ) then
5 𝐹1 [𝐸 ] ← 𝐹1 [𝐸 ] ∪ {𝑡 }
6 else
7 𝐹1 [𝐸 ] ← {𝑡 }
8 𝑤𝑡 ← {(𝐸′, 𝑡 ′ ) : (𝐸′, 𝑡 + 𝑡 ′ ) ∈ 𝑠, 0 ≤ 𝑡 ′ < 𝐿}
9 foreach (𝐸′, 𝑡 ′ ) ∈ 𝑤𝑡 do
10 if (𝐸′, 𝑡 ′ ) ∈𝑊 .𝑘𝑒𝑦𝑠 ( ) then
11 𝑊 [ (𝐸′, 𝑡 ′ ) ] ←𝑊 [ (𝐸′, 𝑡 ′ ) ] ∪ {𝑡 }
12 else
13 𝑊 [ (𝐸′, 𝑡 ′ ) ] ← {𝑡 }
14 return𝑊 , 𝐹1

4.1 Overview (Alg. 1)
We provide an overview of RASP in Alg. 1. Given a temporal
event sequence 𝑠 , RASP returns the 𝑘 most frequent TSPs (in
terms of a frequency measure 𝑓 𝑟𝑒𝑞) of size 𝑙 . Note that the values
of 𝑘 and 𝑙 are defined in the problem statement (refer to Sect. 3.2);
these are not hyperparameters of the proposed method. RASP
first preprocesses 𝑠 to obtain𝑊 (defined in Sect. 4.2). Then, it
identifies frequent TSPs of each size by increasing the size from
1 to 𝑙 one by one. RASP determines the maximum number𝑚𝑖

of TSPs of each size 𝑖 in a resource-adaptive manner (described
in Sect. 4.4). Below, we first present the preprocessing step and
then describe three key ideas behind RASP: (a) relaxed TSPs and
duplicated pattern matching, (b) resource-adaptive automatic hy-
perparameter tuning, and (c) a tree-based concise data structure,
as briefly introduced in Sect. 1.

4.2 Preprocessing (Alg. 2)
We outline the preprocessing step of RASP in Alg. 2, where RASP
transforms the input temporal event sequence 𝑠 into mappings

𝑊 and 𝐹1. These mappings facilitate the efficient growth of TSPs,
as discussed in the following subsections.
Concepts: Windows and WIDs. Imagine a ‘window’ of time
span 𝐿 is sliding through the input temporal event sequence
(see Fig. 2(b) for an example). Within this window, each event
instance is represented as a pair (𝐸, 𝑡 ′), where 𝐸 ∈ E denotes
an event and 0 ≤ 𝑡 ′ < 𝐿 indicates its relative occurrence time
within the window. The set of pairs indicating the event instances
within the window starting at time 𝑡 is denoted as𝑤𝑡 = {(𝐸, 𝑡 ′) :
(𝐸, 𝑡 + 𝑡 ′) ∈ 𝑠, 𝐸 ∈ E, 0 ≤ 𝑡 ′ < 𝐿}. We refer to the starting time
of a window as the window ID (WID).
Example 4. In Fig. 2, 𝑤0 = {(𝐶, 0), (𝐵, 1), (𝐶, 3), (𝐸, 3)} and
𝑤3 = {(𝐶, 0), (𝐸, 0), (𝐵, 1), (𝐷, 1), (𝐸, 1), (𝐴, 2), (𝐸, 3), (𝐹, 3)}.
Note that the sequence

〈(𝐶, 0), (𝐵, 1), (𝐸, 3)〉, which is high-
lighted in Figs. 2(a), (c)-(d), corresponds to the TSP 𝛼 =
(〈𝐶, 𝐵, 𝐸〉, 〈1, 2〉).

Computing𝑊 (Lines 8-13 of Alg. 2). In lines 8-13, RASP con-
structs the mapping𝑊 between each (event, relative occurrence
time) pair and the WIDs of the windows that contain the pair.
Note that only the windows where at least one event occurs at its
beginning are considered. Our preprocessing scheme, technically,
extends [3], designed for non-sequential pattern mining.

Example 5. In Fig. 2,𝑊 [(𝐶, 0)] = {0, 3},𝑊 [(𝐵, 1)] = {0, 3, 6},
and𝑊 [(𝐸, 3)] = {0, 1, 3}. Note that𝑊 [(𝐶, 0)] ∩𝑊 [(𝐵, 1)] ∩
𝑊 [(𝐸, 3)] = {0, 3}, which are theWIDs of the windows where
the TSP 𝛼 = (〈𝐶, 𝐵, 𝐸〉, 〈1, 2〉) starts occurring at their begin-
ning (i.e.,𝑤0 and𝑤3).

Computing 𝐹1 (Lines 3-7 of Alg. 2). In lines 3-7, we construct
themapping 𝐹1, which is themapping between each event and the
WIDs of the windows where the event occurs at their beginning.

4.3 Relaxed TSPs and Duplicated Pattern
Matching (Algs. 3 and 4)

Key Idea. To improve robustness against temporal variations,
RASP allows for a predefined level of time gap deviations and
also permits an instance to be matched with multiple TSPs.

Specifically, to address temporal variations in the time gaps
in a TSP (defined in Sect. 3.1), we introduce the concept of a
relaxed TSP. Based on this concept, RASP matches each instance
with potentially multiple TSPs and eventually grows the size of
frequent TSPs, as described in Algs. 3 and 4.
Concepts: Relaxed TSPs. Let ΔT = {Δ𝑇0,Δ𝑇1, · · · } be the set
of all possible relaxed time gaps. A relaxed TSP 𝛼 = (〈𝐸1, 𝐸2, · · · , 𝐸𝑙

〉
,〈

Δ𝑇 1,Δ𝑇 2, · · · ,Δ𝑇 𝑙−1
〉) of size 𝑙 is defined as a pair of ordered

sets of (a) distinct events and (b) relaxed time intervals. That is,
𝐸𝑖 ∈ E, 1 ≤ ∀𝑖 ≤ 𝑙 , 𝐸𝑖 ≠ 𝐸 𝑗 , 1 ≤ ∀𝑖 ≠ 𝑗 ≤ 𝑙 , and Δ𝑇 𝑖 ∈ ΔT , 1 ≤
∀𝑖 ≤ 𝑙 − 1. A subsequence 𝑠′ = ⟨(𝐸′1, 𝑡 ′1), (𝐸′2, 𝑡 ′2), · · · , (𝐸′𝑛, 𝑡 ′𝑛)⟩ of
𝑠 is an occurrence (or instance) of 𝛼 if 𝐸′𝑖 = 𝐸𝑖 , 1 ≤ ∀𝑖 ≤ 𝑙 , and

∑︁𝑖

𝑗=1 Δ𝑇 𝑗 − 𝐼 ≤ 𝑡 ′𝑖+1 − 𝑡 ′1 <
∑︁𝑖

𝑗=1 Δ𝑇 𝑗 + 𝐼 , 1 ≤ ∀𝑖 ≤ 𝑙 − 1, (3)

where 𝐼 is a constant for tolerance against temporal variations.
Note that the conditions in Eq. (3) relax that in Eq. (1), which is
used for TSPs. Throughout the paper, we set Δ𝑇𝑖 = 𝑖 × 𝐼 , ∀𝑖 ∈ N⊬.
The notions of support and other frequency measures are trivially
extended to relaxed TSPs. Note that the same subsequence can
be an occurrence of multiple relaxed TSPs.
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Algorithm 3:Mining Frequent TSP (Size 2)
Input: (1)𝑊 : mapping between (event, relative occurrence time)

pairs and their WIDs,
(2) 𝐹1: mapping between events and their WIDs,
(3)𝑚2: max number of TSPs of size 2,
(4) 𝛿 : max time gap between consecutive events,
(5) 𝐼 : tolerance against temporal variations
Output: 𝐹2: mapping between frequent TSPs of size 2 and

(WIDs, frequency) pairs
1 𝑛 ← 0; 𝜃 ← 2 // 𝑛: current count, 𝜃: threshold

2 𝐹2 ← ∅
3 foreach 𝐸1 ∈ 𝐹1 .𝑘𝑒𝑦𝑠 ( ) do
4 foreach 𝐸2 ∈ E \ {𝐸1} do
5 for 𝑡 ← 0 to ⌊𝛿/𝐼 ⌋ do
6 𝛼 ← (〈𝐸1, 𝐸2

〉
,
〈
𝑡𝐼
〉) // 𝑡𝐼 = Δ𝑇𝑡 (Sect. 4.3)

7 𝑊𝛼 ← 𝐹1 [𝐸1 ] ∩ (∪𝐼−1
𝑤=−𝐼𝑊 [ (𝐸2,min(𝑡𝐼 + 𝑤,𝛿 ) ) ] )

8 compute 𝑓 𝑟𝑒𝑞𝛼 from𝑊𝛼

9 if 𝑓 𝑟𝑒𝑞𝛼 ≥ 𝜃 then
10 𝐹2 [𝛼 ] ← (𝑊𝛼 , 𝑓 𝑟𝑒𝑞𝛼 )
11 increment 𝑛
12 if 𝑛 >𝑚2 then // Sect. 4.4
13 increment 𝜃 by a predefined gap
14 prune TSPs in 𝐹2 whose frequency < 𝜃

15 𝑛 ← 𝑛−number of pruned TSPs
16 return 𝐹2

Example 6. In Fig. 2, if 𝐼 = 2, a subsequence
⟨(𝐶, 0), (𝐵, 1), (𝐸, 3)⟩ is an occurrence of the following relaxed
TSPs: (〈𝐶, 𝐵, 𝐸〉, 〈0, 2〉), (〈𝐶, 𝐵, 𝐸〉, 〈2, 2〉), (〈𝐶, 𝐵, 𝐸〉, 〈0, 4〉),
and (〈𝐶, 𝐵, 𝐸〉, 〈2, 4〉).

Mining Frequent TSPs of Size 2 (Alg. 3).Alg. 3 describes how
RASP discovers frequent TSPs of size 2. In the first part (lines 4-7),
RASP attempts to expand each TSP of size 1 (i.e., an event in-
stance) in 𝐹1 by appending an event instance that satisfies Eq. (3)
and the constraints specified in our problem definition. As shown
in line 4, the search for such an event instance is performed using
only𝑊 and 𝐹1. From them, the WIDs of the windows at the
beginning of which the resulting TSP 𝛼 of size 2 starts occurring
(denoted by𝑊𝛼 ) can be obtained through several set operations.

Example 7. In Fig. 2, if 𝐼 = 2, for a relaxed TSP 𝛼 =
(〈𝐶, 𝐵〉, 〈0〉),𝑊𝛼 = 𝐹1 [𝐶] ∩ (𝑊 [(𝐵, 0)] ∪𝑊 [(𝐵, 1)]) = {0, 3}.
For 𝛼 = (〈𝐶, 𝐵〉, 〈2〉),𝑊𝛼 = 𝐹1 [𝐶] ∩ (𝑊 [(𝐵, 0)] ∪𝑊 [(𝐵, 1)] ∪
𝑊 [(𝐵, 2)] ∪𝑊 [(𝐵, 3)]) = {0, 3}.
In the remaining part (lines 8-15), RASP retains at most𝑚2

most frequent TSPs of size 2. To accomplish this, it incrementally
raises the threshold 𝜃 . The process for determining the budget𝑚2
is presented in Sect. 4.4. As the output, the mapping 𝐹2 between
frequent TSPs of size 2 and (WIDs, frequency) pairs is returned.
Mining Frequent TSPs of Size i (> 2) (Alg. 4). Alg. 4 depicts
how RASP discovers frequent TSPs of a larger size. It follows the
same structure as Algorithm 3: (a) growing a TSP of size 𝑖 − 1 to 𝑖
while satisfying both Eq. (3) and the constraints (lines 3-12) and
(b) retaining at most𝑚𝑖 most frequent TSPs of size 𝑖 by gradually
raising the threshold (lines 13-20). Note that 𝐹𝑖 is computed from
𝐹𝑖−1 and𝑊 without accessing input temporal event sequence 𝑠 .

Algorithm 4:Mining Frequent TSP (size 𝑖)
Input: (1)𝑊 : mapping between (event, relative occurrence time)

pairs and their WIDs,
(2) 𝐹𝑖−1: mapping between frequent TSPs of size (𝑖 − 1) and
(WIDs, frequency) pairs,
(3)𝑚𝑖 : max number of TSPs of size 𝑖 ,
(4) 𝛿 : max time gap between consecutive events,
(5) 𝐿: max time span of a TSP,
(6) 𝐼 : tolerance against temporal variations
Output: 𝐹𝑖 : mapping between frequent TSPs of size 𝑖 and (WIDs,

frequency) pairs
1 𝑛 ← 0; 𝜃 ← 2 // 𝑛: current count, 𝜃: threshold

2 𝐹𝑖 ← ∅
3 foreach 𝛼 ′ ∈ 𝐹𝑖−1 .𝑘𝑒𝑦𝑠 ( ) do
4 (〈𝐸1, · · · , 𝐸𝑖−1

〉
,
〈
Δ𝑡1, · · · ,Δ𝑡𝑖−2

〉) ← 𝛼 ′

5 (𝑊𝛼 ′ , 𝑓 𝑟𝑒𝑞𝛼 ′ ) ← 𝐹𝑖−1 [𝛼 ′ ]
6 foreach 𝐸𝑖 ∈ E \ {𝐸1, · · · , 𝐸𝑖−1} do
7 for 𝑡 ← 0 to ( ⌊min(𝛿, 𝐿 − ∑𝑖−2

𝑗=1 Δ𝑡 𝑗 )/𝐼 ⌋ ) do
8 Δ𝑡𝑖−1 = 𝑡𝐼 ; 𝑡𝑖 =

∑𝑖−1
𝑗=1 Δ𝑡 𝑗

9 𝛼 ′′ ← (〈𝐸2, · · · , 𝐸𝑖
〉
,
〈
Δ𝑡2, · · · ,Δ𝑡𝑖−1

〉)
10 if 𝛼 ′′ ∈ 𝐹𝑖−1 .𝑘𝑒𝑦𝑠 ( ) then
11 𝛼 ← (〈𝐸1, · · · , 𝐸𝑖

〉
,
〈
Δ𝑡1, · · · ,Δ𝑡𝑖−1

〉)
12 𝑊𝛼 ←

𝑊𝛼 ′ ∩ (∪𝐼−1
𝑤=−𝐼𝑊 [ (𝐸𝑖 ,min(𝑡𝑖 + 𝑤,𝛿 ) ) ] )

13 compute 𝑓 𝑟𝑒𝑞𝛼 from𝑊𝛼

14 if 𝑓 𝑟𝑒𝑞𝛼 ≥ 𝜃 then
15 𝐹𝑖 [𝛼 ] ← (𝑊𝛼 , 𝑓 𝑟𝑒𝑞𝛼 )
16 increment 𝑛
17 if 𝑛 >𝑚𝑖 then // Sect. 4.4
18 increment 𝜃 by a predefined gap
19 prune TSPs in 𝐹𝑖 whose frequency < 𝜃

20 𝑛 ← 𝑛−number of pruned TSPs
21 return 𝐹𝑖

4.4 Resource-Adaptive Automatic
Hyperparameter Tuning

Key Idea. To maintain a proper number of frequent TSPs,
RASP automatically and adaptively adjusts frequency thresh-
olds based on the available resources, improving its usability.

To determine the number of frequent TSPs of each size to
retain, existing methods rely on hyperparameters, such as us-
ing a predefined threshold [4], a predetermined condition [48],
or conducting statistical testing with a predefined significance
level [40]. They are often sensitive to hyperparameters, resulting
in an excessive number of TSPs, which causes out-of-memory
problems, or an insufficient number of TSPs. Finding suitable
hyperparameter values, which vary across datasets, necessitates
extensive trial and error.

To retain a sufficient number of TSPs but without exceeding
storage capacity, RASP adaptively adjusts the threshold 𝜃 , as
described in the previous subsection (lines 8-15 of Alg. 3 and
lines 13-20 of Alg. 4) and illustrated below. This eliminates the
need for extensive trial and error, enabling RASP to be effective
for various datasets.
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𝑪,𝟎 : 𝟎,𝟑 ,𝟐

𝑪,𝟎 : 𝟎,𝟑 ,𝟐

𝑩,𝟏 : 𝟎,𝟑 ,𝟐 𝑬,𝟑 : 𝟎,𝟑 ,𝟐𝑬,𝟎 : 𝟑 ,𝟏 𝑫,𝟏 : 𝟑 ,𝟏 𝑬,𝟏 : 𝟑 ,𝟏 𝑨,𝟐 : 𝟑 ,𝟏 𝑭,𝟑 : 𝟑 ,𝟏

𝑪,𝟎

𝑩,𝟏 : 𝟎,𝟑 ,𝟐 𝑬,𝟑 : 𝟎,𝟑 ,𝟐

𝑬,𝟑 : 𝟎,𝟑 ,𝟐

Figure 3: Tree representations of TSPs that start with an event𝐶 for the example in Fig. 2, when the threshold 𝜃 is 2. Pruned
elements are marked in red strikethrough. The figure displays the trees after computing 𝐹1, 𝐹2, and 𝐹3 (from left to right).

- Initiate a search of TSPs of size 𝟐
with a threshold of 𝜽 = 𝟏

- 𝐶, 𝐸 , 0 w/ support 1 was found

- 𝐶, 𝐵 , 1 w/ support 2 was found

- 𝐶, 𝐷 , 1 w/ support 1 was found

- The budget 𝑚2 = 2 was exceeded

- The search was halted

- Discard all TSPs w/ support ≤ 𝜃 = 1

- Resume the search of TSPs of size 𝟐
With a threshold of 𝜽 = 𝟐

- 𝐶, 𝐸 , 3 w/ support 2 was found

- The search terminated successfully

within the budget 𝑚2 = 2

- Initiate a search of TSPs of size 𝟑 with 
a threshold of 𝜽 = 𝟏

- 𝐶, 𝐵, 𝐷 , 1,0 w/ support 1 was found

- 𝐶, 𝐵, 𝐸 , 1,0 w/ support 1 was found

- 𝐶, 𝐵, 𝐴 , 1,1 w/ support 1 was found

- The budget 𝑚2 = 2 was exceeded

- The search was halted

- Discard all TSPs w/ support ≤ 𝜃 = 1

- Resume the search of TSPs of size 𝟑 with
a threshold of 𝜽 = 𝟐

- 𝐶, 𝐵, 𝐸 , 1,2 w/ support 2 was found

- The search terminated successfully 

within the budget 𝑚3 = 2

Success!

Overflow! Overflow!

Success!

Figure 4: A toy example of resource-adaptive automatic
hyperparameter tuning byRASP. See Example 8 for details.

Example 8. In Fig. 4, we illustrate the resource-adaptive au-
tomatic hyperparameter tuning process for the example in
Fig. 2, under the condition that (a) the total number 𝑀 of
TSPs that can be retained is set to 4, and (b) the maximum
number𝑚𝑖 of TSPs allowed for each size 𝑖 is set to 2. During
the mining process for TSPs of sizes 2 and 3, the frequency
threshold 𝜃 is initially set to 1 but then adaptively adjusted to
ensure that no more than 2 TSPs are retained for each size.

Specifically, for each size 𝑖 ∈ {2, · · · , 𝑙}, RASP computes the
maximum number𝑚𝑖 of TSPs of size 𝑖 to retain (line 3 of Alg. 1),
based on the available resources, as follows:

𝑚𝑖 =



(𝑀 − |𝑊 |)/2, 2 ≤ 𝑖 < 𝑙 − 1
𝑀 − |𝑊 | −max( |𝐹𝑙−2 |, 𝑘), 𝑖 = 𝑙 − 1
𝑘, 𝑖 = 𝑙,

(4)

where𝑀 denotes the total number of TSPs that can be retained.
The rationales behind Eq. (4) are as follows:

(1) For each 2 ≤ 𝑖 < 𝑙 − 1, only𝑊 , 𝐹𝑖−1, and 𝐹𝑖 need to be
retained, and thus we set𝑚𝑖 ’s so that their cardinality sum
(which is roughly proportional to storage requirements)
stays within the budget𝑀 , i.e., ensuring that the following
equation holds:

|𝑊 | + |𝐹𝑖−1 | + |𝐹𝑖 | ≤ |𝑊 | +𝑚𝑖 +𝑚𝑖−1 = 𝑀. (5)

(2) For each 2 ≤ 𝑖 < 𝑙 − 1, we balance the budgets for 𝐹𝑖−1
and 𝐹𝑖 , i.e.,𝑚𝑖−1 =𝑚𝑖 .

(3) For 𝑖 ≥ 𝑙−1, we adjust the formula for𝑚𝑖 based on the fact
that we only need to maintain 𝑘 TSPs of size 𝑙 according
to the problem definition. Note that Eq. (5) still holds.

4.5 Tree-based Concise Data Structure
Key Idea. To efficiently manage the growing number of TSPs,
RASP utilizes a tree-based compact data structure.

RASP stores frequent TSPs (i.e., 𝐹𝑖 ) in the form of a set of
trees (i.e., forest) so that TSPs share a common prefix based
on the order of event instances, thereby reducing space usage.
Specifically, each tree encodes frequent TSPs as follows: (a) each
node represents a pair of an event and its relative occurrence time,
(b) each leaf node corresponds to the TSP consisting of events
and time gaps arranged in sequence along the path from the
root to the leaf node, and (c) each leaf node additionally contains
the set of WIDs of the windows at the beginning of which the
corresponding TSP starts occurring and the frequency.

During the execution of RASP, the trees are retained in a
compact form without unnecessary nodes. Specifically, while
computing 𝐹𝑖 , leaf nodes with depth 𝑖 that do not correspond to
the top-𝑚𝑖 TSPs are pruned. After computing 𝐹𝑖 , leaf nodes with
depth less than 𝑖 are also pruned, as they are no longer utilized.

Example 9. In Fig. 3, we illustrate the transformation of a
tree, rooted at (𝐶, 0) for the example shown in Fig. 2, under
the condition that the threshold 𝜃 is set to 2. Consider the tree
displayed in themiddle of Figure 3. By disregarding the pruned
elements marked in red strikethrough, this tree encodes two
TSPs: (〈𝐶, 𝐵〉, 〈1〉) and (〈𝐶, 𝐸〉, 〈3〉). Both TSPs have the same
corresponding WIDs {0, 3}, and their frequency (specifically,
support) is 2.

4.6 Complexity Analysis
Below, we analyze the time and space complexity of RASP.

The computational bottleneck of Alg. 4 is line 12, which con-
tains O(𝐼 ) union operations, each of which takes O(𝑇 ) time,
where 𝑇 is the time span of the input temporal event sequence
𝑠 . Thus, the time complexity of the line is O(𝐼 · 𝑇 ), and since
|𝐹𝑖−1 | ≤ 𝑚𝑖−1 = O(𝑀), it is executed O(𝑀 · |E | · 𝛿/𝐼 ) times.
Hence, the time complexity of Alg. 4 is O(𝑀 · |E | · 𝛿 ·𝑇 ). RASP
(i.e., Alg. 1) executes Alg. 4 O(𝑙) times, where 𝑙 is the target TSP
size, and this dominates the other parts. Thus, the time complex-
ity of RASP is O(𝑀 · |E | · 𝛿 ·𝑇 · 𝑙).

The space required by RASP is determined by the size of the
preprocessed results and the number of frequent TSPs retained by
RASP. As detailed in the previous subsections, the number of the
mappings (i.e., the preprocessed results) is |𝑊 |, and the number
of retained frequent TSPs during the mining of TSPs of size 𝑖 is
|𝐹𝑖−1 |+ |𝐹𝑖 | ≤ 𝑚𝑖−1+𝑚𝑖 . Eq. (4) ensures that |𝑊 |+𝑚𝑖−1+𝑚𝑖 ≤ 𝑀 .
The primary memory requirement per mapping and TSP is the
bit vector of size 𝑂 (𝑇 ) representing the WIDs of the windows at
the beginning of which the corresponding TSP begins. Therefore,
the space requirement of RASP is O(𝑀 ·𝑇 ).
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5 EXPERIMENTS
In this section, we present the results of our experiments designed
to answer the following questions:
• Q1. Accuracy: How accurately does RASP discover frequent
TSPs, especially under temporal variations?
• Q2. Scalability: How does RASP scale depending on the time
span and event count of the input data?
• Q3. Speed-Accuracy Trade-off: Does RASP give a better
speed-accuracy trade-off than its competitors?
• Q4. Ablation Study: Does duplicated pattern matching con-
tribute to the accuracy of RASP?

5.1 Experimental Settings
Machines. We used a server with 3.8 GHz AMD Ryzen 9 3900X
CPUs and 128 GB RAM.
Datasets. Formain experiments, we used neuron activity datasets
generated by the CN2 simulator2. In these datasets, each event
indicates the spike of a specific neuron. The simulator gener-
ates ground-truth frequent TSPs together with non-TSP event
instances (i.e., independent spikes of neurons), which pose a
challenge in identifying the frequent TSPs. Specifically, the CN2
simulator creates each ground-truth TSP with randomly-chosen
event compositions and time gaps between consecutive events.
Different ground-truth TSPs have distinct event compositions
and time gaps. The instances of each ground-truth TSP recur
throughout datasets, as specified in Table 2. With the simula-
tor, we can introduce temporal variations by adding zero-mean
Gaussian noise with a predefined standard deviation to each time
gap in the ground-truth TSP instances. Moreover, we can intro-
duce probabilistic participation of events into TSPs, mirroring
real-world situations [34], by letting each event composing a TSP
appear in an instance with a predefined probability. Specifically,
we considered the following dataset settings.
• S1. Variation-Free: Settings in Table 2 without temporal vari-
ations or probabilistic participation.
• S2. Variations: S1 with temporal variations with a specified
standard deviation.
• S3. Event Count: S1 with a specified number of events. In gen-
eral, as the number of events increases, finding TSPs becomes
more challenging.
• S4. Mixed-Easy: S1 with temporal variations with a standard
deviation of 10 ms and probabilistic participation with a prob-
ability of 0.8. The occurrence rate of TSPs is raised to 0.4 Hz
for increased significance.
• S5. Mixed-Hard: S1 with temporal variations with a stan-
dard deviation of 30 ms and probabilistic participation with a
probability of 2/3. The occurrence rate of TSPs is 0.2 Hz.

For each setting, we created three datasets with different random
seeds, all the results were averaged across them.
Method Setups. In addition to RASP, as the competing methods,
we tested CAD [40], SPADE [48], and MIPER [4], described in
Sect. 2. For all methods, we set themaximum time gap𝛿 to 0.1 secs,
which corresponds to that of each GT TSP in the datasets, and the
maximum time span of a TSP 𝐿 to (the size of each GT TSP−1)×
𝛿 = 0.4 secs. Since the timestamps in the datasets are continuous
and thus unsuitable for the considered methods, we discretized
them into bins with various intervals and reported the best result.
We commonly applied intervals of 15, 25, and 40 ms. For CAD, we
additionally included intervals of 60 and 85 ms, as CAD benefits

2https://github.com/NICALab/CN2-Simulator

Table 2: Default setting of neuron activity datasets.

Total number of events (i.e., neurons) ( | E | ) 50
Time span of data (𝑇 ) 10, 50, 100, 500, 1000 secs
Occurrence rate of non-TSP event 2.0 Hz

Number of ground-truth (GT) TSPs 5
Occurrence rate of GT TSPs 0.2 Hz
Size of each GT TSP 5*
Time gap between events in a GT TSP ∼ 𝑈 (0, 0.1) secs
* Larger TSPs are considered in Appendix A.2.

from a broader range of time bins,3 while the others do not (refer
to Appendix A.3 for the empirical effects of bin sizes).

In RASP, we used a bit array to store WIDs for each TSP. Each
bit array requires memory space proportional to the number of
all WIDs in the datasets. Therefore, we set the maximum number
𝑀 of TSPs to retain (see Sect. 4.4) to a constant (spec., 109) divided
by the total number of WIDs. Refer to Appendix A.1 for the effect
of values of𝑀 . We set the tolerance 𝐼 against temporal variations
to 1 time bin for Variation-Free (S1) and 2 time bins for the other
settings. We set 𝑘 , the target number of frequent TSPs, to 1, 000.

For resource-adaptive thresholding, where frequency mea-
sures are extensively used, we employed support as the frequency
measure 𝑓 𝑟𝑒𝑞, which is computationally cheap. However, since
support values are integers, there can be many tied TSPs with
the same support. Thus, for the final top-𝑘 selection, we used
leverage (see Sect. 3), instead. We did not use lift in our experi-
ments, because leverage led to better performance. However, lift
or other frequency measures can be more suitable depending on
applications, so RASP remains flexible regarding the choice of
frequency measures.
Method Setup Details of Competitors. To enhance accuracy,
we created four additional versions of CAD based on the modified
assumptions, statistical corrections, or statistical test methods for
our experiments. Various significance levels (𝛼 = 0.01, 0.05, 0.1, 0.2,
and 1.0) were applied to all these versions of CAD, and we re-
ported the best value obtained across all trials using all versions.
For SPADE, the number of surrogates was set to 2×(the number
of events), and the dithering values were set to 20, 50, and 100
ms. We also reported the best value obtained across all trials.
Furthermore, we modified MIPER to be more suitable for our
experiments by changing the target output from episode rules to
TSPs and the significance measure from confidence to leverage.
We identified the top-k TSPs based on their significance measures
(leverage for MIPER and p-value for CAD and SPADE). Note that
our proposed method, RASP and MIPER4 were implemented in
Java, CAD5 was implemented in MATLAB, and SPADE6 was
implemented in C++ and Python.
Evaluation Metrics. We assessed the mining accuracy of all
methods using normalized discounted cumulative gain (NDCG)
and recall (RC). NDCG@𝑛 measures the quality of the top-𝑛
ranking by comparison with ground-truth TSPs, while RC@𝑛
quantifies the fraction of ground-truth frequent TSPs identified by
RASP among all ground-truth frequent TSPs. Both metrics ranges
from 0.0 to 1.0, with higher values indicating better ranking
quality. After examining NDCG@𝑛 and recall@𝑛 values for 𝑛 =

3Instead of using a single fixed time bin, CAD iterates through each time bin in a
user-defined range and selects the optimal value.
4https://github.com/aoxaustin/MIPER/
5https://github.com/DurstewitzLab/Cell-Assembly-Detection
6https://viziphant.readthedocs.io/en/latest/
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(a) S1. Variation-Free
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(b) S2. Variations
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(c) S2. Variations
(20 ms)
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(d) S3. Event Count (100)
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(e) S3. Event Count (1, 000)
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(f) S4. Mixed-Easy
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(g) S5. Mixed-Hard

Figure 5: Q1. Accuracy. Our proposed method, RASP, exhibits superior accuracy compared to its competitors across all
tested settings (S1-S5). OOT: out-of-time (> 100k seconds). OOM: out-of-memory.

5, 10, 20, and 100, the choice of the metric or the value of 𝑛 did
not significantly affect the relative results. Thus, we reported
NDCG@5 values throughout Sect. 5, aligning with the number
of ground-truth TSPs in our datasets, and the results in terms of
NDCG@20 and RC@5 are additionally reported in Section C of
the online appendix [8]. In cases of ties, we assigned fractional
scores to tied TSPs, as in [32]. We computed the metrics based
only on the event composition in output TSPs, while ignoring
time gaps, to directly compare different methods based on slightly
different notions of (relaxed) TSPs.

5.2 Q1. Accuracy
We assessed the accuracy of the considered methods under the
settings described in Sect. 5.1 (i.e., S1-S5). The results are given
in Fig. 5. Our observations can be summarized as follows:

• RASP consistently outperformed all its competitors across all
the considered settings.
• RASP achieved the same level of accuracy as its competitors
with a shorter time span (i.e., a smaller amount of input data).
Note that in real-world scenarios, collecting datasets over ex-
tended periods is often challenging and costly.
• Temporal variations can cause the supports of ground-truth
TSPs to be underestimated, making the discovery of ground-
truth TSPs more challenging, especially when the number of
events grows and thus the number of frequent TSPs grows
(see (d) and (e) in Fig. 5). This issue is addressed in RASP by
introducing relaxed TSPs but not in other methods.
• The relative advantage of RASP became more evident in more
challenging settings. For instance, compare (b) and (c), (d) and
(e), and (f) and (g) in Fig. 5.
• In the most challenging setting (S5. Mixed-Hard), only RASP
attained a satisfactory level of accuracy.
• SPADE and MIPER showed limited scalability with extended
time spans or more events, which leads to an increased number
of frequent TSPs. However, RASP uses a resource-adaptive
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(c) S3. Event Count
(time span: 100 secs)
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(d) S3. Event Count
(time span: 1, 000 secs)

Figure 6: Q2. Scalability. The running time of RASP grows
gradually with the time span of data and the number of
events, in contrast to the other competing methods.

mechanism to keep the number of frequent TSPs considered
manageable, preventing scalability issues (out-of-memory or
out-of-time).

5.3 Q2. Scalability
In order to evaluate the scalability of the considered methods, we
examined their running times under various settings. The results
are given in Fig. 6 and summarized as follows:
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(a) S2. Variations (20 ms)
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(b) S4. Mixed-Easy

Figure 7: Q4. Ablation study: (1) effectiveness of duplicated
pattern matching using relaxed TSPs. RASP performs bet-
ter or equally well than a variant without this feature,
demonstrating its effectiveness.

• RASP was the fastest in almost all settings.
• Its running time grew gradually with the time span of data and
the number of events, in contrast to other competing methods.
• RASPwas up to 9, 712× faster than the competitor in the largest
dataset with 1, 000 events and a time span of 1, 000 seconds.

The superior scalability of RASP is attributed largely to resource-
adaptive thresholding (refer to Sect. 4.4). It maintains the number
of TSPs at a feasible level regardless of the input data size.

5.4 Q3. Speed-Accuracy Trade-off
We examined the trade-offs between the accuracy and speed of
the considered methods, which are controlled by varying the
time span of the input data. The results for two settings, S1.
Variation-Free and S4. Mixed-Easy, are given in Figs. 1(a) and
(b). In both settings, RASP provided clearly better trade-offs than
the other methods, as expected from the previous results.

5.5 Q4. Ablation Studies
In this subsection, we conducted ablation studies to verify the
effectiveness of the key ideas behind RASP.

Firstly, we assessed the effectiveness of duplicated pattern
matching using relaxed TSPs (described in Sect. 4.3) by comparing
RASP and a variant without this feature (RASP-D). As shown
in Fig. 7, RASP consistently performed better or equally well
compared to RASP-D, demonstrating its effectiveness.

Secondly, we examined the effectiveness of resource-adaptive
automatic hyperparameter tuning (described in Sect. 4.4) by com-
paring RASP and variants with thresholds fixed to predefined
values. We measured accuracy (in terms of NDCG@5) and speed
averaged over all time spans (i.e., 10, 50, 100, 500, and 1000 secs)7
As shown in Fig. 8, RASP with resource-adaptive automatic hy-
perparameter tuning provides a significantly better trade-off
between accuracy and speed compared to the variants with fixed
thresholds, demonstrating its effectiveness.

Lastly, we evaluated the space reduction of the tree-based
structure (described in Sect. 4.5) of RASP by measuring the re-
duction in the number of nodes due to the re-use of intermediate

7The variants ran out of memory (OOM) under the following conditions: (1) when
the threshold 𝜃 was set to 2 and the time spans were 500 and 1,000 seconds in the
S1. Variation-Free setting; and (2) when 𝜃 was set to 4 and the time span was
1,000 seconds in the S4. Mixed-Easy setting. Thus, the results in these settings
were disregarded when calculating the performance of the variants. Note that the
average running times of the variants would have further increased if their running
times in these settings had been considered.
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Figure 8: Q4. Ablation study: (2) effectiveness of resource-
adaptive automatic hyperparameter tuning. RASP provides
a significantly better trade-off between accuracy and speed
than its variants with fixed thresholds.

Table 3: Q4. Ablation study: (3) space reduction (in %) by
the tree-based data structure.

Time Span (sec) 10 50 100 500 1000 Avg.

S1. Variation-Free 67.8% 68.4% 70.2% 67.7% 68.3% 68.5%
S2. Variations (10ms) 71.8% 71.1% 72.2% 70.1% 68.7% 70.8%
S2. Variations (20ms) 71.7% 71.0% 72.1% 70.0% 68.9% 70.7%
S4. Mixed-Easy 72.0% 72.4% 71.2% 70.2% 68.7% 70.9%
S5. Mixed-Hard 71.5% 72.0% 71.8% 70.1% 68.2% 70.7%

nodes in the prefix trees. That is, we compared the total number
of nodes in the prefix trees to the sum of pattern length (

∑
𝑖 pat-

tern length 𝑖×number of patterns of length 𝑖), i.e. the number of
nodes if we do not employ the re-use of intermediate nodes. As
shown in Table 3, the tree-based structure significantly reduces
the space requirement, demonstrating its effectiveness.

5.6 Extra Results on Real-World Datasets
without Ground-Truth TSPs

Ideally, for evaluation, the event composition and time gaps of
the ground-truth TSPs and their instances should be available,
despite temporal variations. Unfortunately, we could not find
suitable real-world datasets that meet these criteria. Hence, in
this subsection, we evaluate the considered methods indirectly
using four real-world datasets without ground-truth TSPs.

5.6.1 E-commerce. The e-commerce dataset consists of times-
tamped event instances, with each event indicating a click on a
specific product. This dataset naturally includes temporal varia-
tions as different users have varying click speeds.
Details of the Dataset. We used an e-commerce dataset ob-
tained from YOOCHOOSE GmbH, an online retailer8. The dataset
was collected over several months in 2014 and consists of tempo-
ral click events. Each record in the dataset includes a session ID,
an occurrence time of a temporal event instance, and an event ID,
which indicates a click on a specific product. Note that session
IDs were used solely for evaluation purposes and not as input.

In our experiment, we focused on the temporal events that
took place on April 27, a day with a high volume of temporal
events. To ensure the practical running time and memory usage
of the competingmethods, we limited our analysis to the 100most
frequent temporal events. We converted the timestamps from
8https://www.kaggle.com/datasets/chadgostopp/recsys-challenge-2015
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Figure 9: Extra results on three real-world datasets (e-
commerce, precipitation, and traffic) without ground-truth
TSPs. RASP consistently achieves the highest accuracymea-
sured in an indirect manner (see Sect. 5.6.1-5.6.3).

milliseconds to minutes or seconds by binning them into one-
minute or one-second intervals, respectively. This preprocessing
results in 165, 118 event instances and 53, 658 sessions.
Experimental Setups. In our experiment, we set the maximum
time span of a TSP 𝐿 to 600 seconds, which is more than twice
the average time span per session without limiting the maximum
time gap 𝛿 . All other settings remained consistent with those
used in the main experiments. The tolerance against temporal
variations 𝐼 was set to 1 minute and 5 seconds for a bin size of
1 minute and 1 second, respectively. As an additional baseline,
we considered RANDOM, where TSPs were composed of events
chosen uniformly at random. We applied the considered methods
to extract frequent TSPs of length 3. As ground-truth TSPs are
not available, we evaluated their accuracy through an indirect
method. Specifically, for each output TSP instance,9 we measured
the proportion where all event instances within it originated from
a single web session. It is important to note that event instances
from a single web session are more likely to be related (and thus
9For evaluation, after obtaining output TSPs, we merged ones with the same event
composition but different time gaps into a single TSP. This is required to directly
compare different methods based on slightly different notions of (relaxed) TSPs.

(a) Most Frequent TSP

(b) 2nd Most Frequent TSP

Figure 10: The AWS locations for the two most frequent
TSPs identified by RASP from the precipitation dataset.
Note that the AWSs are closely located.

meaningful) than instances from multiple sessions, which may
involve different users.
Results. Figs. 9(a)-(b) show the results with varying time-bin
sizes and output TSP counts. RASP consistently performed best.

5.6.2 Precipitation. The precipitation dataset is a time series
of event instances, with each event indicating precipitation ob-
served at each automated weather station (AWS).
Details of the Dataset. The data was collected from 714 AWS
stations across South Korea, recording precipitation accumu-
lated over 15-minute intervals with measurements taken every
5 minutes. Each entry includes the timestamp, the amount of
accumulated precipitation, and the corresponding AWS ID. To
ensure manageable running time and memory usage for the com-
peting methods, we focused on temporal events in 2020 (i.e., the
year with the most precipitation in South Korea between 2018
and 2022) collected from the 100 AWSs with the highest average
precipitation levels, yielding 1, 111, 827 event instances.
Experimental Setups. In our experiments, we defined each tem-
poral event as precipitation (accumulated over the past 15 min-
utes) of 1.0 mm or more observed at each AWS. We set the maxi-
mum time span of a TSP 𝐿 to 1 hour and the tolerance for tem-
poral variations 𝐼 to values of 1, 2, and 3 bins, which are either
5 or 15 minutes. All other settings were consistent with those
used in Sect. 5.6.1. Since ground-truth TSPs were unavailable, we
evaluated the accuracy of the identified TSPs using an indirect
way. Specifically, we measured the percentage of output TSPs
where the average distance between the AWSs within the TSP is
reasonably close (spec., 5 km or less).
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(a) Most Frequent TSP (b) 2nd Most Frequent TSP

Figure 11: The sensor locations for the two most frequent
TSPs identified by RASP from the traffic dataset Note that
the sensors are closely located.

Results. Figs. 9(c)-(d) presents the results with varying time bin
sizes and output TSP counts. RASP consistently performed best.
See Figure 10 for the two most frequent TSPs identified by RASP.

5.6.3 Traffic. The traffic dataset is a time series of event (spec.,
traffic congestion detected at each sensor) instances.
Details of the Dataset.We used data collected from 1,084 sen-
sors embedded under the roads in Melbourne and its surrounding
suburbs [43]. The dataset includes traffic volume measured every
15 minutes. Each record contains the timestamp, traffic volume,
and the corresponding sensor ID. We focused on the temporal
event instances in 2011 (i.e., the year with the highest traffic
volume between 2007 and 2012) collected from the 100 sensors
recording the highest traffic volumes, resulting in 1, 080, 579 event
instances. Note that, even with this reduction, most competing
methods are still not scalable enough to handle the data.
Experimental Setups. We defined each temporal event as a
traffic volume of 500 vehicles or more (over the past 15 minutes)
recorded at each sensor. We set the maximum time span of a TSP
𝐿 to 3 hours, and all other settings were consistent with those
used in Sect. 5.6.2. We evaluated the accuracy of the identified
TSPS, indirectly, by the ratio of output TSPs where the distance
sum among the sensors within each TSP is reasonably small
(spec., at most 4 km).
Results. Figs. 9(e)-(f) present the results, where RASP consis-
tently performed best regardless of time bin sizes and output TSP
counts. See Fig. 11 for the two most frequent TSPs from RASP.

5.6.4 Stock. The stock dataset is a time series of event in-
stances, where each event represents a significant fluctuation in
the daily price of each stock.
Details of the Dataset.We used data from Investing.com and
Yahoo Finance [27]. The dataset spans from January 3, 2008, to
June 30, 2020, and includes daily prices and trading volumes for
3,028 stocks, along with information on the stock names and
sectors. Among them, we focused on the 101 stocks with a daily
average trading value of 10 billion Korean won or more. This
preprocessing yields 17,040 event instances.
Experimental Setups. We defined each temporal event as a
significant fluctuation (spec., daily return rate exceeding 5% or
dropping below -5%) of the price of each stock. We set the max-
imum time span 𝐿 of a TSP to 20 days, with a bin size of 1 day.
All other settings were consistent with those in Sect. 5.6.2.
Results. The frequent TSPs identified by RASP capture sector-
and affiliate-based relationships, as illustrated below.

(1) Sector-Based Patterns: Many identified TSPs (e.g., the two
most frequent ones) involve stocks from the same sector.
• The most frequent TSP (with a support of 84) consists of
(1) GS Engineering & Construction Corporation, (2) DL
Holdings, and (3) Hyundai Engineering & Construction, all
of which belong to the Engineering & Construction sector.
• The second most frequent TSP (with a support of 82) con-
sists of (1) Hyundai Mipo Dockyard, (2) Samsung Heavy
Industries, (3) Korea Shipbuilding & Offshore Engineer-
ing, all of which belong to the Shipbuilding & Offshore
Engineering sector.

(2) Affiliate-Based Patterns. Some of the identified TSPs, in-
cluding the third most frequent one, consist of stocks from
the same corporate affiliates.
• The third most frequent TSP (with a support of 75) consists
of (1) Doosan Infracore, (2) Doosan Heavy Industries &
Construction, and (3) Doosan Corporation, all of which are
part of the Doosan group.

6 CONCLUSION AND FUTURE DIRECTIONS
In this paper, we focused on the problem of mining frequent TSPs
in a sequence of temporal events with temporal variations. For
the problem, we proposed RASP, which incorporates (a) a novel
concept of relaxed TSPs for handling variations, (b) resource-
adaptive automatic hyperparameter tuning for enhancing usabil-
ity, and (c) a tree-based concise data structure for space efficiency.
Our experimental results demonstrated that RASP exhibited sub-
stantial improvements in accuracy and robustness (see Figs. 5
and 9); and speed and scalability (see Fig. 6); compared to four
state-of-the-art competitors. Moreover, to achieve the same level
of accuracy, RASP demanded a smaller amount of data (see Fig. 5).
Lastly, we leave the incorporation of additional criteria for TSPs
(e.g., closedness and maximality) into RASP for future work to
better identify the most relevant and non-redundant TSPs.
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APPENDIX
A ADDITIONAL EXPERIMENTAL RESULTS
Below, we present the results of additional experiments.

A.1 Effects of𝑀 (i.e., Maximum Number of
TSPs to Retain)

The maximum number𝑀 of TSPs to retain needs to be specified
as a hyperparameter considering the total memory size and the
memory size per TSP. To investigate the effect of𝑀 , we varied
its value in 6 cases and measured the running time and accuracy.
As depicted in Fig. 13, under a setting of S2. Variations (10 ms),
we observed that both the running time and mining accuracy
of RASP tend to decrease as 𝑀 decreases. While prioritizing
accuracy over speed, we fixed the value of𝑀 at 109/𝑇 , where 𝑇
is the time span, for all other experiments.
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(a) S1. Variation-Free
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(b) S2. Variations (10 ms)

0.0

0.2

0.4

0.6

0.8

1.0

RASP CAD SPADE MIPER
Method

M
in

in
g 

A
cc

ur
ac

y

(c) S2. Variations (20 ms)
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(d) S4. Mixed-Easy

Figure 12: Results with various bin sizes in milliseconds. Red dotted lines and black solid line show the best and worst
performances of RASP. Note that larger time bins tend to benefit CAD, but not necessarily the other methods for which the
optimal bin size tends to increase with larger temporal variations. RASP performs best in most cases regardless of bin sizes.
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(b) Mining accuracy

Figure 13: Effects of the max number𝑀 of TSPs to retain.
Under S2. Variations (10 ms), the running time and mining
accuracy of RASP tend to decrease as𝑀 decreases.

A.2 Results with TSPs of Various Sizes
While varying the size of ground-truth TSPs in the input data,
we measured the accuracy and running times of the considered
methods under the S4. Mixed-Easy setting. The results are given
in Fig. 14, and our observations are summarized as follows:
• RASP outperformed all its competitors in terms of both speed
and accuracy, regardless of the TSP size.
• The relative superiority of RASP in accuracy was more evident
in more challenging settings (compare (a) and (b) in Fig. 14).

A.3 Results with Various Bin Sizes
While varying the size of bins in the input data, we measured the
accuracy of the considered methods under four different settings.
From the results in Fig. 12, where we set the time span 𝑇 to 100
seconds, we made the following observations.
• Larger time bins tended to benefit CAD.
• For the other methods, the optimal bin size tended to
increase with larger temporal variations.
• RASP performed best in most cases regardless of bin sizes.

A.4 Empirical Memory Usage
We measured the empirical memory usage of RASP under the S2.
Variations (10 ms) setting while varying the time span𝑇 and the
budget𝑀 of TSPs. As shown in Fig. 15, the memory usage grew
(sub-)linearly with 𝑀 and 𝑇 , consistently with our theoretical
complexity O(𝑀 · 𝑇 ). Note that the theoretical complexity of
𝑀 · 𝑇 represents a worst-case scenario, and the actual trend is
often sub-linear rather than strictly linear. That is, the slopes
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(b) Pattern Size: 7
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(time span: 100 secs)
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(d) Vs. Pattern size
(time span: 1, 000 secs)

Figure 14: Results with TSPs of various sizes. Our proposed
method, RASP, outperforms all its competitors in terms of
both speed and accuracy, regardless of the TSP size.
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Figure 15: Empirical memory usage of RASP, which grows
(sub-)linearly with𝑀 and 𝑇 . In the legend, 𝜃 indicates the
slope of the fitted regression line.

of the fitted regression lines on the log-log scale (refer to the 𝜃
values in the legend) are often much smaller than 1.
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