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ABSTRACT
Trusted Execution Environments (TEEs), such as Intel’s Software
Guard Extensions (SGX), are increasingly being adopted to ad-
dress trust and compliance issues in the public cloud. Intel SGX’s
second generation (SGXv2) addresses many limitations of its pre-
decessor (SGXv1), offering the potential for secure and efficient
analytical cloud DBMSs. We assess this potential and conduct
the first in-depth evaluation study of analytical query processing
algorithms inside SGXv2. Our study reveals that, unlike SGXv1,
state-of-the-art algorithms like radix joins and SIMD-based scans
are a good starting point for achieving high-performance query
processing inside SGXv2. However, subtle hardware and software
differences still influence code execution inside SGX enclaves
and cause substantial overheads. We investigate these differences
and propose new optimizations to bring the performance inside
enclaves on par with native code execution outside enclaves.

1 INTRODUCTION
The need for secure cloud DBMSs. The last decade has seen
a fundamental shift in where Database Management Systems
(DBMSs) run: public clouds have become the primary location
where data is stored and processed.While there are many benefits
in running DBMSs in the cloud, such as scaling on demand, the
cloud model puts a high stake on the cloud provider regarding
the security of the data [33]. Today, customers have to fully trust
the cloud providers to keep the data safe and avoid any attacks
that can result in data breaches or data corruption. Sadly, there
are well-publicized examples of cloud providers failing to provide
these guarantees [6, 41].

TEEs to the rescue? Thus, all major cloud providers are
moving to provide new offerings to prevent such problems. A
prominent technology deployed widely in the cloud is so-called
Trusted Execution Environments (TEEs). A TEE is a hardware-
based solution that shields a process from a potential attacker
and has been successfully used to build secure DBMSs in the
cloud [1]. On a high level, TEEs provide two primary protec-
tion guarantees. First, they provide integrity, i.e., ensuring that
software or hardware attacks cannot manipulate code and data
without being detected. Second, they guarantee confidentiality,
i.e., code and data are encrypted inside a TEE and can not be
accessed outside an enclave.
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Figure 1: Performance of joining a 100MB (hash) and a
400MB (probe) table inside an SGXv2 enclave. The join
designed for SGXv1 does not achieve competitive perfor-
mance (blue). A state-of-the-art radix join is a better start-
ing point (orange), and with our optimization (green), its
performance is similar to outside the enclave (red).

Security does not come for free. One of the first broadly
available TEE technologies was Intel’s Software Guard Exten-
sions (SGX). SGX extends Intel CPUs with instructions and hard-
ware components that enable “secure enclaves”, protecting pro-
cesses against malicious administrators, operating systems, and
hypervisors. However, being targeted for mobile and consumer
devices, the first generation of SGX (SGXv1) had severe hardware
limitations when used for DBMSs. In particular, memory access
had a high overhead due to encryption and integrity checks,
and the protected memory region that enclaves could access ef-
ficiently was only 256MB, leading to high overheads when the
data sizes exceeded that limit. As a result, DBMSs deployed on
SGXv1 typically faced orders of magnitude slowdowns [27], mak-
ing the first generation of SGX unpractical for data-intensive
systems [10, 27, 35].

Recent advances of SGX lift limitations. With the In-
tel Ice Lake architecture, Intel SGX became available on multi-
socket server hardware [18]. This second generation of Intel SGX
(SGXv2) uses redesigned hardware to achieve isolation and con-
fidentiality guarantees. Most importantly, the new generation
relieves the memory limitation issue by allowing enclaves to
access up to 512GB encrypted memory per socket [10, 18]. Ad-
ditionally, integrity checks have been streamlined, and enclave
processes can leverage the newly added multi-socket support.
After releasing the second generation of SGX, Intel discontinued
the first generation.

The need for a performance study of SGXv2.While SGXv2
promises many benefits over SGXv1, the impact of integrating
SGXv2 in the design of secure DBMSs is not yet well understood.
For example, it has not yet been explored whether SGXv2 can

Experiments & Analyses Paper

 

 

Series ISSN: 2367-2005 516 10.48786/edbt.2025.41

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.41


meet the demands of high-throughput analytical query execu-
tion operators. Hence, this paper provides the first in-depth study
of running query execution operators in SGXv2. Our study is
motivated by the observation that previous design principles to
improve performance in SGXv1 by optimizing for the limited en-
clave memory as the main bottleneck are not adequate anymore.
Instead, state-of-the-art data processing algorithms that target
server-grade hardware and include optimizations like cache con-
sciousness are a better starting point, as shown in Figure 1.

In this initial experiment, we compare a join designed for
SGXv1 [26] to a cache-optimized radix join (both executed on
SGXv2 hardware). The results in Figure 1 illustrate that the join
designed for SGXv1 (blue bar) achieves a much lower perfor-
mance compared to a state-of-the-art join implementation (or-
ange bar). This performance difference arises because the SGXv1
optimized join prioritizes avoiding enclave paging – a concern
irrelevant in SGXv2 – at the expense of not fully utilizing all
available cores on the server-grade SGXv2 hardware. However, it
also becomes clear that the radix join inside the enclave does not
match the performance when executed outside of the enclave (red
bar). As we uncover in this study, this performance gap results
from different micro-architectural behaviors of running code
inside and outside an SGXv2 enclave. To address these micro-
architectural differences, we discuss new optimizations allowing
DBMSs to achieve almost native performance as exemplified by
the SGXv2-optimized join in Figure 1 (green bar).

Focus on analytical query processing. Rich related work
has underscored that OLAP DBMSs can only achieve high perfor-
mance and efficiency if the underlying CPU micro-architecture
is taken into account [3, 19, 34]. Given the importance of micro-
architectural effects in the context of OLAP and the under-explored
performance characteristics of SGXv2, our study focuses on
in-memory OLAP workloads. We implemented state-of-the-art
(micro-architecture-aware) joins [3] and column scans [42], query
execution operators that are at the core of all OLAP databases.
This allows us to study their performance characteristics, uncover
performance pitfalls, and provide suggestions for designing effi-
cient algorithms for SGXv2.

Contribution and main findings. To summarize, in this
paper, we present the results of the first in-depth performance
study of key OLAP query execution operators in SGXv2 enclaves.
Our study makes the following core contributions:

(1) We show that state-of-the-art main memory and cache-
optimized algorithms are a better starting point for SGXv2
than algorithms optimized for SGXv1: I.e., previously sug-
gested SGX-optimized joins are no longer required, and
throughput-optimized scan algorithms work at nearly
equal performance out of the box.

(2) We study the hardware and software overheads of state-
of-the-art cache-optimized database algorithms in SGXv2
and uncover unknown overheads that are caused by a
side channel mitigation enabled inside the enclave but
not outside. Based on a radix join, we show how existing
algorithms can be optimized to circumvent this previously
unknown slowdown and match the throughput of join
processing outside of SGXv2 enclaves.

(3) Finally, we show that these results can be generalized to
the execution of query plans, resulting in performance
almost on par with native execution outside the enclave.
I.e., the additional security of SGXv2 enclaves comes with
only minor performance costs for query execution.

Figure 2: Intel SGX implements enclaves via a protected
memory region in RAM, called Processor Reserved Mem-
ory (PRM). Data and code of enclaves are stored in en-
crypted memory pages inside the Enclave Page Cache
(EPC). They are decrypted when loaded into the cache. The
UPI Crypto Engine (UCE) encrypts enclave UPI traffic.

Being a performance study, this work is not concerned with
the security properties of Intel SGXv2. Thus, we do not investi-
gate specialized data structures and algorithms meant to prevent
information extraction via side channels, such as algorithms with
oblivious memory access patterns. Instead, we focus on the per-
formance costs of the security technology and regard a detailed
analysis of its security guarantees and weaknesses as future work.

Outline. The rest of this paper is structured as follows. First,
Sections 2 and 3 give the necessary background about Intel SGXv2
and our benchmark setup. Afterward, in Sections 4 to 6, we
evaluate the performance of key OLAP algorithms, join and scan,
in-depth and then study their composition in query plans. Finally,
Section 7 discusses a potential performance model, Section 8
presents related work, and 9 concludes this performance study.

2 INTEL SGXV2 BACKGROUND
The new server-grade generation of Intel SGX introduced with
the Intel Ice Lake architecture [18] lifts several limitations of
the first generation that led to high overheads in terms of per-
formance. In this section, we review the basics of Intel’s SGX
technology and discuss the most important changes of SGXv2.

Integrity and confidentiality in SGX. Intel SGX protects
the integrity of user code by shielding it even from privileged en-
tities like the Operating System (OS) or the hypervisor. On a high
level, this guarantee is achieved by creating a protected memory
region in RAM, called Processor Reserved Memory (PRM), which
can only be accessed via special CPU instructions [8, 31]. As
shown in Figure 2, inside this protected memory region, SGX
maintains the Enclave Page Cache (EPC) (light green area) to
enforce enclave isolation. The EPC stores the trusted code and
data of enclaves within encrypted 4 kB memory pages. These
pages are only decrypted when loaded into the CPU cache for
processing [8, 31]. Intel SGX guarantees that only trusted code
from within the same enclave has access to the EPC pages of
that enclave by adding security checks to the address translation.
Importantly, code running in the untrusted memory region out-
side the PRM (including the OS) is prevented from reading and
modifying these pages.

Major differences in SGXv2. While the capacity limitations
of the PRM made Intel’s SGXv1 impractical for data-intensive
applications such as DBMSs [10, 27, 35], the new SGXv2 design
supports up to 512GB of PRM per socket, which allows DBMSs
to hold large data sets fully in the EPC and avoids expensive en-
clave paging. This was achieved by replacing the previously used
SGX Memory Encryption Engine with the new Total Memory
Encryption – Multi-Key (TME-MK) [18]. In addition to changing
the encryption hardware, SGXv2 replaced the integrity protec-
tion and freshness tree and the associated checks when loading
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encrypted enclave data into the cache with specialized bits in
ECC memory [18]. Finally, enclaves can now scale across mul-
tiple CPU sockets, increasing the number of CPU cores and the
amount of memory available even further [18]. To access EPC
pages on a remote socket, SGXv2 introduces an additional UPI
Crypto Engine (UCE) that encrypts data before transferring it
over Ultra Path Interconnect (UPI) [18] (cf. Figure 2).

Implications of SGXv2 for DBMSs. Although our previous
work [10] indicates that with the second generation, Intel SGX
has become a viable option for OLTP workloads, many important
SGXv2 characteristics in the context of OLAP remain unexplored.
For example, it is unclear if the new memory encryption hard-
ware can keep upwith the high throughput demands of optimized
column scan algorithms. Furthermore, while we studied the la-
tency of random cross-NUMA memory accesses in the context
of OLTP [10], we did not analyze the effects on throughput and
query execution operators like joins, which is essential for analyt-
ical query processing. Throughput-optimized OLAP algorithms
using multiple threads have only been studied in the context of
SGXv1 [26, 27]. However, with the hardware changes of SGXv2
mentioned above, it remains unclear if these findings of OLAP
processing on SGXv1 generalize to SGXv2 and how the hardware
characteristics of SGXv2 affect query execution performance. We
address these questions in this paper.

3 BENCHMARK OVERVIEW
In the following, we give an overview of the benchmark settings,
the framework, the used hardware, and the scope of the study.
The input data for the algorithms is described at the beginning
of the corresponding evaluations in Sections 4 to 6.

Benchmarking settings. The main idea of our evaluation
study is to analyze the characteristics of SGXv2 by comparing
the performance of join and scan algorithms, both when exe-
cuted natively on the CPU without security extensions and in an
enclave. Therefore, we compare two settings:

(1) Plain CPU. Traditional query processing baseline where
the code is natively deployed on the CPU. This mode pro-
vides no security protections but also does not come with
any additional overheads for computation and memory
accesses. Data is always stored in untrusted memory in
this setting.

(2) SGX Data in Enclave (DiE). Code and data are deployed
within an enclave for processing. Since data resides in the
EPC, it undergoes (transparent) decryption when loaded
into CPU caches and encryption when writing data back
to memory.

Additionally, we leverage the fact that Intel SGX enclaves can
access the unprotected memory of their host process. This mech-
anism is necessary for communication with the enclave and can
be used to trade security for performance, e.g., by storing non-
sensitive data outside the enclave. It results in a third setting:

(3) SGXData outside Enclave (DoE).Data is stored in untrusted
(non-protected) memory, while code is processed within
the enclave. This setting eliminates memory encryption/
decryption overheads and allows us to distinguish be-
tween slowdowns caused bymemory encryption and slow-
downs caused by code execution within an enclave.

By comparing the behavior of joins and scans in these settings,
we seek to identify computation and memory access patterns
that exhibit different throughput or latency behaviors, enabling
us to understand and optimize for the characteristics of SGXv2.

Table 1: Hardware used for our benchmarks.
Processor Name Intel Xeon Gold 6326

Sockets 2
Cores per socket 16
Threads per socket 16 (HT disabled)
Base Frequency 2.9 GHz

L1d Cache (per core) 48 KB
L1i Cache (per core) 32 KB
L2 Cache (per core) 1.25 MB
L3 Cache (per socket) 24 MB
Microcode version 20240312

Memory Channels (per socket) 8
Memory 16 * 32 GB

Memory Speed and Latency DDR4 3200 22-22-22
Memory Type RDIMMs with ECC

EPC size (per socket) 64 GB

Benchmarking framework. We implement all our query
processing operators either based on published best practices
in the OLAP literature (e.g., [34, 42] for column scans) or based
on existing benchmarks such as TEEBench [27]. Moreover, to
reveal the root causes of performance bottlenecks, we use self-
implemented micro-benchmarks. All benchmarking code is writ-
ten in C/C++ and compiled with GCC version 12.3 using the
optimization flags -O3 -march=native to ensure the highest
optimization for our target architecture. To implement code run-
ning inside the SGXv2 enclave, we use the (default) SGX SDK
provided by Intel in version 2.24. For measuring execution times,
we rely on the RDTSCP instruction1 since it is the only available
method to measure execution times (as CPU cycles) with high
precision in both CPU modes. If not otherwise stated, measure-
ments are started after all required data for an operation has been
allocated and initialized. This approach allows us to minimize
the impact of, e.g., context switches and measure only the exe-
cution performance of the actual query processing algorithms.
Similarly, our benchmarks only use data sizes that fit completely
into the EPC to prevent the paging costs from dominating the
measurements. We execute all experiments ten times and report
the arithmetic mean and standard deviation.

Benchmarking hardware. For all experiments, we use a
dual-socket server featuring 3rd Generation Intel Xeon Scalable,
SGXv2-capable processors with 16 cores. The system is equipped
with 512GB (256 per socket) main memory distributed over 16
DIMMs that populate all memory channels of both sockets (see
Table 1 for more detailed hardware characteristics). Our server
runs Ubuntu 22.04.4 with kernel version 6.5 and uses the latest
processor microcode (20240312/0d0003d1). Following security
guidelines for SGX, we disabled Hyper Threading on the CPUs.
To prevent noise caused by CPU frequency changes, we disabled
Turbo Boost, changed the maximum CPU frequency to the base
frequency (2.9 GHz), and enabled the performance governor to
keep the CPU cores consistently on this fixed frequency. To
prevent NUMA effects from influencing experiments, we pin
execution threads to one NUMA node. On our trusted operating
system, this is possible by pinning threads outside of the enclave
with numactl or pthreads since the threads stay pinned to their
core upon entering the enclave.

Study overview.Our study is split into three main parts. First,
we analyze the performance effects of SGXv2 for joins. Secondly,
we examine the throughput of multi-threaded column scans em-
ploying SIMD instructions. Finally, we study the performance of
both operators in query plans.

1Stands for Read Time-Stamp Counter and Processor ID [16]
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4 JOIN ALGORITHMS IN SGXV2
Joins are performance-critical operators in analytical databases
because they involve processing large amounts of data. Hence,
they have recently been studied also in the context of the first
generation Intel SGX hardware [27].

Importance of the analysis. As shown in the introduction,
simply adopting algorithms optimized for SGXv1 does not result
in high performance. Further, despite offering enough enclave
memory, the new SGXv2 hardware and security mechanisms
still influence the performance of state-of-the-art join algorithms
like the radix join. In this section, we analyze the root cause of
these slowdowns in-depth by studying different classes of join
algorithms with varying memory access patterns.

Join algorithms. For the investigation, we have built our own
benchmark suite based on TEEBench [27], a collection of par-
allel join algorithm implementations for benchmarking SGXv1,
and optimized the joins for SGXv2. To gain an overview of how
the SGXv2 hardware affects the performance of standard join
algorithms, we use the following implementations:

(1) Hash join (PHT). The Parallel Hash Table Join [5] uses
multiple threads to create a shared hash table from the
smaller join input table. Afterward, the threads iterate
over partitions of the larger input table, probing the hash
table. It uses a classical bucket chaining hash table and
enables parallel writes to the hash table by latching the
buckets.

(2) Radix join (RHO). The Radix Hash Optimized [28] join
first partitions both input tables into cache-sized parti-
tions by the least significant bits of their join key. To
join the partitions, it employs an optimized hash table
design, which achieved the best performance in previ-
ous evaluations [3, 27] (implementation from [3]). The
implementation studied here uses a two-phase parallel
hash partitioning method similar to the method described
in [21].

(3) Sort merge join (MWAY). Sort merge joins first sort both
input tables and then scan the sorted tables for matching
rows in one pass. We added the implementation of the
Multi-Way Sort Merge Join (MWAY) [21] from TEEBench
to our benchmark suite.

(4) Index nested loop join (INL). The Index Nested Loop Join [27]
(INL) in our evaluation uses an existing B-Tree index to
find matching tuples for every tuple in the outer table.

In addition to these join algorithms, which are not optimized
for SGX, we also investigate CrkJoin [26]. CrkJoin is a partitioned
hash join designed with the main bottlenecks of SGXv1 in mind:
EPC paging and random main memory accesses. It performs in-
place radix partitioning without random memory accesses by
iteratively sorting input tables into partitions. The sort happens
one bit at a time. Two pointers are moved from the start and end
of the table towards the middle until they meet. Tuples with keys
in the wrong order are swapped. The sort starts single-threaded
and the number of sorting threads is doubled after each bit until
the number of hardware threads is reached. After partitioning,
CrkJoin uses the same in-cache join method as RHO [26]. We
optimized CrkJoin for our experiment hardware by configuring
the available L2 cache size, as mentioned by the authors.

We do not study specialized join implementations that hide
memory access patterns like the oblivious hash join of ObliDB [11]
or the oblivious sort-merge join from Opaque [43]. We excluded
them because they include algorithmic overheads that make them
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Figure 3: Overview of join algorithm throughput for 5 dif-
ferent joins executed using 16 threads to join a 100MB and
a 400MB table on SGXv2 hardware. The SGXv1-optimized
CrkJoin is the slowest join in this comparison. The hash
joins have the highest slowdowns.

much slower than traditional join algorithms [27] and might hide
performance overheads caused by architectural effects of SGXv2.

Join data. The input tables consist of rowswith a 32-bit key (as
join columns) and a 32-bit value (as tuple payload). All joins are
foreign key joins, and keys follow a random uniform distribution.
Similar to previous studies [5, 21, 26, 27, 36], we do notmaterialize
join results in most of our join benchmarks to prevent potential
side-effects caused by expensive memory allocations. We look
at the effect of result materialization and memory allocation
separately in Section 4.4 and in full queries in Section 6. The
experiments in this section join a 100MB and a 400MB table if
not mentioned otherwise. This equals the cache-exceed setting
in the TEEBench paper [27] on join performance in SGXv1 and
is similar to average join sizes in TPC-H at scale factor 100. Since
our goal is not a comprehensive comparison of join algorithms
among each other but understanding the performance effect of
SGXv2 enclaves on join execution, we do not investigate varying
payload sizes, data distributions, or other data characteristics. In
particular, we do not investigate data skew since it causes non-
SGX-specific effects, such as stragglers during parallel execution.
Instead, we focus on those parameters that uncover interesting
performance and hardware effects of SGXv2.

Initial results. Figure 3 gives an overview of the throughput
of the join implementations in our benchmark. Throughput is
expressed as the sum of input cardinalities (numbers of rows)
divided by the join execution time. All 16 hardware threads on
one socket are used for execution. We compare the performance
of the same join implementation running inside an SGX enclave
with all inputs, intermediate data structures, and outputs stored
inside the enclave (SGX Data in Enclave/DiE) with a plain CPU
baseline that runs the join without an enclave.

This experiment shows several interesting insights: Firstly, the
performance of all join algorithms is lower when executed inside
an SGXv2 enclave. Secondly, the reduction in throughput of all
these joins when executed inside the enclave varies considerably
between join types. The hash joins PHT and RHO have a much
higher performance overhead than MWAY, INL, and CrkJoin. Fi-
nally, CrkJoin is the slowest join in our overview, reaching only
60M rows/s. When executed inside the enclave, all other join al-
gorithms perform better than CrkJoin, with speedups between 3×
for INL and 12× for RHO. The measured performance of CrkJoin
aligns with what the authors reported for SGXv1 hardware [26],
and in our experiments, performance was similar independently
of table sizes and skew. Thus, we derive that CrkJoin does not
profit from the less restricting SGXv2 hardware. This can be at-
tributed to its sort-based partitioning method, which starts with
a single thread sorting on the first bit and then creates expo-
nentially more threads for the following bits until all cores are

519



used. In contrast, the other join implementations always use all
available cores in parallel. CrkJoin’s partitioning method is only
competitive with other partitioning methods if memory access is
severely bottlenecked by the EPC paging, as is the case in SGXv1.
However, on the new SGXv2 hardware, EPC paging is no longer
a major performance limitation, and parallelism is important to
achieve competitive throughput. Thus, CrkJoin is slower than
the other joins in SGXv2.
Lessons learned. The main memory and cache-optimized join al-
gorithms perform better inside SGXv2 than the SGXv1-optimized
CrkJoin due to changed hardware characteristics, but they exhibit
significant overheads.

Root causes of overheads.As we will show in the rest of this
section, the slowdowns visible in the overview can be attributed
to factors originating from the SGX security mechanisms on a
hardware level. Additionally, there are other important perfor-
mance factors that are rooted not purely in hardware but also
in the software (e.g., the SGX SDK). We first summarize these
factors below and present more detail in Sections 4.1 to 4.4:

(1) Hardware-only effects. Two hardware factors cause the
slowdown of the hash joins in the overview. The first (cf.
Section 4.1) is the more expensive random main mem-
ory access inside the enclave. Optimizing to mitigate this
known effect is more important in SGXv2 since EPC pag-
ing is no longer the limiting factor. Additionally, we un-
cover a previously unknown overhead that does not re-
sult from SGX-specific memory encryption and security
checks but from a side channel mitigation that is always
enabled in SGX enclaves. This issue is investigated in Sec-
tion 4.2, where we also demonstrate how manual loop
unrolling and instruction reordering can alleviate it.

(2) Mixed effects. Other important performance effects result
from an interplay of SGX software (i.e., the SGX SDK and
the OS) and the SGX hardware. Firstly, while the support
for Non-Uniform Memory Access (NUMA) in SGXv2 en-
ables the usage of more cores in joins, Section 4.3 reveals
that the unavailability of NUMA-awareness in SGX en-
claves causes slowdowns because cross-NUMA traffic for
joins can not be avoided. Secondly, Section 4.4 demon-
strates how thread synchronization and memory manage-
ment for SGXv2 can cause significant slowdowns if not
handled carefully.

4.1 Overhead of Random Accesses
As mentioned before, random main memory access is a perfor-
mance problem known from previous studies on SGXv1 [26, 27]
and our own evaluation on OLTP workloads in SGXv2 [10]. In
the following, we investigate the performance effects of slower
random access on join algorithms. We use the Parallel Hash Table
(PHT) join as an example because it is not optimized to reduce
cache misses. In our investigation, we vary the size of the smaller
input table (build side) from 1MB to 100MB and measure the
join throughput in enclave relative to the throughput outside
of the enclave. The probe table size is fixed at 1GB and only a
single join thread is used to prevent parallelization effects from
influencing the measurements. To investigate the correlation be-
tween cache misses and performance, we measure the number
of Last Level Cache (LLC) misses during the join and report this
number divided by the sum of the input table cardinalities as LLC
misses per row.
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Figure 4: Left: Throughput of a single-threaded hash join
with data and execution inside an SGXv2 enclave (DiE) rela-
tive to plain CPU. Join performance with large hash tables
suffers from random access overhead. Right: Comparison
of join phase runtimes at 100MB hash size. The slowdown
of the build phase inside the enclave is significant.
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Figure 5: Performance of randommemory reads andwrites
in an SGX enclave relative to plain CPU. In the cache, ran-
dom access performance is equal. Random accesses tomain
memory are significantly slower in SGXv2.

The experiment results are depicted on the left side of Figure 4.
The first bar shows that for a small table size of 1MB, which fits
into the cache of the tested CPU and causes fewer than 0.1 LLC
misses per row, the join throughput inside the enclave is 95 % of
the throughput outside the enclave. When increasing the size of
the smaller table to 50MB and 100MB, which is 4 times larger
than L3 cache, the number of cache misses increases to 1.75 and
1.9 LLC misses per row and the relative performance decreases
to 62 % and 51% respectively. Thus, the relative performance of
the join correlates with the frequency of cache misses.

The next interesting question is which of the two join phases
(building the hash table and probing it) affects performance most.
Thus, we break down the hash join runtime into phases in Fig-
ure 4, right part. It reveals that the random-write-heavy build
phase suffers a considerably higher performance reduction than
the join phase. This raises the question if memory writes in
SGXv2 have higher overheads than reads.

Random main memory access micro-benchmark. To an-
swer if slower writes cause the higher overhead measured for the
hash table build phase, the following micro-benchmark compares
reading and writing 8-byte integers at random positions inside
an array. The positions are determined by a linear congruential
generator. We measure the throughput and vary the array size.

The results are depicted in Figure 5. We derive three main
insights: (1) If the data is cache-resident, random memory reads
and writes have no performance penalty inside SGX (as expected).
(2) When increasing array sizes to larger than the cache sizes,
the relative performance of random reads and writes decreases
to similar degrees. Therefore, the bigger slowdown of the join’s
build phase cannot be explained by a performance difference
between random reads and writes. (3) The performance decreases
are significant. We see nearly 3x higher in-enclave latencies for
the 8GB array size and a doubling in latencies at 256MB, which
is the size of the hash table created in the join benchmark above.
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We attribute the observed slowdown to two features of the
SGXv2 hardware: (1) Since enclave memory is transparently en-
crypted, data must be decrypted when read from memory into
the cache and encrypted when written to memory. According to
measurements by Intel for TME-MK, this adds 11 ns of latency to
last level cache misses [7]. (2) Most of the security guarantees of
Intel SGX are enforced by adding checks to address translation
[8]. This increases the cost of TLB misses. Thus, the constant TLB
misses caused by random accesses over large memory areas are
extra costly to resolve in SGX enclaves, leading to significantly
higher random access latencies and reducing throughput.
Lessons learned. Random main memory access in SGXv2 en-
claves causes high performance overheads that lead to a signifi-
cant slowdown of algorithms and data structures dependent on
them, such as the PHT and INL join, grouping, hash tables, and
trees. Our micro-benchmarks show up to three times worse ran-
dom main memory access performance in SGXv2. When data fits
in the cache, there is no overhead caused by slower random mem-
ory access. Thus, there is a strong incentive to employ techniques
that either keep data cache-resident for processing or hide the
latency of cache misses.

One open question is why the hash table creation (build phase)
is 9x slower inside the enclave, although the random memory ac-
cess micro-benchmark only explains a 3x slowdown. As discussed
in the next section, the underlying reason for this discrepancy
and the slowdown of the RHO join is the same.

4.2 Overhead of Side Channel Mitigation
The RHO join does not suffer from random main memory access
overheads because of its partitioning. However, the overview in
Figure 3 still reveals performance reductions of more than 30 %.

Finding the root cause. To investigate the reason for this
slowdown, we again break down the join into its main phases.
The upper part of Figure 6 compares the runtimes of the stages in
a single-threaded RHO join between the plain CPU (blue bar) and
the enclave (green). It reveals that the overhead largely originates
from creating histograms (Hist. 1/2) for radix partitioning and the
partitioning itself (Copy 1/2). Especially the histogram creation
is up to 2 times slower inside the SGX enclave.

This is curious because the base operations required to create
a histogram for radix partitioning do not have high overheads.
As shown in Section 5, linear main memory reads only have 3 %
overhead in SGXv2 enclaves. Additionally, the previous micro-
benchmark revealed that random cache accesses have no over-
head inside enclaves (Section 4.1). Hence, it is unlikely that this
overhead is caused by memory encryption.

Indeed, further investigation isolated the issue source to read-
dependent write positions. That means all algorithms that al-
ternately read values, determine a write position from the read,
and then write to the determined position are affected. Their
performance in SGX enclaves is reduced even if they are not
bottlenecked by memory accesses. The histogram is such an
algorithm because the histogram bin that must be written (in-
cremented) depends on the input key. Other affected algorithms
in our experiments are the copy phase of radix partitioning, the
hash table build phase of the RHO join, and the hash table build
phase of the PHT join discussed in the previous section.

Explaining the slowdown. After identifying the slowdown
and consultations with Intel, we find that the microcode mitiga-
tion against Spectre Version 4, also known as Speculative Store
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Figure 6: Runtime breakdown for the phases in a single-
threaded RHO join with table sizes 100 (build) and 400MB
(probe). Comparison between Plain CPU, SGX Data in En-
clave and Plain CPU with SSB M(itigation) enabled. Apply-
ing our unrolling and reordering optimization improves
the performance of the slower phases significantly.

Bypass (SSB) [14], matches the observed behavior and is a possi-
ble explanation. The SSB vulnerability arises from the fact that
the CPU speculates if a load position overlaps with the currently
unknown position of an unfinished preceding store. If the spec-
ulation correctly assumes that the store does not invalidate the
load, the load can be done in parallel to the store. However, wrong
speculations cause reads of stale data. Although the CPU will
detect this and discard values calculated from the stale read, this
behavior can be exploited to create a side channel, potentially
exposing the secrets of an application [14]. As one option to
mitigate this side channel, Intel introduced a microcode patch
that exposes a switch to disable the speculative behavior. With
this switch activated, loads will not start before the addresses of
all preceding stores are known. On a plain CPU, the mitigation
is disabled by default. In SGX enclaves, however, the mitigation
is permanently enabled and cannot be disabled [14].

To verify if this mitigation causes the performance difference
between plain CPU and enclave computation, we enabled the mit-
igation outside of the enclave with the prctl [38] function. As
the setting Plain CPUM(itigation) in Figure 6 shows, enabling the
mitigation outside the enclave increases the runtime to exactly
the same time as inside the enclave. Thus, the performance differ-
ence can be explained fully with the mitigation. We verified that
this issue still exists on Emerald Rapids processors. This raises
the question if the performance overhead of this side channel
mitigation can be counteracted with specific optimizations.

Addressing the slowdown. To the best of our knowledge,
we are the first to identify these significant performance issues
caused by this side channel mitigation and propose a solution.
As explained in the next section, since the side channel mitiga-
tion essentially deactivates the speculative execution in enclave
mode, we suggest compensating this effect with loop unrolling
and instruction reordering, as exemplified in Listing 1 for the his-
togram computation. Our experimental results in Figure 6 (lower
part) confirm that our suggested optimization effectively coun-
teracts the slowdowns caused by the SSB mitigation. Histogram
and hash table build performance with the optimization applied
are nearly equal in the enclave. For the copy step, the results
are more nuanced. First, the optimization improves the perfor-
mance of the copy step in all three settings. The performance
of the plain CPU baseline also increases because the unrolling
reduces the frequency of expensive miss-speculations. Second,
since the copy operation inherently has dependent loads and
stores that cannot easily be split up, the optimization cannot re-
move all performance differences for this algorithm. Third, there
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// Original histogram loop
for (uint32_t i = 0; i < data_size; ++i) {

size_t idx = (data[i].key & mask) >> shift;
++hist[idx];

}

// Histogram loop with unroll + reorder optimization
uint32_t i = 0;
for (; i + 8 <= data_size; i += 8) {

size_t idx0 = (data[i].key & mask) >> shift;
size_t idx1 = (data[i+1].key & mask) >> shift;
...
size_t idx7 = (data[i+7].key & mask) >> shift;
++hist[idx0];
++hist[idx1];
...
++hist[idx7];

}

Listing 1: First loop: Histogram creation code used in radix
partitioning. The table data is scanned, a simple hash func-
tion is applied to the join keys, and corresponding his-
togram bins are incremented. Second loop: Histogram cre-
ation for radix partitioning unrolled 8 times (shortened).
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Figure 7: Histogram micro-benchmark for typical num-
bers of histogram bins. Using the scalar code, histogram
creation is 225% slower when executed inside the en-
clave. Manual loop unrolling and instruction reordering
decreases the slowdown to less than 20%.

is a remaining performance difference between the enclave and
mitigation settings. This can be explained by the random access
pattern of copying tuples to their partitions. All in all, the unroll
and reorder optimization decreases the runtime of the single-
threaded radix join by 62 % and increases the relative throughput
from 46% to 91 % of the baseline without mitigation and to 97 %
of the baseline with mitigation enabled.

Optimization in depth. Since the slowdown is triggered by
stores to data-dependent positions followed by loads, it can be
reduced by increasing the time between data-dependent stores
and following loads. One strategy to achieve this time separation
is grouping loads and stores, i.e., first loading multiple values
and then dispatching multiple stores in sequence. Thereby, most
store positions are determined in parallel to other stores and
do not block loads. This increases the number of concurrent
memory operations and decreases average latency. This effect
can be achieved by unrolling the inner loop of the algorithm and
reordering the instructions. An example of the histogram creation
loop is shown in Listing 1. In every iteration, the algorithm first
reads multiple keys from the input and calculates indexes, and
then issues multiple increments to the determined indexes in
sequence. This optimization decreases the runtime of histogram
creation in SGX enclaves to within 20 % of the same code running
in normal CPU mode (cf. micro-benchmark in Figure 7).

Tuning of the optimization. Theoretically, the further the
code is unrolled, the better the performance should become, as
the average latency per load/store caused by the mitigation de-
creases. In practice, this improvement is limited by the number of
registers available to store write positions. The number of regis-
ters available for this purpose depends on the algorithm and the
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Figure 8: Runtime of the histogram algorithm in an enclave
for a 500MB input array and 32 bins for varying unrolling
depth. Left: scalar code. Right: Vectorized code using AVX.

number of required registers for its calculation. As depicted on
the left side of Figure 8, on the Ice Lake CPU architecture, runtime
for the histogram algorithm decreases until 9x unrolling, where
9 indexes are determined and incremented per iteration. Starting
from 10x unrolling, at least one index must be stored on the stack
and loaded again. This interleaves loads and stores, thereby intro-
ducing additional latency and decreasing performance. Similarly
to the histogram algorithm, the optimal unrolling factor can be
determined empirically for other algorithms.

A prominent option to increase the number of indexes that can
be stored in registers further is the usage of AVX for index calcu-
lation. Thus, we implemented index calculation for histograms
with AVX intrinsics and unrolled the loop to store more indexes
in registers. As depicted on the right side of Figure 8, this can
improve performance further. Unrolling the loop 5 times and
calculating 40 indexes (since each load consumes 8 indexes) be-
fore the increments start achieved the best performance in our
experiments and a performance difference of 5 % between the
enclave and plain CPU execution. However, when unrolling 6
times or more, the compiler generates instructions that store
intermediate registers on the stack, decreasing performance.

Putting it all together. Finally, we investigate the effect of
manual loop unrolling and instruction reordering on RHO and
PHT using multi-threaded execution with all 16 cores on one
socket. Again, we compare the join throughput inside the en-
clave to the same join code executed without SGX protection.
We use the optimal unrolling factors for all algorithms marked
with O(ptimized). Additionally, we show the effect of changing
input table sizes with three example sizes. The results are de-
picted in Figure 9. With the optimization applied, the RHO join
performance inside the enclave improves by 114 % to 33 % (SGX
DiE compared with SGX DiE O). Thereby, it achieves 75 % to 95 %
throughput of the fastest RHO plain CPU baseline. RHO performs
best in the 100MB/400MB setting because of the relatively equal
input table sizes that still fit the L1 TLB during partitioning. The
PHT join throughput improves by 17 % to 118 %. For the small
build size, it achieves 92 % performance of the baseline. For the
larger build sizes, it reaches only 67 %/33 % performance of Plain
CPU O since it is still limited by slower random main memory
access. Thus, while the optimal join algorithm depends on the
data characteristics, with our optimizations, the performance
degradation inside the enclave is less than 10 %, as visualized by
the dashed horizontal lines in Figure 9.
Lessons learned. The side channel mitigation for Spectre V4,
which is disabled by default outside of enclaves but forcibly en-
abled inside enclaves, increases the runtime of the investigated
algorithms by up to 225 %. All algorithms that determine write po-
sitions from input values, such as histogram creation, hash table
creation, and partitioning, are affected. However, we show that
loop unrolling and instruction reordering, as well as vectorization,
can improve the performance of affected algorithms.
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Figure 9: Comparison of RHO and PHT throughput joining
three different table sizes with 16 threads with and without
optimization (O) and SSB mitigation (M). Both joins profit
from the optimization. With the optimization, the optimal
algorithm for a specific table size reaches more than 90%
of the fastest baseline throughput (horizontal lines).

While previous work noticed the potentially negative effects
of microcode updates on performance [39], we are the first to
pinpoint a concrete side channel mitigation as the root cause,
show the effect on databases, and suggest solutions.

More generally, the results show that, especially with other
overheads like EPC paging removed, side channel mitigations can
play a large role in software performance for SGX enclaves. Thus,
developers should be aware of them and consider optimizations to
circumvent performance regressions. Since the slowdown caused
by this mitigation can be large, we suggest mentioning it and
other mitigations applied in enclaves in the Intel SGX Developer
Guide, which already contains other advice for performance in
SGX enclaves [17].

4.3 Analyzing NUMA Effects for Joins
As introduced in Section 2, a new feature of SGXv2 is the support
for servers with multiple sockets, and enclaves leveraging the
secure memory on multiple NUMA nodes. Communication be-
tween NUMA nodes is known as an important performance
factor for in-memory database operations and, in particular,
joins [12, 20]. Moreover, while several NUMA optimizations exist
to increase NUMA locality, cross-NUMA traffic cannot be pre-
vented, particularly for complex queries (e.g., those including
multiple joins). Hence, in this section, we aim to analyze the ef-
fects of cross-NUMA traffic. Since enclave communication via the
UPI is encrypted [18] and previous work measured an increase
in latency when accessing memory across NUMA boundaries
in SGX compared to accessing cross-NUMA without SGX [10],
we investigate how these costs influence the performance of
join algorithms. An investigation of encrypted UPI throughput
is contained in Section 5.4.

The main issue of NUMA in the current SGXv2 is the fact that
the main tools for NUMA optimization – memory allocation and
thread pinning in specific NUMA regions – are features of the
untrusted OS and not available in enclaves. Thus, it is impossible
to ensure local processing in the general case. For the following
experiment, we make use of the fact that the Linux kernel on our
trusted benchmark machine allocates EPC pages of an enclave
in the local NUMA region if possible.

Benchmarking extreme NUMA cases. Since optimizations
for NUMA in joins is a wide research field on its own, we con-
centrate on extreme cases in our experiments and expect the
performance of real-world cases to fall in between. Our opti-
mal baselines are a NUMA-local join with 16 threads (Single
Socket Plain CPU) and a join where both input tables are pre-
partitioned on the join key to both NUMA nodes (Dual Socket
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Figure 10: Throughput of an RHO join on a NUMA system
in worst and best cases. A partitioned join with double
the cores can achieve double throughput on a plain CPU.
Inside the SGXv2 enclave, adding a second socket with 16
cores reduced the join performance because of the remote
data access.

Plain CPU). The second setup avoids cross-NUMA traffic com-
pletely and reaches double throughput of only using one NUMA
region. Additionally, we analyze two cases in SGX. The first is
a NUMA-local join, where the enclave and all its memory are
located on NUMA node 0 and the join is executed by all threads
on the same node (Single Socket SGX DiE). In the second setting,
all 32 cores of both sockets in the system execute the join, but
the enclave and all its memory are allocated exclusively on one
of the nodes (Dual Socket SGX DiE).

The results in Figure 10 show that without manual interven-
tion, the use of cores from multiple CPU sockets can decrease the
performance of a join executed inside SGX enclaves instead of in-
creasing it as intended. By comparing SGX Data in Enclave (DiE)
on a single socket with 16 cores to SGX DiE running on both
sockets with 32 cores, it is clear that adding another 16 threads to
the join while data is not distributed over both nodes decreases
the join throughput inside the enclave instead of increasing it.
This wastes the CPU cycles of 16 cores. Thus, the SGX join with
32 cores achieves less than half of the optimal case performance
for a join that leverages all cores (Dual Socket Plain CPU).
Lessons learned. Cross-NUMA memory access significantly re-
duces the performance of joins in SGXv2 enclaves. To improve
this situation, NUMA-awarememory allocations and thread place-
ment are required. However, since the OS manages these hard-
ware features, such manual control could currently only be imple-
mented when trusting the OS to do thread pinning and memory
allocations on specific CPUs correctly. As such, depending on the
setting, NUMA-awareness can not be achieved in SGXv2.

4.4 Synchronization & Memory Allocation
To conclude the investigation of join performance, we discuss
the last remaining factors in our Mixed effects category of SGXv2
overheads: Slowdowns caused by SGX SDKmutexes and dynamic
enclave memory allocation.

Effects of mutexes.Many multi-threaded join implementa-
tions require synchronization of threads during execution. The
authors of TEEBench [27] showed that the SGX SDK mutex
limited the join performance in SGXv1 because it causes costly
context switches outside the enclave. We revisit this issue in
the context of SGXv2 since efficient synchronization becomes
more important due to the new hardware: The increased number
of hardware threads that can create more contention and other
bottlenecks like EPC size have been removed.

To investigate the overhead in SGXv2, we designed the follow-
ing experiment: We switched out the lock-free task queue of our
radix join, distributing partition and join tasks between cores,
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Figure 11: Throughput of an RHO join with contention
on the task queue. Outside of the SGX enclave, the queue
choice does not make a significant difference. Inside the
enclave, protecting the queue with a mutex instead of a
lock-free design reduces the throughput by 75%.

with the mutex-guarded queue used in the original TEEBench.
Since the issue only occurs in case of contention, we forced con-
tention on the mutex by using small join partitions and 16 threads.
In Figure 11, we compare the performance of both implementa-
tions inside an SGX enclave and on a plain CPU.

The experiment results exemplify that replacing high-overhead
SDK functions with more optimized solutions can dramatically
change the performance characteristics of an algorithm in SGXv2.
Outside of the enclave, the choice of queue implementation does
not cause significant throughput differences (blue bars). How-
ever, inside the SGX enclave, join throughput drops by 75 % when
comparing the lock-free queue that avoids OS interactions with
the mutex-guarded queue (green bars).

Root cause of mutex slowdowns. The observed perfor-
mance difference is caused by the SGX SDK mutex’ design. In
this design, threads transition out of the enclave to sleep when
they encounter a locked mutex. When the owning thread unlocks
the mutex, it exits the enclave to wake the first waiting thread
up. Then, both re-enter the enclave. During these enclave transi-
tions, the mutex stays locked, extending the critical section and
increasing the probability of threads arriving at a locked mutex.
This is sensible if the critical section protected by the mutex is
significantly longer than an enclave transition. However, critical
sections of in-memory join algorithms are orders of magnitude
shorter than enclave transitions. Thus, a mutex-based design
has a negative performance impact. For the joins in this paper,
we considered this effect and replaced mutexes found in their
implementations with spin locks or lock-free data structures.

Effects of memory allocation. Memory management is
another critical performance factor for DBMSs [9]. Therefore,
many real-world databases use buffer managers that pre-allocate
memory before it is needed. In cloud settings, however, it is
desirable not to pre-allocate all memory available to a server
at start time [2]. Additionally, before a query is started, it is
not always clear how much memory the execution and result
materialization will require. Therefore, DBMSs can be forced to
allocate additional memory dynamically during query execution.

Originally, SGX enclaves had a fixed size that could not be
changed after enclave creation. With the SGX 2 instruction set,
Intel introduced additional CPU instructions that enable securely
adding and removing enclave pages at runtime [30]. This feature
is called Enclave Dynamic Memory Management (EDMM) and
available since Linux version 6.0/SGX SDK version 2.18 [15]. De-
pending on the enclave settings, EDMM is either transparent to
the developer or must be managed explicitly. The following ex-
periment investigates the performance implications of automatic
EDMM. In this experiment, we run our SGXv2-optimized RHO
join and additionally materialize the result table. By reducing the
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Figure 12: Throughput of the RHO join materializing out-
put tuples inside a statically sized pre-allocated enclave
comparedwith the throughput of the same join in a dynam-
ically sized enclave. Dynamically increasing the enclave
size during the join reduces its performance by 95%.

amount of pre-allocated memory during enclave start to a mini-
mum, we force a situation where all memory required to write
the join result tuples must be allocated by dynamically increasing
the enclave size. We compare this to a setting where the enclave
is large enough to fit all result tuples without adding memory
(static enclave size). As additional baselines, we also execute the
join in native mode with memory pre-allocated (pre-alloc) and
with dynamic memory allocation (dynamic alloc.).

The results in Figure 12 show that dynamically increasing the
enclave size for memory allocations is an order of magnitude
more expensive than dynamic memory management outside en-
claves. In the experiment, the join inside the enclave achieves
only 4.6 % throughput compared to the plain CPU join that al-
locates dynamically and only 4.1 % throughput compared to the
static enclave size setup. The difference can be attributed to the
security protocols necessary for resizing enclaves [30].
Lessons learned. The SGX SDKmutex and EDMM can introduce
large overheads for query execution in enclaves. Thus, lock-free
data structures should be preferred in enclaves, and EDMMshould
either not be used or actively managed to prevent its overheads.

5 SCANS IN SGXV2
In addition to joins, table scans are essential for the performance
of OLAP systems since they require scanning large amounts of
data with very high throughput. In this section, we use a colum-
nar SIMD scan as a typical scan algorithm in OLAP databases
which causes high demands on the memory subsystem.

Importance of the analysis. Interestingly, previous work
incorrectly reported the lack of SIMD instructions inside SGX
enclaves [26, 27] and hence state-of-the-art vectorized scan algo-
rithms [34, 42] have not been studied yet. Given the high core
counts available in recent server processors and the new mem-
ory encryption technology used in SGXv2 [18], it is unclear if
the memory decryption engine is fast enough to allow for high
throughput scans with multiple cores. Similarly, the impact of
the additional encryption on the scan throughput when crossing
NUMA boundaries has not been explored yet. Thus, studying
throughput-optimized column scans is essential for understand-
ing the performance characteristics of SGXv2 for DBMSs.

Scan algorithm and data. For our benchmarks, we imple-
mented state-of-the-art scan algorithms [34, 42] using AVX 512
instructions. Our implementations load 64 byte-sized values at
once from a column, compare them to a lower and upper bound
(i.e., incorporating a filter condition), and store the comparison
result either in a bit vector or, as we show in a later experiment,
materialize row identifiers. We use the byte-aligned input value
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Figure 13: Read throughput of a scan using AVX512 in-
structions, scanning over the same data 1,000 times. Com-
parison between enclave code reading enclave data (DiE),
enclave code reading unencrypted data, and non-enclave
code reading unencrypted data (plain). Inside the cache,
scan throughput is equal, outside the cache we observe a
slowdown of 3%.

size for this experiment to minimize the required processing ef-
fort and maximize the throughput requirements on the memory
system. As in our join benchmarks, we assume that the mem-
ory for the scan result is pre-allocated to see the pure overhead
of memory encryption and decryption. We determine the scan
throughput by dividing the size of the compressed input array
by the scan runtime.

5.1 Single-Threaded Column Scans
Before stressing the limits of the memory encryption engine
using multiple threads, we start by analyzing the encryption/
decryption overhead for a single-threaded scan. To this end, we
compare the read throughput of a column scan on a single CPU
core between enclave code reading enclave data (SGX Data in
Enclave), enclave code reading plain data (SGX Data outside
Enclave), and our baseline, non-enclave code reading plain data
(Plain CPU). Additionally, we vary the size of the scanned column
from 4 kB to 16GB. To show the effect of CPU caches, we first exe-
cute 10 warm-up scans and afterward start the time measurement
for another 1000 scans.

As we see on the left side of Figure 13, again, there is no
SGX-inherent overhead if data is cache resident. This is expected
because data in caches is in plain text and does not require any
decryption. When the data does not fit into the L3 cache, the
column scan over encrypted enclave data (stored in the EPC) is
only minimally (i.e., ≈3 %) slower than the scan over unencrypted
data. This is a clear improvement over SGXv1, which showed
a much larger performance loss of up to 75 % even for simple
non-vectorized scans [26].

5.2 Multi-threaded Execution
Next, we explore if the memory encryption engine inside SGXv2
becomes a bottleneck when increasing the scan throughput by
using multi-threading, as it is done in many modern DBMS.

To do this, we execute the same scan algorithm as in the pre-
vious experiment over a 16GB column while scaling the number
of used cores from 1 to 16. As shown in Figure 14, the enclave
memory protection mechanisms do not become a bottleneck on
our processor. The scaling behavior is equal between SGX and
plain CPU. Further, in both settings, our algorithm is able to reach
the memory bandwidth limit with 16 cores. We verified this with
Intel VTune for the plain CPU scan.
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Figure 14: Column scan throughput scales with more
threads. Scaling behavior is equal between running inside
the enclave and outside. There seems to be no bottleneck
caused by memory encryption or decryption in SGXv2.
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Figure 15: Varying selectivity to increase the write rate of
the scan benchmark. Uses a scan that returns matching
indexes. Size of input: 4GB. 16 Threads. An increased write
rate does not cause an increased overhead in SGXv2.

5.3 Scans with Varying Read/Write Ratio
The previous experiments are both read-heavy and only have
to write a small output as tightly packed bit vectors. As a con-
sequence, the memory encryption engine mainly performs de-
cryption when loading data from the EPC and only a limited
amount of encryption. This leaves open the question if increased
amounts of writes stress the memory encryption to a degree
where it cannot keep up with the column scan. To check if the
ratio of reads and writes to memory influences the performance
of scans inside the enclave, we evaluate a second scan with a
variable write ratio (i.e., by using different selectivities). Instead
of a bit vector, the second scan implementation returns 64-bit
integers (i.e., row indexes) for the values that match the range
criterion. Since a 64-bit index is 8 times larger than an 8-bit value,
the write rate of this scan is 8 times the selectivity.

As can be seen in Figure 15, an increased write rate does not
lead to a higher reduction of the read throughput inside the
enclave compared to outside. The read throughput of the column
scan decreases to the same degree inside and outside the enclave.
Lessons learned. The SGXv2 memory encryption mechanism
causes minor overheads for column scans optimized for maxi-
mum memory throughput. The performance of this operation
is, generally speaking, equivalent between normal CPU and en-
clave mode. This insight is independent of the number of CPUs
employed for the scan and the ratio of reads and writes. We ex-
pect that other bandwidth-bound algorithms with linear access
patterns, such as scalar functions, will behave similarly.

5.4 Scans and NUMA
As introduced in Sections 2 and 4.3, SGXv2 supports enclaves on
multi-socket servers. In the context of scans, this theoretically
enables the utilization of additional cores available on the second
NUMA node, further parallelizing scan algorithms to increase
performance. However, as NUMA-local memory allocations and
thread pinning are currently not available in SGXv2 enclaves,
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Figure 16: Cross-NUMA column scan throughput in an SGX
enclave compared with a cross-NUMA scan without SGX
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Figure 17: Runtime of four TPC-H queries at scale factor 10
and 100 using the RHO join. Comparison between outside
the enclave and inside the enclave, both with and without
optimization. Our optimization reduces the performance
difference between outside and inside the enclave.

scan threads may be forced to access EPC data on remote nodes
over the UPI link, which incurs additional overhead due to en-
cryption. To quantify the overhead of UPI encryption, we analyze
the throughput characteristics of cross-NUMA scans.

We again benchmark extreme cases and use the observation
that the Linux kernel allocates EPC pages on the local node. To
build a cross-NUMA column scan benchmark, we pin the scan
execution threads to the node on which the enclave was not
allocated. This ensures that all read and write operations cross
the UPI link. Using this technique, we compare the read through-
put of a NUMA-local plain CPU scan with the performance of
a cross-NUMA plain CPU scan and a cross-NUMA scan read-
ing and writing encrypted data inside an SGXv2 enclave. The
benchmarked scans use 1 to 16 threads.

Figure 16 shows the results of our benchmark. The measure-
ments show a lower throughput for cross-NUMA scans, especially
when using multiple threads. It is important to note here, that
the theoretical upper bound for throughput of the 3 UPI links
between the sockets in our server is 67.2 GB/s and executing the
scan with 8 and 16 threads approaches this upper limit. When
comparing the plain CPU cross-NUMA scan performance with its
enclave counterpart, we measured 77 % of the baseline through-
put with a single thread. This relative performance increases
with the number of threads up to 96 % for 16 threads, where the
scan is bound by the general speed of the UPI links.
Lessons learned. Cross-NUMA memory access reduces scan
throughput in SGX enclaves further than outside enclaves. Thus,
optimizations for local access would have a more significant effect
if they were possible.

6 COMPOSING OPERATORS IN QUERIES
Finally, we investigate the performance of our optimized join and
scan operators when composed in query plans. The goals of this
experiment are threefold. First, we examine if the effect of the
unrolling and instruction reordering optimization is still relevant
in the bigger picture. Second, we investigate the influence of
result materialization and TPC-H data characteristics (different
table sizes, wider SIMD-scan input values, selective joins, and
different payload data) on performance. Third, we assess if the
overall query execution performance in an SGXv2 enclave is
competitive with the native setting.

For this evaluation, we used TPC-H queries 3, 10, 12, and 19
as workload because these queries mainly consist of scans and
joins. We run the queries with the TPC-H data at scale factor 10
and 100 as input. To see the effects of the operators investigated
in this paper more clearly, we remove all other operators, replace
the final aggregation with count(*), and represent dates and cate-
gorical strings as integers, mimicking the evaluation setup for
CrkJoin [26]. All operators and queries are implemented in our
C++ framework and compiled before execution. The queries are
implemented using the optimized RHO join from Section 4. All 16
cores available on one hardware socket are used for parallelism.

The results in Figure 17 show that the optimizations intro-
duced in the previous sections (settings annotated with O) in-
deed result in performance improvements on the query level
and reduce the query runtime by 12% (Q19, SF10) to 39 % (Q12,
SF10) compared to the unoptimized version. Compared to the ex-
ecution on the native CPU, the overhead of running the queries
in SGX enclaves is reduced from 38% on average to 14 %. As
expected, scan & selection performance is very similar across set-
tings. Therefore, the performance difference between the enclave
and native setup primarily originates from the join implementa-
tion. Result materialization and the data characteristics of TPC-H
do not introduce unexpected performance differences between
native and SGXv2 execution.
Lessons learned. Using state-of-the-art operator implementa-
tions combined with SGXv2-specific optimizations enables query
plan execution at near-native performance inside an enclave.

7 DISCUSSION OF A PERFORMANCE MODEL
Given the evaluation results of our paper for in-memory query
operators, one remaining question is: How can the findings be
transferred to other algorithms and data structures? For such a
task, a unified cost model that incorporates memory access costs
and optimizations for query execution operators is required.

As a first approximation of such a model, we summarized our
findings in Table 2. Given the memory access pattern, as well as
the processed data size, the table shows the estimated slowdown
to be expected of an algorithm running in an SGXv2 enclave
compared to the plain CPU. This table can already guide perfor-
mance optimizations, such as partitioning or manual unrolling
and reordering (as presented in our paper). For example, as we
have seen in Section 4.2, histogram computations have a data-
dependent write memory access pattern. Thus, even if data fits in
the last level cache (LLC), we can expect a high overhead of up to
225 % and thus should consider applying additional optimization
in an SGXv2 enclave.

Developing a more sophisticated model that can capture more
nuanced performance aspects, such as the order of read and write
accesses, and predict exact algorithm performance or slowdown
is very involved, as it requires modeling interactions between
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Table 2: High-level performance model for the expected
slowdown of algorithms in SGXv2 enclaves. As shown in
our work, performance is mainly influenced by data size
(DS) and the access pattern (AP) of an algorithm.

DS
AP linear

read/write
independent

random read/write
data-dependent

write

< 𝐿𝐿𝐶 None (0 %) None (0 %) High (up to 225 %)
> 𝐿𝐿𝐶 None (3 %) High (up to 200 %) High (up to 800 %)

access patterns, concrete implementation, and CPU optimizations
like speculative execution. For example, Manegold et al. [29]
created a performance model for in-memory query operators
for traditional single-core CPUs, and we believe that such a cost
model would be a good starting point. Still, it needs to be updated
to reflect not only the effects of multi-cores and NUMA but also
SGX-related aspects, such as the effect of data-dependent writes,
which we have seen to severely impact the performance of query
operators. As such, creating such a more detailed model is out
of the scope of this paper but represents an important avenue of
future work.

8 RELATEDWORK
This study has three main areas of related work: Benchmarks and
performance evaluations for SGX, specialized enclave database
systems and architectures, and recent evaluations of SGXv2.

Benchmarks and performance evaluations for SGX.Mul-
tiple papers introduce benchmarks suites for SGXv1 [23, 25, 39]
to analyze the performance characteristics of enclaves. Their
approach is similar to ours in that they port existing work-
loads [23, 25] or benchmark suites [39] to Intel SGX and compare
the performance to native execution. These efforts do not con-
centrate on specific application domains like databases, and they
were conducted before the introduction of SGXv2.

Specialized DBMS for SGX. There are multiple proposals
for data management systems inside SGXv1 enclaves that sug-
gest approaches to circumvent the performance degradations
caused by the limited EPC size [1, 22, 35, 37] or investigate the
theoretical enclave performance without any memory limit [40].
Most related to our work are the publications by Maliszewski
et al. [26, 27] analyzing the performance of join algorithms in
SGXv1 enclaves. They observe that radix joins have beneficial
properties for enclaves, but all joins greatly suffer from slow ran-
dom access and EPC paging. To circumvent these problems, the
authors develop CrkJoin [26] that reaches superior in-enclave
performance in their evaluation. However, our study shows that
the CrkJoin optimizations are irrelevant in SGXv2 due to the
eliminated EPC bottleneck. To achieve near-native performance
for database workloads in the latest SGX generation, new op-
timizations and a thorough understanding of the performance
characteristics of SGXv2 are required.

SGXv2 performance. To the best of our knowledge, there
is still minimal research on the performance characteristics of
SGXv2 [4, 10, 24, 32]. Aside from our previous studies on OLTP
workloads [10] and neural network inference [24], Miwa andMat-
suo have examined SGXv2’s performance for HPC [32]. Addition-
ally, Battiston et al. are concurrently studying the performance of
running DuckDB inside an SGXv2 enclave [4] using the Gramine
library operating system [13]. This paper extends our previous
work by focusing on modern query execution algorithms, data
throughput, and an in-depth investigation of slowdown sources
at an architectural level. Through a detailed analysis of SGXv2
performance characteristics in the OLAP context, we identify

new optimizations, such as manual loop unrolling and instruction
reordering, to enhance the throughput of in-memory algorithms.

9 CONCLUSION
This paper provides a comprehensive analysis of Intel SGXv2,
evaluating its advantages and limitations for secure, high-perfor-
mance analytical databases. Among other insights, our study
offers three main contributions: Firstly, we demonstrated that
state-of-the-art main memory and cache-optimized join algo-
rithms perform better inside SGXv2 than those optimized for the
discontinued SGXv1 due to changed hardware characteristics.
Secondly, we uncovered previously unknown overheads caused
by a side channel mitigation enabled inside the enclave but not
outside, andwe showed how existing algorithms can be optimized
to circumvent this slowdown. Finally, we verified that SGXv2-
optimized operators enable the execution of query plans with
performance on par with execution outside the enclave. Overall,
our findings highlight the potential of SGXv2 for analytical work-
loads and show that a deep understanding of its performance
characteristics is crucial for designing high-performance DBMSs.
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