
Analysis of Text-to-SQL Benchmarks: Limitations, Challenges
and Opportunities

Anna Mitsopoulou
Athena Research Center, Greece
anna.mitsopoulou@athenarc.gr

Georgia Koutrika
Athena Research Center, Greece

georgia@athenarc.gr

ABSTRACT
Despite being a fast-paced research field, text-to-SQL systems
face critical challenges. The datasets used for the training and
evaluation of these systems play a vital role in determining their
performance as well as the progress in the field. In this work, we
introduce a methodology for text-to-SQL dataset analysis, and
we perform an in-depth analysis of several text-to-SQL datasets,
providing valuable insights into their capabilities and limitations
and how they affect training and evaluation of text-to-SQL sys-
tems. We investigate existing evaluation methods, and propose
an informative system evaluation based on error analysis. We
show how our dataset analysis can help explain the behavior
of a system on different datasets. Using our error analysis, we
further show how we can pinpoint the sources of errors of a text-
to-SQL system for a particular dataset and reveal opportunities
for system improvements.

1 INTRODUCTION
Text-to-SQL systems translate natural language (NL) questions
to SQL relieving users from the use of SQL for accessing data
in relational databases. In recent years, text-to-SQL systems
[37, 44, 51, 58] have achieved significant advancements due to the
use of large language models (BERT [9], T5 [49], GPT [48]) and
the creation of task-specific datasets (e.g., WikiSQL [75], Spider
[68]) used for system training and evaluation. These approaches
tackle the text-to-SQL problem as a language translation prob-
lem, and they train a neural network on a large amount of {NL
question/SQL query} pairs [27].

Unfortunately, unlike systems that translate from one natu-
ral language to another, or from natural language to code (e.g.,
Python), text-to-SQL systems face challenges and do not enjoy as
broad adoption, despite the high competition that exists among
them. The datasets used for the training and evaluation of text-to-
SQL systems play a vital role in the performance of these systems
as well as in determining the progress in the field.

While a system trained on a benchmark like Spider [68] may
exhibit good performance on this benchmark, when it is used
on a different benchmark or used in a real application/domain,
it does not fare as well. Several factors, such as the type of SQL
queries, their distribution, the domains, and even the size of the
data, matter when training a system. A system cannot perform
well for unseen (or even not “seen enough”) queries or data. On
the other hand, when evaluating a text-to-SQL system, a text-
to-SQL benchmark may create false expectations on the query
translation capabilities of the system. For example, a system
achieving 80% accuracy on a dataset with simple queries could
be worse than one achieving 60% accuracy on a dataset with
more complex queries. An absolute accuracy number does not

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the
28th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2025, ISBN 978-3-98318-097-4 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

provide much insight unless we consider the characteristics of
the evaluation dataset, such as the types and distributions of NL
and SQL queries. It is also important to be able to pinpoint the
sources of the errors a text-to-SQL system makes, and hence
reveal opportunities for system improvements.

While WikiSQL [75] and Spider [68] are the first large-scale,
multi-domain benchmarks for training and evaluating neural
text-to-SQL systems, several datasets have preceded and followed
them (e.g., [6, 15, 32, 38, 70]) that serve different purposes and
focus on different aspects of the text-to-SQL problem. In contrast
to the effort to understand text-to-SQL systems through studies
and surveys [1, 2, 7, 18, 24, 28, 39, 47], extensive studies and
evaluations of text-to-SQL datasets are missing. However, as we
explained above, understanding the capabilities and limitations
of text-to-SQL datasets is vital for making progress in the field.

In this work, we present a structured survey of text-to-SQL
datasets, their design objectives as well as their shortcomings.
Moreover, we present a text-to-SQL dataset analysis methodology
that provides a set of dimensions and measures to analyze and
characterize the richness and distributions of the SQL queries,
the natural language questions and the databases covered by a
dataset. Using our methodology, we evaluate several datasets, and
provide valuable insights into their value, complexity, and limita-
tions. This analysis also provides insights into the limitations of
current text-to-SQL systems, and reveals several opportunities
for research for the development of more effective benchmarks.

Furthermore, we investigate the methods and metrics for eval-
uating text-to-SQL systems and we point out their shortcomings.
We propose an alternative in the direction of a more informative
evaluation that combines a new metric and error analysis based
on an automatically generated SQL query categorization that can
provide insights about the system capabilities and pain points.

We show the potential of our approach for providing a more
fine-grained system evaluation. In particular, we experimentally
show how our dataset analysis can help explain the behavior of
a system on different datasets. Using our proposed error analysis,
we further show how we can pinpoint the sources of errors of a
text-to-SQL system for a particular dataset.

In a nutshell, our contributions are summarized as follows:
• We present a structured study of text-to-SQL datasets.
• Wepresent amethodology for evaluating text-to-SQL datasets.
• Wepresent an in-depth analysis of several text-to-SQL datasets.
• We provide an error analysis method combining a newmetric
and an automatically generated SQL query categorization.

• We show the potential of our dataset analysis methodology
and error analysis for more fine-grained and insightful system
evaluations.

2 TEXT-TO-SQL SYSTEMS
Research on text-to-SQL systems dates back to seventies, how-
ever, recently, the use of deep learning techniques has given a
great boost in the development of such systems [31]. The most

successful text-to-SQL systems [36, 37, 44, 51] rely on pretrained
language models (e.g., T5 or GPT-based architectures) and use
techniques, like pretraining, structure utilization or tasks decou-
pling to improve the performance in the task.

Pre-training. Introducing pre-training tasks is a popular ap-
proach to improve amodel’s performance. In text-to-SQL systems
they have been commonly used to tackle task-specific problems,
like schema linking. In more detail, GAP2SQL [55] created a syn-
thetic dataset and trained a model using four objectives (denois-
ing, column prediction, column recovery, and SQL generation)
resulting in an encoder that can better represent SQL. SeaD [63]
introduces two schema-aware denoising objectives aiming to
minimize the schema-linking problem. In the first objective, ero-
sion, the model takes as input the natural language question
and the schema with permuted, removed or added columns, and
the requested output is the SQL query. The second objective
re-permutes the mentioned entities in the SQL or NL question
and trains the model to reconstruct their order. GRAPPA [67]
proposes a grammar-augmented pre-training framework for ta-
ble semantic parsing, using the MLM objective in the natural
language and table headers input. Spider-Realistic [8] introduces
three pretraining objectives(column grounding, value grounding,
and column-value mapping) to better capture the alignments
between the natural language and the tabular data of a database
schema. GP [72] proposes extra pretraining of the decoder to
reduce SQL grammar errors.

Structure utilization The use of LLMs introduces restric-
tions regarding the formulation of the text-to-SQL task. This is
not a problem when we have to represent text, such as a natural
language question, or a SQL query, but it restricts the potential
information gathered from a database schema, which is better
represented as a graph structure. Several systems introduce tech-
niques that can incorporate the additional information provided
by the database schema structure. IRNet [19], RATSQL [58], and
LGESQL [5] construct a graph with the database schema and nat-
ural language question entities that reference schema elements
and use a relation-aware self-attention [54] encoder to capture
the relations between input segments. In [4], the authors use
graph encodings for both the natural language question and the
database schema and they introduce a Structure-Aware Dual Ag-
gregation Network (SADGA) to learn the alignment between
the two graphs. The rest of their architecture consists of an en-
coder with a relational-aware self-attention to further unify the
SADGA representations and the commonly used decoder of [66].
In RASAT [46], they construct a graph similar to RATSQL and
create relation embeddings that pass to the multi-head relation-
aware self-attention. GRAPHIX-T5 [37] modifies the architecture
of the T5 model by introducing a relational graph attention net-
work (RGAT [60]) and jointly passing to the decoder the output
of the RGAT and the T5’s encoder block, to incorporate both the
semantics and structure of the schema.

Tasks decoupling Schema linking is one of the main chal-
lenges in the task of text-to-SQL. Recently, there has been a ten-
dency to unburden the main translation model from the schema-
linking problem. SLSQL [34] proposes a schema-linking exten-
sion to the base model that can learn the relations between the
natural language question and the schema elements and pass
to the decoder a schema-aware representation. RESDSQL [36]
introduces a ranking-enhanced encoder that can rank the schema
elements by relevance to the natural language question and pro-
vide the encoder only with the most similar to the natural lan-
guage question. In DIN-SQL [44] the translation is broken down

into four simpler tasks, schema linking, SQL classification and
decomposition, SQL generation, and self-correction.

Furthermore, many works focus on the robustness of text-to-
SQL systems against small dataset perturbations [6, 8, 13–15], in
an effort toward systems that can handle more diverse translation
scenarios. Finally, there are works [45, 56] that try to utilize
existing benchmarks and incorporate them in the evaluation
process.

3 TEXT-TO-SQL DATASETS
A text-to-SQL dataset is a set of NL/SQL query pairs defined over
one or more databases. Text-to-SQL datasets play an integral
role in the development and benchmarking of text-to-SQL sys-
tems. Notably, early non-neural systems did not rely on common
benchmarks [17]. WikiSQL and Spider are the first large-scale,
multi-domain benchmarks that made training and evaluating
text-to-SQL systems possible. Both have become very popular
with Spider being the most used one.

We divide text-to-SQL datasets into 4 categories: (a) single-
domain datasets contain queries defined over one database; (b)
cross-domain datasets are defined upon a collection of domains
and databases; (c) perturbed datasets are based on existing ones
with introduced variations; and (d) augmented datasets are gen-
erated by automatic methods that create a large set of NL/SQL
pairs. Table 1 groups text-to-SQL datasets and provides infor-
mation about their size and domains. Note that a dataset may
fall in more than one category (e.g., a perturbed dataset is also
cross-domain). For easiness, we have grouped them based on
their most prominent category.

3.1 Single-domain Datasets
Most of the text-to-SQL datasets that contain queries in a single
domain were created before Spider, and were used for a particular
system. The majority of them were published before 2017 but
most of the SOTA text-to-SQL systems do not use them. This is
mainly due to their small size, which limits their use for train-
ing neural models. Nevertheless, their size is not a problem in
the evaluation process, where they could provide insights in a
system’s performance in different use-case scenarios.

These datasets exhibit diversity in terms of (a) size, (b) cre-
ation methods, and (c) databases. Regarding their size, most of
the datasets are small, with the exceptions of SEDE [20] and
MIMICSQL [61], which have a size similar to Spider’s. Regarding
the creation method, most of the datasets were created through
crowdsourcing/user studies (Yelp [64], IMDb [64], Scholar [25],
Geoquery [69], Advising [10], ATIS [22], Fiben [53]). Addition-
ally, some datasets were automatically created using templates.
These datasets include Restaurants [43, 57] and MIMICSQL [61],
which also included additional filtering of the produced questions
by users. Finally, there are datasets created from user logs. These
include Academic [35], which was generated from logs from the
Microsoft Academic Search, and SEDE [20], which was created
from logs from the Stack Exchange Data Explorer. Regarding the
databases, the majority of the datasets are defined upon existing
databases, in some cases with alterations or simplifications. For
example, the FIBEN [53] database is created by mapping two
existing financial ontologies into one.

3.2 Cross-domain Datasets
WikiSQL contains simple SQL queries overWikipedia tables from
multiple domains. Spider consists of 10,181 questions and 5,693

Table 1: Text-to-SQL datasets overview. "-" denotes unavailable information.

Dataset NLQ-SQL Databases Domains Category

Academic[35] 196 1 Microsoft Academic Search
Advising[10] 4570 1 University courses
Geoquery[69] 880 1 US geographical facts
IMDb[64] 131 1 Movies
Yelp[64] 128 1 Business reviewing
Scholar[25] 816 1 Academic database
Atis[22] 5418 1 Air travel information system
Restaurants[43, 57] 250 1 Info about restaurants in N. California
Fiben[53] 300 1 Financial
SEDE[20] 12023 1 Stack Exchange Website
MIMICSQL[61] 10000 1 Electronic medical records

Single domain

WikiSQL[75] 80654 24241 Wikipedia domains
Staqc[65] 119519 - -
Spider[68] 10181 200 Wikipedia, college courses, SQL tutorial websites
KaggleDBQA[32] 272 8 Kaggle datasets in multiple domains
EHRSQL[33] 24000 2 Electronic medical records
BIRD[38] 12751 95 Professional domains

Cross domain

Spider-Syn[14] 8034 200 Spider domains
Spider-realistic[8] 508 20 Spider domains
Spider-DK[15] 535 - Spider domains
ADVETA[42] - - Spider, WikiSQL, WDC domains
DR Spider[6] 15269 - Spider domains
MT-TEQL[40] 62430 2273 Spider domains

Perturbed

Spider-CG[13] 45599 - Spider domains
GRAPPA synthetic data[67] - - Spider domains
GAP2SQL synthetic data[55] 30000 - Spider domains
SHiP[73] - - Wikitables and spider train domains

Augmented

unique complex SQL queries on 200 databases with multiple
tables, covering 138 different domains. The Spider SQL queries
are divided into 4 levels: easy, medium, hard, and extra hard. The
difficulty is defined based on the number of SQL components,
projections, and conditions so that more complex queries are
considered harder.

Staqc [65] was created by mining SQL-related questions and
their answers from Stack Overflow. To the best of our knowledge,
its use as a training or evaluation dataset is very limited, probably
because of the lack of a database schema. KaggleDBQA [32] con-
tains a small number of queries upon real databases from Kaggle.
BIRD [38] contains questions over large-scale databases aiming
to better represent real use-case scenarios. Finally, EHRSQL [33]
contains questions over two databases related to health records.

WikiSQL, Spider and BIRD stand out in this category as they
cover a broad spectrum of domains. Even so, there are databases
and domains, such as scientific and business ones, that are more
challenging than the ones in these datasets: they may have a
very complex database schema, use special terminology, contain
cryptic table and column names, and so forth. Inevitably, the
general-purpose datasets, such as the ones above, cannot cover
these particularities, and more work is required to make a text-to-
SQL system work on a new domain. Additionally, despite current
efforts [32, 38], it is unclear if the existing benchmarks cover
queries of different difficulty levels that capture the challenges
present in real-world use cases.

3.3 Perturbed Datasets
As we will see in our analysis, Spider has several drawbacks,
and serving as the primary evaluation dataset conceals various

shortcomings of systems. Creating a large text-to-SQL dataset
from scratch demands extensive manual effort.

As an alternative, numerous initiatives focus on creating varia-
tions of existing datasets. These variations emphasize on specific
challenges, such as schema linking, which is the correlation of
the natural language question with the database elements (tables,
columns, values). Their goal is to provide a more accurate assess-
ment of the system capabilities and/or boost these capabilities
by enriching the training dataset.

Spider-Syn [14] is created by replacing schema references in
the NL questions with their synonyms in the train and develop-
ment Spider sets. Spider-Realistic [8] is created by removing or
paraphrasing explicit mentions of column names from a subset
of NL questions in the Spider development set. MT-TEQL [40]
is generated by applying transformation rules in the schema
or the utterance of the Spider queries. ADVETA (ADVErsarial
Table perturbAtion) [42] is built by applying perturbations in
the tables of WikiSQL, Spider, and WTQ. Spider-DK [15] is de-
rived by selecting a sample of the Spider development set and
creating paraphrases of the natural language questions to incor-
porate domain knowledge. DR-Spider [6], created by applying
perturbations in natural language questions, queries, and data-
base schemas, has been proposed to simulate diverse task-specific
robustness challenges. Two synthetic datasets are proposed to
quantify domain generalization [71].

Existing systems show a substantial performance drop across
all perturbed datasets. Thismakes the value of such datasets in the
evaluation process clear and highlights the limited capabilities of
current text-to-SQL models in handling new datasets and specific
challenges, even with small differences from the originals.

3.4 Augmented Datasets
The use of deep neural networks in the text-to-SQL task requires
a large amount of data in the training process. The absence of a
huge dataset for the text-to-SQL task and the low adaptability of
existing models in databases without domain-specific training
have led to several efforts to create augmented datasets. These
datasets are used in the pretraining process either with the text-
to-SQL task or with pretraining tasks defined in each work.

GRAPPA [67] contains augmented NLQ-SQL pairs over Wik-
iTables [3], and it was created by using a Synchronous Context-
free grammar (SCFG) containing rules for the SQL queries and
their corresponding questions induced from Spider examples.
GAP2SQL [55] has been created by crawling SQL queries from
Github and using a SQL-to-Text model to create the correspond-
ing natural language questions. A method for creating an aug-
mented dataset using a database-specific probabilistic context-
free grammar (PCFG) and a SQL-to-Text system is described in
[59]. The method was used to create augmented datasets from
the Geoquery [69] and Spider databases and pre-train models in
the downstream task. In SHiP [73], given a database schema, SQL
queries are generated based on templates and a schema-weighted
column sampling, and the corresponding natural language ques-
tions are built with a SQL-to-Text parser. Spider-CG [13] has been
created by generating multiple variations of the natural language
questions and the SQL queries from Spider. This was achieved
by adding new clauses or conditions, or substituting existing
ones in the SQL queries, along with the corresponding changes
in the natural language questions. While previous efforts used
the augmented dataset in the pre-training process, the authors
of SpiderCG finetune their model only with their augmented
dataset and do not use the training set of Spider.

The augmented datasets, with the exception of Gap2sql, do not
significantly enhance the diversity of SQL queries, because their
production rules rely on templates that exist in current datasets.
The variation from existing SQL queries is based on the different
utilization of the variables (tables, columns, values). On the other
hand, the natural language questions in most of the systems are
new, as they are produced from a deep neural network. In general,
the augmented datasets introduce new examples to some degree,
can boost underrepresented categories, and pose new challenges.

The main problem that these datasets face is quality. They
cannot guarantee syntactic and semantic correctness of the SQL
and natural language questions due to the use of deep neural
networks and the random selection of variables to fill in the
SQL templates. Consequently, despite the observed boost in per-
formance that existing systems have shown with the use of an
augmented training dataset, we should keep in mind that the
low quality of these datasets can lead to systems susceptible to
semantic errors.

Table 2: Dataset analysis axes

SQL queries Structural variety, Operator variety, Operator usage,
Schema usage, Content usage

Databases Schema complexity, Schema quality, Database size
NL questions Schema linkage, Lexical complexity, Syntactic

complexity, Readability

4 DATASET ANALYSIS METHODOLOGY
An analysis of the characteristics of the datasets used for training
and evaluating text-to-SQL systems can help explain the perfor-
mance of a system. For instance, poor performance in nested
queries could be due to their absence in the training dataset,
while excellent performance in another dataset could be due to
the dataset’s poor ability to provide enough variant examples,
which results in hiding system vulnerabilities.

Apart from the size of the dataset that is typically given, several
works provide additional statistics for text-to-SQL datasets. These
include the frequency of specific clauses [10, 32, 33, 38, 52, 68],
the percentage of columns mentioned in the natural language
questions [8, 32, 56], the quality of the natural language queries
[40], the number of templates existing in the dataset [10, 20, 25],
and summary metrics related to the SQL queries or the NL ques-
tions (e.g., the average conditions in the queries, the average
length of the questions, etc) [20, 61]. Furthermore, dataset analy-
ses typically incorporate statistics about the databases, such as
the number of columns, tables or rows, or the size of the databases
in a dataset.

Existing approaches focus on different characteristics of text-
to-SQL datasets failing to provide a uniform, multi-aspect and
fine-grained analysis and comparison of such datasets. To ad-
dress this gap, we propose a methodology for characterizing
text-to-SQL datasets that provides a set of facets that capture
the diversity and distribution of the SQL queries, the natural
language questions, and the databases in a dataset. Our method-
ology incorporates the statistics used in previous works along
with several new additions.

4.1 SQL Queries
The analysis of the SQL queries in a dataset provides an overview
of the type of queries that a system is capable of predicting and
helps explain system shortcomings due to unbalanced query dis-
tributions in the training data. Our SQL query analysis method-
ology comprises five axes, summarized in Table 2.

Structural variety. To gain a general understanding of the
variety of the SQL queries, we examine their structure. The struc-
tural components consist of select, from, where, group by, having,
order by, limit, set operators, and nesting. Each SQL query is
categorized based on the combination of its structural compo-
nents. Then, the structural variety of the SQL queries in a dataset
is shown by reporting the percentage of each structural combi-
nation in the dataset.

Operator variety. Operations (e.g. logical, mathematical) ex-
pressed in the natural language question must be translated into
SQL. To explore the SQL complexity from this angle, we examine
the operators of the SQL queries. We have considered operator
types instead of operators to reduce the number of possible com-
binations. Specifically, each query is characterized based on the
combination of the following operator types:
− Aggregates: count, max, min, sum, avg
− Comparison operators: >, >=, <, <= , =, !=, between, not between

− Logical Operators: and, or
− Arithmetic Operators: +, -, /, *, %
−Membership Operators: in, not in

− Join Operators: join, outer join, left join, cross join, etc
− Like Operators: like, not like

− Null Operator: is null, is not null

The operator variety is shown by the percentage of each oper-
ator combination in the dataset.

Operator usage. The complexity introduced by the operators
in a SQL query is not caused only by their variety, but addition-
ally by their quantity. For that reason, we explore their usage in
a dataset by reporting, for each number of operators, the percent-
age of SQL queries that contain so many operators.

While the first three axes (structural variety, operator variety
and usage) focus on the query complexity, the next two focus on
the interaction of the query with the database elements.

Schema usage. The usage of schema elements in the SQL
queries is shown by reporting the percentages of queries for each
number of columns and tables used in the queries of a dataset.

Content usage. To understand the usage of the database
values in the SQL queries, for each number of values mentioned
in SQL queries of a dataset, the report includes the percentage of
queries that contain this number of values.

4.2 Databases
The databases upon which the queries are formulated have a
significant impact on the difficulty of the queries. Our database
analysis in a dataset focuses on three axes.

Schema complexity.We measure the complexity of the data-
base schema by calculating the number of tables and columns in
each database of the dataset. The larger and more convoluted a
database schema, the more complex SQL queries may become,
and the more difficult it is to map NL questions to this schema.
Schema serialization as the dominant approach to encoding the
database schema in the input of text-to-SQL systems [27] may
also be a problem.

Schema quality. To understand the schema quality of a data-
base, we measure the percentage of schema elements that are
valid English words. In this way, we can have an intuition on
how easy a database schema is to be understood by a text-to-
SQL system. For example, the attribute hadm in the MIMICSQL
database, which refers to hospital admission, is not an English
word, and it cannot be easily understood by a language model,
on which all current approaches are based.

Database size. The database size can have an impact on a
text-to-SQL system. Some systems implement schema linking
methods that require a database search, whose overhead is af-
fected by the database size. Furthermore, text-to-SQL systems
typically focus on how to translate a NL question to an equivalent
but not necessarily efficient SQL query. This oversight becomes
critical as the performance of SQL queries deteriorates with the
database size. For the database size, we report the total number
of rows across tables in every database in a dataset.

Table 3: Example values of lexical complexity metrics

Question Rarity Lexical
density

What is the area of California? 0 0.33
What is the total number of patients who
had coronary atherosclerotic native vessel?

0.5 0.57

How many such stocks are there whose last
traded value does not exceed 1?

0.27 0.78

4.3 Natural Language Questions
The analysis of the natural language (NL) questions in a dataset
helps understand the type of questions that a system is capable of

Figure 1: Structural variety in the SQL queries of the
datasets. ({S}elect, {F}rom, {W}here, {G}roup by, {O}rder by, {L}imit,
{N}esting

Figure 2: Operator variety in the SQL queries of the datasets.
({J}oin, {Ag}gregate, {C}omparison, {Lo}gical, {Me}mbership, {Li}ke)

successfully translating to equivalent SQL queries. Our analysis
of the NL questions has four axes.

Schema linkage. One aspect that can determine the difficulty
of the natural language questions in the task of text-to-SQL is
how well they align with the underlying schema. Therefore, we
report the percentages of the schema elements required in the
corresponding SQL that are referenced by their exact name in
the NL question.

Lexical complexity. A NL question may be expressed in sim-
ple words or use more rare words making it possibly harder for
a text-to-SQL system to find an equivalent SQL query. To under-
stand the complexity of the vocabulary used in NL questions, we
adopt well-known metrics: (a) Rarity: the ratio of the rare words
to the content words of an NL question [50]; and (b) Lexical
density: the ratio of the content words to the total words of an
NL question [26]. Content words are the important words (e.g.,
not the articles) of a text based on their part-of-speech tag. Table
3 presents example questions with their corresponding rarity and
lexical density values.

Syntactic complexity. To measure syntactic complexity of
a NL question, we report the: (a) Dependency depth: the depth of
the NL question dependency tree; and (b) Length: the number of
words in the NL question. As an alternative to the length, the
number of dependencies in the NL question dependency tree
could be reported.

Readability. We also report the readability of a NL question.
For this purpose, we adopt one of the most popular formulas, the
Flesch reading ease [11].

5 DATASET ANALYSIS RESULTS
We present the results of our analysis of text-to-SQL datasets us-
ing our methodology.We included publicly available datasets that
are not derived from Spider, as the latter have small differences
from the original dataset. Most of the datasets were obtained
thanks to work in [10], in which they thoroughly collected mul-
tiple text-to-SQL datasets and made them easily accessible. We
report the summary statistics across all axes of our methodology,
enabling us to thoroughly compare the datasets. Due to space
constraints, the full analysis of each dataset is included in our

(a) Operator usage (b) Schema usage (c) Content usage

Figure 3: Usage analysis of the SQL queries of the datasets.

Figure 4: Schema complexity in the databases of the
datasets.

GitHub repository1. The following plots present the evaluation
(test) splits of the datasets. For datasets with no splits, we con-
sider the whole dataset as an evaluation set, while in the case of
Spider and BIRD, where the test split is not available, we consider
the dev set as the evaluation split. We omit the analysis of the
training sets, as in all datasets, except Atis, the distributions in
the training set are similar to the evaluation one. The omitted
plots can be found in our Github repository. Lastly, in the figures
and tables, we use the abbreviations: Geo (Geoquery), MIMIC
(MIMICSQL), Restos (Restaurants), K-DBQA (KaggleDBQA).

5.1 Analysis of the SQL Queries
5.1.1 Structural variety. Figure 1 shows the percentages of

the nine most common structural categories across datasets. As
we can see the vast majority of the queries in the datasets are
of type SFW. Most single-domain datasets exhibit small struc-
tural variety. Among them, Atis, MIMICSQL, and Restaurants,
have exclusively SFW queries with or without nesting. On the
other hand, Spider and KaggleDBQA have the highest structural
varieties. This may be partially attributed to the existence of mul-
tiple databases in each dataset that lend themselves to expressing
richer types of questions. Lastly, BIRD and Scholar are the more
diverse ones containing the highest percentages of queries that
do not belong to the most common categories. Overall, we ob-
serve a high imbalance in the structural categories of the queries
in the datasets and a focus on a few, simple, categories.

5.1.2 Operator variety. Figure 2 depicts the eleven most com-
mon operator type combinations existing in the datasets. Geo-
query and Advising are the only single-domain datasets that
contain multiple operator categories in a substantial percentage.
MIMICSQL offers some operator type variety but it is more im-
balanced. The multi-domain datasets have the highest varieties.
In the Advising dataset, half of its queries contain like operators.
Lastly, Atis is the dataset with the most diverse operator type
combinations, containing almost exclusively combinations other
than the most common across datasets. Overall, the datasets do
not cover a broad spectrum of operator combinations, while arith-
metic, membership, and like operators appear rarely, if not at
all.

1https://github.com/athenarc/Experimental-Analysis-of-Text-to-SQL-
Benchmarks

Figure 5: Schema quality in the databases of the datasets.

5.1.3 Operator usage. Figure 3a depicts the number of opera-
tors used in queries in the considered datasets. In most datasets,
queries use 0-10 operators. Interestingly, themost popular datasets
(Spider, BIRD) are among the ones with the lowest use of opera-
tors.

5.1.4 Schema usage. Figure 3b shows the number of tables
and columns used by the SQL queries in each dataset. The schema
usage (and in particular the column usage) is proportional to the
operator usage in the datasets. The vast majority of the queries in
all datasets, except Atis, mention at most 10 columns. Atis is the
dataset with the highest column usage, containing approximately
3 times more columns than most of the datasets. Regarding the
number of tables used, the differences across datasets are small,
and most of the times, queries contain fewer than five tables.

5.1.5 Content usage. Figure 3c provides insights into the num-
ber of values used in the queries in the datasets. Most queries in
almost all datasets involve an average of less than four values. A
notable exception are Atis queries, which contain 2-3 times more
values than the queries in the rest of the datasets. In other words,
Atis queries involve several conditions on values.

Overall, regarding schema and content usage, Atis queries
make better use of the schema and content of the Atis database,
while Spider and BIRD queries ‘touch’ few tables and columns.

5.2 Analysis of the Databases
5.2.1 Schema complexity. Figure 4 depicts the number of

columns and tables for the databases in each dataset. The ma-
jority of the datasets contain a single database, resulting in one
line in the plot. All databases have a small number of schema
elements, with fewer than 25 tables and 125 columns. Focusing on
the multi-domain datasets (Spider, BIRD, KaggleDBQA), we ob-
serve small variations in the schema complexity of their database
collection. The small size of the existing schema allows schema
serialization in the input of the systems, which is the most popu-
lar input method, however, is not necessarily representative of
real databases with much larger schemas. Overall, all datasets
use toy databases.

5.2.2 Schema quality. Figure 5 shows the percentages of data-
base schema elements that are valid English words. The single-
domain datasets and Spider contain a high percentage (> 75%) of
explainable schema elements. The other cross-domain datasets
(BIRD, KaggleDBQA) have less self-explainable database schemas.

Figure 6: Size of databases in the datasets.

Figure 7: Schema linkage in the NL questions of the
datasets.

Scholar is the only single-domain dataset with the lowest schema
quality across all datasets (∼20%) because its column names are
often concatenations of multiple words without underscore or
camel case (e.g., citedpaperid). Overall, most datasets use easy
database schemas.

5.2.3 Database size. Figure 6 shows the total number of rows
in each database. As we can see, the biggest databases are Aca-
demic and IMDb followed by Yelp. The rest of the datasets have
much smaller databases. Overall, these databases do not present
significant efficiency challenges for the predicted SQL queries.

5.3 Analysis of the NL Questions
5.3.1 Schema linkage. Figure 7 depicts the exact schema ref-

erence percentages in the NL questions of all datasets. In most
datasets, on average, only 10-35% of the NL questions contain ex-
act schema references. The datasets with the lowest use of exact
references are Restaurants, Atis and Advising. Spider is by far the
dataset with the highest percentages, with a 50% average. The
high number of exact references in Spider has been mentioned
[8, 34] as a downside that makes the schema linking task easier
than in real use cases.

5.3.2 Lexical complexity. Figure 8 shows the values of rarity
and lexical density across all datasets. IMDb, Geoquery, and Aca-
demic questions have the lowest average rarity values. In other
datasets, we can not detect noticeable differences. Regarding the
lexical density, the average in most datasets varies from 0.3 to 0.6.
MIMICSQL has the highest lexical density, while Academic is the
one with the lowest. Overall, the datasets contain rather simple
NL questions as they contain many pronouns and auxiliaries
rather than nouns and lexical verbs (based on lexical density) and
do not contain rare words (based on rarity).

5.3.3 Syntactic complexity. Figure 9 shows the values of the
metrics regarding the syntactic complexity of the NL questions.
Geoquery has the simplest questions, while BIRD andMIMICSQL
have the more complex questions.

5.3.4 Readability. Figure 10 presents the readability scores of
the questions existing in the datasets. The majority of the ques-
tions across datasets have a high readability score. MIMICSQL
and Academic are the datasets with the lowest scores.

Figure 8: Lexical complexity of the NL questions.

Figure 9: Syntactic complexity of the NL questions.

Figure 10: Readability of datasets NL questions.

Overall, NL questions are easily understood by humans.

5.4 Summary
Table 4 provides a summary of our findings across the considered
aspects. For every aspect of our analysis, we group the results and
create 3 different levels, Low, Medium, and High, characterizing
the dataset regarding this aspect. The criteria defining each level
are described in the long report in our GitHub repository.

5.4.1 Where do existing datasets fall short? The variety of
SQL queries, NL questions, and databases in the existing datasets
do not cover a broad spectrum of all the possible cases, raising
several concerns regarding the robustness of the training and
evaluation process. (1) The imbalanced training datasets can
create several problems in the models like biased predictions
and reduced generalization capabilities [21]. (2) Real applica-
tions typically involve more complex queries with several tables,
conditions, nesting, formulas, etc. Thus, a system trained on an
existing benchmark will probably not cope with these queries.
(3) The distribution of queries in the evaluation datasets is also
unbalanced giving more focus on simpler queries. As a result, a
system’s accuracy will not represent accuracy balanced across
different SQL types. (4) Real databases contain hundreds of tables
and columns, which means that systems trained and evaluated
on the existing benchmarks have not tested their translation ca-
pabilities over more realistic databases nor their capabilities of
generating efficient queries. Additionally, taking into account the
broad usage of fine-tuning techniques in the task of text-to-SQL,
(5) existing datasets are fairly small compared to the datasets
used for training neural models, such as models for code under-
standing and generation. For example, CodeSearchNet [23] used
for training code-related models contains 2 million training ex-
amples, with even larger datasets created after it (Stack [30], The
Pile [16]). Lastly, since most of the datasets have been built within

Table 4: Summary of datasets in the analyzed axes. L: Low, M: Medium, H: High.

SQL Queries NLQs Databases

Dataset
Structural
Variety

Operator
Variety

Operator
Usage

Schema
Usage

Content
Usage

Schema
linkage

Lexical
Compl.

Syntactic
Compl. Read/ty Schema

Compl.
Schema
quality

DB
Size

Academic L L M L M L L H M M M H
Advising L M M M M L M M M M H M
Geo H L L L M M L M H M H L
IMDb L L M L L L L M H L M H
Yelp L L M L L L L M H L H H
Scholar M L M L L L M M M M L N/A
Atis H H M M M L L M M M H M
Restos L L M M M L M M H L H M
MIMIC L L L L L M H H M L M N/A
Spider M L L L L H M H H L M L
K-DBQA M L L L L L L M M L L M
BIRD M L L L L M M H M M M M

the scope of the text-to-SQL task (e.g., through crowdsourcing
or researchers’ manual work), (6) the questions may not repre-
sent real use case scenarios, making it difficult to understand the
performance that a system would have if we used it, for instance,
as an assistant for data analysis.

5.4.2 What are the best datasets for training? There are two
scenarios: Finetuning. A critical requirement for a dataset used
for training a PLM is to be of substantial size. As a result, most
existing datasets cannot be used as a standalone training solution.
Additionally, the use of a system in multiple domains requires a
multi-domain training dataset. The datasets that meet the size
and domain requirements are the most popular ones that are
already used for training, namely WikiSQL, Spider and BIRD. We
believe that a combination of the existing diverse big datasets
(e.g., Spider+BIRD) would be the best strategy for training. On the
other hand, the small datasets should be left out of the training
set as their value could be higher serving as out-of-distribution
evaluation sets.

Prompting. Lately, a popular solution for creating systems
for a downstream task is the use of pre-trained large language
models with prompting. In this scenario, the dataset requirements
are minimized to finding similar examples to the provided one.
This means that all datasets can be equally valuable in creating a
pool of diverse examples from which the prompt examples will
be selected.

5.4.3 What are the best datasets to test the capabilities of a
system? Evaluating on multiple datasets is necessary to measure
the coverage of the types of questions a system can support
[10]. Therefore, the more datasets used for evaluation the more
robust will be the understanding of a system’s capabilities. The
most valuable datasets in the evaluation process are the most
diverse compared to the training datasets, or the ones with unique
characteristics. For example, it would be valuable to test the
performance of a system trained on Spider, in a dataset like
MIMICSQL, which has a database with demanding terminology
and it is different from most of the databases existing in Spider.
In the same manner, evaluating a system with the Atis dataset,
which contains queries with a higher number of filters would be
of high value in determining the capabilities of a system.

6 TEXT-TO-SQL EVALUATION METHODS
6.1 Existing Evaluation Approaches
Accuracy metrics. The primary method for evaluating the per-
formance of a text-to-SQL system is by computing its accuracy,
i.e., the percentage of the SQL queries that are translated cor-
rectly. This is accomplished by either comparing the predicted
and ground truth SQL queries or by comparing their execution
results. These correspond to Spider’s exact match and execution
match and WikiSQL’s [75] logical form accuracy and execution
accuracy metrics.

While these metrics are widely utilized, they are not com-
pletely accurate by design. The exact match can result in false
negatives due to equivalent queries, while execution accuracy
can result in false positives when distinct queries coincidentally
produce the same execution result. In addition to that, Spider’s
implementation of exact match produces erroneous results in sev-
eral other cases. The most important one, as was also mentioned
in [74], is the fact that the exact match does not consider the
join’s "on" condition in the comparison. For example, the exact
match score of the queries "select * from author join actor

on author.name = actor.name" and "select * from author join

actor on author.id = actor.id" will be 1, i.e., the queries will
be erroneously considered the same.

Efforts to enhance the robustness of accuracy metrics and mit-
igate false results include Partial Component Matching F1, which
is similar to Spider’s component matching but uses a parser that
can process a larger set of SQL queries [20], an accuracy metric
that considers semantically equivalent queries [29], and a metric
called test suite execution accuracy [74] that tests the execution
results of the queries over diverse variations of the database con-
tents. Finally, QATCH [41] proposes a set of new metrics that
can more accurately depict the capabilities of a system.

Efficiency metrics. Translating a NL question to SQL occurs
with a non-negligible overhead. Furthermore, the predicted SQL
query may not be the most efficient one, an issue that becomes
more critical for databases with a large number of tables, columns
and rows. Efficiency metrics include the latency of processing
an entire query [12, 52], and the throughput, i.e., the number
of queries that can be processed when a maximum number of
processes are given [12]. A metric called VES (Valid Efficiency
Score) computes the efficiency of the valid predicted SQL queries

[38]. A query is valid if its result set aligns with this of the ground-
truth SQL query. In this case, efficiency refers to the query’s
running time.

Although these metrics are valuable parts of a comprehensive
evaluation, they do not help understand translation errors.

Query categorization. Towards a more insightful evaluation,
many systems categorize the SQL queries or the natural language
questions existing in the dataset and report the accuracy results
in every category. With this approach, they gain a deeper un-
derstanding of the system capabilities across different categories.
The most popular categorization is the SQL query categoriza-
tion introduced in Spider, which divides the queries into four
groups based on hardness criteria. However, this categorization
is too generic, and it fails to effectively highlight system chal-
lenges.While more extensive categorizations have been proposed
[17, 62], they have not gained wide adoption. These categoriza-
tions, while beneficial, face challenges such as a non-automatic
process for query classification, hindering their application to
new datasets. Moreover, a common limitation lies in the lack of
clear justification for the criteria underlying selected categories,
limiting their broad applicability.

Error analysis. Another direction towards amore comprehen-
sive evaluation is error analysis. In an effort to provide insights
into their system’s errors, many works [19, 29, 32, 34, 40, 58]
manually select a subset of the wrong predictions made by their
model, and group the error causes. This categorization provides
useful information about the system’s downfalls, but it requires
extensive and repetitive manual work.

6.2 Automated Error Analysis
Given the above analysis of evaluation metrics, we introduce an
automatic categorization for both queries (Section 6.2.1) and er-
rors (Section 6.2.2) as the foundational step toward an evaluation
framework that can be easily adapted across diverse contexts.

6.2.1 SQL Categorization. Determining the best set of cate-
gories, in terms of error explainability, is not trivial. The first
challenge is the definition of the features that constitute a cat-
egory or can be combined to create a more general one. The
second challenge is the optimal selection from these categories,
which will result in a reasonable number of categories, capable
of depicting the downfalls of a model. We begin our study by
defining two general sets of categories to examine if any valuable
information can be gained and decide if a more thorough effort
for a different categorization would be useful.

The first set of categories aims at structural categorization and
contains all structural combinations of a query. The second one
categorizes queries based on the operator types combination they
contain. We selected these categorizations, as from the analysis
of the datasets we observed that they can sufficiently depict the
structural and operator variety of the SQL queries. Hence, they
provide a more fine-grained analysis compared to template anal-
ysis [10, 20, 25], since templates combine structural and operator
categories.

6.2.2 Our Partial Match. To create the error categories, we
built on the components match defined in Spider, reformatting
the components and defining three categories of matches: (a)
structural match, (b) operator match, and (c) variable match. With
this categorization, we try to identify problems that arise due
to the difficulty of a model understanding the requested struc-
ture, the confusion in recognizing the requested relations, or the

model’s inability to select the correct database components and
extract the values from the natural language query, respectively.

Structural Match. To calculate errors in the structure, we
check whether the predicted query’s structural components are
equivalent to the ones of the gold query. In more detail, we
create a set with the names of existing structural components
in every subquery. In the case of nesting or of a set operator,
we additionally store information for the position in which they
exist (e.g., in the WHERE clause). The score of the structural
match is produced by the average of the Jaccard similarity on the
two sets for every compared subquery.

For example, for the gold query "select name from students where

age < (select avg(age) from students where age>17) and grade in

(select grade from best_grades)" and the predicted query "select
name from students where grade>10 and age>17", the structural match
will be:

𝑎𝑣𝑔 (𝐽 𝑎𝑐𝑐𝑎𝑟𝑑 ([𝑠𝑒𝑙𝑒𝑐𝑡, 𝑓 𝑟𝑜𝑚, 𝑤ℎ𝑒𝑟𝑒,𝑛𝑒𝑠𝑡𝑖𝑛𝑔_𝑤ℎ𝑒𝑟𝑒_1,
𝑛𝑒𝑠𝑡𝑖𝑛𝑔_𝑤ℎ𝑒𝑟𝑒_2], [𝑠𝑒𝑙𝑒𝑐𝑡, 𝑓 𝑟𝑜𝑚, 𝑤ℎ𝑒𝑟𝑒]) ,

𝐽 𝑎𝑐𝑐𝑎𝑟𝑑 ([𝑠𝑒𝑙𝑒𝑐𝑡, 𝑓 𝑟𝑜𝑚, 𝑤ℎ𝑒𝑟𝑒], []) ,
𝐽 𝑎𝑐𝑐𝑎𝑟𝑑 ([𝑠𝑒𝑙𝑒𝑐𝑡, 𝑓 𝑟𝑜𝑚], [])) = 0.2

The main problem that arises with this approach is the se-
lection of the subqueries to be compared. Due to the difficulty
of finding an optimal solution, we choose a naïve approach by
comparing the subqueries with the order they exist in the query
and we leave the exploration for a better solution as future work.

Operator Match. A similar approach is followed for the cal-
culation of the operator match. In this case, we create the set,
for each subquery, containing a unique entry for every operator,
alongside its positional information. The operator match value
for a pair of queries is the average of the Jaccard similarities of
all subqueries.

VariableMatch. To calculate the variablematch of two queries,
for each subquery, we create a set containing entries for the vari-
able names and types, where the variable types consist of table
names, column names, and values. For models without constant
prediction, we omit literals and numbers from the comparison.

Finally, we define the average of the above 3 matches as the
partial match score of two queries. With these metrics, we do
not aim at predicting with precision the accuracy of a model.
Instead, we focus on error explainability to validate our intuition,
that a more detailed analysis of the errors could make the process
of evolving text-to-SQL models easier and more robust.

6.2.3 Discussion. The advantage of our method is that it auto-
matically creates an error analysis that could assist the creator of
a system to understand its pain points and produce more robust
models. Hence, our method can be used as an additional tool
for system evaluation. Nevertheless, it is not perfect as there are
cases in which it falls short.

The proposed metrics for error analysis could result in false
negatives in the case of equivalent queries. For example, the
queries "select name, age from singer order by age limit 3” and
"select name, age from singer where singer.id in (select singer.id

from singer order by age limit 3)”will result in errors in all matches,
even though the two queries are the same. To mitigate the impact
of the equivalent queries in the depicted errors, our metric could
be used only in queries that we know are wrong (e.g., in queries
with 0 execution accuracy). Additionally, our proposed method
will not point out the cause of errors related to the natural lan-
guage questions. For example, the elevated errors in a structural
category could be caused by ambiguities in the natural language
question, but our metric will only show that the model struggles

in this category. The exploration of the natural language effect
in the models’ errors is an important aspect of the error analysis
and we leave it for future work.

7 EXPERIMENTS FOR SYSTEM EVALUATION
In this section, we describe experiments with existing text-to-SQL
models over the analyzed datasets. Our purpose is to show how
the dataset analysis using our methodology of Section 4 can shed
more light into the performance of a text-to-SQL model. Then, as
a second step, we focus on Spider, and perform an error analysis
as described in Section 6.2 that demonstrates how our approach
can pinpoint the sources of errors and provide additional insights
into the performance of a text-to-SQL system in a dataset.

7.1 Using Dataset Analysis in System
Evaluation

We provide the results of text-to-SQL models in all the analyzed
datasets focusing on insights that stem from the extra information
provided by the analysis of the evaluated datasets. Hence, our
focus is on showing the value of dataset analysis for system
evaluation and not the value of any particular text-to-SQL model.

7.1.1 Models. We have selected several variations of the T5
model, which is used as the base component in several systems
at the top of Spider’s leaderboard. The reason for this selection
is primarily the available checkpoints of the T5 in the Spider
dataset from [51] that made it easy to get the predictions of
the models for all datasets. We did not select any LLM, e.g., all
the GPT-4 based architectures existing on top of the Spider and
BIRD leaderboard, as their cost for getting the predictions in all
datasets was prohibitive. More specifically, our models consist of
T5-base_lm100k, T5-large, T5-large_lm100k, T5-3B and T5 with
the PICARD method [51]. For the datasets that had the database
available and in a .sqlite format (Geoquery, Atis, KaggleDBQA,
BIRD, Restaurants, Advising) in addition to PICARD, we enabled
the option of using the DB content provided by the authors
[51]. The lm_100k suffix suggests that the model was trained for
100k additional steps with the language modeling objective and
PICARD is a constrained decoding algorithm.

7.1.2 Dataset preprocessing. We removed unnecessary blank
spaces from the literals (e.g., “ VLDB ” instead of “VLDB”) from
the gold queries of IMDb, Yelp, and Academic, as we saw that
their execution resulted in empty sets and we assumed that they
were wrong.

7.1.3 Metrics. To measure the performance of the models
we used the execution accuracy and the implementation of the
Spider’s exact match. Through experiments, we figured out that
the exact match could not parse a large portion of the queries in
several datasets. For this reason, we preprocessed the queries be-
fore passing them to the metric to correct some of the error cases
that were fixable by reformatting the query. These include:
• Implicit joins. Queries that had tables in the from clause sepa-

rated by a comma were not parsable. We replaced the implicit
joins with the ‘join’ keyword.

• <> operator. We replaced the <> operator with the !=, which
was parsable.

• Inner join. The exact match could not parse queries that
specified the type of join (outer join, left outer join, inner join
etc.). We could not reformat these queries without altering

their logic, but we replaced the appearances of ‘inner join’
with ‘join’, as it is the default join method.

• Backquotes. We replaced backquotes in literals with quotes.
• where clause content in parentheses. We removed redundant

parentheses in the where clause (e.g, "select * from singer where

(name=’A’ and age>18)").
These changes significantly increase the number of parsable

queries, though there are still many that remain unparsable. The
number of parsing errors in each dataset along with their causes
are in our GitHub repository.

7.1.4 Results. Table 5 presents the performance of the T5
models in the analyzed datasets. As alreadymentioned, all models
are trained on Spider. Hence, the table shows their performance
in several datasets. It is important to mention that even though
the value of evaluating a model over multiple datasets has been
repeatedly underscored in the literature [8, 10, 14, 15, 41, 42], most
of the current systems are evaluated in only one dataset. The
table’s results once again demonstrate the need for this broader
evaluation.

Focusing on the results, we observe that the Atis, Scholar, and
Restaurants datasets have the worst performances. If we recall
our analysis, Atis is a dataset with many more conditions than
other datasets and all three datasets are among the ones with
the lowest percentage of exact schema references. Additionally,
Scholar had the lowest percentage of explainable schema items.
Through manual inspection of the predictions, we can observe
that the above characteristics seem to be the main source of
errors. As we can observe in the example predictions of the Atis
and Scholar datasets in Table 6, the models struggle to connect
with the schema, they often hallucinate schema elements and
in the case of Atis, they produce much shorter queries than the
ground truth ones.

Geoquery, KaggleDBQA and IMDb are the datasets with the
best performances. We believe that the fact that they all contain
a significant percentage of easy queries, i.e., queries with only
one type of operator and SFW queries - combined with their
low operator, schema, and content usage contributes to the cor-
rect prediction of a considerable portion of their corpus. Table
6 presents a correct prediction in the Geoquery dataset, demon-
strating the simplicity of the NL question and the corresponding
SQL query.

Similarly, we can detect hints of the primary challenges en-
countered by the models for most of the datasets. For instance,
given the MIMICSQL dataset, we can observe that it has only
simple queries with low schema usage. Combined with one of
the lowest question readability, the high lexical and syntactic
complexity in the natural language questions, and one of the
highest lower bounds in the content usage we could infer that
possibly the model struggles with understanding the DB content
in the questions. For example, as we can see in Table 6, it omits
the ’mitral valve disorders’ value in the first example and it in-
correctly translates the value "crnry athrscl natve vssl", in the
second example, as a schema element.

Regarding the capabilities of different models, we see that they
tend to improve with changes in model size, extra pretraining,
or the use of PICARD for datasets that are similar to the Spider
(mainly regarding the SQL axes). This indicates that the tech-
niques for improving the model affect datasets close to the one
used for training, but seem to have limited gains in datasets with
different characteristics.

Table 5: Models’ evaluation in several text-to-SQL datasets with execution match (EM) and execution accuracy (EX).
({b}ase_lm100k, {l}arge, {l}arge{-lm}100k, {b}ase-lm100k + {P}ICARD (b+P))

T5 Spider Geo Atis Academic MIMIC K-DBQA IMDb Yelp Scholar BIRD Restos
EM EX EM EX EM EX EM EX EM EX EM EX EM EX EM EX EM EX EM EX EM EX

b 59.4 59.3 4.2 16.8 0 0.4 4.6 6.1 2 - 11.3 16.7 11.4 11.4 4.6 7.8 0 - 1.3 4.1 0 7.2
l 67 68.3 10.3 16.4 0 0.4 4.6 4.1 4.3 - 16.7 21 12.9 14.5 4.6 8.5 0 - 1.9 8.2 0 21.6
l-lm 71.1 73 13.8 19.6 0 0.2 3.5 5.1 4.7 - 15.1 21.6 18.3 18.3 5.4 11.7 0 - 2.2 7.6 0 26.4
3B 71.5 72.8 16.8 19 0 1.2 5.1 5.6 8.2 - 18.9 21.6 16 17.5 4.6 11.7 0 - 3.1 9.5 0 4
b+P 66.2 67.4 13.4 32.9 0.9 6.7 5.1 6.1 2.8 - 18.3 24.8 11.4 16 4.6 8.5 0 - 2.7 10 0 0

Figure 11: Errors in Spider development set with Exact match (EM), Execution accuracy (EX), Structural match (SM),
Operator match (OM) and Variables Match (VM).

Figure 12: Structural match errors in structural categories.

Figure 13: Operator match errors in operator type combi-
nations categories.

The above serves as a demonstration of the valuable insights
our dataset analysis can provide, aiding in both a better under-
standing of a model’s capabilities and the identification of its
limitations.

7.2 Using Error Analysis in System Evaluation
To demonstrate the effectiveness of our error analysis in reveal-
ing additional information regarding the sources of errors in a
model, we present the results of our method in analyzing the
performance of text-to-SQL systems in the Spider dataset. We
selected Spider because it is the most popular and we were able
to collect results from multiple systems. More specifically, except

from the above-used models, we report the results in RATSQL
[58], which uses a task-specific encoder and decoder, and DIN-
SQL [44], which is based on GPT-4. For the RATSQL model, we
reproduced the results of the RATSQL+BERT following the in-
structions in their repository, while for the DINSQL, we have
parsed the predictions from the given file in their repository.

Figure 11 shows the percentages of errors with the exact match,
the execution accuracy metric, and our error metrics, namely
partial, structural, operator, and variable match. The execution
match is not reported for the RATSQL, since it does not predict the
values in the produced SQL queries. For example, in the predicted
SQL query "select distinct singer.country from singer where

singer.age > ’terminal’)", instead of a value in the age condition
the model predicts just the ’terminal’ symbol, that denotes a value
existence.

We observe that the performance of the models decreases
if we evaluate them, in the Spider development set, with our
partial match, instead of Spider’s exact match. This happens due
to the errors in the exact match implementation, as previously
mentioned. In more detail, the distribution of the partial match
errors for the T5 and DINSQL models remains the same but
slightly elevated, as opposed to RATSQL, in which we can see a
large increase in errors.

Focusing on our metrics for error explainability, namely the
structural, operator, and variable match, it is clear that the pri-
mary source of mistakes, in all models, is the wrong prediction of
the variables. The second most important source of errors lies in
the prediction of operators, while structural mismatches remain
comparatively low and steady for all models. Focusing on the T5
model variations, increase in size, as well as extra pretraining,
provide significant improvements, mainly by reducing variable
errors. Regarding the RATSQL we can see that there is a huge
difference in the operator and variable match errors compared to
the rest of the models. Finally, we can observe that the PICARD
methodwith the use of column values in the input reduces mainly
the errors in the variables, while surprisingly generating more
errors in the structural match.

By combining the SQL categorization with the error catego-
rization, we create Figures 12 and 13, which depict the structural

Table 6: Examples of predictions

Dataset NL Question SQL query Prediction
flights from
washington to
seattle

SELECT DISTINCT flight.flight_id FROM flight WHERE (flight.from_airport IN (SELECT
airport_service.airport_code FROM airport_service WHERE airport_service.city_code IN (
SELECT city.city_code FROM city WHERE city.city_name = ’WASHINGTON’)) AND
flight.to_airport IN (SELECT airport_service.airport_code FROM airport_service WHERE
airport_service.city_code IN (SELECT city.city_code FROM city WHERE city.city_name =
’SEATTLE’)))

select flight.flight_id from flight join aircraft
on flight.aircraft_code = aircraft.aircraft_code
where aircraft.aircraft_name = ’washington’ and
aircraft.aircraft_name =’seattle’

Atis
i want to go from
boston to
washington on a
saturday

SELECT DISTINCT flight.flight_id FROM flight WHERE (flight.from_airport IN (SELECT
airport_service.airport_code FROM airport_service WHERE airport_service.city_code IN (
SELECT city.city_code FROM city WHERE city.city_name = ’BOSTON’)) AND (
flight.to_airport IN (SELECT airport_service.airport_code FROM airport_service WHERE
airport_service.city_code IN (SELECT city.city_code FROM city WHERE city.city_name =
’WASHINGTON’)) AND flight.flight_days IN (SELECT days.days_code FROM days WHERE
days.day_name = ’SATURDAY’)))

select airport.city from airport join
airport_service on airport.airport_code =
’Boston’ and airport. city_code = ’Denver’

who publishes in
NIPS ?

SELECT DISTINCT writes.authorId FROM paper, venue, writes WHERE paper.venueId =
venue.venueId AND venue.venueName = ’NIPS’ AND paper.paperId = writes.paperId"

select t1.authorname from author as t1 join
writes as t2 on t1.authorid = t2.authorid join
journal as t3 on t2.journalid = t3.journalid
where t3.journalname = "NIPS"

Scholar
Fetch me the most
cited publications
for Artificial
Intelligence

SELECT DISTINCT cite.citedPaperId, count(cite.citingPaperId) FROM cite, paperKeyphrase,
keyphrase WHERE cite.citedPaperId = paperKeyphrase.paperId AND
paperKeyphrase.keyphraseId = keyphrase.keyphraseId AND keyphrase.keyphraseName =
’Artificial Intelligence’ GROUP BY cite.citedPaperId ORDER BY count(cite.citingPaperId)
DESC

select t1.title, t2.numcitedby from paper as t1
join cite as t2 on t1.paperid = t2.citingpaperid
where t1.title = "Artificial Intelligence" group
by t2.citedpaperid order by count(*) desc limit 1

Geo what is the area of
california

SELECT STATEalias0.AREA FROM STATE AS STATEalias0 WHERE STATEalias0.STATE_NAME = "california" select area from state where state_name = "california"

find the number of
patients diagnosed
with mitral valve
disorders.

SELECT COUNT (DISTINCT DEMOGRAPHIC.SUBJECT_ID) FROM DEMOGRAPHIC INNER JOIN DIAGNOSES
on DEMOGRAPHIC.HADM_ID = DIAGNOSES.HADM_ID WHERE DIAGNOSES.LONG_TITLE = M̈itral valve
disorders"̈

select count(*) from demographic as t1 join
diagnoses as t2 on t1.hadm_id = t2.hadm_id join
primary_disease as t3 on t2.primary_disease =
t3.primary_disease group by t3.primary_disease
having count(*) >= 1

MIMICSQL
what is the total
number of patiemts
who had crnry
athrscl natve vssl?

SELECT COUNT (DISTINCT DEMOGRAPHIC.SUBJECT_ID) FROM DEMOGRAPHIC INNER JOIN DIAGNOSES
on DEMOGRAPHIC.HADM_ID = DIAGNOSES.HADM_ID WHERE DIAGNOSES.SHORT_TITLE = "Crnry athrscl
natve vssl"

select count(*) from crnry athrscl natve vssl

and operator match errors for the structural and operator catego-
rization, respectively. In this way, we can observe more clearly
the errors in each category.

Figure 12 shows that in the queries with nesting or set opera-
tors, the T5-3B model has the highest error percentage among
the T5 models, possibly indicating that the training data for these
more complex categories are not enough to successfully train
a model this big. Additionally, DINSQL’s errors significantly
increase in structural combinations with limit, nesting, or set
operators. This behavior combined with the high difference be-
tween the exact and execution match could indicate that DINSQL
produces equivalent queries with different structures, more often
than the rest of the models. We also observe that different models
seem to have achieved complementary understandings of the
SQL structure. We should mention though that due to the low
differences (less than 0.5%) those are not safe conclusions.

Figure 13 shows the huge deficiency of RATSQL when there
is a join operator, leading to the point that queries containing
joins rarely produce a correct answer. Additionally, from the nor-
malized errors, we can observe that all models, except DINSQL,
struggle the most in queries with logical operators and in the
’other’ category, which contains the most rare operator combina-
tions in the Spider dataset. This can be attributed to the use of
Spider as a training dataset in the models, which creates biases
regarding the predicted queries, and it highlights the importance
of a more diverse dataset during the training process. Moreover,
the small percentage of errors of these operator combinations,
due to their low usage in the evaluation dataset, makes clear
the importance of the distribution in the evaluation dataset in
pinpointing model vulnerabilities.

Overall, error categorization can provide useful insights into
the sources of errors and the differences between models. Given
that our implementation is open source and the only requirement
for the error analysis is a JSONfile, with the predictions of amodel
over a dataset, we believe that it provides an easy way to start

the analysis of any model, without extra overhead and enable an
in-depth comparison of several state-of-the-art systems.

8 CONCLUSIONS
In this work, we introduced amethodology for text-to-SQL dataset
analysis, and we performed an in-depth analysis of several text-
to-SQL datasets. We examined existing evaluation methods, and
proposed an automated error analysis method. We showed how
our dataset analysis can help explain the behavior of a system
better than the systems’ original evaluations. Using our error
analysis, we further showed how we can pinpoint the sources of
errors of a text-to-SQL system for a particular dataset. Our work
provides several insights into the limitations of current text-to-
SQL systems and datasets, and opens up opportunities for the
development of more effective benchmarks, evaluation method-
ologies and systems. Future work could include the upgrade of
our error metrics, to detect equivalences and to report false nega-
tives and positives for each prediction, that could uncover biases
of the models regarding operators or structural components. Ad-
ditionally, we could explore extra axes in the datasets analysis,
for instance, for the detection of ambiguities in the NL questions.
Designing novel benchmarks using our dataset methodology
is another important direction. Finally, the evaluation of SOTA
text-to-SQL systems in the analyzed datasets with our error anal-
ysis would be a valuable next step to understanding the current
capabilities in this task.

9 ACKNOWLEDGEMENTS
This work has been partially supported by DataGEMS, funded by
the European Union’s Horizon Europe Research and Innovation
programme, under grant agreement No 101188416.

REFERENCES
[1] Shanza Abbas, Muhammad Umair Khan, Scott Uk-Jin Lee, Asad Abbas, and

Ali Kashif Bashir. 2022. A review of nlidb with deep learning: findings, chal-
lenges and open issues. IEEE Access 10 (2022), 14927–14945.

[2] Katrin Affolter, Kurt Stockinger, and Abraham Bernstein. 2019. A comparative
survey of recent natural language interfaces for databases. VLDB J. 28, 5
(2019), 793–819.

[3] Chandra Sekhar Bhagavatula, Thanapon Noraset, and Doug Downey. 2015.
Tabel: Entity linking in web tables. In International Semantic Web Conference.
Springer, 425–441.

[4] Ruichu Cai, Jinjie Yuan, Boyan Xu, and Zhifeng Hao. 2021. Sadga: Structure-
aware dual graph aggregation network for text-to-sql. Advances in Neural
Information Processing Systems 34 (2021), 7664–7676.

[5] Ruisheng Cao, Lu Chen, Zhi Chen, Yanbin Zhao, Su Zhu, and Kai Yu. 2021.
LGESQL: Line Graph Enhanced Text-to-SQLModel with Mixed Local and Non-
Local Relations. In Proceedings of the 59th Annual Meeting of the Association
for Computational Linguistics and the 11th International Joint Conference on
Natural Language Processing (Volume 1: Long Papers), Chengqing Zong, Fei
Xia, Wenjie Li, and Roberto Navigli (Eds.). Association for Computational
Linguistics, Online, 2541–2555. https://doi.org/10.18653/v1/2021.acl-long.198

[6] Shuaichen Chang, Jun Wang, Mingwen Dong, Lin Pan, Henghui Zhu, Alexan-
der Hanbo Li, Wuwei Lan, Sheng Zhang, Jiarong Jiang, Joseph Lilien, Steve
Ash, William Yang Wang, Zhiguo Wang, Vittorio Castelli, Patrick Ng, and
Bing Xiang. 2023. Dr.Spider: A Diagnostic Evaluation Benchmark towards
Text-to-SQL Robustness. arXiv:cs.CL/2301.08881

[7] Naihao Deng, Yulong Chen, and Yue Zhang. 2022. Recent Advances in Text-
to-SQL: A Survey of What We Have and What We Expect. In Proceedings of
the 29th International Conference on Computational Linguistics. International
Committee on Computational Linguistics, Gyeongju, Republic of Korea, 2166–
2187. https://aclanthology.org/2022.coling-1.190

[8] Xiang Deng, AhmedHassan Awadallah, ChristopherMeek, Oleksandr Polozov,
Huan Sun, and Matthew Richardson. 2021. Structure-Grounded Pretraining
for Text-to-SQL. In NAACL-HLT. Association for Computational Linguistics,
1337–1350.

[9] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019.
BERT: Pre-training of Deep Bidirectional Transformers for Language Under-
standing. In Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), Jill Burstein, Christy Doran, and Thamar
Solorio (Eds.). Association for Computational Linguistics, Minneapolis, Min-
nesota, 4171–4186. https://doi.org/10.18653/v1/N19-1423

[10] Catherine Finegan-Dollak, Jonathan K. Kummerfeld, Li Zhang, Karthik Ra-
manathan, Sesh Sadasivam, Rui Zhang, and Dragomir Radev. 2018. Improving
Text-to-SQL Evaluation Methodology. In Proceedings of the 56th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers),
Iryna Gurevych and Yusuke Miyao (Eds.). Association for Computational Lin-
guistics, Melbourne, Australia, 351–360. https://doi.org/10.18653/v1/P18-1033

[11] Rudolf Franz Flesch and Alan J Gould. 1949. The art of readable writing. (No
Title) (1949).

[12] Han Fu, Chang Liu, BinWu, Feifei Li, Jian Tan, and Jianling Sun. 2023. CatSQL:
Towards Real World Natural Language to SQL Applications. Proceedings of
the VLDB Endowment 16, 6 (2023), 1534–1547.

[13] Yujian Gan, Xinyun Chen, Qiuping Huang, and Matthew Purver. 2022. Mea-
suring and Improving Compositional Generalization in Text-to-SQL via Com-
ponent Alignment. In Findings of the Association for Computational Linguistics:
NAACL 2022, Marine Carpuat, Marie-Catherine deMarneffe, and Ivan Vladimir
Meza Ruiz (Eds.). Association for Computational Linguistics, Seattle, United
States, 831–843. https://doi.org/10.18653/v1/2022.findings-naacl.62

[14] Yujian Gan, XinyunChen, QiupingHuang,Matthew Purver, John RWoodward,
Jinxia Xie, and Pengsheng Huang. 2021. Towards robustness of text-to-SQL
models against synonym substitution. arXiv preprint arXiv:2106.01065 (2021).

[15] Yujian Gan, Xinyun Chen, and Matthew Purver. 2021. Exploring underex-
plored limitations of cross-domain text-to-sql generalization. arXiv preprint
arXiv:2109.05157 (2021).

[16] Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles
Foster, Jason Phang, Horace He, Anish Thite, Noa Nabeshima, et al. 2020. The
pile: An 800gb dataset of diverse text for language modeling. arXiv preprint
arXiv:2101.00027 (2020).

[17] Orest Gkini, Theofilos Belmpas, Georgia Koutrika, and Yannis Ioannidis. 2021.
An in-depth benchmarking of text-to-sql systems. In Proceedings of the 2021
International Conference on Management of Data. 632–644.

[18] Orest Gkini, Theofilos Belmpas, Georgia Koutrika, and Yannis E. Ioannidis.
2021. An In-Depth Benchmarking of Text-to-SQL Systems. In SIGMOD ’21:
International Conference on Management of Data, Virtual Event, China, June
20-25, 2021, Guoliang Li, Zhanhuai Li, Stratos Idreos, and Divesh Srivastava
(Eds.). ACM, 632–644. https://doi.org/10.1145/3448016.3452836

[19] Jiaqi Guo, Zecheng Zhan, Yan Gao, Yan Xiao, Jian-Guang Lou, Ting Liu, and
Dongmei Zhang. 2019. Towards complex text-to-sql in cross-domain database
with intermediate representation. arXiv preprint arXiv:1905.08205 (2019).

[20] Moshe Hazoom, Vibhor Malik, and Ben Bogin. 2021. Text-to-SQL in the wild:
a naturally-occurring dataset based on Stack exchange data. arXiv preprint
arXiv:2106.05006 (2021).

[21] Haibo He and Edwardo A Garcia. 2009. Learning from imbalanced data. IEEE
Transactions on knowledge and data engineering 21, 9 (2009), 1263–1284.

[22] Charles T Hemphill, John J Godfrey, and George R Doddington. 1990. The
ATIS spoken language systems pilot corpus. In Speech and Natural Language:
Proceedings of a Workshop Held at Hidden Valley, Pennsylvania, June 24-27,
1990.

[23] Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis Allamanis, and Marc
Brockschmidt. 2019. Codesearchnet challenge: Evaluating the state of semantic
code search. arXiv preprint arXiv:1909.09436 (2019).

[24] Radu Cristian Alexandru Iacob, Florin Brad, Elena-Simona Apostol, Ciprian-
Octavian Truică, Ionel Alexandru Hosu, and Traian Rebedea. 2020. Neural
Approaches for Natural Language Interfaces to Databases: A Survey. In Pro-
ceedings of the 28th International Conference on Computational Linguistics.
International Committee on Computational Linguistics, Barcelona, Spain (On-
line), 381–395. https://doi.org/10.18653/v1/2020.coling-main.34

[25] Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant Krishnamurthy, and
Luke Zettlemoyer. 2017. Learning a neural semantic parser from user feedback.
arXiv preprint arXiv:1704.08760 (2017).

[26] Victoria Johansson. 2008. Lexical diversity and lexical density in speech
and writing: A developmental perspective. Working papers/Lund University,
Department of Linguistics and Phonetics 53 (2008), 61–79.

[27] George Katsogiannis-Meimarakis and Georgia Koutrika. 2023. A Survey
on Deep Learning Approaches for Text-to-SQL. The VLDB Journal (2023).
https://doi.org/10.1007/s00778-022-00776-8

[28] Hyeonji Kim, Byeong-Hoon So, Wook-Shin Han, and Hongrae Lee. 2020.
Natural Language to SQL: Where Are We Today? Proc. VLDB Endow. 13, 10
(2020), 1737–1750.

[29] Hyeonji Kim, Byeong-Hoon So, Wook-Shin Han, and Hongrae Lee. 2020.
Natural language to SQL: where are we today? Proceedings of the VLDB
Endowment 13, 10 (2020), 1737–1750.

[30] Denis Kocetkov, Raymond Li, Loubna Ben Allal, Jia Li, Chenghao Mou, Car-
los Muñoz Ferrandis, Yacine Jernite, Margaret Mitchell, Sean Hughes, Thomas
Wolf, et al. 2022. The Stack: 3 TB of permissively licensed source code. arXiv
preprint arXiv:2211.15533 (2022).

[31] Georgia Koutrika. 2024. Natural Language Data Interfaces: A Data Access
Odyssey (Invited Talk). In 27th International Conference on Database Theory,
ICDT 2024, March 25-28, 2024, Paestum, Italy (LIPIcs), Graham Cormode and
Michael Shekelyan (Eds.), Vol. 290. 1:1–1:22. https://doi.org/10.4230/LIPICS.
ICDT.2024.1

[32] Chia-Hsuan Lee, Oleksandr Polozov, and Matthew Richardson. 2021. Kag-
gleDBQA: Realistic evaluation of text-to-SQL parsers. arXiv preprint
arXiv:2106.11455 (2021).

[33] Gyubok Lee, Hyeonji Hwang, Seongsu Bae, Yeonsu Kwon, Woncheol Shin,
Seongjun Yang,Minjoon Seo, Jong-Yeup Kim, and Edward Choi. 2022. EHRSQL:
A Practical Text-to-SQL Benchmark for Electronic Health Records. Advances
in Neural Information Processing Systems 35 (2022), 15589–15601.

[34] Wenqiang Lei, Weixin Wang, Zhixin Ma, Tian Gan, Wei Lu, Min-Yen Kan, and
Tat-Seng Chua. 2020. Re-examining the Role of Schema Linking in Text-to-
SQL. In Proceedings of the 2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP). 6943–6954.

[35] Fei Li and Hosagrahar V Jagadish. 2014. NaLIR: an interactive natural language
interface for querying relational databases. In Proceedings of the 2014 ACM
SIGMOD international conference on Management of data. 709–712.

[36] Haoyang Li, Jing Zhang, Cuiping Li, and Hong Chen. 2023. Resdsql: Decou-
pling schema linking and skeleton parsing for text-to-sql. In Proceedings of
the Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI).

[37] Jinyang Li, Binyuan Hui, Reynold Cheng, Bowen Qin, Chenhao Ma, Nan Huo,
Fei Huang, Wenyu Du, Luo Si, and Yongbin Li. 2023. Graphix-T5: Mixing
Pre-Trained Transformers with Graph-Aware Layers for Text-to-SQL Parsing.
arXiv preprint arXiv:2301.07507 (2023).

[38] Jinyang Li, Binyuan Hui, Ge Qu, Binhua Li, Jiaxi Yang, Bowen Li, Bailin Wang,
Bowen Qin, Rongyu Cao, Ruiying Geng, et al. 2023. Can llm already serve as a
database interface? a big bench for large-scale database grounded text-to-sqls.
arXiv preprint arXiv:2305.03111 (2023).

[39] Yunyao Li and Davood Rafiei. 2018. Natural Language Data Management
and Interfaces. Morgan & Claypool Publishers. https://doi.org/10.2200/
S00866ED1V01Y201807DTM049

[40] Pingchuan Ma and Shuai Wang. 2021. MT-teql: evaluating and augmenting
neural NLIDB on real-world linguistic and schema variations. Proceedings of
the VLDB Endowment 15, 3 (2021), 569–582.

[41] Simone Papicchio, Paolo Papotti, and Luca Cagliero. 2024. QATCH: Bench-
marking SQL-centric tasks with Table Representation Learning Models on
Your Data. Advances in Neural Information Processing Systems 36 (2024).

[42] Xinyu Pi, Bing Wang, Yan Gao, Jiaqi Guo, Zhoujun Li, and Jian-Guang Lou.
2022. Towards robustness of text-to-SQL models against natural and realistic
adversarial table perturbation. arXiv preprint arXiv:2212.09994 (2022).

[43] Ana-Maria Popescu, Oren Etzioni, and Henry Kautz. 2003. Towards a theory of
natural language interfaces to databases. In Proceedings of the 8th international
conference on Intelligent user interfaces. 149–157.

[44] Mohammadreza Pourreza and Davood Rafiei. 2023. Din-sql: Decomposed
in-context learning of text-to-sql with self-correction. arXiv preprint
arXiv:2304.11015 (2023).

[45] Mohammadreza Pourreza and Davood Rafiei. 2023. Evaluating Cross-Domain
Text-to-SQL Models and Benchmarks. In Proceedings of the 2023 Conference
on Empirical Methods in Natural Language Processing, EMNLP 2023, Singapore,

https://doi.org/10.18653/v1/2021.acl-long.198
http://arxiv.org/abs/cs.CL/2301.08881
https://aclanthology.org/2022.coling-1.190
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/P18-1033
https://doi.org/10.18653/v1/2022.findings-naacl.62
https://doi.org/10.1145/3448016.3452836
https://doi.org/10.18653/v1/2020.coling-main.34
https://doi.org/10.1007/s00778-022-00776-8
https://doi.org/10.4230/LIPICS.ICDT.2024.1
https://doi.org/10.4230/LIPICS.ICDT.2024.1
https://doi.org/10.2200/S00866ED1V01Y201807DTM049
https://doi.org/10.2200/S00866ED1V01Y201807DTM049

December 6-10, 2023, Houda Bouamor, Juan Pino, and Kalika Bali (Eds.). Asso-
ciation for Computational Linguistics, 1601–1611. https://aclanthology.org/
2023.emnlp-main.99

[46] Jiexing Qi, Jingyao Tang, Ziwei He, Xiangpeng Wan, Chenghu Zhou, Xin-
bing Wang, Quanshi Zhang, and Zhouhan Lin. 2022. Rasat: Integrating rela-
tional structures into pretrained seq2seq model for text-to-sql. arXiv preprint
arXiv:2205.06983 (2022).

[47] Abdul Quamar, Vasilis Efthymiou, Chuan Lei, and Fatma Özcan. 2022. Natural
Language Interfaces to Data. Found. Trends Databases 11, 4 (may 2022), 319–414.
https://doi.org/10.1561/1900000078

[48] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. 2018.
Improving language understanding by generative pre-training. (2018).

[49] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqi Zhou, Wei Li, Peter J Liu, et al. 2020. Exploring the
limits of transfer learning with a unified text-to-text transformer. J. Mach.
Learn. Res. 21, 140 (2020), 1–67.

[50] John AS Read. 2000. Assessing vocabulary. Cambridge university press.
[51] Torsten Scholak, Nathan Schucher, and Dzmitry Bahdanau. 2021. PICARD:

Parsing incrementally for constrained auto-regressive decoding from language
models. arXiv preprint arXiv:2109.05093 (2021).

[52] Jaydeep Sen, Chuan Lei, Abdul Quamar, Fatma Özcan, Vasilis Efthymiou,
Ayushi Dalmia, Greg Stager, Ashish Mittal, Diptikalyan Saha, and Karthik
Sankaranarayanan. 2020. Athena++ natural language querying for complex
nested sql queries. Proceedings of the VLDB Endowment 13, 12 (2020), 2747–
2759.

[53] Jaydeep Sen, Fatma Ozcan, Abdul Quamar, Greg Stager, Ashish Mittal, Man-
asa Jammi, Chuan Lei, Diptikalyan Saha, and Karthik Sankaranarayanan.
2019. Natural language querying of complex business intelligence queries.
In Proceedings of the 2019 International Conference on Management of Data.
1997–2000.

[54] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. 2018. Self-attention with
relative position representations. arXiv preprint arXiv:1803.02155 (2018).

[55] Peng Shi, Patrick Ng, Zhiguo Wang, Henghui Zhu, Alexander Hanbo Li, Jun
Wang, Cicero Nogueira dos Santos, and Bing Xiang. 2021. Learning contextual
representations for semantic parsing with generation-augmented pre-training.
In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35. 13806–
13814.

[56] Alane Laughlin Suhr, Kenton Lee, Ming-Wei Chang, and Pete Shaw. 2020.
Exploring unexplored generalization challenges for cross-database semantic
parsing. (2020).

[57] Lappoon R Tang and Raymond Mooney. 2000. Automated construction of
database interfaces: Intergrating statistical and relational learning for semantic
parsing. In 2000 Joint SIGDAT Conference on Empirical Methods in Natural
Language Processing and Very Large Corpora. 133–141.

[58] Bailin Wang, Richard Shin, Xiaodong Liu, Oleksandr Polozov, and Matthew
Richardson. 2019. Rat-sql: Relation-aware schema encoding and linking for
text-to-sql parsers. arXiv preprint arXiv:1911.04942 (2019).

[59] BailinWang,Wenpeng Yin, Xi Victoria Lin, and Caiming Xiong. 2021. Learning
to synthesize data for semantic parsing. arXiv preprint arXiv:2104.05827 (2021).

[60] Kai Wang, Weizhou Shen, Yunyi Yang, Xiaojun Quan, and Rui Wang. 2020.
Relational graph attention network for aspect-based sentiment analysis. arXiv
preprint arXiv:2004.12362 (2020).

[61] Ping Wang, Tian Shi, and Chandan K Reddy. 2020. Text-to-SQL generation
for question answering on electronic medical records. In Proceedings of The
Web Conference 2020. 350–361.

[62] Nathaniel Weir, Prasetya Utama, Alex Galakatos, Andrew Crotty, Amir
Ilkhechi, Shekar Ramaswamy, Rohin Bhushan, Nadja Geisler, Benjamin Hät-
tasch, Steffen Eger, et al. 2020. Dbpal: A fully pluggable nl2sql training pipeline.
In Proceedings of the 2020 ACM SIGMOD International Conference on Manage-
ment of Data. 2347–2361.

[63] Kuan Xuan, Yongbo Wang, Yongliang Wang, Zujie Wen, and Yang Dong. 2021.
Sead: End-to-end text-to-sql generation with schema-aware denoising. arXiv
preprint arXiv:2105.07911 (2021).

[64] Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig. 2017.
SQLizer: query synthesis from natural language. Proceedings of the ACM on
Programming Languages 1, OOPSLA (2017), 1–26.

[65] Ziyu Yao, Daniel S Weld, Wei-Peng Chen, and Huan Sun. 2018. Staqc: A
systematicallymined question-code dataset from stack overflow. In Proceedings
of the 2018 World Wide Web Conference. 1693–1703.

[66] Pengcheng Yin and Graham Neubig. 2017. A syntactic neural model for
general-purpose code generation. arXiv preprint arXiv:1704.01696 (2017).

[67] Tao Yu, Chien-Sheng Wu, Xi Victoria Lin, Bailin Wang, Yi Chern Tan, Xinyi
Yang, Dragomir Radev, Richard Socher, and Caiming Xiong. 2020. Grappa:
Grammar-augmented pre-training for table semantic parsing. arXiv preprint
arXiv:2009.13845 (2020).

[68] Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li,
James Ma, Irene Li, Qingning Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and cross-domain semantic
parsing and text-to-sql task. arXiv preprint arXiv:1809.08887 (2018).

[69] JohnM Zelle and Raymond J Mooney. 1996. Learning to parse database queries
using inductive logic programming. In Proceedings of the national conference
on artificial intelligence. 1050–1055.

[70] Yi Zhang, Jan Deriu, George Katsogiannis-Meimarakis, Catherine Kosten,
Georgia Koutrika, and Kurt Stockinger. 2023. ScienceBenchmark: A Complex

Real-World Benchmark for Evaluating Natural Language to SQL Systems.
arXiv preprint arXiv:2306.04743 (2023).

[71] Chen Zhao, Yu Su, Adam Pauls, and Emmanouil Antonios Platanios. 2022.
Bridging the generalization gap in text-to-SQL parsing with schema expansion.
In Proceedings of the 60th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). 5568–5578.

[72] Liang Zhao, Hexin Cao, and Yunsong Zhao. 2021. GP: Context-free Grammar
Pre-training for Text-to-SQL Parsers. arXiv preprint arXiv:2101.09901 (2021).

[73] Yiyun Zhao, Jiarong Jiang, Yiqun Hu, Wuwei Lan, Henry Zhu, Anuj Chauhan,
Alexander Li, Lin Pan, Jun Wang, Chung-Wei Hang, et al. 2022. Impor-
tance of synthesizing high-quality data for text-to-sql parsing. arXiv preprint
arXiv:2212.08785 (2022).

[74] Ruiqi Zhong, Tao Yu, and Dan Klein. 2020. Semantic evaluation for text-to-SQL
with distilled test suites. arXiv preprint arXiv:2010.02840 (2020).

[75] Victor Zhong, Caiming Xiong, and Richard Socher. 2017. Seq2sql: Generating
structured queries from natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103 (2017).

https://aclanthology.org/2023.emnlp-main.99
https://aclanthology.org/2023.emnlp-main.99
https://doi.org/10.1561/1900000078

	Abstract
	1 Introduction
	2 Text-to-SQL systems
	3 Text-to-SQL Datasets
	3.1 Single-domain Datasets
	3.2 Cross-domain Datasets
	3.3 Perturbed Datasets
	3.4 Augmented Datasets

	4 Dataset Analysis Methodology
	4.1 SQL Queries
	4.2 Databases
	4.3 Natural Language Questions

	5 Dataset Analysis Results
	5.1 Analysis of the SQL Queries
	5.2 Analysis of the Databases
	5.3 Analysis of the NL Questions
	5.4 Summary

	6 Text-to-SQL Evaluation Methods
	6.1 Existing Evaluation Approaches
	6.2 Automated Error Analysis

	7 Experiments for System Evaluation
	7.1 Using Dataset Analysis in System Evaluation
	7.2 Using Error Analysis in System Evaluation

	8 Conclusions
	9 ACKNOWLEDGEMENTS
	References

