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ABSTRACT
VCrypt is a novel extension on DuckDB that enables fine-grained
client-side [en/de]cryption in a performance- and storage-efficient
manner, by exploiting columnar compression as well as vector-
ized and compressed execution. We designed VCrypt such that
in analytical queries, typically (i) data can be encrypted and de-
crypted batch-at-a-time instead of value-at-a-time, and (ii) the
extra storage for cryptographic nonces gets compressed away. We
also demonstrate the use of VCrypt inside MotherDuck, lever-
aging its hybrid processing model that evaluates SQL queries
partly on a client DuckDB and partly on a cloud DuckDB, to
achieve secure hybrid execution. This provides security even if
the cloud server is untrusted, by forcing the [en/de]cryption of
sensitive data to happen only client-side, while still allowing
useful cloud-side work like filters and joins.

1 INTRODUCTION
VCrypt, short for Vectorized Cryptography, is a novel extension
on DuckDB [8], a widely used online analytical processing data-
base management system, that enables user-level encryption, per
value, but optimized for performance. The extension consists of
scalar functions for the encryption and decryption of single val-
ues. It represents encrypted scalar types as a struct type, whose
members include a field that holds the encrypted value, and the
other fields holding encryption meta-data. These latter fields are
designed such that (i) columnar compressed storage will typically
reduce them to negligible space; and such that (ii) vectorized exe-
cution will typically be able to [en/de]crypt a batch of values in a
single call to crypto primitives, greatly enhancing computational
efficiency and (iii) compressed execution keeps in-flight encrypted
data small and avoids duplicate work being performed. Our ap-
proach shines in DuckDB, as it leverages some of its specific
data compression methods as well as its ability for compressed
execution using its special vector representations. However, the
properties of VCrypt provide this efficiency potential for any
compressed columnar store (including Parquet files) and vector-
ized query engine.

Until now DuckDB is lacking any encryption functionality ex-
cept for Parquet encryption [4]. To distinguish encrypted values
from regular ones, VCrypt introduces in DuckDB novel user-
defined types, representing encrypted values for each normal
(plaintext) type. It further introduces simple scalar UDF functions
to create such new encrypted values, i.e. val_enc = encrypt(val,

key_id); and transform the resulting encrypted values back into
plaintext, i.e. val = decrypt(enc_val, key_id). These functions
can be used explicitly in query expressions; but we also envision
them to be used in VIEW definitions on tables with encrypted
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columns, where the VIEW definition wraps the encrypted col-
umn in a decrypt() call in its topmost SELECT list in order to
make end-users seamlessly query encrypted data. In addition,
we implemented a key management mechanism which utilizes
hierarchical encryption, and uses the DuckDB secrets manager
to redact encryption keys. Hence the key_ids are not the en-
cryption keys themselves, but identifiers for the key in a key
management system for which the user will have to authenticate.
While VCrypt theoretically encrypts one value-at-a-time, it is
designed to minimize storage and computational overheads of en-
cryption by leveraging columnar encryption, vectorized processing
and compressed execution [1], often present in modern analytical
systems such as Velox [7] and DuckDB [8].

Hybrid Query Processing. As proposed in [5], to enhance secu-
rity we argue that sensitive data could exclusively be encrypted
and decrypted client-side, similar to Monomi [9]. Ideally, the
part of the query that does not contain sensitive data should be
computed at the server, while the part of the query that includes
sensitive data is exclusively processed client-side. More specifi-
cally, from the point that a query plan involves the processing of
sensitive data, the resulting part of the plan should be executed
client-side and thereafter no further processing should happen
on the server. To achieve such a hybrid form of query execution,
we make use of MotherDuck [3] to enable secure hybrid query
processing. MotherDuck provides a cloud-computing platform for
DuckDB, by enabling hybrid query processing (i.e. dual execu-
tion). We extend MotherDuck’s hybrid optimizer to implement a
novel constraint to force the encryption and decryption of sensi-
tive data client-side, herewith improving security by giving only
the end-user control of the sensitive data.

Demo. We will demonstrate DuckDB SECRET management and
encryption or decryption of table data in a stock DuckDB on a lap-
top. We will show the speed and storage-size advantage of vector-
ized encryption compared over tuple-at-a time, by [en/dis]abling
our optimizations. Then, we will connect this DuckDB to the
MotherDuck service and demonstrate how encrypted data can
be stored in the cloud. We then showcase secure hybrid query pro-
cessing, where complex queries are executed on cloud-data, with
only client-side decryption. We will profile query performance
with EXPLAIN ANALYZE to demonstrate and explain the efficiency
of our approach.

2 VCRYPT OVERVIEW
DuckDB has a rich and easy-to-use extensibility mechanism, and
provides an infrastructure to add extensions as C++ modules,
that consist of e.g. parser extensions, custom data-types, new
scalar functions and optimizer rules. We implemented VCrypt
as such a DuckDB extension. Database encryption, especially
when done at the level of individual values, can lead to severe
performance bottlenecks, increasing its cost and reducing its
utility for analytical workloads currently. These bottlenecks are
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(i) inflated storage, since a large nonce ("number used only once")
needs to be stored alongside every value to hide the effects of
deterministic encryption1, and (ii) encryption/decryption needs
to operate on at least 0.5-4KB of data in order to reach good
throughput, as shown in Figure 1, hence individual values are at
least 100x too small. We port existing cryptographic primitives
from the HTTPFS extension to the VCrypt extension to avoid an
inter-extension dependency. For randomized encryption we use
AES Countermode (CTR) to avoid a large storage overhead of a
16-byte tag (used for verification) per value.

Figure 1: Decryption overhead in cycles (y-axis) per byte
(x-axis), image from [2].

2.1 Representing Encrypted Data
In VCrypt, an encrypted value is self-contained, i.e. a value can
always be encrypted or decrypted individually. However, to be
self-contained, each encrypted value needs to store correspond-
ing metadata to be able to correctly decrypt. If only a single
scalar value is encrypted, its encrypted size will be at least 16
bytes. For a 32-bits integer, an AES standard 12-byte nonce plus
16-byte encrypted value represents a storage overhead of 7x, and
the lack of compressibility of encrypted data increases that to
typically >20x. Also, Figure 1 shows that encryption/decryption
on 16 bytes at-a-time leads to two orders of magnitude lower
throughput than achievable on 4KB buffers. We do note that
these inefficiencies are much lessened if data would be encrypted
on the granularity of data pages, rather than values, and this
could be especially efficient in compressed column stores [2, 4].
In-database encryption, however, requires users to trust the data-
base server. In contrast, by managing encryption in a user-level
extension, outside the control of the main database system, users
do not need to trust the database server, and such an approach
also enables purely client-side decryption, as we will describe
later.

A User-defined Type is used to distinguish encrypted types
from regular types in VCrypt. This is similar to the GEOMETRY
type from the DuckDB Spatial extension. We identify ENCRYPTED
types by prefixing any existing DuckDB type with “E_", e.g.
E_INTEGER will hold encrypted integers. The ENCRYPTED type
is necessary to indicate which types are actually encrypted in a
BLOB. We use the DuckDB support for STRUCT types, to store all
data and meta-data sub-fields together, as described below.

Nonce Compression. A useful property of AES-CTR is that a
nonce has to be unique, but not random. This uniqueness prop-
erty is crucial since re-use of the same nonce with the same key
leaks information when similar data is encrypted. We therefore
1The same data would otherwise produce the same encrypted value, leaking
information.

represent an encrypted value as a DuckDB STRUCT type, contain-
ing an 8-byte higher part of the 12-byte number used once (i.e.
nonce), a 4-byte lower part of the nonce, plus a 4-byte counter.
The higher and lower part of the nonce together with the counter
construct the Initialization Vector (IV), which is used to random-
ize encrypted values. In the DuckDB STRUCT we also store an
encrypted cipher value (typically 1 byte) and an encrypted BLOB,
holding the actual encrypted values.

0x00 0x00 0x00 0x00

4-Byte CounterNonce High

B4B3B2B1B0 B8B7B6B5 B9 B11B10

Nonce Low

Figure 2: Splitting makes the nonce highly compressible:
high and low will be RLE-encoded, and counter DELTA-
encoded.

Encrypted BLOB. AES-CTR operates on a granularity of 16 bytes,
and we call such units tiles. In VCrypt, encrypted values are
stored in the encrypted BLOB, which holds a batch of at least 128
co-encrypted values. The first byte of any VCrypt encrypted
BLOB is used for versioning, as we anticipate evolving it in the
future, e.g. with data compression. A BLOB can contain more
values for thin data types, as the second constraint is that the
encrypted BLOB consists of at least 32 tiles (32x16=512 bytes).
The nonce used for subsequent tiles in one BLOB is automatically
incremented by OpenSSL; so we store the nonce and counter
(together IV) for the first tile in a batch. The reason to split
the IV into three separate values, where IV = High « 64 + Low

« 32 + Counter (see figure 2), is to make this representation
highly compressible in column stores. When bulk-inserting data,
large stretches of adjacent values can then have identical High,
Low values; leading to high compressibility of these columns.
DuckDB supports e.g. constant compression, when all column
values in a row-group are equal. Further, each batch of tuples will
have the same Counter and encrypted BLOB value, making those
RLE-compressible. The 4-byte Counter is increased after each
batch of tuples with the amount of tiles in the batch, providing a
unique nonce for each tile. We decided to split the nonce to make
use of mature support in databases for 64- and 32-bits types as
opposed to 128-bits types. Rather than one 64-bits Low we also
split off Counter, because Parquet (1.0) does not support delta-
compression, hence augmenting an (in that case, 64-bits) Low in
subsequent values would remove the opportunity for constant
compression.

0 0 0 000 0 0

Position in Batch

Is Null

Figure 3: Breakdown of 1-byte cipher that represents both
the encrypted position of the value in a batch as well as
the encrypted nullability.

Cipher is a small integer value (Figure 3) that holds the array
index of the value in the BLOB, which can be seen as an array
holding all values in the batch. We use one additional bit (the
lowest bit) to store whether the value is NULL. The cipher field is
encrypted using a XOR with a (simple) hash of the first plaintext
value in the batch, so position and nullability cannot be inferred
before decryption. The simple hash uses fast primemultiplication;
but to avoid exposing the cipher in case the plaintext is simply 0,
we calculate the cipher with formula 1.

𝐶𝑝𝑟 = (𝑃1 ⊕ 𝑇 ) ∗ 𝑃2 (1)
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𝐶𝑝𝑟 corresponds to the cipher value, 𝑃1 is the first prime, 𝑃2 is
the second prime and 𝑇 is the 64-bit plaintext. Given a batch
size of 128, we need 7 bits for the array index, plus one bit for
nullability, so cipher typically fits one byte.

Variable Sized Data. The above defines how all DuckDB scalar
types are encrypted by VCrypt. For variable-sized data types we
need to keep extra information for decrypting a value, such as a
byte position and a length. We also concatenate 128 subsequently
inserted variable-sized data type values in a batch into one BLOB
that gets encrypted and is shared by all values in that batch. To
be able to decrypt all individual values, we concatenate 128 byte
offsets and store them at the beginning of the encryption buffer.
When encrypting data, we then also encrypt these byte offsets,
and thus do not leak any information about the individual size of
the encrypted data. With storing the byte offset from each indi-
vidual value, the length 𝑙 of an encrypted value is the difference
between two subsequent byte offsets 𝑏, such that 𝑙 = Δ𝑏. In other
words, we can calculate Δ𝑏 by subtracting the byte position at
a certain index from the byte position at the subsequent index,
i.e. Δ𝑏 = 𝑏𝑖+1 − 𝑏𝑖 . Each value in the cipher column of a VCrypt
struct now corresponds to an index in the byte offset array. In
our approach, we hence do not leak individual string lengths, not
even approximately, as systems often pad strings to the closest
multiple of 16 bytes. VCrypt only leaks the approximate length
of a concatenated batch of 128 strings.

rowid High Low Ctr Cpr BLOB
0 ℎ𝑖0 𝑙𝑜0 0 52 0x7F9A· · · 42F0
1 ℎ𝑖0 𝑙𝑜0 0 90 0x7F9A· · · 42F0
2 ℎ𝑖0 𝑙𝑜0 0 143 0x7F9A· · · 42F0
3 ℎ𝑖0 𝑙𝑜0 0 233 0x7F9A· · · 42F0
4 ℎ𝑖0 𝑙𝑜0 0 6 0x7F9A· · · 42F0
.
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127 ℎ𝑖0 𝑙𝑜0 0 194 0x7F9A· · · 42F0
128 ℎ𝑖0 𝑙𝑜0 1 11 0x46E3· · · 17AA
.
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.
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.
.
.

.

.

.
.
.
.

.

.

.
255 ℎ𝑖0 𝑙𝑜0 1 83 0x46E3· · · 17AA

0
0
0
0
0
.
.
.
n
n

B0

Bn

Figure 4: Left: example table representation of encrypted
64-bits BIGINTs. In compressed form, the High and Low
columns are constant, the counter (Ctr) gets bitpacked as
well as the random cipher (Cpr), which varies between
[0,8] bits. The counter increments every batch, which often
contains 128 values, since we [en/de]crypt per batch. Note
that the counter internally increases within a batch. The
same BLOB repeats for 128 consecutive encrypted values.
Right: Dictionary Vector in-flight during query processing.
In a 2048-element DuckDB vector, there are n=16 unique
encrypted BLOBs in a dictionary.

2.2 Compressed Execution
The gist of our approach is that multiple subsequently encrypted
(and supposedly stored) values will share the same encrypted
BLOB (Figure 4); which in columnar storage will trigger the du-
plicates to be eliminated with RLE compression. Furthermore,
DuckDB uses vectorized execution, with support for compressed
execution, i.e. query processing on still (partially) compressed
data. For this purpose, beyond PLAIN vectors that store data
uncompressed in an array, DuckDB supports various compressed
subclasses of their Vector class. A Dictionary Vector stores two

arrays: one with codes (indexes) that point in a separate array
with values (the dictionary). Also, a Constant Vector is a vector
that stores only one value, and represents a vector where all en-
tries have that value. When reading our RLE-encoded encrypted
BLOB, the DuckDB scan will represent them either as a Dictionary
Vector or a Constant Vector. Therefore, the values from RLE will
be stored only once in the compressed vector that is used for
query execution. The vectorized UDF methods for decryption
and encryption in VCrypt take advantage of this, as they have
support for Constant and Dictionary Vectors for their parameters.
This means that encryption and decryption will be performed
only once for each value, and on buffers of at least 512 bytes,
which as we mentioned before (see Figure 1) improves AES-CTR
throughput by two orders of magnitude.

2.3 Key Management
In databases, keys or passwords are often exposed in the write-
ahead-log (WAL) or in logs, e.g. used for debugging. To minimize
the exposure of this sensitive data, VCrypt authenticates the
user only once and automatically uses available encryption keys.
To enable this mechanism withing DuckDB, we make use of the
DuckDB Secrets Manager using the CREATE SECRETS syntax, as
shown in listing 1. The keyword VCRYPT implies that the DuckDB
SECRET is intended for columnar encryption in the VCrypt ex-
tension. The user is then responsible to name their secret (in the
example ‘my_secret’), and insert a user-defined key after TOKEN.
Moreover, the user can define the desired length of the columnar
key, which can either be 16, 24 or 32 bytes.

1 CREATE SECRET my_secret (
2 TYPE VCRYPT ,
3 TOKEN 'secret_key ',
4 LENGTH 16);
5

6 encrypt(value , "my_secret")

Listing 1: Defining a DuckDB SECRET for an encrypted
column in VCrypt.

To further strengthen its security, VCrypt computes an inter-
nal encryption key using TOKEN when the UDFs encrypt() or
decrypt() are called. This internal key is computed by using a
deterministic sha-256 HMAC function from OpenSSL that calcu-
lates a HMAC. Since we support various key sizes, we truncate
the computed HMAC to the prospective key length defined by
the user. For better security, the user needs to store the DuckDB
secret either locally or in a third-party authentication system.
We aim to make the management of encryption keys compatible
with Key Vault or any Key Management System (KMS).

3 INTEGRATIONWITH MOTHERDUCK
MotherDuck is a serverless analytics cloud-service usingDuckDB,
with a twist: its client libraries have an embedded DuckDB as well
and queries can execute partially on the client and partially in
the cloud. This hybrid architecture brings also novel advantages
for security; e.g. sensitive data can be largely processed locally,
at the client, if the server is not completely trusted.

3.1 Hybrid Query Optimizer
MotherDuck is like VCrypt a DuckDB extension and introduces
bridge operators that can transfer data from remote (server) to
local (client) and vice versa. It also introduces new DuckDB opti-
mizer rules that perform hybrid query optimization and inserts
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bridge operators as needed. The task of the hybrid optimizer in
MotherDuck is to determine where the operators from a query
plan should be executed, i.e. remote (server-side) or locally (client-
side). As its goal is to run queries as efficiently as possible, it takes
into account where queried tables are located (either locally or
remotely) and then tries to minimize data transfer cost using
cardinality estimates [6].

⊥
∥
⊲⊳

(remote)
50K

D
(remote)

(3M)

⊲⊳
(local)
100k

⊲⊳
(local)
200k

A
(local)
100k

B
(remote)

50K

C
(remote)

400k

(a) Data Transfer Cost-Based
Query Plan in MotherDuck

⊥
|
⊲⊳

(local)
50K

D
(remote)

(3M)

⊲⊳
(local)
100k

⊲⊳
(local)
200k

A
(local)
100k

Enc(B)
(remote)

50K

C
(remote)
400k

(b) Transformed Hybrid Query
Plan for VCrypt

Figure 5: Hybrid Query Plans for MotherDuck and VCrypt.
The non-sensitive hybrid query plan from MotherDuck (a)
gets transformed into (b) when remote column B contains
encrypted data Enc(B). The bridge operator ∥ indicates a
transfer to a different site (e.g. remote to local). The blue
color indicates such a transfer with non-sensitive data, and
the dark red color indicates when sensitive data is included.
Figure adapted from [6].

To ensure that sensitive data is only processed client-side, we
modified the hybrid optimizer rule to force that all decryption
operations in a query plan, and all parent operators in that plan
through which decrypted data flows, are executed locally. In ad-
dition to modifying the MotherDuck client-side extension, we
plan in the future to add a VCrypt optimizer rule. This rule is
relevant both with and without MotherDuck, and aims to opti-
mize DuckDB query plans that handle VCrypt encrypted-data.
An important consideration is that operations that inhibit data to
stay represented as Dictionary Vectors will cause encrypted data
to become much bigger, and queries slower, as the compressing
effect of Dictionary Vectors will be removed. This specifically
holds for encrypted data flowing into build-sides of joins, but
also for sorting and aggregation. For the latter-two operations,
it is important to push decryption below them. This could also
be a strategy for joins, but an alternative is to flip probe- and
build-sides. A novel designed cost model should decide what
approach to take.

4 DEMONSTRATION
We split the demonstration up in two parts: (i) Performance and
Storage of VCrypt, where we give an overview of the perfor-
mance and storage overhead. The second part consist of Secure
Hybrid Execution where VCrypt is integrated with MotherDuck
to enable client-side decryption.

(i) Performance and Storage. For the performance and storage
overview, the participant will first define a DuckDB SECRET used
for encryption (listing 1). We will pre-load TPC-H with SF1 to
DuckDB, and let the participant decide which columns to encrypt.
For the decryption the participant is encouraged to define a VIEW
in which the encrypted columns are wrapped. After encrypting
the specified columns, the participant can perform any arbitrary
query on the encrypted data. To benchmark the performance and
storage usage, we use the TPC-H benchmark suite and show the
execution speed as well as storage overhead in the DuckDB CLI.
We will compare storage and execution speed of VCrypt using
various batch sizes in multiples of the the default 128 values.
In addition, we compare the VCrypt vectorized implementation
against a naive per-value implementation, which is two orders
of magnitude slower and requires one order of magnitude more
space. An example of an adapted TPC-H query using VCrypt is
given in listing 2, assuming that l_shipdate is encrypted.

1 SELECT
2 SUM(l_extendedprice * l_discount) AS revenue
3 FROM lineitem WHERE
4 decrypt(l_shipdate , 'my_secret ') >= DATE

1994 -01 -01
5 AND decrypt(l_shipdate , 'my_secret ') < DATE

1995 -01 -01
6 AND l_discount BETWEEN 0.05 AND 0.07
7 AND l_quantity < 24;

Listing 2: Example (adapted) TPC-H Q6 including decrypt()
scalar UDF to decrypt the l_shipdate column.

(ii) Secure Hybrid Execution with MotherDuck. In the sec-
ond part of the demo the participant can inspect remote tables
through the MotherDuck UI. We will provide the user with pre-
defined VIEWs that can be executed client-side, to mimic TPC-H
queries involving encrypted data, and ensure that this data is
decrypted only client-side. On top of this, the user can perform
any arbitrary query that involves encrypted data. In short, the
user can thus (i) execute arbitrary queries in the MotherDuck
UI, including decrypting sensitive data on the locally, (ii) inspect
hybrid query plans containing encrypted data with e.g. EXPLAIN
ANALYZE and (iii) inspect end-to-end query execution of TPC-H
queries involving encrypted data, to get an idea of the encryption
overhead while using secure hybrid execution.
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