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ABSTRACT

Automated decision-making systems can potentially introduce
biases, raising ethical concerns. This has led to the development of
numerous bias mitigation techniques. Choosing a fairness-aware
model often requires trial and error, as it is difficult to predict
whether a mitigation measure will meet user requirements or
how it will affect metrics like accuracy and runtime.

Existing fairness toolkits lack a comprehensive benchmark-
ing framework. To bridge this gap, we present FairnessEval, a
framework specifically designed to evaluate fairness in Machine
Learning models. FairnessEval streamlines dataset preparation,
fairness evaluation, and result presentation, while also offering
customization options. In this demonstration, we highlight the
functionality of FairnessEval in the selection and validation
of fairness-aware models. We compare various approaches and
simulate deployment scenarios to showcase FairnessEval effec-
tiveness.

1 INTRODUCTION

The ethical considerations surrounding automated decision-making
systems have prompted thoughtful discussions, with the goal of
ensuring that the deployment of AI predictive models in real-
world scenarios does not disproportionately or unjustly impact
historically marginalized populations and groups [2]. The result
is a growing collection of techniques and tools devoted to ad-
dressing bias and discrimination issues (see, e.g., the surveys
[4, 9, 10]). These approaches are typically categorized into three
groups depending on when they are implemented during the
model training process. Pre-processing techniques aim to en-
hance fairness by altering the training data before it is fed into
the Machine Learning (ML) algorithm [3, 5, 8]. In-processing
techniques involve modifying the ML algorithm to address fair-
ness during training [11–13]. Finally, post-processing techniques
directly analyze and adjust the outputs of an already-trained
model [6].

Implementing fairness-aware approaches in real-world situa-
tions presents significant challenges. One of the main issues is
that while fair approaches enhance fairness on the metric they
target, their performance on other metrics, such as accuracy and
time efficiency, may be unpredictable [7]. Therefore, before being
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used in production, the ML models require multiple evaluations
taking into account various assumptions related to the sensitive
attributes and the metrics used to measure fairness. Moreover, as
to standard model selection, an algorithm might perform well in
certain data subsamples, but not necessarily in others, requiring
extensive trial and error tuning. This persists throughout the
application life cycle and can worsen due to external factors like
concept drift.

Users aiming to incorporate fairness in their ML models often
do not start from scratch. There are many open-source toolkits
providing access to key mitigation algorithms and benchmark
datasets. For example, AIF360 1, Aequitas 2, and Fairlearn 3 pro-
vide datasets and implementations of many fairness-aware ML
approaches. The Fairness dashboard 4 included in the Microsoft
Responsible-AI-Toolbox, and the What-if Tool 5 are two tools
that offer user interfaces to explore and assess bias in datasets
and model predictions. The Responsible AI Tracker 6 is a Jupyter-
Lab Extension that allows users to evaluate models developed in
Jupyter Notebook environments and compare them. The Amazon
Sage Maker 7, a proprietary, non-open source framework requir-
ing a paid subscription, allows users to build, train, and deploy
machine ML models but it does not natively support fairness
models, datasets, and metrics. Nevertheless, all these approaches
do not provide any support for managing and running evalua-
tions involving different datasets and mitigation strategies. To
bridge this gap, we developed FairnessEval: a Python frame-
work providing tools for data preparation, dataset generation,
model evaluation, and result presentation of fairness-aware mod-
els. FairnessEval assists users in automatically organizing and
executing experiments, collecting and presenting results. It also
includes a dataset generation tool that allows users to create
synthetic datasets with user-selected biases on specific protected
attributes. FairnessEval is fully customizable and extensible.
It provides a web interface and can be integrated directly into
Python scripts or Jupyter Notebook environments.

The demonstration will show how the framework supports
the tasks of selection and validation of fairness-aware models.

1https://github.com/Trusted-AI/AIF360
2https://github.com/dssg/aequitas
3https://github.com/fairlearn/fairlearn
4https://github.com/microsoft/responsible-ai-toolbox/blob/main/docs/
fairness-dashboard-README.md
5https://pair-code.github.io/what-if-tool/
6https://github.com/microsoft/responsible-ai-toolbox-tracker
7https://aws.amazon.com/sagemaker/
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Figure 1: FairnessEval Workflow.

In particular, we will present scenarios that simulate the pro-
cess of implementing a fair approach in production. While we
have prepared predefined use cases covering pre-processing, in-
processing, and post-processing mitigation strategies, attendees
are encouraged to propose their own datasets (including syn-
thetic ones generated using the data preparation component) and
mitigation algorithms for evaluation.

2 FairnessEval ARCHITECTURE

FairnessEval consists of three main components, each repre-
senting a step in building a fair ML model: Data Preparation
(Section 2.1), fairness-aware Model Evaluation (Section 2.2),
and Result Presentation (Section 2.3). Figure 1 shows the work-
flow and the main responsibilities for each component. Users
interact with the framework through either a user interface or
Python APIs. FairnessEval is an open-source GitHub project
(https://github.com/softlab-unimore/fairnesseval)8.

2.1 Data Preparation

In FairnessEval, users have two options for selecting datasets
to analyze: (1) choosing existing datasets (either uploaded by
the user or pre-loaded in the framework) or (2) generating syn-
thetic datasets with user-defined levels of bias in the sensitive
attributes. Furthermore, the Data Preparation component of-
fers functionalities for the analysis and management of sensitive
attributes, such as transforming multi-valued sensitive attributes
to binary, and merging multiple sensitive attributes into a single
attribute. It also includes functions for splitting datasets using
various strategies (like stratification with respect to the label, to
the sensitive attributes, or both), thereby enabling different types
of experiments.

Pre-loadedDatasets. The interface preloads datasets commonly
used as benchmarks for experimental evaluations of fairness-
aware approaches, including COMPAS 9, Adult 10, and Folkta-
bles 11. These pre-loaded datasets include large datasets with

8A video of the demonstration is available at https://www.youtube.com/watch?v=
jWcZ0LGB3Zg
9https://github.com/propublica/compas-analysis/
10https://archive.ics.uci.edu/dataset/2/adult
11https://github.com/socialfoundations/folktables

multi-valued sensitive attributes (e.g., Folktables contains mil-
lions of records and multi-valued sensitive attributes). Alterna-
tively, users can upload their own datasets via a specific interface
or directly into a dedicated directory. The current version only
supports CSV files.

Dataset Generator. The synthetic data generator creates datasets
with various sensitive attributes, such as gender or race, and
determines outcomes based on predefined probability distribu-
tions. The dataset is built by probabilistically determining each
individual’s outcome, denoted as 𝑌𝑖 , based on the category of
the sensitive attribute, i.e. the probability of a positive outcome
𝑌𝑖 = 1 varies based on the value of the sensitive attribute 𝐴𝑖 .
For instance, we might consider the gender attribute with three
categories: men (denoted as “m”), women (“w”), and non-binary
individuals (“nb”). We may set parameters such that if 𝐴𝑖 cor-
responds to “m”, 𝑌𝑖 is set to 1 with a probability of 0.7, while
for “nb” it is 0.6, and for “w” 0.65. To introduce additional fair-
ness issues, we incorporate a modification step for each category,
and inverse probability adjustment to control disparities. If 𝐴𝑖

is “m”, for example, we adjust 𝑌𝑖 with certain probabilities. If 𝑌𝑖
is initially 0, we flip it to 1 with a probability of 0.2; if 𝑌𝑖 is 1,
we flip it to 0 with a probability of 0.1. Otherwise, 𝑌𝑖 remains
unchanged. Similar adjustments are applied with varying prob-
abilities to control the disparities across different groups. We
complete the dataset with additional features ( 𝑗 = 1, . . . , 𝑑). Each
feature, denoted as 𝑋𝑖 𝑗 , is derived from 𝑌𝑖 with a probability of
1
2 +eps𝑗 , and its complement (1−𝑌𝑖 ) with the remaining probabil-
ity. This randomization process is performed independently for
each feature to provide diversity in the dataset. The parameter
eps𝑗 is the switching probability for feature 𝑗 , allowing different
levels of randomness across features. By default, we consider 10
features (𝑑) and 1 million samples (𝑛), with (eps) controlling the
difficulty of fitting a classifier. A smaller value of epsilon suggests
a more challenging task for the classifier, thereby encouraging a
thorough examination of fairness across different subsets of the
data.

2.2 Model Evaluation

In this component, FairnessEval allows users to run models
against the prepared datasets. Users can specify a list of fairness-
aware models (among the ones provided by the toolkits AIF360
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or Fairlearn, or directly provided by the users 12). The models
are evaluated in batch, and the outputs passed to the Result
Presentation component.

This component serves two primary purposes for the user:
model selection and model validation. For model selection, the
user can undertake two distinct tasks: (1) determining the hyper-
parameters that maximize a specific objective metric for a given
dataset, or (2) selecting the most suitable model from a list of
pre-configured models for the dataset in question. Similarly, the
validation task requires users to specify a fairness-aware model,
a list of datasets, and a strategy for split and stratification.

2.3 Result Presentation

FairnessEval provides a range of pre-configured diagrams to il-
lustrate the efficiency and effectiveness of fairness-aware models.
Users need to select the analysis dimensions to be depicted in the
diagrams, as well as the metrics used for each dimension. Many
analysis dimensions can impact the problem, including accuracy,
fairness, time, dataset size, and model hyperparameters. For each
dimension, users can select from a variety of possible metrics.
Standard metrics for evaluating the accuracy of the ML model are
implemented, such as accuracy rate, precision, recall, F1-score
for classification problems, and various error measures for regres-
sion problems. Fairness can be evaluated using several metrics
that emphasize demographic parity (e.g., disparate impact) and
equalized odds (e.g., true positive rate balance).

Typical diagrams include: accuracy vs. fairness plots (Figures 3a
and 3b), which highlight tradeoffs between fairness and accuracy
(which sometimes decreases when the fairness improves); fairness
vs. time plots (Figure 3c), which show how the search for fairness
normally increases training times; fairness (or accuracy) vs dataset
fraction plots (Figure 4), which show how the learning curve is
influenced by the size of the training set.

3 FairnessEval DEMONSTRATION

The demonstration will highlight the capabilities of FairnessE-
val in the two operational scenarios it offers: the selection and
validation of a fairness-aware model.

Model Selection. The scenario simulates the business task of
selecting a suitable fairness-aware model for a given dataset. This
process is inherently experimental, and FairnessEval supports
the user through the required iterations to obtain a model with
satisfying performance characteristics. As previously mentioned,
applying a fairness-aware approach may reduce accuracy and
increase training time compared with the unmitigated model
in a way that can only be determined through experimental
evaluations.

The goal of the scenario is to evaluate the performance of var-
ious ML models in predicting income levels using demographic
data from the “Adult” dataset, also known as the “Census Income”
dataset. This dataset contains demographic information such
as age, education, and occupation, and is commonly used for
classification tasks to predict whether an individual’s income
exceeds $50K per year. The “Adult” dataset contains sensitive
attributes, such as race and sex. We evaluate the performance of
five types of models available in our framework: an unmitigated

12User-defined fairness-aware models have to simply implement fit and predict
methods over Pandas dataframe data to be included in FairnessEval. Further
instructions are provided in the repo.

Figure 2: FairnessEval User interface for the definition

of the experiment settings.

(LogisticRegression), a reduction approach (Expgrad) 13, a pre-
processing (Feld), an in-processing (Zafar) and a post-processing
approach (Hardt). As shown in Figure 2, the FairnessEval graph-
ical interface supports the user in selecting the dataset (Adult
is already preloaded by FairnessEval), the models, their hyper-
parameters and the task performed (model selection). The default
setting involves evaluating models on a 3-fold cross-validated
dataset that is stratified by both the target variable and the sen-
sitive attribute. In this scenario, we generate three charts for
presentation. Two charts evaluate accuracy vs. fairness in the
training set and test set. The third chart evaluates fairness vs.
time performance. We then decide to measure fairness via the
demographic parity difference, and accuracy by plotting the er-
ror. FairnessEval automatically manages the experiments, by
planning and performing (if required by the user) repeated runs
with different random seeds and 𝑘-fold stratification to ensure
the robustness of the results. Figures 3a and 3b show that the
models Hardt and ExpGrad obtain the best performance. Feld
performs as the unmitigated approach, and Zafar slightly better.
Regarding the runtime performance, as depicted in Figure 3c, we
notice that Hardt is the most efficient fairness-aware approach.
However, Hardt is required to access the sensitive attribute since
it implements a post-processing strategy. If this is not possible or
allowed by the application, the second choice is ExpGrad, which
is one order of magnitude slower.

Model Validation. This scenario simulates the task of evalu-
ating and assessing the performance of a fairness-aware model
under varying conditions. The goal is to measure how a pre-
selected model performs in terms of both accuracy and fairness
across different datasets and scenarios, simulating real-world
conditions where datasets may vary or change over time. Users
can test models using both real and synthetic datasets, allow-
ing for a controlled evaluation of performance under different
13Among the in-training techniques to fairness, the reduction approaches wrap
a generic ML approach and optimizes it over a user-selected level of fairness.
ExpGrad [1] is one of such reduction approaches.
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(a) Fairness vs accuracy in the training set.
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(c) Fairness vs training time.

Figure 3: Model Selection in FairnessEval.

Figure 4: Model Validation: time, accuracy, fairness vs.

dataset fractions.

operational contexts. Synthetic datasets are especially useful
for exploring edge cases or specific conditions that may not be
present in available data, providing a clearer picture of how mod-
els respond to certain biases or fairness constraints. The process
involves experimenting with various model parameters, dataset
splits, and sampling strategies to explore the model’s behavior
and identify the configuration that best meets the business needs.
For example, the goal could be to evaluate the robustness of a
fairness-aware approach like ExpGrad by testing its performance
on different dataset fractions. This enables the identification of
how the model’s fairness and performance are affected when
trained on smaller portions of the data. Figure 4 shows the plots

generated by FairnessEval, where accuracy, fairness, and run-
time performance are measured on three fractions of the dataset.
We can notice that for all datasets the approach converges even
with small fractions of the data.

4 CONCLUSION

The paper introduces FairnessEval: a tool for evaluating fair-
ness in Machine Learning models. FairnessEval provides users
with a set of tools for data preparation, model evaluation, result
presentation, and specifically tailored for fairness use cases. Dur-
ing the demo, attendees can interact with the framework using
the pre-loaded datasets and models, and by uploading their own.
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