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ABSTRACT
The Variety aspect of Big Data poses challenges for most es-
tablished single-model data management solutions. However, as
multi-model systems increase, especially in the data-management
domain, the demand for benchmarking and comparison grows.
However, real-world multi-model datasets are scarce, and ex-
isting benchmarks are limited in number and versatility. This
demo paper introduces TransforMMer, a tool to generate pseudo-
realistic multi-model data from given single-model (or multi-
model) datasets. It is based on a pipeline leveraging a subset of
our multi-model data management tools to automate schema
inference, enable user-defined schema modifications, and gener-
ate data reflecting these changes. In the demonstration, we will
introduce the tool, the repository of created multi-model datasets,
their challenges, and future extensions.

1 INTRODUCTION
The traditional relational data model has long been the stan-
dard for data representation, but Big Data has revealed its lim-
itations. A key challenge is the Variety of Big Data, which en-
compasses multiple types and formats that originate from di-
verse sources and are inherently adherent to different models.
There are structured, semi-structured, and unstructured formats;
order-preserving and order-ignorant models; aggregate-ignorant
and aggregate-oriented systems; etc. The naturally contradictory
features of the so-called multi-model data, combining distinct
models with contradictory features, complicates all aspects of
data management, from modelling to querying.

Many tools now support multi-model capabilities – e.g., more
than two-thirds of the top 50 database management systems
(DBMSs)1 align with Gartner’s decade-old prediction of support
for multiple models [2]. However, the lack of standards for com-
bining models leaves each DBMS with proprietary solutions.
Even the variety of query languages [4] highlights the state of
multi-model data systems.

Selecting the optimal tool for a specific use case is challenging,
and extensive benchmarking is essential to compare tools across
all target use cases. While single-model benchmarks and data
generators exist for standard models, their adaptation to the
multi-model paradigm is complex. Multi-model test cases must
account for numerous combinations of different models using
various strategies such as embedding, cross-model references,
or redundancy. And this limits the availability and versatility of
truly comprehensive multi-model benchmarks. [10, 12]

Let us illustrate the problem with an example. We are building
a web application that depends on various types of data. When
it comes to selecting a database solution, we face a dilemma. We
want the reliability of a relational database (e.g., for products
1https://db-engines.com/en/ranking
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and orders), but we also need to be able to perform complex
graph queries (e.g., about the users, their mutual connections,
and interactions with our products). We can leverage a multi-
model database to store such data; however, we are uncertain
whether this approach is more efficient than storing everything
in a single database system. Many single-model datasets are
similar to our expected data, so we can use them to benchmark
the performance of the single-database solution. However, there
are very few multi-model datasets available, nor there are tools
for generating them.

To address this challenge, we introduce TransforMMer, a tool
for generating virtually any multi-model dataset. Instead of re-
lying on traditional value generators with predefined distribu-
tions, our approach uses real-world single-model (or multi-model)
datasets as input. It infers a schema of the input data, enables
its user-specified modification to reflect the required combina-
tion of models, and transforms the output to the respective form.
It also supports redundancy and versioning, which further in-
crease its versatility. For its implementation, we integrate and
extend selected tools from our toolset based on the unifying cat-
egorical representation of multi-model data [7]. Combining and
extending tools for modelling and transformations [9], schema
inference [8], and evolution management [6] with appropriate
integration modules and interfaces allows us to ensure the trans-
formation universally and correctly.

Outline. In Section 2, we review related work. Section 3 intro-
duces the categorical representation of multi-model data. Sec-
tion 4 introduces TransforMMer and Section 5 its demonstration.

2 RELATEDWORK
Two main approaches to benchmarking data management tools
involve real-world data sets or synthetic data generators. Many
focus on single models, but there are very few multi-model op-
tions.

Real-world datasets are primarily relational due to the domi-
nance of relational DBMSs, accompanied by hierarchical models
(e.g., JSON for NoSQL DBMSs) and graph data. Popular sources
include Kaggle2 or Harvard Dataverse.3 Graph data can be found
in collections like SNAP.4 Governments (e.g., US,5 EU,6 etc.) pro-
vide open data portals involving distinct data formats. Moreover,
various datasets can also be found on GitHub or Google Dataset
Search.

However, often we cannot easily find a suitable real-world
dataset, and we need to use a data generator or benchmark. How-
ever, most are limited to specific data models, formats, or fixed
use cases. For example, TPC-H and TPC-DS7 focus on the rela-
tional model. Benchmarks such as XMark [11] are tailored to the
document model. And also, many graph data generators exist [1].

2https://www.kaggle.com/
3https://dataverse.harvard.edu/
4https://snap.stanford.edu/data/
5https://data.gov/
6https://data.europa.eu/
7https://www.tpc.org/
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Regardingmulti-model data, BigBench [3] covers semi-structured
and unstructured data, but lacks support for graph and array data
models. UniBench [12] does not support the array data model
either, and it considers only a single use case. M2Bench [5] en-
compasses relational, document, graph, and array data models
but also involves only three predefined use cases.

3 CATEGORICAL MODEL OF DATA
First, to unify the terminology from different models, we use
the following terms: A kind corresponds to a class of items (e.g.,
a relational table or a collection of JSON documents). A record
corresponds to one item of a kind (e.g., a table row or a JSON
document). A record consists of simple or complex properties
having their domains.

We also recall the basic notions of category theory. A category
C = (O,M, ◦) consists of a set of objects O, set of morphisms
M, and a composition operation ◦ over the morphisms ensuring
transitivity and associativity. Each morphism is modelled as an
arrow 𝑓 : 𝐴 → 𝐵, where 𝐴, 𝐵 ∈ O, 𝐴 = 𝑑𝑜𝑚(𝑓 ), 𝐵 = 𝑐𝑜𝑑 (𝑓 ).
And there is an identity morphism 1𝐴 ∈ M for each object
𝐴. A category can be visualized as a multigraph, with objects
represented as vertices and morphisms as directed edges.

The core and the integration point of all our tools is an abstract
representation of multi-model data called schema category [7]. It
is defined as a tuple S = (OS,MS, ◦S). Objects in OS correspond
to the domains of the ER model’s entity types, attributes, and
relationship types. Each schema object 𝑜 ∈ OS is internally rep-
resented as a tuple (𝑘𝑒𝑦, 𝑙𝑎𝑏𝑒𝑙 , 𝑠𝑢𝑝𝑒𝑟𝑖𝑑 , 𝑖𝑑𝑠), where 𝑘𝑒𝑦 is an
automatically assigned internal identity, 𝑙𝑎𝑏𝑒𝑙 is an optional user-
defined name, 𝑠𝑢𝑝𝑒𝑟𝑖𝑑 ≠ ∅ is a set of attributes (each correspond-
ing to a signature of amorphism) forming the actual data contents
a given object is expected to have, and 𝑖𝑑𝑠 ⊆ P(𝑠𝑢𝑝𝑒𝑟𝑖𝑑), 𝑖𝑑𝑠 ≠ ∅
is a set of particular identifiers (eachmodeled as a set of attributes)
allowing us to distinguish individual data instances uniquely.
Morphisms connect appropriate pairs of objects. Each morphism
𝑚 ∈ MS is represented as a tuple (𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 , 𝑑𝑜𝑚, 𝑐𝑜𝑑 , 𝑙𝑎𝑏𝑒𝑙).
The 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 allows us to distinguish all morphisms except the
identity ones mutually. 𝑑𝑜𝑚 and 𝑐𝑜𝑑 represent the domain and
codomain of the morphism. Finally, 𝑙𝑎𝑏𝑒𝑙 ∈ { #property, #role,
#isa, #ident } allows us to further distinguish morphisms with
semantics “has a property”, “has an identifier”, “has a role”, or
“is a”. The explicitly defined morphisms are denoted as base, ob-
tained via the composition ◦ as composite.

The decomposition of a schema category S, eventually partial
or overlapping, is defined via a set of mappings. For each kind,
the mapping specifies where and how its records are stored in a
selected single-/multi-model DBMS using a so-called access path,
which recursively describes the structure of a kind.

For example, in Fig. 3, we can see a sample schema category
with kinds User, Business and Tip having root objects denoted
with green. They are mapped to JSON document collections from
Fig. 1. For simplicity, we omit the most common edge label “has
a property” and replace uninteresting properties with dots in an
oval.

4 TRANSFORMMER
To solve the indicated open problems, TransforMMer enables the
transformation of virtually any input dataset (single- or multi-
model) to a required output multi-model dataset.

4.1 Sample Scenario
Let us consider a simple scenario to demonstrate the purpose and
advantages of TransforMMer. We want to use the subset of the
Yelp Open Dataset,8 namely the data that describes businesses,
tips, and users, represented using the JSON format as depicted in
Fig. 1.

Figure 1: Input Yelp dataset in the document model

We want to transform the data into a combination of the
relational and graph models, e.g., the one depicted in Fig. 2.

Figure 2: Yelp dataset in the graph and relational model

4.1.1 Initial Schema Category. TransforMMer first infers the
initial schema category Sini depicted for the input data in Fig. 3.
As we can see, each original JSON document corresponds to one
kind in the schema category, namely User, Business, and Tip.

Figure 3: Initial schema category Sini inferred from the
sample data in Fig. 1

4.1.2 Improved Schema Category. As Sini is very simple and
even incorrect, TransforMMer enables its improvements. During
the process of inference of Sini, it also infers a list of candidates for
basic integrity constraints (identifiers and references), clustering,
or recursion. The user can confirm or refuse them or add his/her
suggestions to create an improved schema category Simp.

Identifiers. First, we need an identifier for each kind to create a
correct schema category. The inference process of TransforMMer
creates a list of simple properties that are candidate identifiers,
i.e., they have a unique and compulsory value in each respective
record. The user can select the correct ones from them. The
candidates do not include composite identifiers, as finding all
possible combinations would be too computationally expensive.
However, the user can define composite identifiers manually.
8https://www.yelp.com/dataset
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In the sample Sini in Fig. 3, kind Business has only one candi-
date identifier business_id, so we choose it as its identifier. Kind
User also has only one candidate identifier user_id. Kind Tip does
not have any (simple) candidate identifier, so we create a com-
posite identifier consisting of properties user_id and business_id.
(The identifiers are depicted in Fig. 4 in curly brackets in root
nodes of the kinds.)

References. Next, we can define references between the kinds
to the respective identifiers. TransforMMer also automatically
infers candidates for the references (based on the inclusion of
values of the referenced properties).

In the sample Sini in Fig. 3, we identify a reference from kind
Tip to kinds User and Business based on the values of properties
user_id and business_id. The result is depicted in Fig. 4, where the
two objects user_id were merged into one. The same happened
for objects business_id. However, the primary identifier of kind
Tip is still the same; it is just represented by different schema
morphisms.

Clustering of Properties. Further improvements in the schema
category involve the integration of various more complex con-
structs. One of them is replacing (huge) clusters of properties
with maps. According to our analyses of real-world data, they
may often contain multiple properties which have the same struc-
ture but different names (such as the property attributes of kind
Business depicted in Fig. 3). They make the schema unnecessarily
complex, so TransforMMer allows the user to transform them
into a single set of key-value pairs. The user must just select all
the properties to be represented as a map.

The result is depicted in Fig. 4. As we can see, the direction
of morphism between objects Business and attributes changed.
This is because initially, the object attributes corresponded to a
complex property containing all the attributes, but now, it rep-
resents an array of key-value pairs. So, the cardinality specified
by the morphism changed, and the morphism had to be updated
(for details, see [7]).

Figure 4: The improved schema category Simp of the Yelp
data containing identifiers, a reference, and a map of prop-
erties

Recursion. Similarly to clustering of properties, i.e., generally
discovering a repeating pattern, we can also identify the recur-
sion, i.e., a pattern occurring not within the same parent property
but mutually nested. For example, consider a complex property
comment consisting of properties author, content, and replies,
where property replies is an array of properties comment. Such
structure can be repeated in the inferred schema as many times
as is the maximum depth of recursion in the source data.

We can significantly simplify this schema by defining a pattern
for the property comment. TransforMMer then creates only a
single complex property for each unique property in the pattern
and a morphism from property replies to property comment. Thus,

the resulting schema category contains a cycle, allowing infinite
recursion. An example of such a transformation is depicted in
Fig. 5, which simultaneously provides sample screenshots of
TransforMMer.

Figure 5: Screenshot of TransforMMer before and after the
elimination of a recursive structure

4.1.3 MappingModification. Having the final improved schema
category Simp (see Fig. 4), the user can now define its new map-
ping. As depicted in Fig. 6, for example, the original document
model (green) can be entirely discarded, and instead of it, the
user may define four new kinds. Kind User is mapped to the
graph model (blue), where each user represents a node in the
graph, and edges represent mutual friendship. Kinds Business,
Tip, and attributes are mapped to the relational model (purple),
i.e., tables. Considering the relational model without arrays, the
kind attribues had to be established. The output data are depicted
in Fig. 2.

Figure 6: Simp of the Yelp data re-mapped to the graph (blue)
and relational (purple) model to represent data in Fig. 2

4.2 Workflow
The whole process of transforming the input (single- or multi-
model) data to required multi-model data is depicted in Fig. 7.
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Figure 7: The workflow of TransforMMer

Step 1. First, the users need to specify input data sources. Trans-
forMMer supports the input from a file system, a DBMS, or their
combination. It then infers the schema of each kind (table, col-
lection, etc.) in the data sources. The output of this step is Sini
and its mapping to the logical structures of the original data.
The algorithm also infers candidates for identifiers, references
between the kinds, and repeating patterns.

Step 2. Sini is improved by interacting with the user, i.e. Simp
is created. The user can specify identifiers, references, and re-
peating patterns to be merged from the candidate set or his/her
own. The user can also further modify the schema category, e.g.,
by grouping a set of properties into a new property or delet-
ing a property. With every change, TransforMMer automatically
updates the mappings.

Step 3. Simp is mapped to the new requested combination
of models. The user selects parts of the schema category and
specifies the requested, possibly overlapping mapping (e.g., by
modifying an existing one or creating a new one from scratch).
TransforMMer ensures all the respective modifications.

Step 4. TransforMMer loads the original data according to the
input mappings into an in-memory categorical representation
and then stores it according to the new user-specified mappings
into the output. It can be stored in a specified file system or a
DBMS.

4.3 Architecture
As mentioned in the introduction, TransforMMer leverages se-
lected members of our toolset for multi-model data manage-
ment, namely MM-infer [8] for categorical schema inference,
MM-evocat [6] for schema modifications, and MM-cat [9] (now
a part of MM-evocat) for schema modelling and data transfor-
mations. Fig. 7 also indicates their integration in TransforMMer.
TransforMMer consists of the backend (written in Java), which
contains all the algorithms, and a single-page client (written in
Vue), which provides the user interface. The code repository is
available at GitHub.9 And a demo is also available.10 Lastly, we
have a short video tutorial.11

All of the algorithms mentioned above use abstract wrappers,
which provide a unified interface to the data sources instead of
working with them directly. This allows us to easily add support
for new data sources by implementing a new wrapper. For now,
we support PostgreSQL, MongoDB, Neo4j (i.e., representatives
of the relational, document, and graph model), CSV and JSON
files (i.e., the most common file formats).

9https://github.com/mmcatdb/mmcat
10https://demo.mmcatdb.com
11https://www.youtube.com/watch?v=Aiw815OaAb4

Because the users might want to work with large datasets, all
processes are implemented as asynchronous jobs.

4.4 Dataset Repository
As a proof of concept, we have used TransforMMer to generate
a repository12 of popular multi-model datasets (to be gradually
extended). The current datasets involve, e.g., the Yelp dataset,
the IMDb dataset,13 or the dataset of NASA open-source code
projects.14 In the next steps, we want to extend the repository
with the popular datasets and their variations and using a com-
parative survey demonstrate the wide usability of TransforMMer
for comparing multi-model databases.

5 DEMONSTRATION OUTLINE
In our presentation, we will first demonstrate the described func-
tionality of TransforMMer using the Yelp dataset. We will also
introduce the repository of multi-model data sets created using
TransforMMer and show selected specifics and challenges we en-
countered in the real-world datasets, the support for redundancy,
and the applicability of versioning to simulate data evolution.
Finally, we will overview future plans for the generation of re-
spective queries. The interested audience can also experiment
with TransforMMer and own datasets.

ACKNOWLEDGEMENT
Supported by the GAČR grant no. 23-07781S, GAUK grant no.
292323., and SVV project no. 260 698.

REFERENCES
[1] Angela Bonifati, Irena Holubová, Arnau Prat-Pérez, and Sherif Sakr. 2020.

Graph Generators: State of the Art and Open Challenges. ACM Comput. Surv.
53, 2, Article 36 (apr 2020), 30 pages.

[2] Donald Feinberg, Merv Adrian, Nick Heudecker, AdamM. Ronthal, and Terilyn
Palanca. 12 October 2015. Gartner Magic Quadrant for Operational Database
Management Systems, 12 October 2015.

[3] Ahmad Ghazal, Tilmann Rabl, Minqing Hu, Francois Raab, Meikel Poess,
Alain Crolotte, and Hans-Arno Jacobsen. 2013. BigBench: towards an industry
standard benchmark for big data analytics. In SIGMOD ’13. ACM, 1197–1208.

[4] Qingsong Guo, Chao Zhang, Shuxun Zhang, and Jiaheng Lu. 2023. Multi-
model query languages: taming the variety of big data. Distributed and Parallel
Databases (31 May 2023).

[5] Bogyeong Kim, Kyoseung Koo, Undraa Enkhbat, Sohyun Kim, Juhun Kim,
and Bongki Moon. 2022. M2Bench: A Database Benchmark for Multi-Model
Analytic Workloads. Proc. VLDB Endow. 16, 4 (dec 2022), 747–759.

[6] Pavel Koupil, Jáchym Bártík, and Irena Holubová. 2022. MM-evocat: A Tool
for Modelling and Evolution Management of Multi-Model Data. In CIKM ’22.
ACM, 4892–4896.

[7] Pavel Koupil and Irena Holubová. 2022. A Unified Representation and Trans-
formation of Multi-Model Data using Category Theory. J. Big Data 9, 1 (2022),
61.

[8] Pavel Koupil, Sebastián Hricko, and Irena Holubová. 2022. MM-infer: A Tool
for Inference of Multi-Model Schemas. In EDBT ’22. OpenProceedings.org,
2:566–2:569.

[9] Pavel Koupil, Martin Svoboda, and Irena Holubová. 2021. MM-cat: A Tool for
Modeling and Transformation of Multi-Model Data using Category Theory.
In MODELS ’21. IEEE, New York, NY, USA, 635–639.

[10] Jiaheng Lu and Irena Holubová. 2019. Multi-model Databases: A New Journey
to Handle the Variety of Data. ACM Comput. Surv. 52, 3, Article 55 (June 2019),
38 pages.

[11] Albrecht Schmidt, Florian Waas, Martin Kersten, Michael J. Carey, Ioana
Manolescu, and Ralph Busse. 2002. XMark: a benchmark for XML data man-
agement. In VLDB ’02. VLDB Endowment, 974–985.

[12] Chao Zhang, Jiaheng Lu, Pengfei Xu, and Yuxing Chen. 2019. UniBench: A
Benchmark for Multi-model Database Management Systems. In TPCTC 2018.
Springer International Publishing, Cham, 7–23.

12https://dare.mmcatdb.com
13https://developer.imdb.com/non-commercial-datasets/
14https://data.nasa.gov/Software/NASA-open-source-code-projects-with-A-I-generated-/
3efg-u4v8/about-data

1153


