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ABSTRACT
Data processing systems are increasingly being deployed in the
cloud, because of the benefits of elasiticity and short-term re-
source provisioning. In recent years, serverless cloud computing
is offered in the form of highly elastic resource pools. However,
analyzing and understanding the performance and cost char-
acteristics of serverless cloud infrastructure in the context of
data processing is challenging. In this demonstration, we present
our Skyrise evaluation framework for experimentation in server-
less data processing. The framework provides a suite of micro-
benchmarks and a serverless query engine to run end-to-end
workloads. Users can benchmark serverless compute and storage
resources and observe the impact of their performance on data-
intensive applications. In addition, they can study the trade-offs
compared to server-based systems. Utilizing the inherent elastic-
ity of serverless resources, our framework facilitates interactive
analysis and supports the understanding of key characteristics
of serverless data processing for data system engineers.

1 INTRODUCTION
Serverless infrastructure relieves users of the provisioning and
management of servers [16]. Services such as AWS Lambda [6]
and S3 [5] allocate fine-grained resources based on user con-
sumption. They provide more elasticity than conventional cloud
infrastructure and promise cost-effectiveness for sporadic usage.
Although data systems benefit from the elasticity of cloud infra-
structure [10, 15] and aim for finer-grained elasticity [18, 24], they
have not adopted serverless cloud resources. There is a lack of
understanding of whether and when serverless infrastructure is a
viable foundation for data processing. In particular, the impact of
networking and storage performance requires better understand-
ing [19–21]. Additionally, the economic trade-offs of employing
serverless resources need more attention.

In this demonstration, we present the Skyrise framework for
evaluating serverless infrastructure for data processing work-
loads. Skyrise provides a suite of micro-benchmarks for various
serverless infrastructure services and a serverless query engine
to run application workloads. Thus, the framework facilitates a
comprehensive analysis of the performance and cost factors of
serverless data processing throughout the stack. The framework
currently supports running experiments on the widely used AWS
serverless infrastructure [9]. This includes the Lambda function
as a service (FaaS) platform [6], and the storage services S3 [5],
DynamoDB [1], and EFS [4]. Micro-benchmarks measure key
performance metrics of the compute and storage resources, such
as function startup time and network throughput, as well as
storage throughput, operations per second (IOPS), and latency.
For the evaluation of application performance, Skyrise’s query
execution engine supports a set of predefined queries from the
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Figure 1: Architecture of the Skyrise evaluation framework
showing the experiment executionflow from config to plot.

TPC-H and TPCx-BB benchmarks. Query result metrics comprise
the wall-clock and the cumulative compute times, and the cost
of any used cloud resources.

During this demonstration, we let users (1) run experiments
showing characteristic features of serverless cloud infrastructure
and (2) observe how these translate to application performance.
The results are summarized in Jupyter notebooks to (3) aid in
comprehension and comparison with server-based applications.
We invite users to explore (4) different Skyrise benchmarks and
benchmark configurations.

We summarize our demonstration as follows:
(1) We evaluate serverless compute and storage infrastructure

for large-scale, I/O-heavy workloads both at the resource
and application levels.

(2) We observe the impact of key performance characteristics
of serverless infrastructure on data-intensive applications.

(3) We analyze the trade-offs between serverless and server-
based systems with respect to performance and economics.

(4) Skyrise is open-source.1 We invite the attendees to explore
its broader set of benchmarks and to extend it for further
experiments and cloud infrastructure services.

The rest of the paper is structured as follows. In Section 2, we
introduce the Skyrise evaluation framework. In Section 3, we
present our demonstration scenarios. We conclude in Section 4.

2 THE SKYRISE EVALUATION FRAMEWORK
Analyzing infrastructural components from scratch is tedious.
It not only requires implementing benchmarks against the APIs
of cloud providers but also requires the automation of resource
provisioning, data preparation, experiment configuration and
execution, as well as result processing. To enable the evaluation
of serverless infrastructure, we develop the Skyrise evaluation
framework [13]. Our framework includes a comprehensive suite
of micro-benchmarks for serverless resources and integrates a

1Skyrise is available at https://github.com/hpides/skyrise.

Demonstration Paper

 

 

Series ISSN: 2367-2005 1146 10.48786/edbt.2025.110

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.110


Table 1: Overview of experiment configurations.

System under Test Functions Parameters Metrics
Lambda, EC2 Minimal, Network, Storage I/O Instance Size & Count I/O Throughput, Startup Latency, Idle Lifetime
S3, DynamoDB, EFS Storage I/O File Size & Count I/O Throughput, IOPS, Latency
Skyrise Query Engine Query Coordinator & Worker Queries, Scale Factor, Query Latency & Cost

Deployment Mode

full-fledged serverless query execution engine [11, 14]. The query
engine allows to understand how resource-level effects translate
to application performance. The coordinator and worker nodes
are deployed as serverless cloud functions and employ serverless
storage to load inputs and communicate outputs. As a deployment
alternative, the query engine runs on virtual servers [2], enabling
the comparison with server-based execution.

Adding and comparing more serverless query engines requires
a thin wrapper to execute queries on these systems and extract
runtimes and costs. We integrate our framework with the AWS
compute services Lambda and EC2, as well as the data storage
services S3, DynamoDB, and EFS. While we employ the cloud
infrastructure services and C++ SDK of AWS, there are equivalent
services, APIs, and SDKs in Microsoft Azure and Google Cloud
Platform. Supporting other cloud platforms does not require any
architectural changes. The current set of micro-benchmarks al-
lows the evaluation, e.g., of compute unit startup times, network,
and storage performance. Extending our framework with more
benchmarks is done via a conventional interface with functions
including setup and teardown routines, workload generation,
and result processing.
Experiment Flow. The framework supports experiments on
two levels of the stack. On the resource level, the framework
employs micro-benchmarks measuring performance metrics of
compute and storage services. On the application level, i.e., com-
plete queries, the framework uses the query engine.

To execute experiments, the framework deploys and invokes
cloud function binaries. Figure 1 gives an overview of this process.
Each experiment defines a configuration, which is submitted to
a driver. Depending on the experiment level, the driver invokes
a specific function binary. For resource-level experiments, the
driver invokes one of the micro-benchmark functions with a set
of basic parameters, such as the S3 bucket or DynamoDB table.
For application-level experiments, the driver executes queries
with the query engine by calling the query coordinator function,
which in turn breaks up queries into tasks and schedules worker
functions for them. Table 1 gives an overview of supported ex-
periment configurations. For configurations targeting EC2, we
provide a shim layer that resembles the Lambda execution envi-
ronment to run function binaries on servers.

When the experiment ends, the driver receives result metrics
from multiple sources: Logs, traces, and a response from the
invoked function. For resource-level experiments, the metrics
include, e.g., timestamps, request counts, latencies, and through-
puts. The driver then aggregates these results and estimates the
experiment cost using the AWS price list service, disregarding
any bulk discounts. For application-level experiments, the query
coordinator function returns high-level metrics, such as query
latency and cost. Finally, the driver stores the results in a JSON
file, which is consumed by one of our Jupyter notebooks [17] for
summary and visualization.
Interactive Analysis. The elasticity of serverless resources en-
ables the interactive analysis of many of their characterisics.

Serverless functions start up in milliseconds and exhibit their
burstable performance at the beginning of their lifetime. Server-
less storage is always available to take user requests.

In our suite of Jupyter notebooks, users can step through
the experiments, exploring various configuration parameters.
Re-executing steps takes seconds to minutes (for terabyte-scale
queries) and allows to build an intuition for serverless cloud
infrastructure. This is complemented by tooling to debug and
profile our query engine [12] and the AWS web UI [7].

3 DEMONSTRATION SCENARIOS
Our demonstration employs Skyrise to run experiments against
the serverless compute and storage services of AWS. The atten-
dees take on the role of a data system engineer using our suite of
Jupyter notebooks on a local laptop to progress through the ex-
periments step by step. They inspect the (intermediate) results to
observe key features of serverless infrastructure and their impact
on data processing systems to inform system design.

In particular, we demonstrate how burstable network through-
put in serverless functions impacts scan-heavy queries. We then
show how shuffle queries benefit from IOPS scaling in object stor-
age. Finally, we compare the performance and cost of query exe-
cution on both serverless and server-based compute resources.

In the following three scenarios, we use the TPC-H [22] and
TPCx-BB [23] datasets with varying scale factors from 1 to 1, 000.
The dataset tables are split into Parquet files using ZSTD com-
pression and are stored in AWS S3. We employ the standard data
generators and do not partition or sort on any specific keys. We
deploy the function binaries on ARM-based Lambda functions
[8] and virtual servers of the EC2 C6g family [3]. Our notebooks
and framework driver have low resource requirements and run
on a regular laptop machine on site at the conference venue.

3.1 Network Bursting for Scan-heavy Queries
Our first scenario illustrates the burstable network throughput
of serverless functions and how it can be exploited for scan-
heavy queries. Functions start with an increased (burst) network
throughput that depletes and recharges over time.
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Figure 2: Serverless compute function network throughput
with short sleep to refill inbound/outbound burst budgets.
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Figure 3: Aggregated network throughput for varying de-
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Figure 4: Query worker throughput for given input sizes
within and beyond network burst budget with TPC-H Q6.

We start by running a network micro-benchmark with indi-
vidual function invocations. Figure 2 shows an exemplary result.
This can be used to derive the burst and baseline network through-
put of cloud functions, as well as the burst capacity (of ∼300 MiB
here). We proceed executing the same micro-benchmark with
concurrent function invocations to study the scalability of the
network throughput. The engineer sees a result as in Figure 3,
indicating that the throughput, in fact, scales with the number of
function instances. Finally, we run a scan-heavy query, such as
TPC-H Q1 (cf. query plan in Figure 7) with different input data
sizes for the query workers. As shown in Figure 4, we observe
that the worker throughput is significantly higher, when input
sizes are smaller than the workers burst capacity, such that they
can load all data with the increased burst throughput.

3.2 IOPS Scaling for Shuffle Queries
In the second scenario, we demonstrate how to exploit hot object
storage with scaled out IOPS performance for queries with shuf-
fles. Serverless query engines shuffle intermediate data through
object storage. Thereby, every query worker has to potentially
read all relevant columns of all assigned partitions of all work-
ers from the preceding query stage. For large queries, shuffles
may require thousands of requests and hit service quota limits
of object stores, degrading query performance.

We begin with a storage micro-benchmark that employs tens
to hundreds of concurrent function invocations to send small
requests to the Standard and Express storage classes of S3, deter-
mining their respective IOPS performance. The results are shown
in Figure 5 and indicate that S3 Express is a pre-provisioned
variant of S3.

We can exploit the increased IOPS performance of S3 Express
in a shuffle query like TPC-H Q12 (cf. query plan in Figure 8). We
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Figure 5: Operations per second and container-level quotas
for the S3 storage classes Standard and Express.
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Figure 6: IOPS throughput of various S3 storage classes and
their performance impact on TPC-H Q12 and its shuffle.

run the query at large scale varying the number of workers and
partitions, leading to more or fewer required storage requests
to execute the shuffle over S3. We see degraded performance
for shuffling over S3 Standard, when the base IOPS quota is
insufficient for the shuffle (see Figure 6).

Table 2: Sizing and pricing of AWS compute services.

Resource Lambda (ARM) [6] EC2 (C6g) [2]
Memory Configurable Configurable
Capacity (GiB) 0.125 – 10 2 – 128
Price (¢/GiB-h) 4.80 1.70
Compute Memory-based Configurable
Capacity (vCPU) 0.07 – 5.79 1 – 64
Price (¢/vCPU-h) 8.49 3.40

Table 3: Performance and cost of IaaS vs. FaaS deployments.

Query H-Q1 H-Q12

Ia
aS

Runtime [s] 6.4 18.1
Cumulated Time [s] 1266.3 5140.4
Cost [¢] 4.79 19.58

Fa
aS

Runtime [s] 6.9 19.2
Cumulated Time [s] 687.0 2,227.3
Cost [¢] 6.49 21.19
Storage Cost [¢] 0.16 1.39

3.3 Serverless Functions vs. Virtual Servers
In our third scenario, we compare the performance and cost of
query execution on serverless vs. server-based compute instances.
In either case, serverless storage is used to read base tables and
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Figure 7: Query execution plan for TPC-H Q1.
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Figure 8: Query execution plan for TPC-H Q12.

shuffle intermediate results. FaaS platforms have additional per-
formance overhead and charge higher prices per compute unit.
They, however, can adapt the number of workers from query
stage to stage, potentially saving resources.

We execute various queries with our query engine running
on either serverless functions or (upfront started) virtual servers.
For both deployment modes, we use equivalent query plans and
overall physical resources in terms of vCPUs and memory.

We inspect the resulting query runtimes and cost, as shown
in Table 3 with the cost based on the prices in Table 2. This
allows for a discussion of the benefits of intra-query elasticity
and economic viability of FaaS-based systems for infrequent vs.
continuous analytical workloads.

4 CONCLUSION
We demonstrate our Skyrise framework for the evaluation of
serverless cloud infrastructure. Using the framework, we offer a
set of guided experiments. The experiments show characteristic
features of serverless compute and storage resources. They show
how these features impact the performance and economics of
end-to-end data processing applications. They further allow the
exploration of various parameters to develop an intuition for this
new category of cloud infrastructure. Skyrise is open-source and
extensible to support additional cloud services, query engines,
and experiments.
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