
AprèsCoT: Explaining LLM Answers with Knowledge Graphs
and Chain of Thought

Moein Shirdel
University of Waterloo

Waterloo, Canada
mshirdel@uwaterloo.ca

Joel Rorseth
University of Waterloo

Waterloo, Canada
jerorset@uwaterloo.ca

Parke Godfrey
York University
Toronto, Canada
godfrey@yorku.ca

Lukasz Golab
University of Waterloo

Waterloo, Canada
lgolab@uwaterloo.ca

Divesh Srivastava
AT&T Chief Data Office

New Jersey, USA
divesh@research.att.com

Jarek Szlichta
York University
Toronto, Canada
szlichta@yorku.ca

ABSTRACT
We demonstrate AprèsCoT, a post-hoc tool for understanding
how large language models (LLMs) answer questions. The idea
behind AprèsCoT is to map the answer and the LLM’s inference
steps—obtained via chain-of-thought (CoT) prompting—onto a
knowledge graph to produce a structured explanation. Confer-
ence participants will choose from several LLMs and knowledge
graphs to explore AprèsCoT’s ability to visualize inference paths,
identify potentially incorrect answers, and find knowledge graph
quality issues.

1 INTRODUCTION
Large language models (LLMs) have revolutionized natural lan-
guage processing tasks such as question-answering (QA) with
their generative abilities. However, these models are prone to
hallucination, generating confident but inaccurate outputs. This
limits their adoption in high-stakes domains such as healthcare
and education.

To mitigate hallucination, recent systems such as Perplexity
andMicrosoft Copilot employ retrieval-augmented generation
(RAG), in which relevant documents are retrieved from the Web,
summarized, and added to the LLM’s context. The LLM can then
generate an answer to a question using both its pretrained knowl-
edge and the knowledge contained in the retrieved documents.

However, RAG does not guarantee that the LLM will use the
retrieved information in its generative process. Further effort
is required to trace the provenance of the generated answer,
either by using another model for post-hoc citation recovery [4],
which could also hallucinate, or by repeatedly querying the LLM
with subsets of the retrieved sources to determine which source
influences the answer [2, 5], which is expensive.

To address these issues, we demonstrate AprèsCoT, a light-
weight tool for understanding LLM answers. We leverage two
observations:

• that modern LLMs can generate their inference steps via
chain of thought (CoT) prompting, e.g., by appending the
sentence “Let’s think step by step” to the query, and

• that if plausible, these steps can be mapped to facts stored
in a knowledge graph (KG) to produce a data provenance
trail leading to a structured explanation.

© 2025 Copyright held by the owner/author(s). Published in Proceedings of the
28th International Conference on Extending Database Technology (EDBT), 25th
March-28th March, 2025, ISBN 978-3-89318-099-8 on OpenProceedings.org.
Distribution of this paper is permitted under the terms of the Creative Commons
license CC-by-nc-nd 4.0.

Figure 1: An explanation produced by AprèsCoT.

AprèsCoT is a post-hoc tool applicable to any CoT-capable
LLM, as long as a suitable KG exists or can be generated from a
suitable document corpus.

Figure 1 shows AprèsCoT1,2 in action. The user selects from
the list of preloaded LLMs (ChatGPT 3.5 with RAG) and KGs
(MetaQA Movies), and asks for the release years of movies star-
ring actor Jean Rochefort. The answer (1972 and 1990) and the
chain of thought produced by the LLM are displayed both in
tabular form and on the underlying KG. Dark blue KG nodes cor-
respond to the entities in the question, blue nodes correspond to
answers, and green edges show the inference paths thatAprèsCoT
matched to the CoT. The user can then investigate any inconsis-
tencies and gaps in the illustrated inference paths for possible
hallucination or KG incompleteness instances (see Section 3 for
demonstration scenarios).

We make the following contributions.
(1) Novel LLM Explanation Approach: On the conceptual

side, we propose AprèsCoT, the first tool that leverages
CoT prompting and KGs to understand LLM answers. The
idea aligns with nearest neighbour LLMs [3]; i.e., looking

1AprèsCoT is available at http://lg-research-2.uwaterloo.ca:8050/aprescot
2A demo video is available at https://vimeo.com/1037583358

Demonstration Paper

 

 

Series ISSN: 2367-2005 1142 10.48786/edbt.2025.109

https://OpenProceedings.org/
http://dx.doi.org/10.48786/edbt.2025.109


Figure 2: The architecture and workflow of AprèsCoT.

up the nearest documents to the output generated by the
LLM as a form of citation. However, our use of CoT to
visualize structured inference paths over a KG is novel.

(2) Alignment Mechanism: On the technical side, the main
challenge faced by AprèsCoT is to align the CoT and the
LLM’s answer to the nodes and edges in the corresponding
KG. To address this challenge, we convert KG elements to
text and match sentences generated by the CoT prompt to
facts stored in the KG using pre-trained text embedding
models.

(3) Insights: On the application side, we present use cases on
theMetaQA cinema KG and theUnifiedMedical Language
System (UMLS) KG using ChatGPT 3.5 and GPT-4o-Mini
(with and without RAG). These use cases demonstrate the
value of AprèsCoT for LLM answer verification, KG com-
pleteness analysis, and performance comparisons among
LLMs.

2 SYSTEM DESCRIPTION
2.1 Overview
We designed AprèsCoT to be a lightweight post-hoc tool for
understanding how LLMs answer questions, relying only on API
access to the LLM. The two assumptions in our design are as
follows:

• that the LLM supports CoT prompting3, and
• that a KG exists (or can be built from a suitable docu-
ment corpus using existing tools [1]) with information
relevant to the domain of the questions. For example, re-
call the MetaQA cinema KG in Figure 1, with entities such
as actors, movies and their attributes, and relationships
between entities such as starred or directed-by.

The current version of AprèsCoT comes pre-loaded with API
access to ChatGPT 3.5 andGPT-4o-Mini, and cinema and medical
KGs.

Figure 2 shows the design of AprèsCoT. The input consists
of an LLM whose answers are to be analyzed, a corresponding
KG, and a question (step 1). In step 2, AprèsCoT runs a subgraph
retriever to identify KG facts that may be relevant to the question.
Next, AprèsCoT queries the LLM. We also support an optional
RAG mode, where the facts identified by the subgraph retriever
are given to the LLM as context alongside the CoT prompt and
3In the next version of AprèsCoT, we will explore LLM explanations using tree-
of-thought and graph-of-thought prompting. Furthermore, we acknowledge that
CoT prompting can influence the LLM’s inference process, potentially leading to a
different answer compared to simple prompting.

Figure 3: Example of format prompting used by AprèsCoT.

formatting instructions. This allows users to compare question-
answering performance of LLMs with and without RAG. In step
3, AprèsCoT parses the LLM output, i.e., the answer(s) to the ques-
tion and the CoT, and runs a matcher module (step 4) that aligns
these outputs to nodes and edges in the subgraph retrieved in
step 2. Finally, the inference paths are illustrated on this subgraph
(step 5).

The remainder of this section describes the input (prompting
and subgraph retrieval) and output (matching CoT and answer
to this subgraph) processing details of AprèsCoT.

2.2 Input Processing
Subgraph Retriever. The purpose of this module is to find a
subgraph of the KG that is relevant to the question being asked
and convert each fact (edge) in the subgraph to a sentence. This
is important for two reasons. First is the efficiency of matching
the CoT with KG facts done in step 4 in Figure 2. This matching
could in principle be done over the entire KG, but most of the
KG is likely to be irrelevant to the query. The matching step is
much faster when limited to the relevant subgraph. The second
purpose of the subgraph retriever is to enable the optional RAG
mode for the LLM being explained, in which the subgraph (in
sentence format) is given to the LLM as context.

Existing systems for question answering over KGs also iden-
tify relevant facts in KGs, and so AprèsCoT’s subgraph retriever
is based on previous work [1]. First, we run a Named Entity
Recognition (NER) model over the question to identify entities
mentioned therein. Next, we locate the nodes in the KG corre-
sponding to these entities and we explore the neighbourhoods
of these entities, adding nearby nodes and edges to the retrieved
subgraph based on their relevance to the question.
Prompting. AprèsCoT instructs the LLM by performing two
prompting steps: CoT prompting, and JSON format prompting
for the answer and the CoT. This module also prompts the LLM
with the question asked by the user and the optional contextual
knowledge (when RAG is enabled). We show an example prompt
and LLM output in Figure 3, corresponding to the demonstration
scenario from Figure 1. This example uses RAG mode, in which
AprèsCoT adds facts found by the subgraph retriever to the LLM
context and instructs the LLM to answer the question using this
information.

1143



Figure 4: Comparison of MiniLM & DistilBERT embed-
dings.

2.3 Output Matching
This module consumes the JSON-formatted output of the LLM,
containing the answer(s) and the CoT. It matches the answer(s)
to the most similar node label(s), and each CoT statement to the
most similar edge, in the subgraph described in Section 2.2.

We perform the matching by computing contextual word em-
beddings for the answer(s), the CoT, and the nodes and edges in
the subgraph. Here, two design decisions are:

• which embedding model to use, and
• when calculating cosine similarity between potential matches,
what similarity threshold to use when declaring a match.

The embedding model we selected is all-MiniLM-L6-v24, a
transformer-based sentence encoder with 384-dimensional em-
beddings. Our model selection methodology was based on infer-
ence time (we prefer smaller models suitable for an interactive
system) and effectiveness, the latter assessed by manually in-
specting cosine similarities of similar and dissimilar facts.

As an example, Figure 4 compares all-MiniLM with another
sentence encoder, DistilBERT, when matching the nearest facts
to the statement at the top: “The Tall Blond Man with One Black
Shoe was released in 1972”. Each row in the table shows the
cosine similarity between this statement and a fact in the KG
for both models. While both models identify the same top match
with the highest similarity (the sentence highlighted in green),
DistilBERT produces similar embeddings for all the facts shown
in the table, leading to similar cosine similarities. On the other
hand, all-MiniLM generates more diverse embeddings, reflected
in the wider range of similarity scores in the table, reducing the
possibility of suboptimal matches having high similarity.

Finally, the similarity threshold we selected is 0.7, determined
via grid search on a curated dataset of valid matches and non-
matching sentences. That is, the matcher module returns the
top match if its similarity is above the threshold and no match
otherwise. As we will see in Section 3, failed matches correspond
to gaps in inference paths, due to model hallucination or KG
incompleteness.

4https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

3 DEMONSTRATION DESCRIPTION
In our demonstration of AprèsCoT, conference participants will
ask cinema and medical questions and analyze LLM answers
over the aforementioned MetaQA and UMLS KGs. Furthermore,
participants will be able to compare the outputs produced by
several LLMs, both in standalone and RAG mode.

In the remainder of this section, we describe three use cases
that will serve as our demonstration starting points, to illustrate
consistent inference, incomplete inference, and KG incomplete-
ness.

3.1 Consistent Answers and CoT
The first use case starts with the example in Figure 1, where the
user selectsMetaQA and ChatGPT3.5 with RAG, and asks “What
were the release years of the films starred by Jean Rochefort?”
The LLM produces two answers, 1972 and 1990. To verify the
answers, participants can trace the two inference paths, namely
[S1]-[S2] and [S3]-[S4], from the source entity, “Jean Rochefort,”
to the highlighted answer nodes, labelled [A1] and [A2]. Here,
the answers and the chain of thought are consistent with the KG.

Next, participants can switch to GPT-4o-Miniwith RAG as the
backbone model, which generates the same answers. Addition-
ally, participants can test both LLMs in standalone mode, where
the models rely solely on their pretrained knowledge, without
KG facts in their context, to answer the query. The next use case
(Section 3.2) builds on this scenario, showing how the explana-
tions produced by AprèsCoT can identify potential instances of
incompleteness in the knowledge graph.

3.2 KG Data Quality
In this use case, we utilize AprèsCoT to identify potential KG
data quality issues. The user poses the same question as in Figure
1: “What were the release years of the films starred by Jean
Rochefort?” However, unlike the previous scenario, the backbone
model is GPT-4o-Mini operating in standalone mode, without
any contextual knowledge. The model generates an answer based
on its pretrained knowledge and provides inference steps via CoT
prompting. The user selects MetaQA KG to ground the LLM’s
answers, as the question pertains to movies.

As illustrated in Figure 5, GPT-4o-Mini generates five release
years, [A1] through [A5], and ten CoT inference steps, [S1]
through [S10], which is more than in the previous use case in
Section 3.1. However, AprèsCoT can match only the two answers
that were also produced in the previous use case along with their
inference steps. The additional answers (1995, 1967, and 1974)
as well as the additional inference steps (all but [S4] through
[S7]) do not correspond to any KG facts. The user can inspect
the unmatched CoT steps, starting with [S1], which is a gen-
eral statement about the actor referenced in the question. More
notably, the user realizes that [S2] and [S3] reference a movie
starring Jean Rochefort, released in 1995, which does not exist
in the KG. Similarly, [S8] through [S10], suggest two additional
movies, released in 1967 and 1974, respectively. This inconsis-
tency may prompt the user to investigate further (e.g., do a web
search to find a complete set of Rochefort’s movies). If there are
no such movies released in 1995, 1967 or 1974, these additional
answers may be attributed to LLM hallucination. Conversely, if
these additional movies exist, they reveal KG incompleteness. In
this example, it turns out that the KG is incomplete and there are
in fact more movies starring Rochefort.

1144



Figure 5: An explanation produced in the second use case.

For comparison, conference participants can repeat this sce-
nario using ChatGPT 3.5, which also outputs an additional movie
starring Rochefort, but misses some of the answers and CoT steps
generated by GPT-4o-Mini. Interestingly, some of the CoT steps
generated by ChatGPT 3.5 refer to general instructions for an-
swering this question rather than KG facts, such as “Identify films
starred by Jean Rochefort and check the years of each of them”.

3.3 Inconsistent Answers and CoT
Finally, we turn to the UMLS medical KG to illustrate LLM in-
consistencies. As shown in Figure 6, the user asks “What types
of animals are affected by dysfunctions caused by Fungus?” and
selects ChatGPT 3.5 with RAG. The LLM responds with three an-
swers, [A1] through [A3], and five inference steps, [S1] through
[S5], all matched with an element in the UMLS subgraph re-
trieved by AprèsCoT. The user can trace inference paths from
the source entity, Fungus, to the first two answers, Mammal [A1]
and Reptile [A2]. These paths align with CoT steps [S1], [S2]
and [S5], for partial consistency between the answers and the
inference process.

However, no path connects the source entity, Fungus, to the
final answer, Bird [A3], highlighting an inference gap illustrated
with red dashed boxes. Additionally, the user observes that CoT
steps [S3] and [S4] do not correspond to any valid answers, as
they lead to non-animal entities outside the scope of the query,
despite being included in the LLM’s inference process.

The user can also switch to the other LLM, GPT-4o-Mini with
RAG, and observe that while the answers are unchanged, the
inference steps are different. In this case, the inference steps
align with all the final answers, filling the gaps in the graph. The
path leading to the last answer (Bird) is explicitly included in
the CoT, and the inference steps leading to invalid answers ([S3]

Figure 6: An explanation produced in the third use case.

and [S4] in Figure 6) do not appear in the CoT. This example
again shows AprèsCoT’s value in understanding the inference
differences between LLMs.

REFERENCES
[1] Andrew Chai, Alireza Vezvaei, Lukasz Golab, Mehdi Kargar, Divesh Srivastava,

Jaroslaw Szlichta, and Morteza Zihayat. 2023. EAGER: Explainable Question
Answering Using Knowledge Graphs. In Proceedings of the 6th Joint Workshop
on Graph Data Management Experiences & Systems (GRADES) and Network Data
Analytics (NDA). ACM, 4:1–4:5. https://doi.org/10.1145/3594778.3594877

[2] Benjamin Cohen-Wang, Harshay Shah, Kristian Georgiev, and Aleksander
Madry. 2024. ContextCite: Attributing Model Generation to Context. CoRR
abs/2409.00729 (2024). https://doi.org/10.48550/ARXIV.2409.00729

[3] Urvashi Khandelwal, Omer Levy, Dan Jurafsky, Luke Zettlemoyer, and Mike
Lewis. 2020. Generalization throughMemorization: Nearest Neighbor Language
Models. In 8th International Conference on Learning Representations, ICLR. https:
//openreview.net/forum?id=HklBjCEKvH

[4] Weitao Li, Junkai Li, Weizhi Ma, and Yang Liu. 2024. Citation-Enhanced Gen-
eration for LLM-based Chatbots. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), ACL.
1451–1466. https://doi.org/10.18653/V1/2024.ACL-LONG.79

[5] Joel Rorseth, Parke Godfrey, Lukasz Golab, Divesh Srivastava, and Jaroslaw
Szlichta. 2024. RAGE Against the Machine: Retrieval-Augmented LLM Expla-
nations. In 40th IEEE International Conference on Data Engineering, ICDE. IEEE,
5469–5472. https://doi.org/10.1109/ICDE60146.2024.00430

1145


