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ABSTRACT
In exploratory data science and machine learning (ML), develop-
ing an effective and efficient solution involves the exploration
of numerous pipelines per dataset, considering various combi-
nations of data preprocessing, feature selection, model selection,
evaluation metrics, etc. This is an iterative process of trial and
error, where a pipeline is revised and refined until a satisfac-
tory level of performance is achieved. Such a process can be
substantially improved by leveraging collaboration opportunities
and automated pipeline optimization. We demonstrate Hyppo,
a scalable collaboration system designed for interactive discov-
ery and automated optimization, resulting in a system that sup-
ports evaluating and sharing pipelines with minimal overhead.
Hyppo takes advantage of numerous optimization possibilities
as exploiting equivalences among tasks, sharing computations,
artifact materialization, and reuse from past executions to derive
better execution plans. We showcase Hyppo with open data and
pipelines from popular public code repositories and catalogs.
Demo video: https://youtu.be/iilPV_xtXwM

1 INTRODUCTION
Teams of data scientists exchange and refine ideas, striving to
identify the right data processes for optimal performance. Plat-
forms like Kaggle offer global collaboration through Jupyter Note-
books, providing spaces where scientists can share scripts and
results. Similarly, OpenML and Hugging Face further support
collaboration by enabling the storing of essential elements like
ML pipelines, models, and analytical results, facilitating conve-
nient resource exchanges. These platforms have revolutionized
how data scientists work by enabling the convenient sharing
of scripts, models, and results. Their role as execution engines
and repositories for data science artifacts is crucial in fostering a
collaborative and accessible environment.

Although beneficial, such an approach introduces inherent
challenges and overheads. Due to the large variety of alterna-
tives, data scientists tend to spend significant time reviewing and
searching previously proposed solutions whilst in turn, the re-
finement process creates multiple re-executions of partial results,
introducing unnecessary resource consumption. Additionally,
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scientists have to explore large artifact repositories, seeking alter-
native solutions to implement their tasks. Hence, exploring and
reusing previously computed results largely remains a manual
process, which increases the time, effort, and resources required
for artifact exploration. This inefficiency often leads to redundant
computations and limits the ability to leverage prior knowledge
effectively. Hence, it is essential for the next generation of data
science collaboration tools to aid users in discovering a manage-
able (handful) number of relevant high-performing pipelines and
provide automated optimization.
Related work. Current techniques to address the challenges
of exploratory data science and ML include approaches that au-
tomatically select which pipelines to investigate next, thereby
reducing the effort required by scientists (e.g., AutoML [2]). Ad-
ditionally, several systems [1, 4, 8, 9] have been developed that
make use of various optimization techniques such as reuse and
materialization, seeking to reduce the execution cost of pipelines.
To date, no system has been developed to address both challenges
simultaneously, although all the aforementioned techniques aim
to enhance the efficiency and effectiveness of exploratory data
science.
Contribution. In this paper, we demonstrate Hyppo via interac-
tive Notebooks. Hyppo operates as a middleware between the
user and the execution engine that (a) streamlines the search for
pipelines by storing previous executions and useful metadata as
a hypergraph, called History, and (b) optimizes resource usage,
reducing time, effort, and cost required for exploring alternative
solutions by solving a path discovery problem over the History.
Hyppo achieves two goals: pipeline optimization (as described in
[3]) and pipeline discovery features (an extension to [3]). In this
version, we also enable ad hoc exploration by implementing His-
tory on top of a graph database and allow users to directly query
History via a Python API that exposes several key functions for
discovery.

Attendeeswill be able to discover, design, and evaluate pipelines
for a set of predefined real-world tasks and datasets. The demo’s
purpose is threefold: (a) highlight that users can navigate and
review a rich history of previously executed pipelines in a few
steps with little effort; (b) showcase that users can easily plug
their own operators, which Hyppo picks up and uses to generate
better execution plans; and (c) emphasize the benefits of Hyppo’s
plethora of automated optimization capabilities. By integrating
both discovery and optimization capabilities, Hyppo reduces the
burden on data scientists and enables more efficient exploration.
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(1) Discovery

1 hyppo = Hyppo("catalog_path")
2 dataset = "HIGGS"
3 hyppo.best_metrics(dataset , num=3)

metric low_score high_score

'F1 ' 0.58 0.88

'P' 0.40 0.72

'R' 0.61 0.90

4 hyppo.retrieve_best_pipeline(dataset , "F1", num=1)

[('scaler ', StandardScaler ()),

('pca ', PCA(n_components =3)),

('svm ', SupportVectorMachine ()),

('F1 ', F1ScoreCalculator ())]

5 hyppo.popular_operators(dataset , "Classifier")

[(42, 'rfc '), (23, 'svm '), (4, 'ridge ')]

6 hyppo.view_dictionary('rfc')

{'rfc ': ['sk.ensemble.RandomForestClassifier ',

'tfdf.keras.RandomForestModel ',

'cuml.ensemble.RandomForestClassifier ']}

(2) Optimization

7 pipe = Pipeline ([('scaler ', StandardScaler ()), ('pca',
PCA(n_components =3)), ('rfc', cuml.ensemble.
RandomForestClassifier ()), ('F1',
F1ScoreCalculator ())], dataset)

8 pipe.run()

{'time ': 1200ms, 'F1 ': 0.91}

9 opt_pipe = hyppo.optimal_plan(pipe)
10 opt_pipe.run()

{'time ': 700ms , 'F1 ': 0.91}

Snippet 1: An example of Hyppo’s Python API

2 MAIN DEMONSTRATION SCENARIO
Hyppo enables data scientists (1) to discover previously executed
pipelines and receive insights, and (2) to optimize the execution of
a pipeline by exploiting historical information and equivalences
among operators and artifacts. We showcase these functionalities
with our main demonstration scenario. We defer the discussion
on Hyppo’s system components and how they work to Section 3.

We consider Kaggle as an illustrative example of online collab-
orative development in data science. There, several competitions
of varying complexity are available. Here, we use the Higgs Bo-
son Machine Learning Challenge,1 a complex task in the field of
particle physics, specified as a binary classification problem.

Snippet 1 illustrates how Hyppo’s Python API aids data sci-
entists in (1) discovery, e.g., exploring the pipelines already im-
plemented, obtaining insights from the best performing, and
(2) optimization of new pipeline executions. The snippet is pre-
sented as a notebook, alternating between code and output, and
comprises two phases.

In the first phase, discovery, the data scientist wishes to draw
insights on how to design a pipeline to solve the challenge.
They first review evaluation metrics achieved on the specific
dataset (Lines 2–3) and then decide to retrieve the top-performing
pipeline according to the F1 score (Line 4). By inspecting this
pipeline, the data scientist develops an intuition on what pre-
processing steps appear to work well (e.g., normalization with
StandardScaler, followed by extracting the three principal com-
ponents with PCA). Thus, they decide to keep these preprocessing
steps and explore alternate classification models. Then, the data
scientist would like to know what other models have been used

1https://www.kaggle.com/competitions/higgs-boson/overview

for this task. So, they query Hyppo for popular operators of type
Classifier that have been used in pipelines involving the HIGGS

dataset (Line 5). It appears that random forest classifier rfc is
very popular. Hence, the data scientist looks up the available
implementations of rfc (Line 6). At this point, the data scientist
is ready to define their pipeline to be executed.

In the second phase, optimization, the data scientist interacts
with Hyppo in order to efficiently execute their pipeline. First,
they define the pipeline as a sequence of tasks over a dataset.
Specifically, the data scientist copies the preprocessing steps of
the best-performing pipeline so far and appends a random forest
classifier as the final step (Line 7). They can now execute the
pipeline as is (Line 8). The pipeline achieves a better evaluation
metric, and the data scientist is happy. However, they have not
exploited the full capacity of Hyppo, which is optimizing the
execution of pipelines. Specifically, the data scientist can give
the pipeline as input to the optimizer of Hyppo, which returns
an optimal execution plan (Line 9). Executing that plan (Line 10)
results in a considerable decrease in execution time.

3 OVERVIEW OF THE HYPPO SYSTEM
Next, we present the Hyppo system at a high level, suitable for
understanding its API and the demonstration scenaria; a detailed
description of Hyppo internals can be found in [3].
Pipelines. A pipeline is a collection of computational tasks that
produce and consume artifacts. In practice, ML tasks are multi-
input and multi-output. Directed graphs, used in prior work
[1, 8], cannot distinguish between multi-input tasks (e.g., joins),
which require all inputs and are connected with ‘AND’ edges,
and alternative tasks, which require any input and are connected
with ‘OR’ edges. Hyppo employs a novel pipeline representation
using directed hypergraphs, where multi-input and -output ML
tasks can be expressed as hyperedges, and artifacts as nodes.

Hyppo operates as a middleware between the application user
and the ML execution engine. Given an input pipeline, it gener-
ates an optimized pipeline exploiting optimization opportunities
registered by past pipeline executions into a Hyppo structure
named History. In contrast to prior work, Hyppo considers pos-
sible execution plans that exploit both reuse opportunities and
task/artifact equivalences. It identifies part of the history that
is relevant in terms of reuse and equivalence with the current
pipeline, and leverages it to create an augmented pipeline. The
augmentation is also represented as a hypergraph, in which some
artifacts might have multiple incoming hyperedges, representing
alternative ways to obtain them: (a) from storage if materialized,
and (b) from equivalent tasks (or sequences thereof). The state
of the art on reuse-materialization [1, 8] only exploits the former
optimization opportunities.
Architecture. Hyppo’s system architecture is illustrated in Fig-
ure 1. Its core components include: (a) catalog, (b) parser, (c) aug-
menter, (d) plan generator, (e) monitor, (f) cost estimator, and
(g) history manager. The pipeline optimization process starts
with the user submitting their ML code. The parser uses the
catalog’s dictionary to create a pipeline representation 𝑃 from
the raw code. The augmenter then retrieves relevant historical
information from the history 𝐻 , to derive the augmentation 𝐴,
which verifies equivalences and encodes alternative options to
generate artifacts in the original pipeline. The plan generator
retrieves estimations for the cost of tasks and searches the space
of alternatives included in the augmentation to derive the optimal
execution plan 𝑝 .
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Figure 1: Hyppo’s architecture
Dictionary. The task dictionary contains an extensible set of
equivalent operators and tasks typically met in ML pipelines. The
dictionary entries follow the form: 𝐷 = { . . . , 𝑙𝑜𝑝𝑖 .𝑡𝑎𝑠𝑘𝑡𝑦𝑝𝑒 𝑗 :
[. . . , 𝑖𝑚𝑝𝑙𝑘 , . . . ], . . . } where a task type of a logical operator
𝑙𝑜𝑝 is associated with equivalent physical implementations 𝑖𝑚𝑝𝑙 ;
the dictionary entries capture also operator configurations—e.g.,
Ridge(alpha = 75.0)—but for ease of presentation we omit a de-
tailed description of the matter. The Hyppo API allows the ex-
ploration of the dictionary. For example, in Line 6 of Snippet 1,
the data scientist requests to see all entries in the dictionary that
relate to classifiers.
History. Hyppo’s history is a labelled hypergraph 𝐻 that com-
piles the knowledge acquired by previous pipeline executions. It
keeps track of all artifacts and tasks, along with their metadata
and execution statistics, used by running pipelines. Nodes and
hyperedges represent artifacts and tasks, respectively. A labelled
node contains metadata such as artifact name, cost, type, size, ac-
cess frequency, and version. A labelled edge comprises metadata
such as task name, cost, type, and the operator id it is associ-
ated with. The history records all observed artifacts and tasks
that created those artifacts, along with their lineage and useful
information such as their cost and whether they are materialized.

The Hyppo API enables the data scientist to programmatically
and visually explore the history. Programmatically, in Snippet 1,
the data scientist can retrieve performance metrics subject to
constraints (Line 3), filter the history down to a single pipeline
(Line 4), and retrieve usage statistics subject to constrains (Line
5). Moreover, the data scientist can interact with a visual rep-
resentation of the graph, and perform filtering and retrieving
operations (demonstrated in the video). A visualization of an
example history graph is shown in Figure 2 (left).
Cold Starting History. Hyppo’s discovery and optimization
capabilities depend on the quality of the recorded History. To
cold start History, we have created a pipeline generator that
uses the Dictionary to construct alternative pipelines for differ-
ent problems (e.g., classification, regression) that can be used to
populate Hyppo’s History. Our pipeline generator uses popular
operators identified in two studies analyzing research papers
from various domains [7] and millions of GitHub repositories
and enterprise ML pipelines [5]. Similarly, when a new dataset is
introduced to Hyppo, there are no available statistics. To address
this, users can use the provided pipeline generator or discover
top-performing pipelines for other datasets and apply them to
the new dataset. State-of-the-art research [6] has observed that
pipelines applied to similar datasets typically produce similar out-
comes. This strategy is effective in practical applications despite
lacking theoretical assurances.
Parser. The parser processes the input pipeline code and converts
it to the pipeline labelled hypergraph 𝑃 . In doing so, it assigns
names to artifacts that encode equivalences that can be later
exploited. The Hyppo API allows the data scientist to specify a

pipeline. For example, Line 7 of Snippet 1 invokes the parser of
Hyppo. A visualization of an example input pipeline is shown in
Figure 2 (top).

Pipeline Augmenter. The function of the augmenter is to enrich
the pipeline 𝑃 with alternative, equivalent options for task and
artifact computation that have been recorded in the history 𝐻 .
This enables a larger space of potential computation and execu-
tion options, allowing the Hyppo optimizer to pick a presumably
beneficial plan. The outcome of this process is an augmented
pipeline, or simply an augmentation 𝐴 that is a directed hyper-
graph with the property that the pipeline 𝑃 is a subhypergraph
of 𝐴. The augmenter is only indirectly used in the scenario of
Section 2, as it is called internally in the call to the plan generator
(Line 9 of Snippet 1). An example augmented graph is shown in
Figure 2 (right-middle).

Plan Generator. The plan generator seeks to identify an “op-
timal” plan among those encoded in the augmented pipeline 𝐴.
Specifically, the plan should optimize for the total execution cost.
This is done by reusingmaterialized artifacts, as well as exploiting
equivalent alternative tasks to derive the artifacts contained in
the original pipeline. A planmay avoid executing some of the new
tasks, when they can be exchanged by cheaper equivalent ones,
or sequences thereof. The plan generator is available through
the optimal_plan API call, as shown in Line 9 of Snippet 1.

Figure 2 depicts the pipeline optimization process of Hyppo.
Initially, the data scientist submits a pipeline, termed pipe in Snip-
pet 1, shown as P in Figure 2 (top). Hyppo invokes the augmenter
that retrieves relevant information from the history to generate
the augmentation, shown as A in Figure 2 (right-middle). And
finally, Hyppo produces an optimal plan (Line 9 of Snippet 1)
shown as Π in Figure 2 (bottom).

Monitor. Hyppo’s monitor serves two functions. First, it collects
traces of metrics from pipeline execution, e.g., resource utiliza-
tion, execution time. These are used by the cost estimator to
update the statistics maintained for the operators in the dictio-
nary. Second, it monitors the execution of new tasks and the cost
of producing the resulting artifacts. This information is used by
the graph manager.

Cost Estimator. The cost estimator is responsible for (a) im-
plementing our cost model and (b) updating the statistics in the
dictionary D. The plan generator probes the cost estimator for
computing the costs of tasks involved in the plan according to
the cost model. The cost estimator is invoked internally by the
plan generator.

History Manager. The history manager (a) keeps track of the
execution of new pipelines, maintains the history 𝐻 accordingly,
and (b) decides what artifacts to materialize. The first function
involves updating 𝐻 with new tasks that have been executed
and new artifacts that have been generated. As new artifacts are
being produced, it also performs the second function, which in-
volves a critical decision: given a storage budget, which artifacts
(from both, those already materialized and the newly created
with the execution of a plan) to materialize for reducing the com-
putational cost, and thus, the execution time of future pipelines.
The outcome of this decision is that certain artifacts that have
been materialized will be evicted from storage, while some new
artifacts will be stored.

The history manager is internally invoked when the data sci-
entist commits a pipeline for execution, as in Line 10 of Snippet 1.
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Implementation.Hyppo2 has been implemented in Python 3.10
and NetworkX (3.1) (parser, optimizer). Hyppo’s History is stored
in Neo4j (4.4) and its API uses the graph query language Cypher.
Our catalog supports 40+ popular operators from popular ML li-
braries, and it keeps growing. Our experiments reveal that Hyppo
improves artifact and model retrieval time by an order of magni-
tude and total optimization time by 5.1x compared to prior state
of the art [1, 8], and it is scalable.

4 OUR PRESENTATION
We will introduce the audience to Hyppo’s (a) discovery and opti-
mization features, (b) extensibility, and (c) the system’s internals.
In the main interactive scenario, the audience is provided with a
selection of ten diverse datasets, each accompanied by distinct
use cases. This variety ensures that every participant can explore
and interact with a dataset that aligns with their interests or
background.
Scenario. Continuing the main demonstration scenario (Sec-
tion 2), we will further demonstrate pipeline optimization. Start-
ing with the discovered pipelines, we will investigate different
optimization strategies: (a) no optimization, (b) computation shar-
ing, cost-based reuse, andmaterialization, but without history [8],
(c) computation sharing, heuristic-based reuse and materializa-
tion [1], and (d) Hyppo’s approach, with computation sharing,
materialization, and equivalence optimization strategies. After
the main demonstration, we will have additional end-to-end
canned scenarios that further showcase Hyppo’s features.
Extensibility. Hyppo is designed for easy extension, supporting
the addition of both new logical and physical operators. This
capability will be showcased through audience participation,
where:

(1) Participants can introduce new logical operators not cur-
rently found in the Dictionary via the notebook. (2) They can
create and assess pipelines utilizing these new operators. (3) Like-
wise, new implementations of existing logical operators can be in-
troduced and evaluated. This process will reveal how Hyppo can

2Hyppo code repo: https://github.com/akontaxakis/HYPPO

uncover previously undiscovered pipelines and leverage equiva-
lent physical operators to generate better execution plans, espe-
cially if the new implementations enhance performance.
System’s Internals. For off-script presentation and discussion,
we will provide further interactivity where (1) the participants
can browse example pipelines and experiments or even create
their own pipelines leveraging our operator dictionary and a
pre-populated pipeline history. (2) Participants interested in our
graph database can review the graph database schema, nodes,
and relationship types and their respective properties. Lastly, (3)
participants interested in optimization can use Hyppo to generate,
estimate the cost, and visualize numerous execution plans given
a pipeline, allowing us to engage in insightful discussions.
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