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ABSTRACT
This work investigates the challenge of accurately and efficiently
answering complex SPJ (Select-Project-Join) queries issued di-
rectly on top of dirty data. We introduce QueryER, a novel frame-
work that seamlessly integrates Entity Resolution (ER) into tra-
ditional query processing. QueryER performs analysis-aware
deduplication by incorporating ER operators into the query plan,
enabling efficient entity resolution over dirty data containing du-
plicate entries with minimal pre-processing time and no manual
preparation overhead. Our comprehensive experimental evalu-
ation, conducted using both real-world and synthetic datasets,
demonstrates that QueryER adapts to the workload, exhibits
sublinear scalability, and consistently achieves high recall perfor-
mance, outperforming baseline approaches. The results attest to
the robustness of QueryER and its suitability for data exploration
and analysis workflows. This work opens up new possibilities
for more efficient query processing over dirty data, particularly
in the realm of data analysis and exploration.

KEYWORDS
query processing, entity resolution, data integration, data explo-
ration, data quality

1 INTRODUCTION
Analysis-aware data processing pertains to an exploratory data
analysis type where users apply data integration techniques,
such as data augmentation or cleaning [46], during query execu-
tion. Such approaches extend SQL by incorporating operators to
rectify inconsistent or missing data [17]. Analysis-aware Entity
Resolution (ER) is a specific instance that augments query results
by resolving duplicate entities (records of the same real-world
entity) from the underlying tables [1, 3, 4]. Opposite to typical
data integration settings that employ ER techniques as a pre-
processing step, analysis-aware ER targets interactive scenarios,
in which users are interested in subsets of the data and wish to
minimize the time-to-analysis by operating directly on duplicate
data instead of conducting ER on the entire dataset (batch ER
process). This need is prevalent in data aggregators and data lake
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environments, which present heterogeneous, rapidly evolving,
and often overlapping information from multiple sources.

Related state of the art solutions include progressive and
analysis-aware ER. Progressive ER [36, 41] aims at reducing the
time-to-analysis by delivering partially resolved results, which
are progressively refined over time. However, its main objective is
to speed up the typical batch ER process rather than addressing on
demand exploratory scenarios, as it disregards user queries and
applies ER to the entire dataset rather than the subset of the data
the user is interested in. Analysis-aware approaches [1, 3, 4, 42]
drive ER-related tasks (e.g., blocking, entity matching) based on
a user query. However, they suffer from performance limitations,
as they decouple ER operators from the SQL ones; e.g., they apply
ER tasks on top of the query results, or as in the case of progres-
sive ER, they evaluate SQL queries on top of (progressive) ER
results. For the same reason, they offer support for simple SP
(Select-Project) or SPG queries [1, 3, 42], failing to exploit the full
capabilities of SQL, such as SPJ (Select-Project-Join) queries or
requiring pre-processing steps for more complex analysis (e.g.,
SPJ queries) [4]. Essentially, current approaches are not tightly
integrated into SQL engines, leading to significant challenges such
as reduced compatibility with existing data infrastructure and an
inability to exploit the benefits of query planning for enhanced
performance optimization.

In this paper, we seamlessly integrate Entity Resolution (ER)
into query engines for on-demand exploratory analysis, standing
apart from full-dataset batch ER. This streamlines analysis on
multi-sourced, overlapping datasets while reducing overheads
like schema matching. We address crucial challenges that involve:
(i) the design and introduction of novel ER-specific query operators,
primed for seamless integration within query evaluation pipelines;
(ii) the establishment of enhanced semantics to bolster both the
efficiency and accuracy of entity resolution within SQL queries; and
(iii) the computation and subsequent incorporation of ER operators’
cost into query planning and optimization. The hallmark of our
work lies in the optimized amalgamation of these ER components
within the query execution process, delivering substantial im-
provements in computational efficiency, precision, and overall
cost-effectiveness in the area of data exploration and analysis.

In this study, we tackle the outlined challenges through the
introduction of QueryER, a framework that seamlessly integrates
ER operations into the planning and execution of SPJ queries. To
accomplish this, we put forth three innovative (ER-specific) query
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Figure 1: Tabular collections Publications and Venues with data from multiple sources, having duplicates and missing
values. On the right, QueryER’s architecture overview and an example user query for evaluating results on both tables.

operators that: (a) detect and resolve duplicates within a table
via a schema-agnostic resolution approach, thereby eliminating
configuration overhead; (b) perform joins across two or more
tables containing duplicate entities; and (c) group/merge dedu-
plicated entities into a single representation. Subsequently, we
devise a method for integrating these operators into the query ex-
ecution process. On the ER front, the operators leverage Blocking
[6, 9] and Meta-Blocking [35] techniques to eliminate duplicates
while minimizing cleaning overhead. Traditionally employed in
an end-to-end offline setting, these techniques are recognized for
delivering high recall levels [31, 33]. To the best of our knowl-
edge, this is the first study to weave Meta-Blocking techniques
into a query engine. Given that our experiments (Table 4) con-
firmed the dominating cost in query execution to be pairwise
entity comparisons, we propose a cost-based planner aimed at
reducing the number of comparisons among alternative query
plans. We have implemented our concepts into a custom SQL
query engine using Apache Calcite1, a framework renowned for
building query engines with a diverse range of data sources and
extensible customization options. The performance and scalabil-
ity of our approach were evaluated using real and synthetic data.
In summary, the main contributions of this paper are:
• The QueryER framework, a novel solution for analysis-aware
entity resolution over duplicate data with minimal prepro-
cessing time and no configuration overhead.
• Three novel operators, specifically optimized for query exe-
cution, that implement core ER operations (Blocking/Meta-
Blocking, matching, and result grouping) within a query plan
pipeline.
• A cost-based planner for the efficient execution of joins over
data with duplicates.
• A comprehensive experimental evaluation of the proposed
approach using real and synthetic datasets.

Outline. Section 2 introduces our motivating example. Section 3
offers a system overview. Section 4 presents the basic concepts

1calcite.apache.org

and problem formulation. In Sections 5 and 6, we discuss new
operators and query planning & evaluation methods, respectively.
Section 7 reviews related work, while Section 8 provides the
experimental evaluation. Finally, Section 9 concludes the paper.

2 MOTIVATING EXAMPLE
To contextualize our work, consider a data scientist employed by
a scholarly data aggregator, such as the Open Academic Graph2
or Openaire3, who conducts a range of analyses, including im-
pact assessment and citation analysis. The aggregator gathers
information from various publishers, open archives, and data
repositories, mapping it to a common schema and categorizing
it by type (e.g., publications, venues). Since records can appear
in multiple repositories, duplicates are common. As the aggrega-
tion is irregular, minimizing time-to-analysis is vital, avoiding
batch deduplication with each new source harvested. Therefore,
users need to query dirty data on the fly, necessitating duplicate
resolution in the results.

A part of the collected information about publications 𝑃 and
venues𝑉 is illustrated in Fig. 1. Sets [𝑃1, 𝑃2], [𝑃3, 𝑃4, 𝑃5] and [𝑃6,
𝑃7, 𝑃8] indicate matching records with varying attributes, like au-
thor names or missing years, demonstrating data inconsistencies
across sources. Similarly, [𝑉1, 𝑉4], [𝑉2, 𝑉3] and [𝑉5, 𝑉6] are sets
of matching venues. The user wants to analyze the underlying
data and identify publications from "EDBT" conferences along
with the venue rank, resulting in the resolution and fusion of
any duplicate entries into single records in the results. The user
query would be: SELECT P.Title, P.Year, V.Rank FROM P INNER

JOIN V ON P.venue = V.title WHERE P.venue="EDBT" (execution
plan is depicted in Fig. 2).

The query first performs a table scan in 𝑃 (we assume for
simplicity no indexes exist), selects [𝑃1, 𝑃6, 𝑃8], retrieves 𝑉4 via
the join with 𝑉 , and outputs the projected attributes of joins.
However, it omits entities 𝑃2, 𝑃7 and𝑉1 - duplicates of 𝑃1, 𝑃6/𝑃8,
and 𝑉 4 respectively - which means that the user misses the Title
for 𝑃2, the Year for 𝑃7, and the Rank for 𝑉4. To meet her analysis
2https://www.microsoft.com/en-us/research/project/open-academic-graph/
3Openaire https://www.openaire.eu
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requirements, the user expects the results at the bottom right of
Fig. 1, where duplicates are identified and grouped into a single
record; for instance, missing values (null) are replaced by existing
ones, and contradictory values are all presented to the user. This
is an indicative grouping method, and other methods may apply.
Currently, batch or progressive ER techniques would be needed
to deduplicate both tables pre-query, which is time-consuming
and redundant, as only a subset of the data affects the query.
Progressive ER, although providing faster partially-resolved re-
sults, it is less suitable for exploratory scenarios, as it does not
consider user queries and applies ER indiscriminately rather than
focusing on the data subset relevant to the user. An ideal solution
should (a) identify the records selected by the user’s WHERE
clause, (b) deduplicate them against other database records, (c)
join resolved records, and (d) fuse and project the results mean-
ingfully. However, conventional SQL operators do not inherently
support such operations, except for the selection in the first step.
To remedy this, we integrate Entity Resolution into Query Pro-
cessing via operators that incorporate traditional ER techniques
into the query planning pipeline. While our motivating example,
which serves as the running example throughout this paper, fo-
cuses on a scholarly data aggregator, the utility of QueryER is not
limited. For instance, during the data preparation phase of ML
pipelines, QueryER can swiftly clean and deduplicate features
in an analysis-aware fashion. This enables the immediate avail-
ability of unique, high-quality training datasets, streamlining
ML model development and simplifying the tedious and time-
consuming tasks of feature exploration and selection. As a result,
data scientists can focus more on critical tasks like model creation
and refinement, leading to more efficient and effective outcomes.

Figure 2: Plan for the query in the motivating example

3 SYSTEM OVERVIEW
QueryER integrates ER into SPJ query execution, enabling users
to query dirty data without pre-cleaning. It delivers results equiv-
alent to querying a batch ER deduplicated database but reduces
cleaning overhead by deduplicating only data selected by user
queries. Additionally, the cost-based planner optimizes opera-
tor placement using ER-related statistics to minimize pairwise
comparisons. Finally, duplicates are indexed, avoiding redundant
ER for similar queries. An overview of our solution is shown in
Fig. 1. The user employs SQL syntax to query tables containing
duplicates. The DEDUP keyword in the beginning of the SELECT
clause indicates that the results should be resolved for duplicates
before the final projection; otherwise, standard SQL semantics
apply. Upon parsing the input, the Query Parser, generates an
abstract query representation that is used by theQuery Planner to
create an initial plan without incorporating the ER operators. The

plan is then transformed through the insertion and substitution
of ER operators into a set of alternative query plans. The planner
utilizes relational and ER-specific statistics (e.g. selectivity, esti-
mated comparisons, etc.) to devise the best plan. Post-planning,
the Query Executor retrieves data, executes the optimized query
operators, and projects deduplicated results to the user. The ex-
ecution process, especially the role of the Deduplicate Operator,
is detailed in Sec. 5.1, demonstrating how entities are processed
through an advanced operator pipeline (Fig. 3) that optimizes the
deduplication process.

Additionally, QueryER utilizes three in-memory indices per
table for ER-related statistics: (a) the Table Block Index (𝑇𝐵𝐼 ), (b)
the Inverse Table Block Index (𝐼𝑇𝐵𝐼 ), and (c) the Link Index (𝐿𝐼 ),
built during table initialization and maintained in-memory, with
𝐿𝐼 starting off empty. These indices record ER-specific statistics
for efficient planning. This approach enhances system efficiency,
circumventing the need for on-the-fly indexing during queries.
Further insights are in Sections 5 and 6, with initialization times
detailed in Sec. 8.1.

4 PRELIMINARIES
This section provides preliminary concepts and the problem for-
mulation. The notations are summarized in Table 1.

Entity Collections and duplicates. Let 𝐷 = {𝐸1, 𝐸2, ..., 𝐸𝑛}
denote entity collections with entities 𝑒𝑖 described by attributes
𝐴𝐸 = {𝑎𝐸1 , 𝑎

𝐸
2 , ..., 𝑎

𝐸
𝑘
}. Each entity, identifiable by 𝑒𝑖𝑑 ∈ 𝐴𝐸 , corre-

sponds to records in data files (e.g. csv, parquet) or tables. Omit-
ting PKs and FKs enhances compatibility across formats, as these
are not uniformly present across datasets. Entities 𝑒𝑖 and 𝑒 𝑗 ∈ 𝐸,
representing the same real-world object, are duplicates (𝑒𝑖 ≡ 𝑒 𝑗 ).
Joins reflect relations without forming new entities. A collec-
tion 𝐸 is dirty if it has duplicates, as seen with 𝑒𝑃1 ≡ 𝑒𝑃2 in the
Publications table, Fig. 1.

Entity Resolution (ER). Entity Resolution (ER) identifies
and links different representations of the same real-world object
[16]. In the context of homogeneous entity collections, where
duplicates exist only within individual tables, this crucial process
is termed Deduplication [8, 9]. Formally, when working on a dirty
collection 𝐸, ER produces a set of matches (linkset), represented as
𝐿𝐸 , which indicates pairs of duplicates in 𝐸. The key components
of the QueryER’s Operators include various ER techniques such
as Blocking, Meta-Blocking, Matching, and Grouping.

Blocking. Blocking is widely used to scale ER [6, 9] by limiting
comparisons to similar entities. The basic concept is the block
𝑏 = (𝑒1, 𝑒2, ...𝑒 |𝑏 | ), which is identified by a unique Blocking Key
(𝐵𝐾) and groups entities based on key similarity/equality (e.g.,
tokens, n-grams etc.). ER restricts pair-wise comparisons between
the entities in 𝑏 instead of all entities in 𝐸. A set of blocks is
called block collection 𝐵, with size |𝐵 | denoting the number of
blocks it contains, and cardinality denoting the total number
of comparisons it involves: | |𝐵 | | = Σ𝑏𝑖∈𝐵 | |𝑏𝑖 | |, where | |𝑏𝑖 | | is a
block’s cardinality.

Meta-Blocking. Meta-blocking refines a Block Collection 𝐵
by discarding redundant and non-matching comparisons while
preserving matching ones [35]. It comprises: i) Block-refinement,
and ii) Comparison-refinement methods [33]. From the former,
we use Block Purging (BP) and Block Filtering (BF) [37]. 𝐵𝑃 purges
oversized blocks lacking discriminativeness with a block size
threshold, while 𝐵𝐹 keeps entities in their 𝑛 smallest blocks based
on a set percentage. In the latter category, Edge Pruning (EP) [37]
reduces unnecessary comparisons. EP: (i) transforms 𝐵 into a
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Table 1: Notation for Concepts
Symbol Description
𝐸, 𝑒𝑖 An Entity collection (e.g., a table), a single entity
𝐵, 𝑏𝑖 , A Block collection, a single block
|𝑏𝑖 |, | |𝑏𝑖 | | Size (#entities) and cardinality (#comparisons) of 𝑏𝑖
𝐷𝑄 A Dedupe query
𝐵𝑄 A Batch Approach Query operating on an 𝐸𝐺
𝐸𝜎 , |𝐸𝜎 | Entities evaluated by a 𝐷𝑄 , Size (#entities) of 𝐸𝜎
𝐸𝜎 Duplicate Entities of 𝐸𝜎
𝐿𝐸 A collection of matching pairs (𝑒𝑖 ,𝑒 𝑗 ) in 𝐸
𝐸𝐺 Deduplicated grouped entities (𝐸𝜎 ∪ 𝐸𝜎 , 𝐿𝐸 )
𝑅𝐺 Result-set of 𝐷𝑄
𝑇𝐵𝐼 Table Block index for entity collection 𝐸
𝐼𝑇𝐵𝐼 Inverse Table Block index for 𝐸
𝐿𝐼 A Link Index for E
𝑄𝐵𝐼 A Query Block Index
𝐸𝑄𝐵𝐼 An enriched Query Block Index
𝐸𝑄𝐵𝐼 ′ An EQBI after Meta Blocking has been applied

blocking graph, with entities as nodes and co-occurring pairs as
edges, and (ii) weights edges, pruning those below a minimum
score. The Meta-Blocking phase operates during query execu-
tion, focusing on query-relevant data, maximizing efficiency by
skipping unneeded processing.

Entity Matching & Grouping.We treat entity matching and
grouping as orthogonal tasks to blocking, adhering to the best
practices in literature [8, 9, 31, 33]. In this context, we presume
that two duplicate entities, 𝑒𝑖 ≡ 𝑒 𝑗 , are detected in 𝐵 if and only
if they co-occur in at least one of its blocks. The performance
of Entity Resolution (ER) relies largely on the accuracy of the
similarity methods employed for entity comparison (e.g., Jaccard,
etc). Upon identifying duplicate entities, the final stage of an
ER task merges these duplicates into a single representation.
Given a dirty collection 𝐸 and a linkset 𝐿𝐸 , a grouping function
produces a set of deduplicated grouped entities 𝐸𝐺 . This step,
relying on the fusion technique used, can employ methods like
surrogate key-based grouping or fusing entities’ attribute values
using domain-specific rules[11]. QueryER remains agnostic to
the matching and grouping techniques, offering the flexibility to
incorporate a wide array of conventional or advanced methods
(as explained in the comparison execution step of Section 5) based
on the specific requirements of the data scenario.
Next, we define the two types of queries that are applied on a
deduplicated (cleaned) or on a dirty set of entities.

Batch Approach Query (𝐵𝑄). A 𝐵𝑄 is a SPJ query, which op-
erates on a set of deduplicated grouped entities 𝐸𝐺 , and returns the
result-set 𝑅𝐺 . 𝐵𝑄 corresponds to the case where the underlying
collections have been deduplicated via a (batch or progressive)
ER process before the user starts the analysis.

Dedupe Query (𝐷𝑄). In contrast, a DedupeQuery 𝐷𝑄 is also
a SPJ query, which operates directly on dirty entity collections
𝐸 ∈ 𝐷 , and returns a result-set, 𝑅𝐺 . A 𝐷𝑄 is equivalent to 𝐵𝑄 ,
when both employ the same condition expressions in 𝐸 and 𝐸𝐺 ,
respectively. We consider conjunctive and disjunctive queries
where a condition expression can be of the form: 𝛼𝐸

𝑘
op constant

(𝑜𝑝 can be =,>,<, IN, etc) or 𝐸1 .𝛼𝑥 = 𝐸2 .𝛼𝑦 (equijoins). We denote
by 𝐸𝜎 the set of entities evaluated by 𝐷𝑄 after all conditions in
the WHERE clause are evaluated over every 𝐸, and by 𝐸𝜎 the set of

entities not evaluated by 𝐷𝑄 but which are duplicates of 𝐸𝜎 in 𝐸.
𝐷𝑄 identifies the 𝐸𝜎 , 𝐸𝜎 , resolves the duplicates, and produces a
set of deduplicated grouped entities 𝐸𝐺 = <𝐸𝜎 ∪ 𝐸𝜎 , 𝐿𝐸>, which
is used to return 𝑅𝐺 . 𝐷𝑄 is the type of query we evaluate and
optimize in QueryER.

In the context of our example, executing a 𝐷𝑄 on the datasets
publications (𝑃 ) and venues (𝑉 ) for ’EDBT’ conferences, initial
selection yields entities [𝑃1, 𝑃6, 𝑃8] from (𝑃 ) and [𝑉 4] from (𝑉 ),
constituting the set 𝐸𝜎 that meets the query’s WHERE clause.
Crucially, 𝐷𝑄 extends to identify 𝐸𝜎 , the entities not evaluated
but which are duplicates of 𝐸𝜎 . This includes [𝑃2, 𝑃7] as dupli-
cates of [𝑃1, 𝑃6/𝑃8] and [𝑉 1] as a duplicate of [𝑉 4], which are
initially overlooked. By resolving these duplicates, 𝐷𝑄 produces
an 𝐸𝐺 set, ensuring the inclusion of all relevant data.

Problem Statetement. Our problem is a query optimization
problem of 𝐷𝑄 , i.e., optimized execution of 𝐷𝑄 , while maintain-
ing correctness. The correctness criterion requires that the enti-
ties returned by 𝐷𝑄 over 𝐸 ∈ 𝐷 are the same with the entities
returned by 𝐵𝑄 over the deduplicated grouped entities 𝐸𝐺 , i.e.,
𝐷𝑄𝑅𝐺 ≡ 𝐵𝑄𝑅𝐺 .

To tackle this, we introduce new ER operators detailed in the
following section. Our approach efficiently executes the Dedupe
Query (𝐷𝑄), while accounting for increased complexity from ER
methods, all within the constraints of query-time.

5 DEDUPE QUERY OPERATORS
This section unveils three innovative query operators that form
the cornerstone of the Dedupe Query implementation: (a) Dedu-
plicate, (b) Deduplicate-Join and (c) Group-Entities.

5.1 Deduplicate Operator
The Deduplicate operator is a relational operator that constitutes
the key concept of ER integration into query processing. It pro-
cesses a set of entities 𝐸𝜎∈𝐸 derived from the user query (Sec.
4), and finds their duplicates in 𝐸. The operator achieves its
goal by encapsulating several distinct operations in its pipeline,
namely: (i) Blocking, (ii) Block-Join, (iii) Meta-Blocking, and (iv)
Comparison-Execution as well as relational operations (e.g. Table
Scan). The input of this relational operator is a selection 𝐸𝜎 , and
the final output is a set of deduplicated grouped entities 𝐸𝐺 .

The operator utilizes three in-memory hash indices for man-
aging block collections per table. The Table Block Index 𝑇𝐵𝐼 maps
blocks to record IDs, sorted in ascending order by block size,
while the Inverse Table Block Index 𝐼𝑇𝐵𝐼 acts as its inverse map-
ping. Additionally, the Link Index 𝐿𝐼 stores each entity’s linkset.
All these indices are established during table initialization and
retained in memory. The Link Index 𝐿𝐼 is initially empty, storing
each entity’s linkset, and is populated with links resolved by each
query. This index, created during table initialization and kept in
memory, enables skipping of redundant matching operations for
previously matched entities in 𝐸𝜎 . New detected pairs (𝐿𝐸 ) are
also added to 𝐿𝐼 for subsequent queries, enhancing efficiency as
more queries are executed during a user session (see Fig.8/Sec.8).
The operations of the Deduplicate Operator are presented next.
Fig.3 shows an example for the operator pipeline..
(i) Query Blocking processes the entities in 𝐸𝜎 derived from
the user query that are not in 𝐿𝐼 , and constructs an in-memory
hash mapping, Query Block Index 𝑄𝐵𝐼 . Both the𝑄𝐵𝐼 and𝑇𝐵𝐼 are
built using the same blocking function, and given that 𝐸𝜎 ⊆ 𝐸,
it follows that |𝑄𝐵𝐼 | ≤ |𝑇𝐵𝐼 |. We employ a schema-agnostic
configuration of Token Blocking [33]. In this method, blocks are
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Figure 3: Deduplicate Operator Pipeline. Entities 𝐸 are the
publications in Fig. 1. Symbol ⊗ denotes the inner-product
between QBI entity sets and Block-Join results.

formed using tokens extracted from every attribute of a specific
entity 𝑒 , serving as Blocking Keys (𝐵𝐾𝑠) to group records. For
example, the WHERE clause of the query of Sec. 2 selects entities
𝑃1, 𝑃6, and 𝑃8 from table 𝑃 . Implementation of Token Blocking
on these entities generates multiple blocks (Fig.3), i.e., 𝑏𝐶𝑜𝑙𝑙𝑒𝑐𝑡𝑖𝑣𝑒
= 𝑃1, 𝑏𝑒𝑑𝑏𝑡 = 𝑃1, 𝑃6, 𝑃8, 𝑏𝑒𝑛𝑡𝑖𝑡𝑦 = 𝑃1, 𝑃8, 𝑏𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑟 = 𝑃6, 𝑃8, etc.
(due to space constraints, only four blocks are displayed). No-
tably, our strategy is not confined to a singular blocking method.
Alternative blocking techniques can be employed based on the
dataset’s specific demands and traits.

(ii) Block-Join performs a hash-join between 𝑄𝐵𝐼 and 𝑇𝐵𝐼
on their shared Blocking Keys (𝐵𝐾𝑠). This augments the 𝑄𝐵𝐼
blocks with entities from 𝐸 present in 𝑇𝐵𝐼 blocks. The resulting
hash mapping, denoted as 𝐸𝑄𝐵𝐼 , captures the dirty subsets of
entities that approximate the user’s query, potentially including
false-positives but not the opposite.

(iii) Meta-Blocking refines 𝐸𝑄𝐵𝐼 to curtail unnecessary com-
parisons stemming from Block-Join, ensuring efficiency with-
out compromising effectiveness. We sequentially employ Block
Purging (𝐵𝑃 ), Block Filtering (𝐵𝐹 ), and Edge Pruning (𝐸𝑃 ). This
sequence is crucial as 𝐵𝑃 and 𝐵𝐹 , operating at the block level, mit-
igate the computational burden for 𝐸𝑃 , which operates at the finer
comparison level [33]. For 𝐵𝑃 , we establish a global threshold 𝑡
(computed once offline from TBI) as the first individual size of
block that has the same𝐶𝐶 =

blockAssignments
totalComparisons value with the next

(smaller) one; blocks are purged when |𝑏𝑖 | > 𝑡 [38]. 𝐵𝐹 , utilizes
𝐼𝑇𝐵𝐼 , where for each entity the associated blocks are pre-sorted
by size. For every entity 𝑒𝑖 ∈ 𝐸𝜎 such that 𝑒𝑖 ⇒ 𝑒𝑖 ∈ 𝐼𝑇𝐵𝐼 , the
entity is retained in its initial smallest 𝑛 blocks, where 𝑛 = 𝑝 · |𝐵 |
and 𝑝 is a predefined value within the range [0, 1] [38]. For EP,
we construct the blocking graph using 𝐸𝑄𝐵𝐼 and determine edge
weights based on the Jaccard similarity of their associated block
indices. Essentially, we focus on counting the common blocks
between two entities to ascertain similarity. To decide if two
entities warrant comparison, we define a threshold using their
block associations from 𝐼𝑇𝐵𝐼 . If the common blocks between two
entities reach 𝑎 × 100%, with 𝑎 predefined in the interval (0,1],
of the blocks of the entity with the least associations, they are
considered for comparison [33]. This threshold ensures we base

our comparisons on significant block overlaps, concentrating on
entities with substantial similarities in 𝐼𝑇𝐵𝐼 . The final outcome
is the refined 𝐸𝑄𝐵𝐼 denoted 𝐸𝑄𝐵𝐼 ′.

(iv) Comparison-Execution performs the surviving compar-
isons from Meta-Blocking between the entities in 𝐸𝜎 and 𝐸𝑄𝐵𝐼 ′.
This process identifies duplicates exclusively within the initial
selection 𝐸𝜎 , hence significantly reducing the number of com-
parisons. Embracing a schema-agnostic approach, we perform
pairwise comparisons of all corresponding attributes. While this
method does not prioritize attributes with higher potential du-
plicate likelihood (e.g., identifiers), it simplifies the process by
removing the need for user configuration. Importantly, QueryER
ensures that no entity is compared with itself and no compari-
son is repeated. Being matcher-agnostic, QueryER can integrate
a wide array of matching techniques, from conventional schema-
based methods to advanced Machine Learning models. This ver-
satility enables sophisticated ML algorithms or pre-trained classi-
fiers, providing robust performance across diverse data scenarios.
By assuming transitivity in matches and using the union-find
algorithm[5] to form disjoint-sets of matching entities, we ef-
fectively avoid additional comparisons. The outcome is a set of
deduplicated grouped entities (𝐸𝐺 ).

DQ Correctness. We define the correctness of a Dedupe
Query (𝐷𝑄) relative to an equivalent Batch Approach Query (𝐵𝑄)
as follows: A Dedupe Query 𝐷𝑄 executed over an Entity collec-
tion 𝐸 producing 𝐷𝑄𝑅𝐺 is considered correct if 𝐷𝑄𝑅𝐺 ≡ 𝐵𝑄𝑅𝐺 ,
where a Batch Approach Query 𝐵𝑄 is executed over 𝐸𝐺 yield-
ing 𝐵𝑄𝑅𝐺 (see Sec. 4/Problem Statement). This equivalence is
critical for validating the effectiveness of our deduplication pro-
cess. It rests on the deterministic functioning of the following ER
processes (detailed above in paragraphs (i) to (iv)):

(i) Blocking and Block-Join: The initial step involves segregat-
ing entities into blocks using a predefined blocking function,
which is consistent across both 𝐵𝑄 and 𝐷𝑄 . The Block-Join oper-
ation then merges these blocks based on matching Blocking Keys,
ensuring that any entity 𝑒 ∈ 𝐸𝜎 is grouped identically in both
𝐸𝑄𝐵𝐼 and 𝑇𝐵𝐼 , denoted as 𝐵𝐸𝑄𝐵𝐼 (𝑒) ≡ 𝐵𝑇𝐵𝐼 (𝑒). This identity
is also verified by the inverse index, as 𝐼𝑇𝐵𝐼 (𝑒) ≡ 𝐵𝐸𝑄𝐵𝐼 (𝑒) ≡
𝐵𝑇𝐵𝐼 (𝑒). This step is crucial for maintaining the integrity of the
entity resolution process, as it guarantees that subsequent opera-
tions, such as Meta-Blocking and Comparison-Execution, act on
a consistent set of entities.

(ii) Meta-Blocking: The three Meta-Blocking methods (de-
tailed above in (iii) Meta-Blocking) are designed to prune blocks
(Block Purging 𝐵𝑃 ), entities (Block Filtering 𝐵𝐹 ), and compar-
isons (Entity Pruning 𝐸𝑃 ) within blocks. The 𝐵𝑃 threshold, pre-
computed based on 𝑇𝐵𝐼 , ensures that a block purged from 𝑇𝐵𝐼

due to 𝐵𝑃 will similarly be excluded in 𝐷𝑄 on 𝐸𝑄𝐵𝐼 . The 𝐵𝐹
method filters entities from blocks using a predefined filtering
value. Given 𝐵𝐸𝑄𝐵𝐼 (𝑒) ≡ 𝐵𝑇𝐵𝐼 (𝑒), this guarantees that an entity
𝑒 is consistently included in the same blocks for both 𝐵𝑄 and 𝐷𝑄
processing. Additionally, 𝐸𝑃 relies on identical blocking graphs
for each entity 𝑒 ∈ 𝐸𝜎 in both approaches, further validated
by 𝐵𝐸𝑄𝐵𝐼 (𝑒) ≡ 𝐵𝑇𝐵𝐼 (𝑒). By employing the blocking graph and
𝐼𝑇𝐵𝐼 , comparison weights and thresholds are established based
on common block associations and a predefined value 𝛼 , which,
as previously mentioned, determines the minimum proportion
of common blocks required for two entities to be considered for
comparison [33]. Threshold 𝛼 , set in the interval (0,1], ensures
that pruning criteria are consistently applied in both the 𝐷𝑄 and
the 𝐵𝑄 , maintaining the integrity of the deduplication process.
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(iii) Comparison-Execution: This step utilizes a deterministic
matching function that applies the same criteria and thresholds
across both batch and dedupe processing. The consistency of this
function is vital; it ensures that any pair of entities identified as
duplicates in one process (batch or dedupe) will be recognized as
such in the other. This determinism is the cornerstone of asserting
the equivalence of 𝐷𝑄𝑅𝐺 and 𝐵𝑄𝑅𝐺 , as it guarantees that the
outcome of the deduplication process is reliable across different
data processing paradigms.

The meticulous design and execution of these ER processes
underpin the robustness of our approach, demonstrating that𝐷𝑄
is effective and correct relative to 𝐵𝑄 . This equivalence is not
only a testament to the accuracy of the process but also highlights
the adaptability of our framework to diverse data scenarios.

Cost Analysis. Deduplicate operator’s cost encompasses I/O,
𝑄𝐵𝐼 construction, Block-Join, Meta-Blocking, and Comparison-
Execution. I/O considerations involve (i) the initial 𝐸𝜎 set deter-
mined by the query and (ii) entities in 𝐸𝑄𝐵𝐼 ′ after Meta-Blocking.
All indices are hash-based and reside in-memory, ensuring 𝑂 (1)
access time. The computational and space costs are distributed
among the Deduplicate Operator components and the in-memory
indices, emphasizing on the ER operations.
• 𝑄𝐵𝐼 is created by iterating over all attributes 𝐴𝐸 of 𝐸𝜎 en-
tities; for homogeneous datasets, the cost of 𝑄𝐵𝐼 is mainly
determined by |𝐸𝜎 | and |𝐴𝐸 |, i.e., 𝑂(|𝐸𝜎 |×|𝐴𝐸 |).
• The cost of the Block-Join and the block-refinement methods
is determined by the number of blocks in 𝑇𝐵𝐼 and 𝑄𝐵𝐼 . For
Block-Join, it is 3(|𝑄𝐵𝐼 |+|𝑇𝐵𝐼 |), since we perform a hash-join
and the blocks are traversed only once each. The cost of Block
Purging (BP) is 𝑂(|𝐸𝑄𝐵𝐼 |). The cost of Block Filtering (BF) is
𝑂(|𝐸𝑄𝐵𝐼 |×|𝑏𝑖 |), since for each block 𝑏𝑖∈𝐸𝑄𝐵𝐼 we iterate over
all its entities.
• Edge Pruning (EP) and Comparison-Execution operate on the
entity pairs within each block. To estimate the number of
comparisons within a block 𝑏𝑖∈𝐸𝑄𝐵𝐼 , we compare the inter-
section of entities in 𝐸𝜎 and 𝑏𝑖 . Given that each entity com-
parison is done only once and self-comparisons are avoided,
the comparisons are: |𝐸𝜎 ∩𝑏𝑖 |×(|𝑏𝑖 | - (|𝐸𝜎 ∩𝑏𝑖 |+1)/2) and for
the entire 𝐸𝑄𝐵𝐼 is Σ𝑏𝑖 ∈𝐸𝑄𝐵𝐼 |𝐸𝜎 ∩𝑏𝑖 |×(|𝑏𝑖 | - (|𝐸𝜎 ∩𝑏𝑖 |+1)/2).
The resolution function’s (e.g., Jaro-Winkler[22]) cost is mul-
tiplied by this number to compute comparison execution cost.
In practice, the total number is even smaller, as multi-block
comparisons are executed once, and we compute the linksets
of entities in 𝐸𝜎 not in Link Index 𝐿𝐼 . Hence, the dominant
comparison execution cost tends to decrease significantly
with each query.
• The space complexities are closely tied to the core opera-
tions. The 𝑇𝐵𝐼 has a complexity of 𝑂 ( |𝐸 | × |𝐴𝐸 |), accom-
modating entities and their attributes, while 𝐼𝑇𝐵𝐼 simpli-
fies to 𝑂 ( |𝐸 |), mapping entity IDs to tokens (𝐵𝐾𝑠). The 𝐿𝐼 ’s
complexity, 𝑂 (𝑑), depends on the count of distinct duplicate
pairs. Post Block-Join,𝑄𝐵𝐼 is dismantled, and 𝐸𝑄𝐵𝐼 combines
𝑄𝐵𝐼 ’s structure with 𝑇𝐵𝐼 , yielding a worst-case complexity
of 𝑂 ( |𝑇𝐵𝐼 |).

5.2 Deduplicate-Join Operator
Echoing relational algebra’s join operation with an emphasis
on data quality, this operator processes two entity sets by first
fully deduplicating one upfront. It then performs a relational join
between the deduplicated set and the second, initially dirty entity

set to identify joining entities. These entities are subsequently
deduplicated against the second set, culminating in a second
join operation between two fully deduplicated sets to capture all
possible join combinations. This method, alongside the consistent
application of theDeduplicate Operator, underpinsDQCorrectness,
with detailed procedures outlined in Algorithm 1 and Procedure 1,
accounting for the position of the dirty set within the query-tree.

(i) Dirty-Right. It takes as input two entity sets (Left, Right),
the join type, and the related attributes from the query plan. The
left set is deduplicated, assigned to 𝐿𝐸𝐺 , and projects necessary
attributes (line 2). The right set is assigned to 𝐸𝜎 (line 3). A rela-
tional join 𝐿𝐸𝐺 ⊲⊳ 𝐸𝜎 filters non-joining entities, forming 𝐸′𝜎 (line
4), capturing all join combinations. From these, entities originat-
ing from the right set are deduplicated against the entire right set,
resulting in 𝑅𝐸𝐺 (line 5). Finally, Procedure 1 joins the resolved
sets (line 11), creating the output. Both joins consider resolved
entities and their link-set to ensure comprehensive joins.

(ii) Dirty-Left. This mirrors the Dirty-Right approach but
with roles of Left and Right sets reversed.

The Deduplicate-Join Procedure (Procedure 1) accepts the 𝐿𝐸𝐺
and 𝑅𝐸𝐺 sets and returns their join, 𝐽𝐸𝐺 . Beginning at line 4, it
iterates through 𝐿𝐸𝐺 . If an entity has not been visited, it retrieves
its duplicates from the 𝐿𝐸 and flags it as visited (lines 6-7 ). For
each duplicate, it identifies joining entities in 𝑅𝐸𝐺 , and their
duplicates (lines 8-12). After identifying all joining entities from
both tables, it performs the Cartesian product of these sets (line
14), generating the new 𝐽𝐸𝐺 set.

The𝐷𝑄 Correctness is satisfied since the join of Procedure 1 is
always performed on two deduplicated sets (recall the definition
of correctness in Section 4) and thus the operator always produces
consistent output, i.e., 𝐸𝐺 , crucial for multi-join query plans.

Algorithm 1: Deduplicate-Join Operator
Input :𝐿𝑒 𝑓 𝑡 , 𝑅𝑖𝑔ℎ𝑡 , 𝐽𝑜𝑖𝑛𝑇𝑦𝑝𝑒 , 𝐴𝑡𝑡𝑟𝑠𝑇𝑜𝑃𝑟𝑜 𝑗𝑒𝑐𝑡
Result: Joined 𝐸𝐺

1 if 𝐽𝑜𝑖𝑛𝑇𝑦𝑝𝑒 is DIRTY-RIGHT then
2 𝐿𝐸𝐺 ← Project(Deduplicate(𝐿𝑒 𝑓 𝑡 ), 𝐴𝑡𝑡𝑟𝑠𝑇𝑜𝑃𝑟𝑜 𝑗𝑒𝑐𝑡 )
3 𝐸𝜎 ← 𝑅𝑖𝑔ℎ𝑡

4 𝐸′𝜎 ← 𝑑𝑖𝑠𝑐𝑎𝑟𝑑𝑅𝑖𝑔ℎ𝑡 (𝐸𝜎 ⊲⊳ 𝐿𝐸𝐺 )
5 𝑅𝐸𝐺 ← Project(Deduplicate(𝐸′𝜎 ), 𝐴𝑡𝑡𝑟𝑠𝑇𝑜𝑃𝑟𝑜 𝑗𝑒𝑐𝑡 )
6 else if 𝐽𝑜𝑖𝑛𝑇𝑦𝑝𝑒 is DIRTY-LEFT then
7 𝑅𝐸𝐺 ← Project(Deduplicate(𝑅𝑖𝑔ℎ𝑡 ), 𝐴𝑡𝑡𝑟𝑠𝑇𝑜𝑃𝑟𝑜 𝑗𝑒𝑐𝑡 )
8 𝐸𝜎 ← 𝐿𝑒 𝑓 𝑡

9 𝐸′𝜎 ← 𝑑𝑖𝑠𝑐𝑎𝑟𝑑𝐿𝑒 𝑓 𝑡 (𝐸𝜎 ⊲⊳ 𝑅𝐸𝐺 )
10 𝐿𝐸𝐺 ← Project(Deduplicate(𝐸′𝜎 ), 𝐴𝑡𝑡𝑟𝑠𝑇𝑜𝑃𝑟𝑜 𝑗𝑒𝑐𝑡 )
11 return DeduplicateJoinProcedure(𝐿𝐸𝐺 , 𝑅𝐸𝐺 )

Cost Analysis. The Deduplicate-Join Operator comprises the
Deduplicate Operator and two hash-joins: (i) 𝐸𝐺 ⊲⊳𝐸𝜎 between a
clean and a dirty entity set, and (ii) 𝐿𝐸𝐺 ⊲⊳𝑅𝐸𝐺 between the two
clean sets. Deduplicate-Join Operator’s cost is presented in Sec.
5.1. The hash-joins costs are: 3(|𝐿𝐸𝐺 |+|𝑅𝐸𝐺 |) and 3(|𝐸𝐺 |+|𝐸𝜎 |),
respectively, ensuring efficient processing of large datasets.

5.3 Group-Entities Operator
The Group-Entities Operator consolidates deduplicated grouped
entities 𝐸𝐺 into a single record per entity, yielding a result-set 𝑅𝐺 ,
before the final Project. It acts as an aggregate function, grouping
all attribute values ∀𝑒𝑖 ≡ 𝑒 𝑗 by concatenation. While we do not
focus on data merging techniques for fusing matching entities,
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Procedure 1: Deduplicate-Join Procedure
1 Function DeduplicateJoinProcedure(𝐿𝐸𝐺 , 𝑅𝐸𝐺 )
2 𝐽𝐸𝐺 // Joined 𝐸𝐺

3 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 = 𝑠𝑒𝑡 ()
4 for 𝑒 ∈ 𝐿𝐸𝐺 do
5 if 𝑒 ∉ 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 then
6 𝐸𝑙𝑒 𝑓 𝑡 ← 𝑒 ∪ 𝐿𝐸𝐺 .𝐿𝐸 .𝑔𝑒𝑡 (𝑒)
7 𝑣𝑖𝑠𝑖𝑡𝑒𝑑.𝑎𝑑𝑑𝐴𝑙𝑙 (𝐸𝑙𝑒 𝑓 𝑡 )
8 for 𝑒𝑙 ∈ 𝐸𝑙𝑒 𝑓 𝑡 do
9 𝐸 𝑗𝑜𝑖𝑛𝑒𝑑 ← 𝑒𝑙 ⊲⊳ 𝑅𝐸𝐺

10 for 𝑒𝑟 ∈ 𝐸 𝑗𝑜𝑖𝑛𝑒𝑑 do
11 𝐸𝑟𝑖𝑔ℎ𝑡 ← 𝑒𝑟 ∪ 𝑅𝐸𝐺 .𝐿𝐸 .𝑔𝑒𝑡 (𝑒𝑟 )
12 end
13 end
14 𝐽𝐸𝐺 .𝑎𝑑𝑑 (𝐸𝑙𝑒 𝑓 𝑡 × 𝐸𝑟𝑖𝑔ℎ𝑡 )
15 end
16 end
17 return (𝐽𝐸𝐺 )

we group them for a simplified presentation of the final projec-
tion. For instance, given attributes "EDBT" and "International
Conference on Extending Database Technology" in matching
entities, a "hyper-entity" with [EDBT | International Conference
on Extending Database Technology] is created. Still, any other ag-
gregate/fusion function (e.g., VOTE [42] or group_concat) could
be used on 𝐸𝐺 , to generate 𝑅𝐺 .

6 DQ PLANNING & EVALUATION
This section outlines strategies for planning and evaluatingDedupe
queries, presenting two solutions: a naive approach using fixed
plans, and an advanced method optimizing comparison execution
cost through ideal plan selection.

6.1 Execution based on fixed plans
A straightforward way to answer the SPJ query of the motivating
example (Fig. 2) is to first deduplicate the entire tables P and
V, and then join the two clean record sets to answer the query.
This is the equivalent of placing the Deduplicate Operator di-
rectly above the table scan (Fig. 4a). However, this approach, like
the batch, is costly as it cleans the entire table before filtering
(e.g., p.venue="EDBT"). An obvious plan enhancement places the
Deduplicate Operator above the filter on the left tree branch (Fig.
4b) hence reducing the number of entities |𝐸𝜎 | that will initially
feed the Deduplicate Operator. Next, we observe that cleaning
the entire𝑉 is not needed, as only a few venue records will even-
tually join with the publications, selected and cleaned by the
left branch. Eliminating non-joining venues before cleaning can
further decrease computational costs.

6.2 Comparison-Based Optimization
Considering the observations above, we introduce a cost-based
method to significantly enhance query performance by mini-
mizing unnecessary comparisons prior to the computationally
demanding Comparison-Execution.

6.2.1 Query Planning. The Comparison-based Optimization
begins with the optimal non ER-enabled query plan (Fig. 2). This

Figure 4: TwonaiveDedupe query evaluation plans: Left ap-
plies DEDUPLICATE operator to both tables before predicates
selection, right applies it only to filtered query records.

plan is then transformed into one similar to Fig. 5a or 5b (depend-
ing on statistics) by inserting the Deduplicate Operator, Group-
Entities Operator and replacing the initial Join Operator with
the Deduplicate-Join. The objective is to eliminate unnecessary
comparisons before Comparison-Executionwhile maintaining cor-
rectness and optimizing Join Ordering when multiple joins are
involved. Query Planning works as follows:

(i) Statistics Computation. First, we compute the query
statistics; i.e., the estimated number of comparisons and the esti-
mated number of join predicates. We use the indexes 𝑇𝐵𝐼 , 𝐼𝑇𝐵𝐼
and 𝐿𝐼 (Sec. 3). 𝐼𝑇𝐵𝐼 is a hash index mapping record IDs to blocks.

We estimate comparisons considering that condition expres-
sions in the WHERE clause identify Blocking Keys (𝐵𝐾 ) in the𝑇𝐵𝐼 .
In particular, we create a set of 𝐵𝐾𝑠 based on the condition expres-
sions in the WHERE clause which is a subset of 𝐵𝐾𝑠 in 𝑇𝐵𝐼 . Then,
for each key, we get the corresponding block 𝑏𝑖 ∈ 𝑇𝐵𝐼 . Based on
the operators 𝐴𝑁𝐷 , 𝑂𝑅 of the clause, we derive the estimated
selected set 𝐸𝑠 ≈ 𝐸𝜎 . For all entities 𝑒 from 𝐸𝑠 that are not in 𝐿𝐼
(𝑒 ∈ 𝐸𝑠\𝐿𝐼 ), we retrieve the related blocks from 𝐼𝑇𝐵𝐼 , thereby
forming a block collection 𝑆𝐵 to approximate 𝐸𝑄𝐵𝐼 . We then
apply the block purging and filtering algorithms (discussed in
Sec.5.1/Meta-Blocking) to approximate post-meta-blocking com-
parisons (𝐸𝑄𝐵𝐼 ′). The final number of estimated comparisons for
this table is𝐶 = Σ𝑆𝐵𝑏𝑖 ∈𝑆𝐵 |𝐸𝑠 ∩𝑆𝐵𝑏𝑖 |· (|𝑆𝐵𝑏𝑖 | - ( |𝐸𝑠 ∩𝑆𝐵𝑏𝑖 | +1)/2).
This estimation helps to determine which table yields the largest
number of comparisons. Since the cost of estimating the output
of the Edge Pruning (discussed in Sec.5.1) is very high, we termi-
nate our calculations at the filtering step, where a safe conclusion
about the inequality can be drawn.

To estimate Join predicate numbers, we gauge the size of 𝐸𝐺
pre- and post-join. An offline pre-cleaned sample informs the
duplication factor 𝑑 𝑓 during initialization, approximating dupli-
cates’ prevalence. For example, if a table’s sample |𝑆 | = |𝐸𝜎 | = 800
entities expands to 1000 entities post-deduplication, we infer a
20% duplication rate (see Table 6 for Q-errors on stats). We also
precompute the join percentage between every table pair to an-
ticipate post-join 𝐸𝐺 size reduction. For example, a 20% join
between 𝑃 and 50% of 𝑉 implies a corresponding decrease in
their 𝐸𝐺 sizes.

(ii) Plan Creation. The planner identifies optimal operator
placement considering 𝐷𝑄 Performance. For SP queries, the
Deduplicate Operator is added atop the Filter, reducing the num-
ber |𝐸𝜎 | of entities initially feeding the Operator. For SPJ queries,
one query tree branch must be deduplicated before the Join for
Correctness. The planner uses statistics to place the Deduplicate
Operator on the branch yielding the fewest comparisons. For
instance, based on the example dataset in Fig.1, initial cleaning of
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Figure 5: Comparative DEDUPLICATE-JOIN plans from
Fig.4b. The selection process aims for minimal compar-
isons, with the left plan optimized for select publication
queries. Projection is not pushed down prior to dedupli-
cation, preserving data essential for accurate duplication.
The right plan prioritizes deduplicating Venues before join-
ing with Publications. Detailed explanation in Sec.6.2

table 𝑉 yields 15 comparisons, while cleaning table 𝑃 (post filter)
yields 18, Therefore, the planner opts for the plan depicted in Fig.
5b over Fig. 5a. This approach reduces total comparisons after
Deduplicate-Join because the Operator forms a QBI for the dirty
entity-set from entities joining with the deduplicated set. Based
on this, the planner selects the appropriate Deduplicate-Join Op-
erator type, optimizes join order using statistics to minimize I/O
and memory usage, and positions the Group-Entities Operator to
produce grouped results 𝑅𝐺 .

6.2.2 Query Execution. The plan executes sequentially as des-
ignated by the planner, using the Iterator Interface to pass op-
erator outputs to their parent nodes. As Fig. 5b demonstrates
execution begins with the Deduplicate Operator, after scanning
table𝑉 . Subsequently, the Project Operator is applied, in line with
our schema-agnostic approach to ensure essential data for dedu-
plication is retained (see Sec.5.1). Following this, table 𝑃 ’s Filter
Operator selects entities per query requirements, preceding the
Deduplicate-Join Operator. After the Join, Group-Entities Operator
assembles matched pairs into GroupedEntities for each duplicate
set. Finally, the Projection returns requested attributes.

7 RELATEDWORK
Entity Resolution. Entity Resolution (ER) is a well-studied field
in database research [21, 25, 34], with typical ER approaches us-
ing blocking methods to scale to large datasets by comparing
similar entities. Blocking enhances precision at the cost of recall.
Traditional methods cater to structured data abide by specific
schemas (schema-based blocking) [9], but struggle with highly
heterogeneous data. To address this, schema-agnostic blocking
has been introduced, treating each token from every entity value
as a blocking key, overcoming heterogeneity but generating over-
lapping blocks that cause redundant comparisons [31, 35]. Meta-
blocking mitigates this by assessing block-to-entity relationships,
removing unnecessary comparisons [35, 38]. MinoanER [13] uses
schema-agnostic techniques for ER in heterogeneous data but
depends on batch processing. In contrast, QueryER operates effi-
ciently during query-time.

Progressive ER. Progressive data integration, first introduced
by Madhavan et al. [27], consolidates Web data as much as pos-
sible within limited resources and time. It has been applied to

ER [47] and schema mapping [40]. In the context of ER, progres-
sive methods prioritize matches based on likelihood, ordering
records by similarity for progressive comparison within a win-
dow, neighborhood, or sampling of blocks [14, 15, 23, 36, 41, 47].
These dynamic approaches yield incremental entity resolutions
and partial outcomes until completion. However, they are unsuit-
able for SQL SP/SPJ queries due to potential inaccuracies from
applying resolution functions on partially identified matches,
leading to variable results throughout the process and adding
complexity to execution.

Analysis-aware processing. Recent years have seen the inte-
gration of Entity Resolution with Query Processing for SQL-like
queries on erroneous data. Yet, many such methods fall short
in dealing with broader SPJ queries [2], or lack optimization
for selection queries, including range queries [7]. Some tech-
niques [1], only cater to basic SP queries on single entity col-
lections, bypassing planning and optimization. Other strategies
address probabilistic databases for aggregation queries on single
[20, 39, 44] and multiple tables [19]. Approaches like Sample-and-
clean [46] rectify aggregate queries on dirty data, while CleanDB
[18] opts for an all-inclusive cleaning in a distributed environ-
ment. Daisy [17] focuses on managing integrity constraints with
probabilistic repairs for SPJ queries, differing from QueryER’s
emphasis on ER techniques. To the best of our knowledge, the
closest works to ours are QuERy [4], QDA [3], and BrewER [42].
QuERy manages SPJ queries over dirty data using blocking and
sketch summaries. It constructs a query tree for clean records
and sketches, leading to data cleaning if a sketch passes predi-
cates. Despite the absence of source code or datasets for direct
comparison, QuERy’s execution time exceeds 100 seconds for
low selectivity SPJ queries on (𝐶 |80070 | ⊲⊳ 𝑀 |1237 | ) (reported in
Fig. 19 in [4]), while QueryER performs similar queries under
100 seconds, even for complex ones (e.g., 𝑂𝐴𝐺𝑃2𝑀 ⊲⊳𝑂𝐴𝐺𝑉130𝐾
in Fig.10). QueryER’s efficiency stems from using Meta-blocking
and block-join to reduce overhead and retrieve potential dirty
subsets, avoiding repeated sampling and frequent cleaning. On
the other hand, QDA [3] simplifies cleaning for SP queries by
identifying entities that satisfy selection predicates without full
resolution. Yet, it’s less equipped for handling the wider SPJ
queries and has limited resolution function support. BrewER [42]
progressively evaluates SP aggregation queries, employing block
merging and transitive closure calculations, and approximating
ORDER BY clause values for progressive entity emission. Both
BrewER and QueryER ensure the correctness of the results and
are anagnostic to the matching and blocking methods. However,
BrewER and QDA target simple SP aggregation queries with a
focus on duplicate analytics.

ER Pipelines. Traditional ER pipelines typically prioritize
offline data processing, employing blocking and progressive out-
puts to balance performance with accuracy. QueryER sets itself
apart by transforming state-of-the-art ER techniques into query
operators within the query execution pipeline, improving per-
formance through strategic query planning and comparison op-
timization. This marks a significant shift away from the sole
reliance on offline processing inherent in batch and progressive
methods. Additionally, QueryER efficiently executes and refines
joins, leveraging a cost-optimized planner, to outperform many
analysis-aware systems.
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8 EXPERIMENTAL EVALUATION
We evaluated the effectiveness, the efficiency and the scalability
of our approach on several real and synthetic datasets.

8.1 Experimental Setup
Wehave implementedQueryER usingApache Calcite framework1
in Java version 17. The experiments were performed on a desktop
computer with Intel i7 (3.4GHz) and 64GB of RAM. All measure-
ments were repeated 10 times and the average value is reported.
All resources, including a link to an online demo, are available in
the provided artifact repository4.

Datasets. Our experimental analysis involves the following
datasets (Table 2 summarizes their technical characteristics5):

(a) Real datasets: Widely used in literature[13, 24], DBLP-
Scholar[24] (DSD), contains (single-table) bibliographic records
from DBLP and Google-Scholar. We also utilize the Open Aca-
demic Graph[43, 45] (OAG), a knowledge graph combiningMAG6

and AMiner’s7 billion-scale academic graphs. This includes Paper
(OAGP) and Venue (OAGV) data, featuring 5 different size varia-
tions (OAGP200K-2M) specifically created for scalability testing
(ground-truth provided). (b) Real datasets modified to include du-
plicates: TheOrganisations (OAO) and Projects (OAP) datasets are
obtained from the OpenAIRE project [28]. They contain records
for research organizations and the corresponding projects that
they participate in. Both datasets have been modified using febrl
[10] to include 10% duplicate records, providing a more realistic
scenario for experimentation.
(c) Synthetic datasets: The datasets (PPL200K-2M) were also
created using febrl. Duplicate-free people records were produced
based on real-world frequency tables, adding an extra attribute to
assign organisations (ids from OAO) to person. Duplicates were
generated based on real-world error characteristics, resulting
in datasets with 40% duplicate records. Each record can have
up to 3 duplicates and 4 modifications, with a maximum of 2
modifications per attribute.

Evaluation Measures. Performance is assessed by: (a) Pair
Completeness (PC), which gauges recall of 𝐸𝑄𝐵𝐼 ′𝐸𝜎 against the
ground-truth (𝐺𝑇 ), as 𝑃𝐶 = D(𝐸𝑄𝐵𝐼 ′𝐸𝜎)/𝐺𝑇 (𝐸𝑄𝐵𝐼 ′

𝐸𝜎
), rep-

resenting the rate of duplicate occurrence within blocks; (b)
Total execution time (TT) for assessing overall workload dura-
tions; (c) Comparisons, total executed comparisons from queries;
(d) Pair Quality (PQ), precision post-Meta-Blocking, as 𝑃𝑄 =

𝐺𝑇 (𝐿𝐸 )/Comparisons; (e) Q-Error [29], measuring deviations be-
tween predicted and actual values.

Competitors and Configurations. Our experiments are di-
vided into SP and SPJ classes based on query types. In the SP class,
we evaluated QueryER against BrewER[42] and QDA[3] - which
only support SP queries -, assessed scalability, the impact of 𝐿𝐼
and Meta-Blocking configurations on performance. As auxiliary
structures without alternative configurations,𝑇𝐵𝐼 and 𝐼𝑇𝐵𝐼 were
not directly assessed.

In the SPJ class, we evaluated the performance of our cost-
based planner against two naive fixed-query-plan solutions. We
did not evaluate Meta-Blocking separately, as it is integrated
in the Deduplicate Operator, called within the Deduplicate-Join
Operator (Sec. 5.2). Likewise, 𝐿𝐼 is independent of the query class
and was tested only once. For all configurations, we used fixed

4github.com/VisualFacts/queryER
5A more detailed table is also provided at github.com/VisualFacts/queryER
6academic.microsoft.com
7www.aminer.cn
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Figure 6: Recall (PC) vs. time (TT) between QueryER,
BrewER and QDA in real & synthetic datasets. QueryER
achieves the same PC in less than 30s in all three datasets,
being two orders of magnitude (100X) faster than competi-
tors.

Token-Blocking and Meta-Blocking, along with the Jaro-Winkler
similarity function. Recall that our approach is matcher-agnostic
permitting alternative methods (e.g., pre-trained classifiers) to
classify entity pairs as duplicates [12, 26, 30, 32]. Appropriate syn-
thetic and real datasets were chosen per experiment, considering
their technical characteristics.

Initialization. QueryER’s one-off initialization phase estab-
lishes relational and ER-specific statistics alongside index cre-
ation. Table 3 presents our benchmarking for all datasets (Table 2).
With median block index times typically under two minutes, the
system transitions quickly to readiness. Themodest increase from
the 25𝑡ℎ to 75𝑡ℎ percentiles indicates a consistent performance,
and the low standard deviation reflects this initialization’s stabil-
ity across varying dataset sizes. This efficiency demonstrates our
capacity for effectively managing large datasets for optimized
query execution.

Table 2: Datasets Characteristics: |𝐸 |:# records, |𝐿𝐸 |:# dupli-
cates, |𝐴|: # attributes, |𝑇𝐵𝐼 |: # blocks in TBI

E |𝐸 | |LE | |𝐴 | |𝑇𝐵𝐼 |
DSD 66879 5347 4 88K
OAGV 130K 29841 5 55K
OAGP200K-2M 200K-2M 5K-300K 18 110K-360K
OAO 55464 5464 3 22K
OAP 500K 58074 8 170K
PPL200K-2M 200K-2M 64K-645K 12 160K-850K

8.2 SP Class: Performance of QueryER
In this experiment, we assess QueryER’s performance and scal-
ability in terms of execution time (TT) needed to return query
results. We employ QDA[3] and BrewER[42] as baselines, which
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only support SP queries. We apply QueryER’s blocking andmeta-
blocking configuration to all experiments, as both baselines lack
built-in block-producingmechanisms. Providing post-meta-blocking
block collections to QDA and BrewER, ensures a fair comparison
under identical conditions and maintains the maximum 𝑃𝐶 for
each query across all approaches. For BrewER, progressive recall
is obtained during execution after the emission of each entity.

Evaluation Workload.We evaluate SP conjunctive and dis-
junctive queries with two selection predicates for each dataset,
creating two batches (conjunctive / disjunctive) of 20 queries each
and reporting averages. Each batch consists of 10 high-selectivity
and 10 low-selectivity queries out of 50 randomly generated ones.
This setup covers a broad range of selectivity and explores perfor-
mance under various data distribution scenarios. We utilized this
setup to ensure fairness in the competitionwith BrewER andQDA
both of which were evaluated in a similar scenario. The generator
used for our query evaluation is provided in our Github repo.
We used real 𝐷𝑆𝐷 , 𝑂𝐴𝐺𝑃200𝐾 and synthetic datasets 𝑃𝑃𝐿200𝐾 .
Larger datasets were excluded due to scalability limitations of
the baseline approaches8.

Results: Fig. 6 illustrates the performance of the three ap-
proaches in terms of maximum (progressive for BrewER) 𝑃𝐶
against 𝑇𝑇 . QueryER and QDA display a step curve, as they
perform all pairwise comparisons before emitting the results.
QueryER consistently demonstrates higher performance (≈ 100𝑋
faster than its competitors). Since we used the same blocking and
meta-blocking configuration for all approaches, the performance
difference between QueryER and the other approaches, QDA and
BrewER, can be attributed to their transitive closure handling.
QDA and BrewER use iterative transitive closure computation and
graph traversal in merged blocks, to perform comparisons and as-
sess duplicates, a process whose complexity grows cubically with
block size, 𝑂 ( |𝑏 |3), impeding scalability. This laborious process
aims to fully resolve each entity’s duplicates before proceeding.
Both approaches perform the same number of comparisons if
given enough time. In contrast, QueryER leverages the transitive
nature of matches during comparison execution to avoid unnec-
essary pairwise comparisons. It uses the union-find[5] to form
disjoint-sets of matching entities and checks if the entities in a
comparison have already matched with a common entity, thus
reducing computational overhead.

Table 3: Pre-processing time percentiles based on all
datasets.

10% 25% 50% 75% 90% std.
Index Creation (s) 2.88 10.16 31.01 83.32 113.91 44.8
Relational Stats Calc. (s) 0.15 0.69 1.07 1.55 1.8 0.65
E.R Stats Calc. (s) 1.53 6.99 27.99 76.86 99.05 40.42

Table 4: Execution time issuing 𝑄80 (high selectivity) on
𝐷𝑆𝐷 and 𝑂𝐴𝑃 .

E TT(s) Deduplicate Operator Group-
Entities OtherBlock-

Join
Meta-
Blocking

Comp.-
Exec.

DSD 6.2 7% 5% 82% 3% 3%
OAP 422.5 5% 7% 83% 1% 4%

8For instance, it took over 9000 sec. for BrewER and QDA to evaluate queries on
𝑂𝐴𝐺𝑃500𝐾 dataset.

Table 5: M-B configurations on 𝑃𝑃𝐿1𝑀 and 𝑂𝐴𝐺𝑃1𝑀 , to
examine both low (𝑄5) and high (𝑄80) selectivity scenarios.
Query Method Time PC PQ F1
𝑄5 ALL 88.15 / 120.14 0.99 / 0.98 0.01 / 0.01 0.02 / 0.02
𝑄5 BP + BF 429.2 / 457.32 0.99 / 0.99 0.001 / 0.001 0.002 / 0.002
𝑄5 BP + EP > 30 MIN > 30 MIN N/A N/A
𝑄80 ALL 305.12 / 352.51 0.99 / 0.98 0.06 / 0.034 0.11 / 0.07
𝑄80 BP + BF 980.72 / 802.12 0.99 / 0.99 0.01 / 0.009 0.02 / 0.02
𝑄80 BP + EP > 30 MIN > 30 MIN N/A N/A

8.3 SP Class: Scalability of QueryER
In these experiments, we assess the scalability of QueryER and
the impact of 𝐿𝐼 and different meta-blocking configurations. We
use SP queries on real (𝑂𝐴𝐺𝑃 ) and synthetic (𝑃𝑃𝐿) datasets with
increasing |𝐸 | (500K-2M). We also analyzeDeduplicate andGroup-
Entities operators’ execution time on real datasets (𝐷𝑆𝐷 &𝑂𝐴𝑃 ).

Scalability: We evaluate QueryER’s scalability over increas-
ing dataset sizes with fixed selectivity on both real (𝑂𝐴𝐺𝑃200𝐾 −
2𝑀) and synthetic (𝑃𝑃𝐿200𝐾 − 2𝑀) datasets. We employ 𝑄𝑀𝑂𝐷 :
MOD(id, 10) <1 in the 𝑊𝐻𝐸𝑅𝐸 clause for both datasets. The
MOD(id,n) <1 condition, a SQL function that calculates the re-
mainder of the integer attribute ’id’ divided by n, ensures a ran-
dom set of entities with a fixed selectivity, irrespective of the
increasing number of entities in the dataset. Fig. 7 shows the
𝑇𝑇 and the executed comparisons over an increasing dataset
size with fixed selectivity. This comprehensive experiment show-
cases QueryER’s scalability as the dataset size increases. Both
metrics indicate that QueryER’s scaling is sub-linear as |𝐸 | in-
creases, keeping the number of comparisons in the same order of
magnitude across the dataset size range, without a proportional
increase when |𝐸 | doubles.

Meta-BlockingConfigurations:We examinedMeta-Blocking
configurations on real (𝑂𝐴𝐺𝑃1𝑀) and synthetic (𝑃𝑃𝐿1𝑀) datasets
using 𝑄𝑀𝑂𝐷 queries 𝑄5 and 𝑄80 for selectivities of ≈ 5% and
≈ 80% respectively. Table 5 contrasts three configurations: (i)𝐴𝐿𝐿
(all methods), (ii) 𝐵𝑃+𝐵𝐹 (Block Purging and Block Filtering), and
(iii) 𝐵𝑃+𝐸𝑃 (Block Purging and Edge Pruning). 𝐴𝐿𝐿 yields high
recall (PC) and the best precision (PQ) and F1 scores, especially
in high selectivity cases. The 𝐴𝐿𝐿 method’s balanced precision-
recall trade-off, combined with its faster execution times, validate
its effectiveness for QueryER’s use, outweighing configurations
with longer runtimes and lower precision and F1 scores. Other
combinations took over an hour to finish and were dismissed.

Impact of LI:We assess the impact of the index𝐿𝐼 onQueryER
scalability by executing four overlapping range-queries (𝑄𝑅1 −
𝑄𝑅4) on the𝑂𝐴𝐺𝑃2𝑀 dataset. Each query contains the 𝐸𝜎 of the
previous plus 30% more entities, starting with 𝑄𝑅1 which has
|𝐸𝜎 | = 760K. For comparison purposes, we used the 𝐵𝑄 includ-
ing the offline deduplication time. Fig. 8 depicts how QueryER’s
performance is affected by using the 𝐿𝐼 . As shown, the 𝑇𝑇 of
each approach diverges from the others with each issued query,
exhibiting opposite trends. The 𝑇𝑇 of the "Without 𝐿𝐼 " approach
increases sub-linearly, approaching the𝑇𝑇 of the 𝐵𝑄 . In contrast,
by utilizing 𝐿𝐼 and incrementally cleaning the 𝐸, the 𝑇𝑇 of the
"With 𝐿𝐼 " approach decreases similarly and approaches 0.

Time breakdown: We analyze the execution time of theDedu-
plicate andGroup-Entities operators on a real (𝐷𝑆𝐷) and synthetic
(𝑂𝐴𝑃 ) dataset using the high-selectivity SP query (𝑄80). Table 4
presents the results. The total time comprises Deduplicate opera-
tor’s pipeline: (i) Block-Join, (ii) Meta-Blocking, (iii) Comparison-
Execution, as well as (iv) Group-Entities operator and (v) other op-
erations (e.g. Table-Scan). The results indicate that, Comparison-
Execution dominates the total time on large datasets with high
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Figure 8: Time (TT) for consecutive queries (QR1-QR4)
with and without utilizing 𝐿𝐼 on 𝑂𝐴𝐺𝑃2𝑀 dataset.

selectivity, as expected, due to the high-cost distance functions.
Based on this, we can conclude that Comparison-Execution is the
dominant factor in the overall approach.

8.4 SPJ Class: Cost-based planner Evaluation
In this section, we assess the performance and scalability of our
cost-based planner against two naive fixed-query-plan solutions:
(BQ), cleaning the entire table before filtering (like Fig.4a) and
(NES), placing the Deduplicate Operator above the filter on one
query tree branch (like Fig.4b). Our proposed Advanced ER Solu-
tion (AES) minimizes comparison execution costs by selecting the
plan with the fewest comparisons, deemed optimal. A thorough
exposition of the process is provided in Sec. 6.

Evaluation Workload. We have designed a series of SPJ
queries on both real and synthetic datasets. All queries involved
joins between two tables, with fixed selectivity (100%) on one side,
and varying (low-high) selectivity on the other, with averages
reported. For performance evaluation, we synthesized queries as
described in Sec. 8.2, using the dataset combinations: (i) PPL2M
⊲⊳ OAO, (ii) OAGP2M ⊲⊳ OAGV, (iii) OAP ⊲⊳ OAO, (iv) OAGP2M
⊲⊳ OAGV. With query sets (i) and (ii) yielding the lowest selec-
tivity, while (iii) and (iv) the highest. For scalability assessment,
we maintained fixed selectivity (≈15%) while ensuring random
selection on one side and kept the other side at (100%), across
increasing dataset sizes |𝐸 |. For this assessment, we used the
following dataset combinations: (v) PPL200K-2M ⊲⊳ OAO, and (vi)
OAGP200K-2M ⊲⊳ OAGV.

Performance: Fig. 9, displays the 𝑇𝑇 , indicating also the
planning time for 𝐴𝐸𝑆 , (top) and executed comparisons (bottom)
for𝐴𝐸𝑆 ,𝑁𝐸𝑆 and𝐵𝑄 across dataset combinations. As anticipated,
𝐴𝐸𝑆 outperforms both 𝑁𝐸𝑆 and 𝐵𝑄 in terms of𝑇𝑇 and executed
comparisons. This is attributed to the use of query’s statistics and

the best placement of ER operators (Sec.6.2.1), which results in a
reduction of the overall number of executed comparisons. The
reduction of the difference exhibited by 𝑁𝐸𝑆 and 𝐵𝑄 in Fig. 9 (c)
and (d), where the highest selectivity occurs, can be attributed
to the large number of selected entities in the query, similar to
what was observed in Fig. 8, where the "Without 𝐿𝐼 " approach
increases sub-linearly, approaching the𝑇𝑇 of 𝐵𝑄 . In contrast, the
effectiveness of 𝐴𝐸𝑆 , which primarily focuses on cleaning the
table with the fewest comparisons first, is evident in its distinct
performance from 𝑁𝐸𝑆 and 𝐵𝑄 in such queries. When table sizes
are similar, the performance of 𝐴𝐸𝑆 is primarily influenced by
the join-percentage, rather than dataset size. Additionally, the
planning phase constitutes only 1.80% to 7.41% of 𝐴𝐸𝑆’s total
execution time (𝑇𝑇 ), highlighting its efficiency.

An interesting observation in Fig. 9 (b) and (d) is that the 𝑇𝑇
of 𝐴𝐸𝑆 , unlike the one of 𝑁𝐸𝑆 , in certain cases does not strongly
correlatewith the executed comparisons. This can occurwhen the
join-percentage between tables is small, resulting in a small 𝐸′𝜎 for
the left joining table, formed from entities joining with the right
table’s 𝐸𝐺 (see Sec. 5.2). In such cases, the small join-percentage
(≈5%) results in a small 𝐸′𝜎 for 𝑂𝐴𝐺𝑃2𝑀 formed from entities
joining with 𝑂𝐴𝐺𝑉 ’s 𝐸𝐺 . This matters because the number of
executed comparisons is related to the size of the 𝐸𝜎 , and in this
instance, the 𝑇𝑇 is dominated by the blocking/meta-blocking
operations. Specifically, the time breakdown for the different
deduplication operations is as follows: Blocking 10%, Block-join
3%, Planning 7%, Block Purging 0.5%, Block Filtering 0.5%, Edge
Pruning 75%, Comparison-Execution 4%. Contradicting Table 4,
these findings emphasize the importance of cleaning the table
with fewest comparisons first for optimal performance.

Scalability: Fig. 10 displays the 𝑇𝑇 and the executed com-
parisons for 𝐴𝐸𝑆 and 𝑁𝐸𝑆 for PPL200K-2M ⊲⊳ OAO (top), and
OAGP200K-2M ⊲⊳ OAGV (bottom) dataset combinations. Both
solutions exhibit sub-linear scaling with increasing dataset size,
with 𝐴𝐸𝑆 outperforming 𝑁𝐸𝑆 . This observation can be more
readily discerned in the comparisons plots, where the order of
magnitude for the comparisons remains consistent despite dou-
bling the dataset size. Interestingly, in this case, not only does the
dataset size increase, but so does the original number of entities
(|𝐸𝜎 |) for each dataset. As the number of comparisons signifi-
cantly depends on |𝐸𝜎 |, this could affect performance, but the
scaling remains sub-linear despite this.

Statistics. Table 6 evaluates our cost-based planner’s Q-errors,
revealing deviations between predicted and actual values. The
planner effectively predicts duplication factor (𝑑 𝑓 ) and dynami-
cally calculates Comparisons and 𝐸𝐺 size statistics for each query
( see Sec. 6.2.1), as shown by the low values and the minimal
variance in Q-error percentiles. This consistent accuracy, demon-
strated by low standard deviations, underscores 𝐴𝐸𝑆 ’s reliability
and enhances execution efficiency, reinforcing its analytical su-
periority over 𝑁𝐸𝑆 across varying dataset complexities.

Table 6: Computed Statistics Estimation Q-Error per-
centiles based on all datasets used in SPJ Class.

10% 25% 50% 75% 90% std.
Duplicate Factor 1.03 1.07 1.15 1.39 1.46 0.19
Comparisons 1.23 1.27 1.52 7.87 7.88 3.21
𝐸𝐺 size 1.45 1.48 1.67 2.25 3.75 1.25
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Figure 9: BQ vs NES vs AES on TT (top) and Comparisons (bottom). (a), (b) lowest selectivity on PPL2M⊲⊳OAO and OAGP2M
⊲⊳ OAGV respectively. (c), (d) highest selectivity on OAP ⊲⊳ OAO and OAGP2M ⊲⊳ OAGV, respectively.

8.5 Summary
Our extensive experimental study underscores QueryER’s robust
performance. Notably, its efficacy escalates inversely with se-
lectivity (|𝐸𝜎 |), consistently surpassing the baseline. In the SPJ
class, QueryER shines in joining tables with low join-percentage
and pronounced table size disparities - a scenario where a Batch
Approach would falter. This reinforces QueryER’s aptitude for
data exploration and analysis. For smaller |𝐸𝜎 | instances, Meta-
Blocking, particularly 𝐸𝑃 , primarily influences total time (𝑇𝑇 ),
despite seeming discrepancies with Table 4 results; 𝐴𝐿𝐿 config-
uration remains the most efficient upon closer examination of
Table 5. QueryER consistently outperforms the baseline (≈ 100𝑋
faster) across diverse real and synthetic datasets, upholding PC
levels with a minimum of 97% and a mean of 98%. The scala-
bility and consistently high recall levels, demonstrated across a
diverse range of datasets with varying characteristics, attest to
its robustness and adaptability. Lastly, 𝐿𝐼 further enhances the
performance, enabling incremental deduplication beneficial for
data exploration and analysis scenarios involving consecutive,
often overlapping, queries.

9 CONCLUSIONS AND FUTURE WORK
In this work, we investigated the problem of integrating En-
tity Resolution into Query Processing. We developed QueryER,
an innovative SQL engine that enables efficient, analysis-aware
ER over dirty data, with minimal pre-processing and no man-
ual preparation overhead. Our experimental evaluation demon-
strates its sub-linear scalability and consistently high recall per-
formance, outperforming baseline approaches. This study has re-
vealed several new research paths. Extending QueryER to tackle
other query classes, such as aggregation and analytical queries,
presents a valuable direction for exploration. Another promising
direction involves evaluating performance and recall with ML-
based blocking and entity matching methods. Given QueryER
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Figure 10: Time (TT) and Comparisons vs. increasing
dataset size (|𝐸 |) for scalability evaluation of NES and AES.

modular design and agnosticism to specific methods, these tech-
niques could potentially augment its matching effectiveness fur-
ther. Finally, we plan to scale out our implementation to a dis-
tributed and parallel environment, further enhancing the perfor-
mance and applicability of QueryER.
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