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ABSTRACT
In the database community, research is accompanied by extensive
experimental evaluation. This evaluation produces large amounts
of result data which is typically visualized in form of various plots.
Unfortunately, the path from the data to the corresponding plots
is currently long, cumbersome, and frustrating. In our experience,
this largely stems from the challenges that arise in keeping all
plots of a paper consistent with each other : Ensuring that all prop-
erties of all plots, such as labeling, coloring, scales, or order of the
presented results actually match each other requires a constant
revisiting and readjusting of the redundant portions of a large
number of plotting scripts. This unnecessarily eats away time
from doing meaningful research. To address this problem, we
present our Python framework ChartGallery, which we already
successfully used in our group for previous research papers. It
sets itself apart by not being yet another plotting library, but
a framework that focuses on managing all plotting setups and
styles of a paper in an organized way in order to compose various
different plots with minimal effort and code redundancy.

1 INTRODUCTION AND MOTIVATION
Creating plots for a research paper is an overhead task and there-
fore should take little effort. At the same time, plots should be
consistent, informative, and beautiful to make results more di-
gestible for the reader. Unfortunately, current workflows fail to
fulfill both requirements.

1.1 The Plotting Pipeline
To understand the problem, let us first outline the four steps that
are carried out in one way or the other in any plotting pipeline:
(1) Loading and preprocessing of the experimental results. This step
happens once per result set. The user must define the location
of the result set (e.g. a directory path) and how to handle the
input format (e.g. unformatted text, CSV, or a database). After
loading, the dataset typically must be somehow preprocessed,
such as setting or changing column names, or to average data
across multiple runs.
(2) Declaring the plot. This step happens individually for each and
every plot that will end up in the paper. It typically involves some
further preprocessing of the result set, e.g. filtering out columns
and rows that are not needed. Then, the type of plot must be set
(e.g. a bar plot) and based on the chosen type, portions of the data
are mapped to the components of the plot (e.g. to the individual
groups, bars, and bar-stacks). Also, the name of the resulting plot
is set here.
(3) Formatting the plot. This step typically does not happen for
each and every plot individually, but at the granularity of groups
of plots that will end up together in the paper (e.g. as multiple
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sub-figures of a figure), as they require a consistent visual style.
This consists of setting various properties, such as axis labels, col-
ors, hatching, and sizes. Further, this step can involve arranging
legends, or setting the value ranges of the axes.
(4) Exporting the plot. This final step is typically identical for
all plots, as every plot of the paper usually has to be in the
same format. This might involve setting specific export options
(e.g. PDF/A compliance), file extensions, and a common output
destination (e.g. a path to an output folder).

1.2 The Typical Plotting Workflow
Aswe can see, the outlined four steps of each plotting pipeline are
configured at very different granularities —while step (1) requires
setup only for every distinct result set, step (2) varies from plot
to plot, step (3) happens for each group of plots, and step (4) is
set up globally.

Unfortunately, these different granularities are not properly
reflected in the typical plotting workflow. The reason for this is
that the workflow of research papers is highly demand-driven.
When the first plot is required during research activity, the result-
ing plot script will likely contain all four steps. When the second
similar plot is required, parts of the script are simply copied and
adjusted, as this can be done quickly1. This continues until such
a large number of plotting scripts exist that they start to deviate
from each other in terms of consistency. What was fast and easy
in the beginning eventually turns into a management nightmare:
If something changes in the result set or plot formatting (e.g., dif-
ferent column names or axis labels), the change must be reflected
in various places across various scripts. Periodically, scripts must
be aligned to fight the various occurring inconsistencies2.

2 COMPOSINGWITH CHARTGALLERY
Instead, we advocate to streamline the plotting workflow with
ChartGallery, our chart composing framework. We specifically
designed ChartGallery to reflect the different configuration gran-
ularities of the plotting pipeline in a convenient and easy-to-use
manner. On a high level, we allow the user to wrap the plot setup
into a single object which can be applied globally or with indi-
vidual plots. Plot setups can be freely composed and/or extended,
which permits describing a large number of related plots with
minimal code redundancy, and hence, high consistency.

2.1 Architecture
Figure 1 visualizes the core abstractions we chose for Chart-
Gallery. Note the parallels to Section 1.1: The core plotting function
only handles data pre-filtering and delegates to an appropriate
library for plotting [2–5]. Since there is no direct interaction
between ChartGallery and the plotting library, there are no com-
patibility restrictions. Data loading is also definedmore abstractly
for the same reason: A data source can be any Python callable
that returns a data collection, usually a DataFrame variant. When
the user runs the core plotting function, ChartGallery invokes
1which makes the PhD advisor happy as results are produced
2which make the PhD advisor very unhappy as they slow down research
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Figure 1: Architectural overview of ChartGallery.
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Figure 2: Combining setup objects in two different ways.

all data sources that are declared as parameters, and passes the
resulting datasets as arguments. A common use would be reading
a CSV file. The return value of the core plotting function is auto-
matically handed over to the sink. Usually, this return value is the
finished plot, and the sink exports it to disk. However, we will
later show that sinks are more flexible than this. Any component
can read from a set of string-to-value mappings, called contex-
tual parameters and styles. Contextual parameters store arbitrary
mappings, while styles define a fixed key set and a default value
assignment. In practice, styles are designed to store documented
parameters for fixed components, such as a plotting subroutine,
or a complex sink, while parameters are intended for ad-hoc use.

Most plotting scripts will naturally converge toward these
abstractions when moving shared code into helper functions or
global constants. The key difference in our work is the fact that
the entire context around the core plotting function (sources,
sinks, parameters, shown in teal in Figure 1) is encapsulated as
a single object, the setup object. Setup objects have three core
properties: (1) They are reusable, (2) they are composable and
(3) they can choose to define only parts of the context. Therefore,
all properties that are typically shared between a subset of plots
can be expressed as a setup object, and a selection of those setup
objects can be composed to form the final setup that is associated
with the function. Consequently, code duplication is reduced
to almost zero, since it only happens when we assign setups to
Python functions, and consistency between plots happens as a
natural side-effect of re-using setups. As setup objects are plain
Python objects, they can be stored in collections, serialized to
disk, or assembled and returned by helper functions, if required.
Figure 2 shows a high-level example where four setups are mixed
and matched to form the contexts for two different plots. Chart-
Gallery expresses composition as a << b, where duplicate settings
are resolved by preferring those set in b. Defaults are applied
whenever an option is never explicitly overridden.

3 DEMONSTRATION
In the following, we demonstrate how to create a series of con-
sistent plots using ChartGallery using a concrete example3. We
show the process step-by-step to mimic the typical workflow

3Code available: https://infosys.informatik.uni-mainz.de/chartgallery/

when creating plots for a research paper, where plots are de-
signed incrementally and build upon each other.

3.1 Starting Situation
We use two datasets which were produced from experimental
runs for our latest research paper [1], in which we proposed a
new index structure for GPUs. Both datasets are materialized as
CSV files (rtx-pq.csv and rtx-group-size-scaling.csv), where
the individual columns consist of the experimental configuration
and the associated measurements. While knowing the detailed
schema is not required for following the example, the rtx-pq.csv
dataset essentially captures a comparison of multiple index struc-
tures under different configurations (key width, percentage of
hits, and so on), while the rtx-group-size-scaling.csv dataset
measures the impact of various hyperparameters on our index
structure alone (group size, structure optimizations, and so on).

Imagine we are now interested in visualizing the probe time
contained in both datasets. The rtx-pq.csv dataset contains re-
sults for different index structures and is further divided into
results for 32-bit keys and 64-bit keys (parameter key_bits), and
wewant to create two corresponding plots showing the results for
all indexes while varying another parameter on the x-axis. The
rtx-group-size-scaling.csv dataset contains results for both a
scaled and an unscaled run (parameter z_scale_log), and we
want to create two corresponding plots again. This time, each
plot should vary two parameters on the x-axis, while showing
the results for four different group sizes and optimization levels.

3.2 The Typical Approach
The straightforward way of creating these four plots (Figure 3)
would likely look like Listing 1: For each plot, there is a separate
section which reads the input file into a DataFrame, performs
the necessary preprocessing, followed by the actual plotting, and
dumping the plot. While this gets the job done, it obviously comes
with severe code duplication due to the similarity of the plots:
Apart from different output file names, each plot pair only differs
in the filtering of the parameter key_bits or z_scale_log.
1 def read_data(filename):

2 data = pl.read_csv(filename)

3 return average_runs(data, "run", "VALUE")

4
5 data_c = read_data("input-data/rtx-pq.csv")

6 data = data_c.filter(pl.col("key_bits") == 32)

7 data = data.select("misses_percent", "index_type", "VALUE")

8 fig, ax = new_figure()

9 bar.bar_plot(data, ax, color_by="index_type")

10 fig.savefig("output-plots/compare_execution_time_32.pdf")

11 data = data_c.filter(pl.col("key_bits") == 64)

12 data = data.select("misses_percent", "index_type", "VALUE")

13 fig, ax = new_figure()

14 bar.bar_plot(data, ax, color_by="index_type")

15 fig.savefig("output-plots/compare_execution_time_64.pdf")

16
17 data_gs = read_data("input-data/rtx-group-size-scaling.csv")

18 data = data_gs.filter(pl.col('z_scale_log') == 0)

19 data = data.filter(pl.col('group_size_log').is_in([2, 4, 8, 16]))

20 data = data.select("uniform_build_keys_percentage", "large_keys",

21 "group_size_log", "indexing_method", "VALUE")

22 fig, ax = new_figure()

23 bar.bar_plot(data, ax, color_by="group_size_log", shade_by="indexing_method")

24 fig.savefig("output-plots/group_size_time_unscaled.pdf")

25 data = data_gs.filter(pl.col('z_scale_log') == 25)

26 data = data.filter(pl.col('group_size_log').is_in([2, 4, 8, 16]))

27 data = data.select("uniform_build_keys_percentage", "large_keys",

28 "group_size_log", "indexing_method", "VALUE")

29 fig, ax = new_figure()

30 bar.bar_plot(data, ax, color_by="group_size_log", shade_by="indexing_method")

31 fig.savefig("output-plots/group_size_time_scaled.pdf")

Code Listing 1: Default approach with code redundancy.
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Figure 3: Plots produced using the typical approach with default settings (Section 3.2).

3.3 Global Setup for Data Source and Sink
Using ChartGallery, let us now fix the aforementioned problems
step by step while improving the quality of the plots. We start
by changing how inputs and outputs are handled: Instead of
having each plot manage this information individually and re-
dundantly, we capture it only once in the global setup managed
by ChartGallery. To do so, we first put the code of each plot
generation into its own method. We then introduce the setup
object from Section 2.1 (Setup) to define a named data source
(data_c and data_gs) for each file. By simply passing this Setup
to the modify_setup method, ChartGallery selectively overrides
the default global setup with our new sources. Similarly, we pass
parameters to the sink through a SinkStyle object, which sets
the folder in which the plots should be materialized, another
piece of information that is shared between all plots. To apply
the global setup, we simply put the @with_setup decorator before
each plotting method. To tap into a source for a specific plot, we
add a parameter with the same name as the named source to the
method. The default sink (included in ChartGallery) creates the
output path from the user-set base path and the method name.
1 modify_setup(Setup(

2 sources={

3 "data_c": read_data("input-data/rtx-pq.csv"),

4 "data_gs": read_data("input-data/rtx-group-size-scaling.csv"),

5 },

6 styles=[SinkStyle(base_path=Path("output-plots/"))],

7 ))

8
9 @with_setup

10 def compare_execution_time_32(data_c):

11 data_c = data_c.filter(pl.col("key_bits") == 32)

12 data_c = data_c.select("misses_percent", "index_type", "VALUE")

13 fig, ax = new_figure()

14 bar_plot(data_c, ax, color_by="index_type")

15 return fig

Code Listing 2: Sources and sinks in the global setup.

3.4 Global Setup For Plot Styles
So far, all four plots use the default style provided by ChartGallery.
This style is sufficient to inspect the data, but re-uses all labels
from the data source and auto-assigns colors, thus producing
plots that are too rough for the final paper. Consequently, we
want to format all plots to follow a consistent style (Figure 4).
To do so, we simply modify the global setup again. We pass a
BarPlotStyle for global settings. For column-specific settings, we
pass multiple instances of BarPlotColumnStyle, which include
the column title, entry-specific colors, hatches, human-readable
names, and the preferred order of entries. Name translation can
be done via a dictionary or a function. Note that styles can be
re-used between figures, papers, and collaborators, so the number
of style definitions remains mostly constant as the number of
plots increases, and quickly amortizes the initial overhead. When
a color or entry order needs to be changed afterwards, it can be
done by changing a single line of code.

1 modify_setup(Setup(

2 styles=[

3 BarPlotStyle(apply_hatches_to_shades=True, base_color="white", ...),

4 BarPlotColumnStyle("index_type",

5 entry_colors={"rtx_index": "#d62728", ...},

6 value_renames={"b_link_tree_16": "B+ Tree", ...},

7 sorting_order=["rtx_index", "warpcore_80", "b_link_tree_16", ...],

8 ),

9 BarPlotColumnStyle("group_size_log",

10 entry_colors={2: "#17becf", 4: "#ff7f0e", 5: "#2ca02c", ...},

11 sorting_order=ASC,

12 value_renames=lambda size_log: "group size " + str(2 ** size_log),

13 ),

14 BarPlotColumnStyle("indexing_method",

15 entry_hatches={"2bvh": "", "1bvh_opt": "///"},

16 value_renames={"2bvh": "naive impl.", "1bvh_opt": "opt. impl."},

17 sorting_order=["2bvh", "1bvh_opt"],

18 ),

19 BarPlotColumnStyle("large_keys",

20 title="Key size",

21 value_renames={"0": "32bit", "1": "64bit"},

22 sorting_order=ASC,

23 ), # [further definitions omitted]

24 ],

25 ))

Code Listing 3: Defining plot styles in the global setup.

3.5 Introducing and Combining Group Setups
The attentive reader might have noticed that the plots in Figure 4
still have potential for improvement. First, the y-label of all plots
still says “value” instead of “Time (ms)”. Second, the x-ticks of
Figures 4c and 4d overlap each other. Third, Figure 4b contains
only three bars instead of four (there are no 64-bit results for
the B+Tree) and hence, the plot can be narrower to save space.
Obviously, we cannot define any of these settings globally, as they
apply only to specific plots. To address this, ChartGallery allows
applying setups to individual plots directly, which then selectively
replace the global settings. To uniformly set the y-axis label, we
create a corresponding setup object time_grp and apply it to all
four plots by passing it to the @with_setup decorator. To create
plots with rotated x-ticks, we define the setup gs_grp and pass it
to the decorators of group_size_time_unscaled/scaled. Just like
before, the operator << combines two setups, where the settings
on the left take precedence. In a similar fashion, we define a
narrow_grp to reflect narrower plots. Figure 5 shows two of the
newly formatted plots.
1 time_grp = BarPlotStyle(vertical_label="Time (ms)")

2 gs_grp = BarPlotStyle(horizontal_tick_rotation=15, legend_column_count=3)

3 narrow_grp = SinkStyle(width=4) << BarPlotStyle(legend_column_count=1)

4
5 @with_setup(time_grp)

6 def compare_execution_time_32(data_c):

7 ...

8 @with_setup(time_grp << narrow_grp)

9 def compare_execution_time_64(data_c):

10 ...

11 @with_setup(time_grp << gs_grp)

12 def group_size_time_unscaled(data_gs):

13 ...

Code Listing 4: Individual group setups.
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Figure 4: Camera-ready plots following a consistent and readable style (Section 3.4).
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Figure 5: Selectively applying group setups (Section 3.5).

3.6 Variants
While the plots look presentable now, we can still find code re-
dundancy within both pairs of plots due to their similarity. To
finally address this problem, we use the Variants feature of Chart-
Gallery. Listing 5 demonstrates this feature for the two plots
that differ only in key_bits. Instead of having two distinct meth-
ods compare_execution_time_32 and compare_execution_time_64

containing redundancy, we create a single method that contains
only the shared code of the former methods. The few differences,
namely whether key_bits is 32 or 64, and the fact that the 64-bit
plot is narrower, are expressed as two different setups. These se-
tups are passed to the variants argument of a new Setup, which
is then selectively applied to the compare_execution_timemethod.
This change leads to ChartGallery automatically executing the
method twice (once for each variant) and thereby creating two
distinct plots. Note that the contextual parameter key_bits can
be retrieved by declaring it as a function argument, similar to
data sources.
1 key_bits_variants = Setup(

2 variants=[

3 Setup(parameters={"key_bits": 32}),

4 Setup(parameters={"key_bits": 64}) << narrow_grp

5 ]

6 ) << SinkStyle(file_name="{meta_function_name}_{key_bits}")

7
8 @with_setup(time_group << key_bits_variants)

9 def compare_execution_time(data_c, key_bits):

10 data_c = data_c.filter(pl.col("key_bits") == key_bits)

11 data_c = data_c.select("misses_percent", "index_type", "VALUE")

12 fig, ax = new_figure()

13 bar_plot(data_c, ax, color_by="index_type")

14 return fig

Code Listing 5: Using variants to avoid code redundancy.

3.7 Flexibility, Extensibility, and Accessibility
Note that despite focusing on consistency, ChartGallery does
not fall short in terms of flexibility. The user can freely wrap
arbitrary new plot types from various libraries, and parameterize
them with their own plot style. One can also get creative with
the fact that there is no type restriction for most objects: For
example, it is possible to sink a table, and then create the plot in
the sink, so that the core plotting function reduces to a single

DataFrame query. Listing 6 shows the generation of the plot
compare_execution_time_32 as a line plot by using a different
sink (line_plot_from_table) and by querying the source using
SQL.
1 time_group = LinePlotStyle(vertical_label="Time (ms)")

2 sql_line_group = Setup(

3 sink=line.line_plot_from_table(export_figures_sink)

4 )

5
6 @with_setup(time_group << sql_line_group)

7 def compare_execution_time_32_line(data_c):

8 return data_c.sql("""

9 SELECT misses_percent, index_type as index_type_LINES, VALUE

10 FROM self WHERE key_bits = 32""")

Code Listing 6: ChartGallery is flexible regarding different
plot types and querying languages.
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Figure 6: Line plot produced via SQL (Section 3.7).

4 CONFERENCE EXHIBIT
At the conference, we will present a code editor where visitors
will be able to compare two scripts, one following the traditional
plotting workflow, and the other one using ChartGallery. Visitors
will also be able to experiment with ChartGallery: They can
alter existing setup objects and see the changes propagate to all
affected plots, and add arbitrary new setup objects or plot variants
to observe composability and reusability of setups. We hope that
presenting ChartGallery will spark interesting discussions about
the plotting workflow of other research groups, and provide us
with inspiration for future features.
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