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ABSTRACT
Large language models (LLMs) have become central to many ap-
plications, but their deployment often requires high-performance
hardware, specialized libraries, and complex engineering, limit-
ing accessibility for smaller organizations. Meanwhile, relational
database systems (RDBMS) are widely used for portability, effi-
ciency, and native support for managing large-scale data opera-
tions.

This paper presents TranSQL1, a toolkit that enables transformer-
based LLM inference within RDBMS. By translating neural op-
erations into SQL queries and representing model weights as
relational tables, TranSQL leverages database features like dy-
namic disk-to-memory data management and caching to reduce
hardware and engineering demands for serving LLMs. Using the
LLaMA3 8B model, we demonstrate TranSQL’s ability to imple-
ment attention layers, KV-cache, and end-to-end text generation
through SQL queries. TranSQL offers a cost-effective, portable,
and scalable approach to making advanced AI technologies more
accessible.

1 INTRODUCTION
Large language models (LLMs) achieve exceptional performance
but often demand significant resources, including hardware ac-
celerators, specialized linear algebra libraries, and advanced engi-
neering techniques, e.g., KV-caching [12], tensor parallelism [15],
and memory-disk offloading [3], to manage their computational
andmemory requirements. These demands present challenges for
scaling and accessibility, particularly for organizations lacking
the necessary infrastructure or expertise.

At its core, LLM computation relies on a series of linear alge-
bra operations, primarily matrix multiplications (MM) and vector
transformations, which align naturally with relational database
capabilities. For instance, MM can be decomposed into chunk-
based operations, implemented as relational queries [7, 13], mir-
roring tensor parallelism by distributing computations across
smaller chunks.

This compatibility extends to other optimization techniques.
KV-caching, a critical feature in LLMs, aligns naturally with
database functionalities such as in-memory tables (pg-mem2 in

1We illustrate the demo scenarios in a short video. https://drive.google.com/file/d/
1PWrvVf8De3t5HgwZ-x3x6ONCtzgG36Su/view?usp=sharing
2https://github.com/oguimbal/pg-mem
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Figure 1: (a) The architecture of a single transformer unit,
illustrating the key components such as attention with KV-
cache, feed-forward layers. (b) Overview of the TranSQL
toolkit, which consists of three major components: Data
conversion, model translation and caching management.

PostgreSQL) and dictionaries3 in ClickHouse. Similarly, dynamic
disk-to-memory data management—a technique for handling
large-scale LLMs when model weights exceed available mem-
ory—is an inherent capability of disk-based database systems.
Additionally, weights and activations in neural networks can be
effectively represented as tabular data [11], further highlighting
the natural alignment between LLM computations and relational
database management systems (RDBMS).

The alignments suggest that RDBMS are not only capable
of managing LLM computations but also offer opportunities to
integrate optimization techniques like caching and parallelism
directly into the database ecosystem. Rather than competing
with GPUs or deep learning frameworks, this work introduces
an alternative approach to leveraging databases’ versatility and
portability for LLM deployment.

This paper presents TranSQL, a novel toolkit for serving transformer-
based models entirely within RDBMS. By leveraging the align-
ment between LLM operations and database functionalities, Tran-
SQL provides a portable and economic solution that redefines
how LLMs can be deployed.

We summarize three major contributions, corresponding to
the three components of TranSQL, as illustrated in Figure 1(b):

• Data conversion: Model weights are sliced into equal-size
vectors and stored as relational tables, enabling seamless
integration with database features like vectorized execu-
tion and SIMD instructions in CPUs.

• Model translation: LLM inference ismapped to relational
queries, allowing core neural operations such as matrix
multiplications and attention mechanisms (Figure 1(a)) to

3https://clickhouse.com/docs/en/sql-reference/dictionaries
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be executed directly within the database. This integration
avoids the need to develop custom optimizations, instead
leveraging the well-optimized SQL ecosystem.

• KV-Cache management: By adapting native database
caching mechanisms, we implement KV-cache function-
ality for efficient reuse of intermediate results during to-
ken generation, significantly improving inference perfor-
mance.

These contributions address critical challenges in LLM deploy-
ment by utilizing built-in database features to achieve function-
alities like KV-caching, tensor parallelism, and memory-disk
offloading without the need to re-design these optimizations
for LLMs. Operating entirely within the database ecosystem,
TranSQL leverages the inherent scalability, portability, and ef-
ficiency of RDBMS, offering a flexible framework adaptable to
other transformer-based models and even diffusion models [17]
with minimal modifications.

We demonstrate TranSQL using the LLaMA3 8B model [4],
converting its weights into relational tables and employing Click-
House4, a high-performance RDBMS with vector computation
support. The model’s inference process is fully translated into
SQL queries interactingwith these tables. This end-to-end demon-
stration illustrates the feasibility and potential of running large-
scale LLMs entirely within an RDBMS environment, opening
new avenues for scalable and resource-efficient AI deployment.

2 RELATEDWORK
In-Database Machine Learning (ML). A common approach to
integrating ML with databases relies on user-defined functions
(UDFs), as seen in frameworks like MADlib [5] and PostgresML5.
While these enable model training and serving through SQL
queries, UDFs act as black boxes, requiring separate runtimes
and lacking transparency for database optimizers. Similarly, com-
mercial databases like SAP HANA [2] and IBM DB2 [1] provide
limited native model-serving capabilities, but these rely on ex-
ternal training and proprietary vendor support, making them
costly and less accessible. In contrast, our approach rewrites ML
operations into native SQL, eliminating the need for external
runtimes or libraries. This ensures greater portability, extensibil-
ity, and broader accessibility. Another line of research rewrites
ML algorithms as relational queries, as seen in frameworks like F
[13] and AC/DC [7]. While these focus on factorized learning for
traditional, primarily linear models, they require hand-crafted
rewrites for each model, limiting extensibility. In contrast, our
approach targets core operators in transformer models, such as
attention and feedforward layers, enabling support for non-linear
models and offering greater scalability for modern deep learning
architectures.
Deep Learning in RDBMS. Recent efforts in the database com-
munity have explored representing deep learning computations
using relational algebra. Systems likeDuckBrain [14] andDL2SQL
[9] convert neural operators into relational queries but face scal-
ability challenges due to quadratic growth in tuples as models
scale. Some research, like Dimitrije et.al. [6], SmartLite [10], and
ModelJoin [8] use matrix types and operations in RDBMSs but
require significant engineering and optimized algorithms for
efficiency.

Our approach balances scalability and simplicity by represent-
ing matrices as vectors, leveraging existing RDBMS support for

4https://clickhouse.com/
5https://github.com/postgresml/postgresml
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Figure 2: The Q, K, V weights are sliced into chunks of 16-
element vectors and stored in relational tables with indices.

arrays and lambda functions. This avoids extensive engineer-
ing while allowing integration with linear algebra libraries or
hardware accelerators for enhanced performance.

3 TRANSQL: SERVING LLMS USING
RELATIONAL QUERIES

In this section, we introduce the major components of TranSQL,
our framework for serving large language models (LLMs) us-
ing relational queries. This section is organized as follows: we
begin by explaining how TranSQL converts tensors into rela-
tional tables. Next, we describe how matrix multiplications are
performed using relational queries on this data and extend the
discussion to primary neural operations in transformer-based
LLMs. Finally, we outline the implementation of a key-value (KV)
caching mechanism in SQL to accelerate token generation during
inference.

3.1 Relational Representation for
Transformer Models

3.1.1 RepresentingModelWeights. To representmodel weights
as relational table, TranSQL slices matrices into rows of tiled
vectors and storing them in relational tables, as shown in Fig-
ure 2. Each row of a matrix is partitioned into equal-size vectors
(or chunks). The relational representation of a 𝑚 × 𝑛 matrix
𝑀 ∈ R𝑚×𝑛 is a set of tuples 𝑇 .

For transformer models, the weight matrices have additional
structural information beyond simplematrices. Taking the LLaMA3
8B model as an example, weights in the attention mechanism
are organized hierarchically by layers and heads. Additionally,
LLaMA3 uses grouped attention, where each key (k) and value
(v) vector corresponds to four query (q) vectors. To represent
this, we introduce two additional indices: the layer index 𝑙 , and
head index ℎ. Thus, the weight representation for attention heads
is defined as follows:

𝑇 = {(𝑙, ℎ, 𝑟, 𝑐, v) | 𝑙 ∈ [0, 𝐿), ℎ ∈ [0, 𝐻 ),
𝑟 ∈ [0,𝑚), 𝑐 ∈ [0, ⌈𝑛/𝑡⌉), v ∈ R𝑡 },

(1)

where: 𝑟 is the row index (integer), 𝑐 is the column tile index
(integer), v is a vector chunk of size 𝑡 (e.g., 𝑡 = 16), derived by
slicing the matrix row at 𝑐 · 𝑡 to (𝑐 + 1) · 𝑡 , and 𝐿 and 𝐻 denote
the number of layers and attention heads, respectively.
Determining Chunk Size. To optimize vector operations on
CPUs, we utilize SIMD instructions like AVX512, which enable
parallel processing of multiple floating-point numbers in a sin-
gle operation (e.g., 16 single-precision numbers with AVX512).
Accordingly, we set the chunk size 𝑡 to align with the SIMD vec-
tor width, maximizing hardware efficiency. Our data converter
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Table 1: Primary neural operations and corresponding pseudo SQL queries.

LLaMA3 layers Notation Neural operations SQL query

Attention 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄 ·𝐾𝑇√
𝑑

)𝑉

Matmul SELECT token, head, row, SUM(DOT(query_chunk, embedding)) AS q

FROM query[key,value]_weights as A JOIN embedding as B

ON A.col = B.col GROUP BY row

Matmul
Matmul

Matmul SELECT Q.token, K.token, Q.head, EXP(SUM(q * k) / sqrt(ℎ𝑒𝑎𝑑_𝑑𝑖𝑚)) as qk FROM Q

JOIN K on Q.row = K.row and Q.head//4 = K.head GROUP BY Q.token, K.token, Q.head

Softmax
WITH summation AS ( SELECT Q.head, Q.token, SUM(qk) as s FROM QK

GROUP BY Q.token, Q.head ) SELECT Q.head, Q.token, K.token, qk/s FROM

QK JOIN sumamtion ON Q.head, Q.token

Rotary
positional
encoding

x = x1, x2 ∈ R𝑑/2 Split as complex
SELECT token, head, COLLECT_COMPLEX(groupArray(row), groupArray(r), 0) AS 𝑥1,

COLLECT_COMPLEX(groupArray(row), groupArray(r), 1) AS 𝑥2 FROM 𝑥

GROUP BY token,head[
cos(𝜃 ) − sin(𝜃 )
sin(𝜃 ) cos(𝜃 )

] [
x1
x2

]
Rotation

SELECT token, head, HADAMARD(𝑥1, 𝜃1) - HADAMARD(𝑥2, 𝜃2) as real,

HADAMARD(𝑥1, 𝜃2) + HADAMARD(𝑥2, 𝜃1) AS img FROM complex_vectors as A

LEFT JOIN 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝜃 AS B ON A.token=B.token

Concat(x(𝑝 )1 , x(𝑝 )2 ) Merge to vector SELECT layer, token,head, VIEW_AS_REAL(real, img) as chunk

FROM positional_encoding

RMS Norm

1√
(∑ x2/dim)

Squared mean
& rsqrt

Select token, 1/SQRT(SUM(arraySum(𝑥->𝑥2,embedding)) / 𝑑𝑖𝑚) + 𝜖) as rep_sqmean

FROM Embedding GROUP BY token

rep_sqmean*𝑥*norm_weight Weighted mean
SELECT token, col, rep_sqmean * HADAMARD(𝑥, weight) AS new_embedding

FROM Embedding LEFT JOIN rsqrt ON rsqrt.token= Embedding.token

LEFT JOIN norm_weight ON Embedding.col = norm_weight.col

automatically detects the machine’s supported SIMD instruction
set and partitions matrices into chunks accordingly. For example,
with AVX512, matrices are sliced into chunks of 16 floating-point
numbers.

3.1.2 Representing Computations. The core of translating LLM
inference into SQL lies in performing matrix multiplication using
relational algebra. With tensors represented in relational tables
as shown in Eq. 3.2.1, matrix multiplication for specific 𝑙 and ℎ
can be expressed as:

SELECT l, h, t1.r, SUM(DOT(t1.v, t2.v))
FROM t1 JOIN t2 ON t1.c = t2.c GROUP BY t1.r;

Building on this foundation, other neural operations, such
as attention layers and feedforward layers, are implemented.
Softmax and normalization require additional aggregation steps,
while rotary positional encoding [16] involves complex number
arithmetic. Table 1 provides an overview of primary neural oper-
ations and their corresponding SQL queries. The queries in the
table are pseudo-code representations, and to support all required
operations, we introduced custom vector functions, including
merging complex numbers into a single vector (VIEW_AS_REAL),
splitting vectors into complex numbers (COLLECT_COMPLEX), and
Hadamard product (HADAMARD),

3.2 Key-Value Cache Implementation
Key-value (KV) caching [12] is essential for efficient LLM infer-
ence. Attention layers calculate attention scores using all past
tokens as keys (K) and values (V). Without caching, these compu-
tations are repeated for every token, leading to quadratic complex-
ity 𝑂 (𝑛2) as sequence length (𝑛) increases. KV-caching reduces
this to 𝑂 (𝑛) by storing precomputed keys and values, signifi-
cantly accelerating generation.

Many databases support in-memory tables for frequent access.
PostgreSQL offers pg-mem, MySQL includes a memory engine,
and ClickHouse provides dictionaries with composite key index-
ing. In our approach, we leverage ClickHouse’s dictionary to
implement KV-caching for efficient LLM inference.

3.2.1 KV-Cache in SQL. In TranSQL, we implement the KV-
cache mechanism using the relational database’s native capabil-
ities, such as table indexing and efficient incremental updates.
The implementation consists of the following components:
Cache Storage. The cached keys and values are stored in a
dedicated table:
𝐶𝑎𝑐ℎ𝑒 = {(𝑙, 𝑖, ℎ, k, v) | 𝑙 ∈ [0, 𝐿], 𝑖 ∈ [0, 𝐼 ), ℎ ∈ [0, 𝐻 ), k, v ∈ R𝑡 },
where 𝑖 denotes the token index, ℎ the head index, k the cached
key vector, and v the cached value vector. Since the k and v
values are used layer by layer, TranSQL preloads these values
to a dictionary for each layer at the start of the corresponding
layer’s computation. This preloading process can be performed
asynchronously, improving efficiency by overlapping with other
query executions.
Cache Updates. During the generation of a new token, the key
(knew) and value (vnew) vectors for the new token are computed.
These vectors are appended to the Cache table via an INSERT.
Efficient Querying. Key and value vectors are preloaded into
a dictionary, enabling efficient retrieval via SELECT queries in-
dexed by head and token indices. These cached vectors are com-
bined with the current token’s key and value vectors to compute
attention scores, extending matrix multiplication queries with
additional joins. By incorporating KV-cache into the relational
queries, TranSQL eliminates the need for specialized caching pro-
tocols, instead leveraging the database’s built-in indexing and
optimization mechanisms for scalable and efficient caching.

4 DEMONSTRATION SCENARIOS
The demonstration consists of three components: i) Interactive
Frontend: A user interface for interacting with the system and
viewing inference results. ii) TranSQL: The core framework that
converts model data and inference into SQL queries. iii) Relational
Database: The backend system executing the translated SQL
queries.

We showcase the demonstration with the LLaMa3 8B model
and ClickHouse, running on an AWS c7i.2xlarge instance. The
demonstration includes two scenarios: i) Display the SQL queries
for serving the model. ii) Input a prompt to generate tokens.
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2. Queries to be executed
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Figure 3: Screenshot of the demonstration interface. Par-
ticipants specify the model scale and tile size in Block 1.
Block 3 shows SQL queries with their logical execution
plans, while the Block 5 displays tokens generated line by
line based on the input prompt.

4.1 Relational Data and Query Translation
The demonstration begins with loading the LLaMA3 model into
the database, guided by the scale and tile size specified by partic-
ipants in Block 1. TranSQL splits tensor weights into equal-sized
vectors and generates indices, which are stored in Parquet files as
an efficient intermediate representation. These Parquet files are
then imported into the ClickHouse database as relational tables,
organizing the model’s weights into a tabular format suitable for
SQL-based operations. Simultaneously, the operations required
for LLM inference are translated into a sequence of SQL queries,
as shown in Block 2, designed to operate on the imported data.

After the conversion process is complete, participants interact
with the system through Block 3 of the visual interface (Figure 3).
The interface supports two key activities: i) viewing the execution
plans for translated SQL queries to gain insights into how the
database processes LLM inference operations, and ii) exploring
interactively by selecting specific layers of the LLaMA3 8B model
to examine the associated SQL queries and weights stored in the
relational tables.

4.2 Input Prompt and Get Response
In the second part of the demonstration, participants observe
how the system performs inference using the weights and SQL
queries generated in the previous step.

Participants can input custom prompts in Block 4 and initiate
the inference process by clicking the start button. The system
dynamically generates subsequent tokens. During this process,
participants can view the time consumption and peak memory
usage of the database for each token in Block 5, as shown in
Figure 3. This feature highlights the memory footprint of SQL-
based LLM inference, demonstrating how relational database
capabilities efficiently manage resources.

5 CONCLUSION AND DISCUSSION
In this paper, we introduced TranSQL, a toolkit for performing
transformer-based LLM inference within relational database sys-
tems (RDBMS). By translating tensor operations into SQL queries
and storing model weights as relational tuples, TranSQL leverages
database capabilities like dynamic disk-to-memory management

and native caching. This approach offers an alternative for deploy-
ing large-scale language models in environments with limited
access to specialized infrastructure.

Using the LLaMA3 8B model, we demonstrated TranSQL’s abil-
ity to implement core neural operations, including matrix multi-
plication, attention mechanisms, and KV-cache, enabling end-to-
end text generation within an RDBMS. The toolkit’s adaptability
allows it to support other transformer-based architectures and
diffusion models with minimal modifications. Future work will
focus on scaling TranSQL for larger models, optimizing database-
specific performance, and extending compatibility across diverse
RDBMS platforms.
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