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ABSTRACT

Data lakes, massive repositories of heterogeneous data, were
popularized by implementing a load-first model-later approach
to data integration in contrast to the traditional model-first load-
later implemented in data warehouses. Yet, such settings create
new challenges related to a) how to effectively discover rele-
vant data and automatically find meaningful relationships; and
b) how to do so efficiently at scale. In order to address them, we
present Freyja, a data discovery system designed to navigate
through vasts amounts of data and support users on finding join-
able pairs of attributes. Freyja is based on the definition of a
novel similarity measure, designed to automatically discovery
semantically-relevant relationships. The adopted metric is tai-
lored to data lake contexts, where datasets are denormalized and
data from several domains are stored. In order to optimize and
scale the computation of such metric, Freyja adopts a learning
approach relying on profiles, succinct and lightweight represen-
tations of the underlying characteristics of the data attributes.
Freyja leverages analytical databases to efficiently compute col-
umn profiles. In this demo, we demonstrate how Freyja, which
is offered as a Python library, supports data augmentation tasks
(i.e., augmenting training datasets with new features to improve
the performance of a machine learning model).

1 INTRODUCTION

Modern data-driven systems require vast amounts of high quality
data to perform analyses and develop sophisticated predictive
models. Data lakes [8], repositories where numerous agents de-
posit their data via a flexible schema-on-read approach, offer the
opportunity to find such relevant assets, as they hold a plethora
of potentially useful information provided by different stakehold-
ers and organizations. Adequately navigating through these vast
data repositories and identifying suitable relationships, allows
data scientists to execute downstream tasks with extended sets
of data, improving the capabilities of the defined processes [11].
We exemplify one of such cases with the following scenario:
Example 1.1. Anna is a data scientist hired by the municipality
of Barcelona to analyze the skyrocketing rental prices in the city.
Tasked with uncovering the underlying factors contributing to these
increases, she decides to develop a robust predictive model to ac-
curately forecast rental prices, segmented by neighborhood. Her
goal is to obtain a model that can accurately predict future values
based on the characteristics of the population. She is provided with
a reference dataset (depicted in Table 1), which contains the average
rental price for each neighborhood, along with other characteristics.
After deploying an initial model, she considers that by increasing
the number of features, the problem could be better characterized.
Hence, she now turns to the government’s data lake to extend the
available information and perform more nuanced analyses. She
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plans to do so by finding datasets that she can join with through
the neighborhood column, employing the newly added columns as
model features.

Neighborhood Avg. Rental (€) Avg. Age Avg. Income (€)

El Raval 834 38.4 11,304
Sants 874 42.4 20,501

Les Corts 1065 46.3 31.123
La Salut 970 44.5 27,477

Table 1: Rental prices of Barcelona’s neighborhoods (𝐷𝑟𝑒 𝑓 )

The presented scenario describes a data discovery task [7]. Data
discovery can be defined as the process of automatically iden-
tifying and combining relevant datasets from various sources
to extend the amount of available information for downstream
tasks. An instance of one such subsequent task is also presented
in the example: data augmentation [3], which is described as
incorporating new data in the training of a predictive model to
improve its efficacy when addressing the target function.

In order to aid in such context we present Freyja1, a data
discovery system that focuses on the task of join discovery [2],
which specifically explores the detection of joinable datasets to
increase the number of data attributes available. Our goal is to
present a ranked list of potentially joinable pairs between an
attribute of a reference dataset (which we label as the query
attribute) and attributes from other datasets, sorting the pairs
by their degree of joinability. Hence, we particularly want to
increase the number of features of a designated dataset, doing
so by performing join operations through the query attribute. A
simplified approach to perform this task is described next:
Example 1.2. Figure 1 showcases a subset of the tables found in
the data lake explored by Anna. Her goal is to find attributes that
represent good candidates to join with column𝐷𝑟𝑒 𝑓 .𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑

to extend the available data. To do so, she opts for a straightforward
approach: rank the quality of a join based on the degree of overlap-
ping (i.e. containment) between the columns. In doing so, the pairs
(𝐷𝑟𝑒 𝑓 .Neighborhood, 𝐷1.Neighborhood), (𝐷𝑟𝑒 𝑓 .Neighborhood, 𝐷2.
Neigh.) and (𝐷𝑟𝑒 𝑓 .Neighborhood, 𝐷3.Product) are considered as
relevant joins. Note, however, that the latter is a false positive.

The process described above is overly inefficient, as data lakes
differ from conventional structured data repositories in twomajor
facets. Firstly (i) they contain massive volumes of data, much
higher than traditional databases and with datasets that can
reach millions of rows. Computing overlaps is unfeasible in such
scenario. Secondly (ii), as different agents provide the data assets,
the stored datasets are highly heterogeneous. This refers to
both semantic diversity (i.e. large variety of disparate topics or
domains) as well as syntactic variability (e.g. large differences
on the number of attributes, their values or their cardinalities).
Hence, false positives joins, such as the one depicted in Example
1.2, are common in data lakes, as the heterogeneity of the data
makes it difficult to discern whether two sets of similar values
represent the same entities.
1Link to the paper’s companion website: https://freyja-data-discovery.github.io/
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𝐷1 – Inequality metrics

Neighborhood 80/20 rate Gini index

La Salut 3.85 27.8
Tres Torres 3.04 31.2
Les Corts 3.05 33.3
El Raval 3.12 34.2

𝐷2 – Population statistics

Neigh. Population % Male

El Raval 46,934 47.48
Sants 47,063 51.47

Les Corts 46,740 53.57
Guinardó 38,153 53.20

𝐷3 – List of products

Product Author Type

El Raval Zoo Music CD
Sants Tania Juste Book

Les Corts Josep Maria Casasus Book
La Salut Michel Sardou Music CD

Figure 1: Subset of datasets in a data lake

Modern data discovery systems address data heterogeneity by
proposing approaches that, rather than computing set-overlapping
metrics, consider the semantics of the data beyond value intersec-
tion (e.g., embedding representations [2, 4], knowledge bases [9]
or deep learning architectures [5, 6]). Nonetheless, these method-
ologies are complex to set up and expensive to execute, often
demanding large pools of resource and incurring high execution
costs. In contrast, Freyja aims to maintain the effectiveness of
modern approaches (i.e. to consider the semantics of the data
attributes) while offering a scalable and efficient solution that
can be used in most environments with minimal set up. To do
so, Freyja adopts a new joinability metric that, unlike tradi-
tional options such as containment or Jaccard, incorporates an
assessment of the semantics of the data attributes (we refer the
reader to [10] for further details). However, this metric, which
measures the quality of a join, still relies on costly set-overlap
computations. Hence, Freyja prevents the need of computing
such pairwise comparisons by employing a predictive model

that approximates the quality of a join in a fraction of the time
needed to compute it. To do so, Freyja computes and stores ex-
tensive data profiles that capture the underlying characteristics
of the data attributes (e.g. incompleteness, entropy) [1].

Freyja uses a lightweight and general-purpose predictive
model, thus no retraining is needed when facing new data lakes.
Profiles are obtained by performing column-wise operations over
the data, for which we employ analytical databases (i.e. DuckDB)
to optimize the process. Computing the profiles is easily paralleliz-
able, as profiles are completely independent from each other. This
also applies to comparing them (i.e. calculating the differences),
as each procedure is isolated. Moreover, the entire workflow is
highly scalable, as profiles always have the same length (i.e. num-
ber of metrics) regardless of the size of the original data. Hence,
the overall cost scales linearly with regards to the number of
datasets in the repository. Finally, each profile occupies a few
KBs, so the entire pipeline can be executed in-memory, even for
large data lakes. Figure 2 presents Freyja’s high-level pipeline.

Demonstration. EDBT attendees will be able to act as Anna in
her data discovery task, doing so from the comfort of a Python
notebook. Notebooks are nowadays the customary tool to explore
and analyze data, as they provide an expressive environment to
run experiments and present results. However, most data dis-
covery systems are cumbersome to operate due to requiring
complex set ups (e.g. accommodating large knowledge bases)
or high-end machines to run expensive computations (e.g. deep
learning tasks). This limits the usage of such approaches, spe-
cially because there are no libraries to easily invoke their defined
tasks. Opposedly, Freyja requires minimum setup and is highly
portable. Moreover, it can run on the vast majority of PCs, as it
does not have elevated memory or GPU/CPU requirements. Our
aim is to prevent data discovery from being restricted only to
high-performance environments.

2 FREYJA

Freyja provides three processes: (i) compute profiles, both for
single files as for entire data lakes, (ii) obtain, for a given query
attribute and a data lake, the joinability ranking (sort all potential
pairs based on their degree of joinability), and (iii) execute a data
augmentation pipeline, which we provide as an instance of a
downstream task to showcase the practical utility of Freyja.

2.1 Attribute profiling

Profiles are summarized representations of the underlying char-
acteristics of sets of values. A profile is composed of several
features, each capturing different properties of the data attributes
(e.g. incompleteness, entropy, median value, etc.). By working
with these features we can have a high-level understanding of the
original data while preventing the need to operate with extensive
lists of values, so their utility goes beyond our particular applica-
tion for data discovery. Freyja leverages analytical databases (e.g.
DuckDB) to execute optimized column-wise operations, allowing
for the efficient computation of the aggregations needed to ob-
tain the profile features. Moreover, profiles need to be computed
only once per dataset and can be retained for future utilization
in subsequent data discovery processes. This can be done in an
offline stage previous to the data discovery task, and be reused
every time a new analysis needs to be conducted. Figure 3 show-
cases how to employ Freyja to generate data profiles. Note that
our goal is to use profiles to define joins, so only profiles of
non-numerical columns are obtained, as computing joins with
numerical data generally leads to non-significant results.
Types of features. Profiles are composed of an extensive selec-
tion of features (extracted from state-of-the-art on data profiling
[1]), aimed at representing all the relevant properties of data that
the model is going to use to predict the joinability metric. That is,
our goal is to offer a multi-faceted, high-level characterization of
the data. Features can be divided into three main categories: gen-
eral properties, value distribution and syntactic. The first category
measures well established properties to assess the characteristics
of the underlying data, such as entropy, uniqueness or incom-
pleteness. Value distribution features capture insights regarding
the distribution of the values, such as octiles and average fre-
quency. Syntactic features analyze the structure of the data values
themselves: longest/shortest strings, number of strings or data
types. In total, Freyja collects 62 individual features, offering a
wide spectrum of properties to represent the data.

1 dref = read_csv(dref_path)
2 dref_profile = freyja.compute_profile(dref)

Feature Entropy Min. Freq Avg. length ...
Neighborhood 2.4 1 11,304 ...

Figure 3: Code snippet to compute profiles
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Figure 2: Freyja system architecture

2.2 Joinability rankings

The data discovery process is as follows: given the profile of a
query attribute, 𝑃 (𝐴𝑞), and the profiles for all columns (candidate
attributes) of a given data lake 𝐷𝑙 , {𝑃 (𝐴𝑐 ) | 𝐴𝑐 ∈ 𝐷𝑙 }, we obtain
a ranking of all the possible joins (𝐴𝑞, 𝐴𝑐 ), sorted by their degree
of joinability. This method has two main steps. Firstly (i), we
calculate the distances between the query attribute and all the
candidate attributes, which represent a high level comparison
between the properties of the two underlying columns. Secondly
(ii), we execute our predictive model to map every set of differ-
ences between the query attribute and each candidate attribute
to a joinability value.
Calculating distances. This process amounts to, for every can-
didate pair to join, computing the difference between each of
the individual metrics of both profiles (e.g. 𝐷𝑎 .𝐴𝑡𝑡1.entropy -
𝐷𝑏 .𝐴𝑡𝑡3. entropy). However, some features, such as frequency
distributions, are represented in different magnitudes. Hence, to
define meaningful comparisons we first normalize the features.
More precisely, for a given dataset, we normalize conjointly the
profiles of all its attributes by applying the Z-score normalization,
obtaining the mean and standard deviation for all instances of a
feature in all profiles of the dataset. For instance, for a dataset 𝐷
the feature minimum frequency is normalized by computing the
mean and standard deviation of all minimum frequency values in
𝐷 , one per profile.
Predictive model. The novel joinability metric is still costly
to compute, thus Freyja employs a learning approach based on
a pre-trained model that can be used to predict the joinability
metric for two sets of values based on their profiles. Therefore,
Freyja evaluates the the model for each pair (𝐴𝑞, 𝐴𝑐 ) we want
to assess the joinability of. Our instance of the model has been
trained with an extensive corpus containing pairs of attributes
with disparate joinability values. This has allowed the model to
understand how the distinctions in the values of the individual
profile features correlate with the novel joinability metric. Hence,
it does not need to be re-trained for every data lake, as it is general
enough to adapt to most environments.

Our novel joinability metric generates a continuous value that
quantifies the quality of the join between two attributes, provid-
ing a precise measurement of how well these attributes can be
combined. This continuous value enables us to create an efficient
ranking system that orders candidate pairs based on their ability
to produce highly relevant and meaningful joins. This ranking
is essential, as, without it, the output could consist of an over-
whelming number of potential joins, each of which would require

extensive manual validation, a time-consuming and resource-
intensive task. Our model effectively replicates this behavior, but
at a significantly lower cost, replacing expensive set-overlap com-
putations with model predictions. Experimental results show that
the prediction error relative to the original metric is negligible
[10]. Figure 4 exemplifies how to get a joinability ranking.

1 dl_profiles = freyja.profiles_for_dl(dl_path)
2 ranking = freyja.ranking(dref_profile , "neighborhood",

dl_profiles , 3)
3 # 4th parameter indicates the top -k positions to show

Candidate dataset Candidate attribute Predicted metric

𝐷2 Neigh. 0.455
𝐷1 Neighborhood 0.455
𝐷3 Product 0.131

Figure 4: Code snippet to obtain the top-3 joins

2.3 Data augmentation

The goal of data discovery is to increase the amount of data avail-
able in downstream tasks, ultimately improving the effectiveness
of data-driven models. By identifying relevant datasets and inte-
grating useful attributes, data discovery enables more compre-
hensive analyses and enhances model performance. To further
extend the capabilities of Freyja, we provide an implementa-
tion of one such tasks: data augmentation. This implementation
is seamlessly integrated with the rest of the pipeline, ensuring
smooth interaction with other components. Given a joinability
ranking and a designated candidate attribute (selected from those
appearing in the ranking and identified by an index), we execute
the join between the query attribute and the candidate attribute.
This process merges the relevant data from different datasets
into a single, cohesive collection, thereby enriching the avail-
able information and improving the capabilities of a model. The
augmentation method is designed to be flexible, allowing users
to experiment with different ranking positions to assess their
impact on the downstream task.

Figure 5 showcases the full data augmentation pipeline, il-
lustrating its role in refining model performance. It presents a
previously defined model undergoing three evaluation scenarios:
using only the base data, augmenting it with the highest-ranked
candidate attribute, and repeating the process with the second-
highest-ranked candidate. These evaluations demonstrate how
strategic data augmentation can enhance a model’s learning pro-
cess, ultimately leading to better performance in downstream
tasks.
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1 dref = read_csv(dref_path)
2 run_model(d_ref , "d_ref")
3
4 dref_profile = freyja.compute_profile(dref)
5 dl_profiles = freyja.profiles_for_dl(dl_path)
6
7 ranking = freyja.ranking(dref_profile , "neighborhood",

dl_profiles , 20)
8
9 dref_d2 = freyja.da(dref , "neighborhood", ranking , 1)
10 run_model(dref_d2 , "d_ref joined with d_2")
11
12 dref_d1 = freyja.da(dref , "neighborhood", ranking , 2)
13 run_model(d_ref_d_1 , "d_ref joined with d_1")

Data used to generate the model: d_ref

- Root Mean Squared Error: 76.44

- R-squared: 0.7188

------------------------

Data used to generate the model: d_ref joined with d_2

- Root Mean Squared Error: 39.1857

- R-squared: 0.9029

------------------------

Data used to generate the model: d_ref joined with d_1

- Root Mean Squared Error: 47.59

- R-squared: 0.8568

Figure 5: Data augmentation with Freyja

3 DEMONSTRATION OVERVIEW

The main driver underneath the development of Freyja was to
simplify the access and usage to data discovery tools, preventing
the need for elaborate setups and costly infrastructure. This goal
led to the creation of a solution that enables users to work with
their data without the technical barriers that often accompany
complex platforms. To that end, we offer Freyja as a Python
library, which streamlines its integration into existing workflows.
Its functionalities are showcased via notebooks, expressive en-
vironments that are ideal for trial-and-error approaches and for
presenting results due to their structure, which divides the pro-
cess into independent code blocks. This modular approach is
particularly well-suited for experimentation and analysis and,
as a result, have become the de facto tool for data scientists to
explore and analyze their data, as they allow for iterative ex-
perimentation and seamless integration of both visualizations
and explanatory text in a single environment. By embedding
Freyja within this environment, we significantly lower the bar-
rier for adoption, eliminating the steep learning curves that are
characteristic of more complex, extrinsic tools. The simplicity
and efficiency of Freyja’s design ensure that users can focus on
what truly matters: discovering insights from their data. Further-
more, as illustrated in the code snippets above, interacting with
Freyja is straightforward and intuitive. The functions primarily
operate over in-memory objects, which reduces the need for addi-
tional setup or infrastructure. This design philosophy contributes
to the library’s accessibility and ease of use, making it a valuable
tool for both beginners and experienced data scientists alike.

Attendees will be able to execute a full data discovery pipeline,
mimicking the processes illustrated in the above examples. Specif-
ically, the available tasks are those defined in previous section,
which map to the main stages implemented by Freyja’s pipeline,
allowing us to showcase the full potential of the tool on a practical
setting. This hands-on experience will provide valuable insights
into how Freyja can simplify, accelerate and enhance the data
discovery process.

(1) Create profiles. Participants can initiate the process of com-
puting profiles both for single datasets as well as collections of
datasets. In the demo we include a small data lake so the users
can get a sense of the efficiency of Freyja. The profiles and set of
metrics they contain can be explored, which allows the attendees
to get a better understanding at the type of information collected.
(2) Obtain joinability ranking. Once a set of profiles has been
generated, users can execute the discovery process, which will
yield a joinability ranking, with the more relevant joins placed
in the top positions. This ranking is accompanied by a numerical
evaluation, which highlights the differences in the quality of the
joins and provides a clear indication of their significance. The
evaluation makes it easier for users to assess and select the most
meaningful joins, streamlining the decision-making process and
ensuring the most impactful relationships are identified.
(3) Data augmentation. Attendees will be able to employ the
obtained ranking in a data augmentation task. By selecting one
of the candidate columns presented in the ranking, an automatic
augmentation process can be executed, which generates a joined
dataset that can be immediately applied to test and evaluate
a model’s performance. This seamless integration ensures that
the augmented data can be put to use quickly, facilitating more
efficient experimentation and model improvement.
In the on-site demonstration we will encourage attendees to
propose new use cases and datasets, in order to showcase the
flexibility and efficiency of Freyja.
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