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ABSTRACT
Geo-textual objects, i.e., objects with both spatial and textual at-
tributes, such as points-of-interest or web documents with loca-
tion tags, are prevalent and fuel a range of location-based services.
Existing spatial keyword querying methods that target such data
have focused primarily on efficiency and often involve propos-
als for index structures for efficient query processing. In these
studies, due to challenges in measuring the semantic relevance
of textual data, query constraints on the textual attributes are
largely treated as a keyword matching process, ignoring richer
query and data semantics. To advance the semantic aspects, we
propose a system named SemaSK that exploits the semantic capa-
bilities of large language models to retrieve geo-textual objects
that are more semantically relevant to a query. Experimental
results on a real dataset offer evidence of the effectiveness of the
system, and a system demonstration is presented in this paper.

1 INTRODUCTION
Keyword-based retrieval by mobile users often has local intent,
in that it concerns content that is near the query user. As such,
the geographical location of content has gained in importance
with the prevalence of smartphones. This has motivated studies
on new retrieval methods for data with both spatial and textual
attributes, which is often referred to as geo-textual data.

Existing studies focused primarily on efficient retrieval of geo-
textual data. They formulate spatial keyword queries [8, 10, 16, 17,
19] and propose index structures such as the IR-trees [12] for fast
query processing. Spatial keyword queries retrieve data objects
that satisfy both spatial (e.g., within a given region or near a
given location) and textual constraints of the queries. Due to
challenges in measuring the semantic relevance of textual data to
query keywords, query constraints on the textual attributes are
largely treated as query keywords to be matched by the textual
attributes of the data objects.

Figure 1 shows an example with Google Maps, where a user
searches for “café” in Melbourne CBD. All returned results con-
tain the keyword “café”, while cafés without such keywords, e.g.,
“Industry Beans” (a popular local café) or “Starbucks”, are missing.

To improve on the accuracy of keyword-based selection of
data objects, we propose a system named SemaSK that exploits the
semantic capabilities of large language models (LLMs) to assess
the semantic relevance between a spatial keyword query and a
geo-textual object.
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Figure 1: Querying “café” in Melbourne CBD.

Since LLMs lack universal knowledge of all geo-textual objects
available for querying, SemaSK adopts a retrieval-augmented gen-
eration (RAG) [11]-based, filtering-and-refinement query proce-
dure. When a query is issued, SemaSK first uses spatial constraints
and embeddings of the object attributes and query keywords to
quickly retrieve relevant geo-textual objects from a database.
Then, an LLM is prompted to refine and re-rank the retrieved
objects based on their semantic relevance to the query, the result
of which is returned to the user as the final query result.

Overall, we make the following contributions: (1) We propose
to answer spatial keyword queries with a semantics-aware pro-
cedure enabled by LLMs. (2) We prepare a dataset using Yelp [1]
data with rich textual attributes and use it to show the effec-
tiveness of semantics-aware spatial keyword query processing
with LLMs. While this dataset cannot be redistributed due to
Yelp’s license requirements, we present detailed steps to make
it easy for future studies to construct similar datasets. (3) We
implement and demonstrate the SemaSK system that showcases
the new LLM-based query procedure. Source code of the system
(including the complete LLM prompts) is available on GitHub.1

2 RELATEDWORK
Spatial keyword queries typically return geo-textual object(s) that
satisfy given spatial constraints (e.g., within a query range or near
a query point) and match given query keywords [9]. Existing
studies on such queries generally focus on efficiency. Many index
structures have been proposed, the general idea of which is to
exploit the pruning capability of spatial and keyword attributes
to reduce the search space. The IR-tree [12], for example, adds an
inverted index to each node of an R-tree, to index all keywords
appearing in the sub-tree of the node. Latest studies incorporate
machine learning techniques to optimize the index structures,

1https://github.com/Bigtable123/SemaSK
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such as theWISK index [17] which learns a hierarchical grouping
of the geo-textual objects based on a given query workload to
optimize spatial keyword range query processing. The TF-IDF
measure that is often used in these studies to measure textual
relevance [8] ignores the broader semantics of the keywords.

Semantic relevance is thus underexplored. Several studies [15,
16, 18] consider spatial keyword query with semantics, where
semantic relevance is measured with the Latent Dirichlet Alloca-
tion (LDA) model. LDA represents documents (i.e., the keywords
of a query or data object) as random mixtures of latent topics,
each described by a distribution of words. The semantic rele-
vance between documents is then defined as the similarity of
their corresponding distributions of words. LDA is based on the
“bag-of-words” assumption and ignores the ordering of words
in a document. It is less effective than LLMs in capturing text
semantics. Our system addresses this issue.

LLMs are already employed in the geospatial domain. Exist-
ing studies generally adopt one of two directions: (1) To study
the geospatial understanding capabilities of LLMs, e.g., whether
LLMs can make predictions (such as population density) cor-
responding to different locations [14]; or (2) To build applica-
tions exploiting such capabilities, e.g., using LLMs to recommend
routes when integrated with map APIs [20]. Our system differs
from these studies in that it exploits LLMs for their textual un-
derstanding capabilities.

3 THE SEMASK SYSTEM
Consider a set of 𝑛 geo-textual objects 𝑂 = {𝑜1, 𝑜2, . . . , 𝑜𝑛}. Each
object 𝑜𝑖 consists of a set of attributes represented as key-value
pairs, one of which is the location attribute 𝑜𝑖 .𝑙 (i.e., a pair of geo-
coordinates). All attribute keys are textual, while the attribute
values may be numerical, categorical, or textual, with at least one
being textual (for keyword-based querying). We denote the set
of attributes excluding 𝑜𝑖 .𝑙 by 𝑜𝑖 .𝐴.

A user query𝑞 is represented by a range𝑞.𝑟 , which defines a re-
gion (e.g., a rectangle), and a textual constraint𝑞.𝑇 = {𝑡1, 𝑡2, . . . , 𝑡𝑚}
consisting of𝑚 tokens (e.g., a sentence or a set of search key-
words). An example textual constraint is: “I am looking for a bar
to watch football that also serves delicious chicken. Do you have
any recommendations?” Our goal is to return all geo-textual ob-
jects from𝑂 that are within 𝑞.𝑟 and relevant to the textual query
constraint 𝑞.𝑇 .

Query

Raw POI data

Data Preparation

Query Processing

Address completion 

Tip summarization

User

Vector database

Filtering

Refinement

Embedding generation

Embedding generation

Figure 2: Overview of the SemaSK System.

The SemaSK system has two main modules: a data preparation
module and a query processing module, as shown in Figure 2. The
data preparation module pre-processes the dataset 𝑂 and pre-
pares it for query processing. It computes summaries to shorten
long textual attribute values, and it converts the non-location

attributes 𝑜𝑖 .𝐴 of each object 𝑜𝑖 into an embedding 𝑜𝑖 .a, to enable
a lightweight filtering step during query processing. The query
processing module answers queries with an RAG-based, filtering-
and-refinement procedure. Given a query 𝑞, its embedding 𝑞.t is
computed from 𝑞.𝑇 . The top-𝑘 most similar objects are fetched
from 𝑂 based on embedding similarity (to limit the LLM costs
of the refinement step). These objects are refined and re-ranked
by an LLM to produce the final query answer. We detail the two
modules in the subsections below.

3.1 Data Preparation
We exploit a Yelp dataset [1] with rich textual POI descriptions,
i.e., “tips”, which are brief reviews given by users. The dataset
also comes with users’ longer reviews on the POIs, which are
quite noisy and may contain information irrelevant to the POIs.
We ignore such data. Table 1 shows a sample record. The raw
dataset contains 81,500 POIs. In our experiments, we use POIs
from the five cities with the most POIs, which together have
19,795 POIs. The POIs have an average of 11 tips (147 tokens
together). Note that popular POI datasets such as OpenStreetMap
are unsuitable as they focus on POI locations and have only a
few category keywords for each POI.

We prepare the geo-textual dataset for query processing with
the following steps.

Address completion. The dataset has incomplete POI ad-
dresses. We employ reverse geocoding [5] to obtain city, county,
suburb, and neighborhood information based on coordinates.

Table 1: A Sample Record from the Yelp Dataset

Attribute Value

business_id oaboaRBUgGjbo2kfUIKDLQ
name Mike’s Ice Cream
address 129 2nd Ave N
city Nashville
state TN
latitude 36.162649
longitude -86.775973
stars 1.5
tip_count 10
is_open 1
categories Ice Cream & Frozen Yogurt, Fast Food, . . .
hours ‘Monday’: ‘0:0-0:0’, ‘Tuesday’: ‘6:0-21:0’, . . .
tips “Amazing ice cream! So creamy” , . . .

Tip summarization. The tips vary in length. We prompt an
LLM, GPT-3.5 Turbo [2] (for its lower costs), to summarize the
tips of each POI as follows:

You are a master of summarizing reviews. Now I have some
reviews, they are in the form of lists in Python and split with com-
mas. I would like you to help me make a summary. Here are some
examples:

list:[‘Love Sonic but orders are constantly wrong’, . . . , ‘Foods
always been good. Shakes r delicious!’]

Summary: The feedback highlights a mix of experiences at Sonic.
While there is love for the brand and appreciation for the quality
of food and delicious shakes, there is also frustration over frequent
inaccuracies in order fulfillment.

[A second example]
Now it is your turn: [tips to summarize]
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On average, each generated summary has 55 tokens. We verify
the quality of the summaries by manually examining 100 of them.
We find that the summaries are of high quality in general and
include the key information from the raw tips.

Embedding generation. Prompting an LLM to examine every
POI record against a query online is expensive both in terms of
time and LLM API call (monetary or energy) costs. For more
efficient POI pruning, we pre-compute POI embeddings, which
can be compared with the query embeddings online without any
LLM API calls.

We adopt the off-the-shelf model, text-embedding-3-small [6],
to compute the embeddings, taking as input the POI name, ad-
dress, categories, hours, and tip summary. The embeddings (1,536
dimensions as defined by the model) are stored in the Qdrant [7]
vector database system to support online query processing.

3.2 Query Processing
We process queries with a filtering-and-refinement procedure.

Filtering.When a query 𝑞 arrives, we first filter the POIs by
the given query range 𝑞.𝑟 . Then, we convert the query text into
an embedding using the text-embedding-3-small model. With the
embeddings of the query and the POIs in the query range, we
run an approximate 𝑘 nearest neighbor (𝑘NN) query using the
built-in HNSW algorithm [13] of Qdrant. This step can efficiently
identify the top-𝑘 query answer POIs without LLM API calls.

Refinement. Next, we prompt an LLM (we use GPT-4o [3]) to
re-rank the top-𝑘 POIs, exploiting LLM’s capabilities to under-
stand the semantics of both the query and the POI attributes. This
extra refinement step is because the embeddings generated by a
smaller model may not be as accurate in reflecting the semantics.
We use the following prompt:

You are an assistant for location information sorting tasks. Below
is the location information retrieved from the database, which will
be given to you in JSON format. You are asked to filter and sort this
information based on the question asked. You first need to determine
whether the information is relevant to the question, and then sort
all the relevant information. The ones that best match the question
and help answer it have the highest priority. The format of your
output must be a Python dictionary, where the key is the name of
the location and the value is the reason why you chose this location
and ranked it there. The location with the highest priority is placed
higher, i.e., index is 0. Please note that there could be more than one
result in the dictionary. If the information about a location could
only partially match the question asked, you could also put it in the
dictionary, but specify the advantages and disadvantages of this
place in the value of the dictionary. If you could not complete the
task or do not know the answer, just return the empty dictionary
and don’t refer to any additional knowledge.

Information: [Raw POI attributes]
Query: [User query]

4 EXPERIMENTAL STUDY
Our experiments show the effectiveness of SemaSK, using a laptop
computer with the Apple M2 CPU and 8 GB memory.

Dataset: We use the processed Yelp dataset as described above
for the experimental study. We use POIs in five cities in the USA
to form five test sets: Indianapolis (IN, 4,235), Nashville (NS,
3,716), Philadelphia (PH, 7,592), Santa Barbara (SB, 1,790), and
Saint Louis (SL, 2,462), where the numbers in parentheses are
the numbers of POIs in each city.

As there are no queries that come with the dataset, we con-
struct test queries as follows. We start by randomly selecting
a point in each city. The query range is formed by a 5 km × 5
km region (to ensure enough POIs in the region) centered at
the point (which can be easily extended to allow users to define
their own query range, e.g., to query within their current map
view). Within this range, a POI is randomly chosen. We input
the attributes of this POI into an LLM (OpenAI o1-mini [4], for
better query quality) and instruct the LLM to generate a query
targeting the POI, following two manually crafted examples with
the prompt below:

You are an expert in spatial keyword searching and I am now
trying to perform spatial keyword searching using a large language
model. In order to get a test set, I need you to help me write query
questions based on the information I provide. In particular, I am
asking to think of some questions that are difficult to answer with
simple keyword matching, but are easier with the semantic capabil-
ities of large language models, such as “Find Japanese restaurants
in Center City that offer a variety of sushi options”, where “Japan-
ese restaurants” and “sushi” can be easily handled by keyword
matching, while “a variety of options” may require semantic un-
derstanding. Also, please don’t mention any location information
in the query!

Information: Pep Boys is located at Lafayette Road and primar-
ily serves the category of Automotive, Tires, Oil Change Stations,
Auto Parts & Supplies, Auto Repair. It is open for business at these
hours: [‘Monday’: ‘8:0-19:0’, ‘Tuesday’: ‘8:0-19:0’, ‘Wednesday’: ‘8:0-
19:0’, ‘Thursday’: ‘8:0-19:0’, ‘Friday’: ‘8:0-19:0’, ‘Saturday’: ‘8:0-19:0’,
‘Sunday’: ‘9:0-17:0’]. Customers often highlight: ‘The reviews consis-
tently praise the staff for being friendly, knowledgeable, and helpful,
creating a positive and welcoming atmosphere for customers.’

Question: My car needs repair. Which service center is the most
reliable?

[A second example]
Now it is your turn.
Information: [A POI input]
Question:
We generate 100 queries for each city, which are manual re-

viewed and adjusted to filter queries that can be easily answered
by keyword matching. Afterwards, we manually inspect the cor-
responding query range to determine the answer set (there may
be other POIs besides the target POI that also satisfy the gener-
ated query). In the end, 30 queries are harvested and used for
testing on each city.

Competitors: As the test sets are relatively small, query effi-
ciency is not an issue. We focus on the effectiveness and compare
with two baseline algorithms: LDA and TF-IDF, which use the
LDA model (following a previous study [16]) and TF-IDF vector
similarity to assess text relevance and subsequently rank the
POIs in the query range.

We also compare with two system variants: SemaSK-EM for-
goes the refinement step of SemaSK (i.e., it queries POIs by the
embeddings). SemaSK-O1 uses OpenAI o1-mini instead of GPT-4o
for query result refinement.

We assess the performance of the algorithms using F1@k
which is the F1 score of the top-𝑘 POIs returned by each algorithm,
averaged across all test queries of each city.

Results. Due to space limit, we only present results for 𝑘 = 10
in Table 2. Similar result patterns are observed when 𝑘 is varied
(e.g., for 𝑘 = 25) and hence are omitted.

We observe that our solutions SemaSK-O1 and SemaSK out-
perform the two baselines across all test sets, with the average
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Table 2: Performance Results in F1@k (best results are in
boldface; “Avg.” means “Average”; numbers in parentheses
represent performance gains over best baseline results)

City LDA TF-IDF SemaSK-EM SemaSK-O1 SemaSK

IN 0.11 0.22 0.28 0.62 0.72
NS 0.03 0.22 0.31 0.57 0.56
PH 0.03 0.17 0.29 0.54 0.50
SB 0.01 0.15 0.23 0.44 0.49
SL 0.09 0.20 0.30 0.63 0.69

Avg. 0.05 0.19 0.28 (+47%) 0.56 (+195%) 0.59 (+211%)

F1@k improved by 195% and 211% compared to the best baseline,
TF-IDF, respectively.

A further investigation reveals that both baselines (and sim-
ilarly SemaSK-EM) have low precision which leads to their low
F1 scores. In contrast, our systems use LLMs to refine the query
answers, thereby enhancing precision and the overall F1 score.

Among our system variants, SemaSK achieves better results
overall, while SemaSK-O1 has a higher F1 score on PH and is
slightly better on NS. Despite being a newer model, OpenAI o1-
mini is not better for the spatial keyword query task. Considering
its higher cost, we default to using GPT-4o.

Between the two baselines, TF-IDF is more accurate, despite
being a simpler model. This is because the queries and POI at-
tributes are relatively short, making it difficult for LDA to learn
accurate distributions for textual relevance measurement.

In terms of the query time, it takes 0.04 seconds on average
to run the filtering step of SemaSK, while the refinement step
depends on the LLM, which typically takes 2-3 seconds per query.

5 DEMONSTRATION
Our SemaSK system demo allows users to input queries and ob-
serve the query answers on a map. Figure 3 shows the system
UI. There is a user input panel at the top, for users to select the
region to query (we limit the query range to the different sub-
urbs for simplicity) and enter a short sentence to describe the
query target. Here, the sample query is: “I am looking for a bar to
watch football that also serves delicious chicken. Do you have any
recommendations?” in the neighborhood of “Downtown St. Louis”.

When the query is submitted, SemaSK executes its query al-
gorithm and displays the results in a map view located at the
middle right of the UI. The green markers represent POIs rec-
ommended by the LLM, while the blue markers represent POIs
fetched based on embedding similarity but filtered out by the
LLM. Details of the POIs are listed at the bottom of the UI, while
the top recommendation is detailed to the left of the map view.
When a POI marker is clicked on the map, details on why the
LLM has or has not recommended it will also be shown to the
left of the map view.

6 CONCLUSION
We leveraged the strong semantic capabilities of LLMs and pre-
sented a system named SemaSK for spatial keyword query process-
ing. SemaSK takes an RAG-based, filtering-and-refinement query
procedure. It computes embeddings for geo-textual objects and
input queries, which are used to efficiently retrieve geo-textual
objects relevant to a query. Raw attributes of the retrieved objects

Figure 3: A screenshot of the SemaSK system.

are then fed into an LLM together with the query for result re-
finement. Our system demonstrates the potential of using LLMs
for semantics-aware spatial keyword query processing, open-
ing opportunities for further studies on semantics-aware query
processing and practical deployment of the system.
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