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ABSTRACT
Machine learning models may suffer from explicit bias (poor
performance on some test examples) and implicit bias (hard to
modify some test examples to change the model’s prediction from
an undesirable to a desirable label). We demonstrate REACT: a
system designed to summarize implicit bias patterns. Our solu-
tion combines counterfactual analysis (modifying model inputs
to alter predictions) with data summarization (finding biased
subgroups). In our demonstration, participants will use REACT
to analyze and understand implicit biases of various models.

1 INTRODUCTION
Before deploying machine learning models in production, it is
critical to assess their performance on unseen data. Recent ap-
proaches such as Model Slicing [3], InfoMoD [4] and CAMO
[10] enable such model diagnostics, for example, by identifying
under-performing subgroups. Such tools might find that a new
version of a healthcare model performs better overall than the
previous one, but more poorly for younger patients than for older
patients. In high-stakes applications such as medicine, it is critical
to identify biases and take corrective actions such as collecting
more training data.

Recent work has observed that, in addition to explicit biases
in prediction fairness, models may suffer from implicit biases
[2]. Implicit bias can be captured by recourse distance; this is
the distance between an example and its counterfactual, which
is a modified example whose features are perturbed to flip the
model’s decision from an undesirable to a desirable outcome. For
example, a credit card approval model that has the same accuracy
on men and women might still be unfair in terms of recourse
distance or burden: say that men whose applications were denied
would only need to add 10 percent on average to their savings to
be approved, whereas women whose applications were denied
would need to add 20 percent on average to their savings and
reduce their existing debt by 25 percent.

Existing work on recourse analysis sorts subgroups of a test
set by recourse distance [5] or other related metrics [2, 7]. Since
there can be many such subgroups, machine-learning engineers
require tools that can summarize recourse analytics to ensure
that implicit biases do not go unnoticed. Likewise, end users
can benefit from recourse summarization tools to build trust in
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model outcomes, especially in mission-critical fields such as law
enforcement, healthcare and finance.

To address this problem, we present REACT1, a tool for RE-
course Analysis with Counterfactuals and Explanation Tables. Given
a test dataset, REACT computes recourse paths (counterfactuals)
for each example, and summarizes the recourse statistics using
our recent work on informative rule mining (explanation tables)
[6, 10]. We make the following contributions:

• Summarizing Recourse Diagnostics. On the concep-
tual side, we introduce the new problem of summarizing
recourse fairness. We propose a modular system architec-
ture that decouples the process of identifying recourse
paths from the process of summarizing these paths. We
also incorporate the dual problem of the cost or effort
required to flip a model’s decision from the desirable to
the undesirable class. This can provide an indication of
model stability, to complement the implicit bias analysis
via recourse distance (as illustrated in Section 3.3).

• Bridging Counterfactuals and Explanation Tables.
On the technical side, we materialize the above design in
REACT, with a focus on binary classifiers. To address the
challenge of summarizing recourse diagnostics, REACT
combines counterfactual explanations with explanation
tables. This fusion enables to capture both individual-level
feature perturbations and broader patterns within the data,
improving the interpretability and actionability of the sum-
maries. For instance, REACT can identify subgroups where
achieving recourse is more or less likely compared to the
dataset average or uncover subgroups with multiple viable
recourse options (such as either putting more money in a
savings account or increasing one’s monthly salary to flip
a loan-denied decision to loan-accepted).

• Demonstrating REACT. We describe the REACT user
experiencewith several classifiers and test datasets ranging
from police search to income prediction. Our analysis
demonstrates that even equal or fair accuracy rates may
still lead to disparities, such as unequal recourse distance,
which can be effectively summarized by REACT.

To summarize, we introduce a novel approach to fairness diag-
nostics. Unlike tools such as InfoMoD [4] that summarize explicit
biases in model predictions, REACT investigates an equally criti-
cal dimension of implicit bias that may not be evident through
model accuracy analyses. Compared to FACTS [7], which pro-
poses various recourse bias definitions and frameworks, REACT

1REACT is available at http://lg-research-2.uwaterloo.ca:8053
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Figure 1: The architecture of REACT.

instead focuses on a concise presentation of bias analytics, high-
lighting “surprising” subgroups whose recourse statistics are
significantly different from the average.

2 SYSTEM DESCRIPTION
2.1 System Design
Figure 1 illustrates the design of REACT, implemented as an
interactive web application using Python and Streamlit (see Fig-
ure 3 for the front end). The input to REACT consists of a model
𝑀 and a test dataset 𝑇 with features 𝑓 and a binary label 𝑙 . We
divide 𝑓 into three disjoint subsets, 𝑓𝐶 , the features that can be
perturbed to generate counterfactuals, 𝑓𝑆 , the features that will
be used to construct subgroups of the test set whose recourse
statistics will be compared, and the remaining features, 𝑓𝑅 . In
total, 𝑓 = 𝑓𝐶 ∪ 𝑓𝑆 ∪ 𝑓𝑅 , with the first two feature subsets selected
by the user in the REACT web interface. Additionally, the user
selects the counterfactual label. For recourse burden analysis, the
desirable class label is selected, and counterfactuals are generated
to assess the cost of flipping the model’s decision to the desirable
label. However, the user can also select the undesirable label as
the counterfactual goal, to measure the cost of turning positive
examples to negative ones. Without loss of generality, let 𝑙 = 1 be
the desired counterfactual label in the remainder of this section.

REACT examines recourse fairness via two modules:

• a recourse finder (Step 1○); and
• a recourse summarizer (Step 2○).

In Step 1○, REACT generates counterfactuals for every exam-
ple in 𝑇 with 𝑙 = 0, by perturbing the values of 𝑓𝐶 in a way
that changes 𝑀’s prediction to 𝑙 = 1. We use DiCE [8] in our
implementation due to its efficiency, but the REACT back end
is compatible with any counterfactual generator, as long as the
produced counterfactuals are not redundant, i.e., that no counter-
factual is subsumed by another. For example, “increase salary by
10%” and “increase salary by 10% and decrease credit card debt
by 20%” are two redundant explanations, but “increase salary
by 10%” and “increase salary by 5% and reduce debt by 5%” are
not redundant, because the second involves a trade-off between
smaller changes in multiple factors, offering a different path to
recourse.

Next, for every example in 𝑇 with 𝑙 = 0 and based on the gen-
erated counterfactuals, REACT computes the following metrics,
that we have selected as the most insightful for our summa-
rization purposes among those used in prior work on recourse
analysis [5, 7]:

(1) Recourse Availability equals one if there exists a counterfac-
tual and zero otherwise (if no changes to 𝑓𝐶 can produce
a new hypothetical example that the model will predict as
𝑙 = 1).

(2) Recourse Cost is the distance between the original exam-
ple and its nearest counterfactual, using range- or rank-
normalized Manhattan distance for numeric and ordinal
features, respectively, and binary distance (one if the fea-
ture has changed, zero otherwise) for categorical features.

(3) Recourse Choice is the number of counterfactuals produced,
representing the number of recourse options; e.g., if either
increasing salary or decreasing debt leads to a rejected
loan application being approved, then the recourse choice
is two. Clearly, zero recourse availability implies zero re-
course choice.

At the end of Step 1○, every example in 𝑇 with 𝑙 = 0 is la-
belled with its recourse availability and choice. Examples with
availability one are additionally labelled with their recourse cost.

The output of Step 1○ becomes the input to Step 2○, the re-
course summarizer. Here, the user selects the metric of interest:
availability, cost, or choice. For each selected metric, REACT pro-
duces a corresponding summary: a set of 𝑘 rules, with 𝑘 being
a user-set parameter, each referring to a subgroup of 𝑇 defined
by the values of the features in 𝑓𝑆 . For example, a rule over sex
and age might be “sex = male and age = 18-to-45”. In addition
to 𝑓𝑆 and 𝑘 , the user selects a support threshold specifying the
minimum number of examples that each rule must cover.

REACT uses explanation tables [6, 10], an information-theoretic
rule mining method. It identifies the 𝑘 most informative rules
with respect to the distribution of some dependent variable,
which in our case is either the recourse availability, recourse
cost or recourse choice. We describe explanation tables in more
detail below.

2.2 Workflow Overview
To illustrate the workflow, consider the test set for loan approval
classification shown in Figure 2 on the left. The feature set 𝑓
consists of Sex, Age, Ethnicity and Income. The Approved label is
one if the loan was approved and zero otherwise. Let 𝑓𝐶 = Income
and 𝑓𝑆 be the remaining features. That is, if we canmodify Income
to turn declined examples into approved ones via counterfactuals,
what are the recourse patterns within subgroups of the test set
identified by Sex, Age and Ethnicity?

Consider the test example with id=2 and Income=74. The near-
est counterfactual for this example is shown in the top-right
corner of Figure 2, with Income increased to 90, for a recourse
cost of 16. Note that there can be multiple non-redundant coun-
terfactuals if there are multiple features in 𝑓𝐶 . Also note that
this example did not normalize Income for simplicity, but REACT
would do this before computing recourse cost.

Next, suppose we are interested in recourse cost analysis. In
the middle-right corner of Figure 2, we show a table with re-
course cost computed for every example in the test set with the
undesirable label of zero (and recourse availability one), of which
there are 13.

Finally, in the bottom-right corner of Figure 2, we show the
explanation table for recourse cost, with 𝑘 = 6 and minimum
support of 20%. The first three columns are the features in 𝑓𝑆 :
Sex, Age and Ethnicity. The next column is the average recourse
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Figure 2: Workflow example.

cost for each subgroup (defined below) reported in the explana-
tion table. The last column is the support of (i.e., the number of
examples with the undesirable label in) each subgroup.

Each row of an explanation table is a rule that describes a
subgroup. A subgroup is a conjunction of “attribute=value” con-
ditions, with a star representing all possible values. The first row,
all stars, corresponds to all examples with the undesirable label,
where the average recourse cost is 34.2. The next rule states that
for Sex=female, recourse cost is higher at 45.2. The next rule
states that for age<30, recourse cost is even higher at 47.6, and so
on. Overall, the explanation table indicates that young individu-
als as well as females, especially Hispanic females, incur a higher
than average cost to overturn a loan denial. On the other hand,
the recourse cost for European individuals is lower than average.
This gives a summary of the implicit bias of the model, draw-
ing attention to subgroups with surprising or unusual recourse
statistics.

To extract unusual or surprising patterns, an explanation table
identifies the 𝑘 most informative subgroups with respect to some
dependent variable, which is the recourse cost in this example.
The first rule states that the average recourse cost in the test
dataset is 34.2. The next rule is chosen to provide the most ad-
ditional information about the distribution of recourse cost. In
other words, the chosen rule has the most unusual or surprising
distribution compared to the rules generated so far. Here, “fe-
male, *, *” is the most informative rule since recourse costs in
this subgroup are significantly different from the average of 34.2.
This process repeats 𝑘 times, each time selecting the rule with
the most information about the recourse cost distribution.

3 DEMONSTRATION PLAN
Participants will use REACT to produce recourse summaries
for two preloaded test sets: Adult (a census dataset with demo-
graphic attributes and incomes) and Toronto (a police dataset
with demographic attributes of arrested individuals and a label
indicating whether they were strip-searched). For each test set,
REACT includes several models to choose from.

Figure 3 shows the REACT front end. At the top, users select
the recourse metrics of interest, followed by a model-testset pair.

Figure 3: The REACT front end.

In the box labelled STEP 1, users specify 𝑓𝐶 , the features to perturb
in counterfactual generation, followed by the label of the returned
counterfactuals (in the figure, the user wants counterfactuals to
flip test examples to a positive label). In the box labelled STEP
2, users enter 𝑓𝑆 , the subgroup features for explanation tables.
At the bottom, users select 𝑘 , the number of returned subgroups,
and the minimum support. In the remainder of this section, we
describe three starting points for user interaction with REACT.

3.1 Recourse Disparities in Salary Predictions
We start with the Adult Census Income dataset, which is widely
used to evaluate algorithmic fairness. The features correspond to
demographic information and the binary label indicates whether
an individual earns more than $50,000 per year. Let us select the
XGBoost classifier trained on this dataset. Among the ten features,
sex and race are protected features; previous work on explicit
bias analysis shows poor classification performance (explicit bias)
for females and individuals from non-White racial groups. [1].

Suppose the user aims to assess the difficulty of flipping to a
positive prediction (annual income over $50,000), selecting edu-
cation level, with 16 distinct values from Preschool to Doctorate,
to perturb in Step 1○, recourse availability as a target metric, and
𝑓𝑆 as shown in Figure 3. REACT outputs the explanation table
shown in Figure 4. Note that not all the features listed in Step 2○
may be displayed in the tables–REACT runs a post-processing
step removing features that do not participate in any rules. First,
the average recourse availability across 9,966 samples is 36%. The
summary then shows that 79% of married individuals achieve
recourse, but only 33% of males without a family do (Rules 1, 6).
Users can try other grouping attributes: running REACT with
relationship and sex in 𝑓𝑆 reveals an even lower recourse avail-
ability of 20% for females with a "not-in-family" status.

We continue the recourse diagnostics by selecting two more
sets 𝑓𝐶 : [workclass, occupation] and hours-per-week, binned into
four categories ranging from part-time to overtime. For workclass
and occupation perturbations, we choose recourse cost and only
the protected attributes to summarize by. The cost of modifying
these categorical features is either one or two per individual,
corresponding to changing workclass and/or occupation to flip
the prediction. The generated explanation table, shown in Figure
5, reveals implicit bias patterns: subgroups of Mexican nationals
and Black adults (Rules 1 and 3) with the average costs of 1.67
and 1.37, both exceeding the overall average of 1.31. For hours-
per-week, including all the features in 𝑓𝑆 , recourse availability
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Figure 4: Recourse availability explanation table when
changing education level to generate counterfactuals.

Figure 5: Recourse cost, changing workclass and occupa-
tion.

shows that the model is more likely to predict higher income for
males over 34 years if their hours were to increase.

3.2 Fairness-Driven Model Comparison
To illustrate how participants can evaluate the impact of model
updates on recourse fairness, we extend our analysis of the Adult
dataset by introducing an additional XGBoost model with a mod-
ified training pipeline. This pipeline equalizes accuracy with
respect to sex as one of the protected subgroups (explicit bias).
Using the Fairlearn library [9], we remove any correlation of
input features with sex as a preprocessing step. Next, we apply
GridSearch [1] to select model parameters in a way that balances
accuracy (measured by the F1 score) and fairness (evaluated using
statistical parity).

Suppose the user wants to counterfactually modify hours-
per-week to determine whether any implicit bias exists in the
modified model. REACT shows that men’s recourse availability is
23.7% higher compared to the overall average (7.3% compared to
5.9%, see Figure 6). This represents a reduction in the advantage
for men, as compared to the initial explicitly biased model, where
it was 50% higher (12% compared to 8%). The user observes the
same trend when generating counterfactuals for two additional
feature sets, [workclass, occupation] and [education]. In this use
case, REACT shows that eliminating explicit bias in terms of
demographic parity did not fully equalize recourse (implicit bias),
revealing persistent gender disparity despite some improvement.
This highlights the need for tools such as REACT to assess model
unfairness, which can help with building new models that can
balance overall accuracy, fairness in accuracy, and fairness in
recourse.

3.3 Fairness in Pathways for Strip Decisions
The arrest and strip search dataset collected by Toronto police
has a positive label if an arrestee was subject to removal of some
or all clothing and a visual inspection of the body. Assume the
user decides, unlike in the previous two use cases, to analyze the
likelihood of the model changing an arrestee’s classification to
an undesirable outcome (labeled as 1, indicating a strip search,

Figure 6: Comparison of recourse availability when chang-
ing hours per week between the first model (explicitly bi-
ased, left) and the second model (right).

with “label of returned counterfactuals” also set to 1) and selects
recourse choice as the metric. For the counterfactual features in
Step 1○, they choose occurrence category (the type of incident
leading to the arrest) or location of the arrest, aggregated at the
Division level.

REACT shows that two protected subgroups—Black males and
young White adults aged 25 to 34 years—would be predicted as
strip-searched given more options of where they could have been
arrested at, instead of their actual arrest location (averaging 3.02
and 4.03 recourse choices, respectively, compared to 2.60 for the
overall population). For the occurrence category, the model is
more likely to flip its prediction to the undesirable outcome for
males than for females, during the second arrest quarter in par-
ticular, when more alternative reasons for arrest are considered.
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