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ABSTRACT

The increasing demand for specialization in data management

systems (DMSes) has driven a shift from monolithic architectures

to modular, composable designs. This approach enables the reuse

and integration of diverse components, providing �exibility to

tailor systems for speci�c workloads. In this demonstration, we

present CompoDB, a framework for composing modular DMSes

using standardized interfaces for query parsers, optimizers, and

execution engines. CompoDB includes built-in benchmarking func-

tionality to evaluate the performance of DMS compositions by

systematically measuring trade-o�s across con�gurations, includ-

ing runtime di�erences and intermediate query plans. Attendees

will interact with CompoDB through an interactive GUI that allows

them to compose custom DMSes, execute queries, and observe

detailed performance metrics in real time. Altogether, this demon-

stration highlights the practicality of modular DMS architectures

and their potential for optimizing data management solutions

for speci�c workloads.

1 INTRODUCTION

The evolution of data management systems (DMSes) has been

driven by the recognition that “one size does not �t all”. To ad-

dress diverse needs, specialized systems such as columnar, graph,

distributed, document, and other DMSes have emerged, each

excelling in its respective domain. However, despite this diver-

si�cation, the underlying architecture of most DMSes has re-

mained largely unchanged since the 1980s: monolithic systems

with tightly coupled components for query parsing, optimiza-

tion, execution, and storage. This tightly coupled design not only

increases development costs but also hampers innovation by

making it di�cult to adopt new technologies, adapt to evolving

workloads, or avoid reinventing common functionalities. We ar-

gue that a composable approach to DMS design o�ers a solution

by fostering reusable and extensible components – a concept

gaining increasing attention within the database systems com-

munity [1, 6, 10, 12, 13].

Composable DMSes: Building on the need for modularity, com-

posability has shown success in various contexts. Vertical com-

posability emerged in Hadoop-era architectures, where compute

is decoupled from storage – a paradigm adopted by modern

systems like Spark and Snow�ake. Hive [4] advanced this ap-

proach by integrating modular components, including the query

interface (SQL), optimizer (Calcite), execution engine (Spark,
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Tez, MapReduce), and storage backend (HDFS). Horizontal com-

posability has enabled federated systems like Presto [15] and

cross-engine frameworks like Apache Wayang [2] to combine

multiple DMSes for collaborative query processing. Despite these

advancements, the “state of the composability union” in the DMS

ecosystem remains weak, with components still being tightly cou-

pled due to a lack of standardized interfaces and the signi�cant

manual e�ort required for integration.

The State of Composability: Prior work, including the “Com-

posability Manifesto” [12] and our e�orts on PolyDMS [6], intro-

duced the composable DMS vision and demonstrated the bene�ts

of composability. Building on these foundations, recent work has

proposed the “Query Optimizer as a Service” [1] concept, further

emphasizing the feasibility of modular architectures. The rise of

open-source components, such as query interfaces (Ibis), optimiz-

ers (Calcite [3], Orca [16]), execution engines (DuckDB [14], Data-

Fusion [7], Acero, Velox [11]), intermediate representations (Sub-

strait [10]), and data formats (Parquet, Iceberg, Arrow), has also

paved the way for modular DMS design. These advances lay the

groundwork for realizing truly composable DMSes. However,

key questions remain: How easy is it to integrate these compo-

nents into cohesive systems? How e�ective are these composed

systems with respect to performance?

The CompoDB Framework: We present CompoDB, a frame-

work designed to enable the seamless assembly and evaluation

of modular DMSes. Building on our previous work [6], CompoDB

introduces standardized interfaces for integrating components

such as query parsers, optimizers, and execution engines. It also

includes benchmarking capabilities that systematically measure

trade-o�s across di�erent con�gurations, providing insights into

performance and workload-speci�c optimizations. With these ca-

pabilities, CompoDB establishes a foundation for modular “plug &

play” DMS design and brings us closer to our vision: a framework

that dynamically selects the optimal combination of components

for any given workload.

Our Demonstration: We highlight the potential of modular

DMS architectures through an interactive demo. Users can com-

pose custom DMS con�gurations with the CompoDB GUI by se-

lecting from supported query parsers and optimizers (e.g., Ibis,

DuckDB, Calcite, DataFusion) as well as execution engines (e.g.,

DuckDB, Acero, DataFusion). The GUI also enables users to eval-

uate performance across diverse workloads and visualize results

in real time, showcasing CompoDB’s benchmarking functionality.

This demonstration not only illustrates the ease of assembling

modular DMSes but also provides actionable insights into how

di�erent con�gurations impact performance, allowing attendees

to explore the trade-o�s of modular system design.
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2 BACKGROUND AND RELATED WORK

We summarize the evolution of DMSes from monolithic archi-

tectures to composable designs, highlighting the concepts of

horizontal and vertical composability, and discuss related work.

2.1 From Monoliths to Composable Systems

The landscape of DMSes has evolved signi�cantly over the past

decades. Traditionally, DMS architectureswere designed asmono-

lithic, vertically integrated systems that bundled all key compo-

nents, such as query optimizers, execution engines, and storage

backends, into a single tightly-coupled stack. While these sys-

tems provided a uni�ed solution for many use cases, they include

drawbacks, e.g., limited reusability for new requirements, high

maintenance costs, and a lack of �exibility to adapt to diverse

workloads. Moreover, building such systems required a signi�-

cant investment of time and resources, often requiring 5-10 years

of dedicated e�ort by expert engineers or the support of a large

open-source community. Consequently, innovating in this space

remained challenging.

2.2 Horizontal and Vertical Composability

The concept of composability in DMSes can be broadly catego-

rized into two paradigms: horizontal and vertical composability

(see Figure 1). Each serves distinct purposes and addresses dif-

ferent challenges in the evolving landscape of data management.

For a more in-depth discussion, see our prior work in [6].

Horizontal composability involves integrating multiple sys-

tems to collaboratively process a single query or job. This concept

originated with federated databases, which were designed not to

solve the monolith problem but to enable data integration from

multiple heterogeneous systems. Federated databases aimed to

cover broader use cases by allowing users to query across di�er-

ent data sources where individual systems alone were insu�cient.

Modern systems, such as Presto [15], extend this approach by scal-

ing out the computation on distributed environments. Apache

Wayang [2] o�ers cross-engine execution functionalities, i.e.,

combining multiple systems for single queries, to either enable

new use-cases or improve performance. In summary, horizontal

composability focuses on expanding the scope of data access

and query processing across platforms rather than addressing

architectural modularity.

Vertical composability, on the other hand, addresses the chal-

lenge of building modular systems by composing individual com-

ponents, such as query optimizers, execution engines, and storage

backends, into a uni�ed stack. Unlike horizontal composability,

which spans across independent systems, vertical composability

operates within a single system’s architecture, decoupling com-

ponents to increase extensibility and reusability. For example, a

vertically composed system might use Apache Calcite as a plug-

gable optimizer, coupled with an execution engine like Velox [11]

or DuckDB [14], allowing system architects to create custom

con�gurations tailored to speci�c workloads. The ongoing in-

dustry investments in composable components from companies

such as Meta (Velox [11]) or Microsoft (QOaaS [1]) demonstrate

the signi�cant interest in composable DMSes. BOSS [9] is an-

other example of enabling e�cient vertical composability across

compute kernels. Widely used systems like Apache Hive [4],

which seamlessly integrates a query interface, optimizer, and

execution engine, and Taurus, which embeds the Orca optimizer

into MySQL [8], further demonstrate the potential of vertical

composition. However, these systems remain tightly coupled and
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Figure 1: Composability approaches (adapted from [6]).

monolithic, limiting their �exibility to adopt new components or

address emerging requirements.

Together, horizontal and vertical composability highlight two

complementary approaches to addressing the complexity and

diversity of modern data management. Horizontal composabil-

ity emphasizes integration and interoperability across systems,

whereas vertical composability focuses on reusability and modu-

larity within a single system’s architecture. While some of our

recent work has focused on horizontal composability [5], this

demo centers on vertical composability, exploring the potential

of composable architectures for specialized OLAP DMSes.

2.3 Open-Source DMS Component Evolution

The growing appreciation for composable DMS architectures is

primarily driven by open-source technologies that enable modu-

larity and interoperability. IRs, such as Substrait [10], standardize

logical and physical query plans, thus allowing seamless commu-

nication between query optimizers and execution engines. This

standardization minimizes the integration overhead and acceler-

ates experimentation with modular components. Frontends and

query languages like Ibis and ZetaSQL further enhance modu-

larity by translating user queries into IRs, providing a consistent

interface across systems and enabling integration with diverse

backends. Advanced query optimizers, including Apache Cal-

cite, DataFusion’s optimizer, and DuckDB’s optimizer, decouple

optimization from execution, o�ering �exibility in system con�g-

urations. On the execution side, reusable engines such as Acero,

DataFusion [7], DuckDB [14], and Velox [11] employ advanced

techniques like vectorized processing and compressed (encoding-

aware) execution to maximize performance. Additionally, these

engines dynamically adapt to runtime statistics, thereby optimiz-

ing execution for diverse workloads. Between the optimization

and execution layers, Substrait ensures compatibility, therefore

simplifying the integration process. By integrating standardized

IRs, modular query frontends, advanced optimizers, and e�cient

execution engines, vertically composable architectures provide a

strong foundation for specialized DMSes.

Limited Support for Metadata: Despite the overall traction

and progress in open-source DMS components, ad-hoc compos-

ability of DMSes does not come without a cost. The lack of meta-

data standards (e.g., for sharing data statistics across components)

poses a signi�cant challenge for optimizing query plans and exe-

cuting queries e�ciently. Currently, DMS optimizer’s di�er in

how they retrieve statistics. For example, DuckDB and DataFu-

sion require tables to be registered, while Calcite has its own

metadata provider. Therefore, we argue that our community

needs to develop metadata standards similar to how Substrait

standardizes query plan representations to fully unlock the po-

tential of composable DMSes.
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Figure 2: CompoDB architecture.

3 COMPODB

CompoDB1 is a framework for vertical DMS composition designed

to integrate modular components such as query optimizers and

execution engines into custom systems. By leveraging standard-

ized interfaces and a shared IR, CompoDB facilitates �exibility,

extensibility, and tailored performance for diverse workloads.

3.1 Overview

Architecture: We show CompoDB’s architecture in Figure 2. At

its core, the framework consists of an orchestrator that manages

work�ows, connects components, and coordinates query execu-

tion. It allows users to compose unique systems tailored to their

workload requirements by selecting a combination of compo-

nents, which communicate using a common IR. The orchestrator

processes queries starting with query submission, followed by

parsing, optimization, and execution.

Composing a System: System architects can compose systems

via con�guration �les, which the orchestrator uses to instantiate a

tailored DMS. A con�guration �le de�nes the sequence and types

of components to be used. In the simplest case, users specify a

query parser, optimizer, and execution engine. However, CompoDB

also enables users to experiment with other con�gurations, such

as handling query parsing and optimization in a single compo-

nent or using multiple optimizers in sequence. CompoDB’s clear

boundaries and interfaces enable �exible and rapid composition

of systems without requiring deep integration e�orts.

Integrating New Components: To integrate new components

into CompoDB, system architects may implement one of three pre-

de�ned interfaces for query parsing, optimization, and execution.

• Query parser: Accepts queries written in a domain-speci�c

or general-purpose language and produces a query plan. A

component implementing this interface could optionally also

apply optimization techniques, such as operator push-down.

• Query optimizer: Accepts a query plan and produces an opti-

mized query plan, applying arbitrary optimization techniques.

CompoDB o�ers the �exibility to combine multiple optimiza-

tion strategies encapsulated in di�erent components, such as

adding a cost-based optimizer on top of a rule-based optimizer.

• Query executor: Accepts a query plan, compiles it into an

internal execution plan, executes it, and returns query results.

By abstracting the internal details of each component, the

IR facilitates interoperability and simpli�es the integration of

diverse components. This enables CompoDB to compose novel

1github.com/polydbms/composable-dms
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Figure 3: CompoDB prototype implementation. Query inter-

faces are grouped for conciseness since all but Ibis can also

act as optimizers. Optimizers may be chained.

DMS designs, such as combining the imperative Python-based

query interface of Ibis with the query optimizer of DataFusion

and the vectorized execution engine of DuckDB.

3.2 Prototype Implementation

Figure 3 illustrates the prototype implementation of CompoDB, in

which we implemented the query parsing, optimization, and exe-

cution interfaces for several open-source components and used

Substrait as the common IR. For query parsing, we integrated Ibis,

DuckDB, DataFusion, and Calcite, whereby all but the �rst can

also act as optimization components. Not all optimizers accept

Substrait plans as input as of now, wherefore some of these com-

ponents currently work as integrated parser-optimizer solutions.

For the query executor interface, we integrated the execution

engines of DuckDB, DataFusion, and Acero, all of which can con-

sume Substrait plans. Our prototype can be easily extended with

additional components that support Substrait (de)serialization by

implementing one of the three interfaces discussed in Section 3.1.

3.3 Benchmarking Composed DBMSes

To evaluate the performance of di�erent component composi-

tions, we enhanced CompoDB with a benchmarking framework.

This framework allows users to test various con�gurations of op-

timizers and execution engines, input diverse queries, and specify

data �le formats, e.g., Parquet or CSV. The framework automates

the benchmarking process and captures metrics such as execu-

tion runtime and resource utilization to showcase performance

trade-o�s across con�gurations. These insights ultimately enable

the design of workload-speci�c composed DMSes.

Our preliminary experimental investigation produced inter-

esting �ndings, an excerpt of which is illustrated in Figure 4.

The execution time measurements show that for several TPC-H

queries, combining the Ibis parser and DuckDB engine outper-

formed chaining DuckDB’s own optimizer and execution engine

through Substrait2, indicating that diverse compositions can in-

deed be bene�cial. Inspecting the intermediate Substrait plans re-

vealed that the optimizers generated di�erent plans. For instance,

DuckDB’s and DataFusion’s optimizers introduced additional

projection operators in Q3, leading to performance overhead. In

other queries, the di�erences stemmed from varying join orders,

which we attribute to the lack of metadata access.

2We note that Substrait support in DuckDB is currently experimental.
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Figure 4: CompoDB experiments with DuckDB engine and

di�erent optimizers on selected TPC-H queries (sf 10).

4 DEMONSTRATION SCENARIOS

Our demonstration o�ers three dedicated scenarios that focus on

di�erent aspects of composable DMSes: integrating new compo-

nents, measuring performance tradeo�s between compositions,

and analyzing query plans to understand performance di�er-

ences. Together, these scenarios make the end-to-end process of

vertical DMS composition more accessible to system architects.

Ease of Using CompoDB Interfaces: In the �rst part of the demo,

we will showcase how CompoDB simpli�es the integration of mod-

ular DMS components through well-de�ned interfaces. We will

walk through the code to demonstrate the ease of implementing

the query parsing, optimization, and execution interfaces, as well

as their interaction via the shared IR. Essentially, adding a com-

ponent involves implementing a substrait producer (for parsing

and optimization) or consumer (for execution). By showing how

new components can be plugged into the framework with min-

imal e�ort, we highlight CompoDB’s �exibility and extensibility.

This scenario emphasizes how developers can rapidly integrate

existing systems and experiment with new components.

Instantiating and Benchmarking Systems: The second part

of the demo will showcase CompoDB’s user interface, which al-

lows attendees to interactively create system compositions, select

queries, and run benchmarks (see Figure 5 on the left). Users can

compose their own system �avor and select a set of queries from

the TPC-H benchmark to start a performance analysis. Concep-

tually, CompoDB supports all queries that can be expressed in the

newest Substrait version, making it highly �exible. While some

compositions fully support standard TPC-H queries, others may

not work due to di�erences in Substrait versions and its evolv-

ing support across systems. To ensure compatibility, we have

carefully curated a set of slightly modi�ed TPC-H queries that

work seamlessly across all Substrait producers and consumers.

Additionally, we encourage the audience to experiment with their

own queries, which can be easily added to CompoDB’s benchmark-

ing framework. Once the benchmark runs are completed, the

GUI visualizes the results, i.e., query runtime, allowing users to

compare the performance of di�erent system compositions. This

scenario demonstrates the practicality of composable systems

and provides insights into tradeo�s across various con�gurations.

Visualizing CompoDB Substrait Plans: In the �nal part of the

demo, we will explore the Substrait query plans generated by

each composition for the selected benchmark queries. This visu-

alization helps to explain why speci�c query and system con�gu-

rations exhibit di�erent behaviors. By analyzing the query plans,

attendees can identify how optimizers and execution engines

a�ect query execution and how they each excel for di�erent

workloads. For example, the popup window of CompoDB’s GUI in

Figure 5 shows the three di�erent Substrait query plans produced

Figure 5: CompoDB benchmark GUI. Allows composing sys-

tems by selecting DMS components, benchmarking created

compositions, and visualizing intermediate query plans.

by DataFusion, DuckDB and Ibis for TPC-H Q3. This scenario

highlights CompoDB’s ability to benchmark system compositions

while o�ering insights into query processing by enabling com-

parisons of query plans across di�erent optimizers.
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